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In this paper, the full development and analysis of four models for the
transversely vibrating uniform beam are presented. The four theories are the
Euler}Bernoulli, Rayleigh, shear and Timoshenko. First, a brief history of
the development of each beam model is presented. Second, the equation of motion
for each model, and the expressions for boundary conditions are obtained using
Hamilton's variational principle. Third, the frequency equations are obtained for
four sets of end conditions: free}free, clamped}clamped, hinged}hinged and
clamped}free. The roots of the frequency equations are presented in terms of
normalized wave numbers. The normalized wave numbers for the other six sets of
end conditions are obtained using the analysis of symmetric and antisymmetric
modes. Fourth, the orthogonality conditions of the eigenfunctions or mode shape
and the procedure to obtain the forced response using the method of eigenfunction
expansion is presented. Finally, a numerical example is shown for a non-slender
beam to signify the di!erences among the four beam models.

( 1999 Academic Press
1. INTRODUCTION

The beam theories that we consider here were all introduced by 1921. That is, the
problem of the transversely vibrating beam was formulated in terms of the partial
di!erential equation of motion, an external forcing function, boundary conditions
and initial conditions. Many e!orts had been devoted to obtaining and to
understanding the solution of this non-homogeneous initial-boundary-value
problem. However, work on this subject was done in a patchwork fashion by
showing parts of the solution at a time, and there is no paper that presents the
complete solution from the formulation of the governing di!erential equation to its
solution for all four models. The most complete study was done by Traill-Nash and
Collar [1], but they only derived the frequency equations for various end
conditions for four models. In this paper, the partial di!erential equation of motion
for each model is solved in full obtaining the frequency equations for each end
condition, the solutions of these frequency equations in terms of dimensionless
wave numbers, the orthogonality conditions among the eigenfunctions, and the
procedure to obtain the full solution to the non-homogeneous initial-
boundary-value problem using the method of eigenfunction expansion.
0022-460X/99/350935#54 $30.00/0 ( 1999 Academic Press
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For engineering purposes, the dimensionless wave numbers are tabulated or
plotted as functions of the slenderness ratio so that the natural frequencies can be
obtained directly for given geometrical and physical properties. The comparisons
among the natural frequencies and the dimensionless wave numbers of the four
models are then made. It is shown that the di!erences between the the
Euler}Bernoulli model and the other models monotonically decreases with
increasing slenderness ratio de"ned by the ratio of length of the beam to the radius
of gyration of the cross-section. A numerical example is given for the case of
a non-slender beam so that the di!erences among models are noticeable.

Following is a brief history of the development of each beam model.

1.1. LITERATURE REVIEW

An exact formulation of the beam problem was "rst investigated in terms of
general elasticity equations by Pochhammer (1876) and Chree (1889) [2]. They
derived the equations that describe a vibrating solid cylinder. However, it is
not practical to solve the full problem because it yields more information than
usually needed in applications. Therefore, approximate solutions for transverse
displacement are su$cient. The beam theories under consideration all yield the
transverse displacement as a solution.

It was recognized by the early researchers that the bending e!ect is the single
most important factor in a transversely vibrating beam. The Euler}Bernoulli model
includes the strain energy due to the bending and the kinetic energy due to the
lateral displacement. The Euler}Bernoulli model dates back to the 18th century.
Jacob Bernoulli (1654}1705) "rst discovered that the curvature of an elastic beam
at any point is proportional to the bending moment at that point. Daniel Bernoulli
(1700}1782), nephew of Jacob, was the "rst one who formulated the di!erential
equation of motion of a vibrating beam. Later, Jacob Bernoulli's theory was
accepted by Leonhard Euler (1707}1783) in his investigation of the shape of elastic
beams under various loading conditions. Many advances on the elastic curves were
made by Euler [3]. The Euler}Bernoulli beam theory, sometimes called the
classical beam theory, Euler beam theory, Bernoulli beam theory, or
Bernoulli}Euler beam theory, is the most commonly used because it is simple and
provides reasonable engineering approximations for many problems. However, the
Euler}Bernoulli model tends to slightly overestimate the natural frequencies. This
problem is exacerbated for the natural frequencies of the higher modes. Also, the
prediction is better for slender beams than non-slender beams.

The Rayleigh beam theory (1877) [4] provides a marginal improvement on the
Euler}Bernoulli theory by including the e!ect of rotation of the cross-section. As
a result, it partially corrects the overestimation of natural frequencies in the
Euler}Bernoulli model. However, the natural frequencies are still overestimated.
Early investigators include Davies (1937) [5], who studied the e!ect of rotary
inertia on a "xed-free beam.

The shear model adds shear distortion to the Euler}Bernoulli model. It should
be noted that this is di!erent from the pure shear model which includes the shear
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distortion and rotary inertia only or the simple shear beam which includes the
shear distortion and lateral displacement only [6]. Neither the pure shear nor
the simple shear model "ts our purpose of obtaining an improved model to
the Euler}Bernoulli model because both exclude the most important factor, the
bending e!ect. By adding shear distortion to the Euler}Bernoulli beam, the
estimate of the natural frequencies improves considerably.

Timoshenko (1921, 1922) [7, 8] proposed a beam theory which adds the e!ect of
shear as well as the e!ect of rotation to the Euler}Bernoulli beam. The Timoshenko
model is a major improvement for non-slender beams and for high-frequency
responses where shear or rotary e!ects are not negligible. Following Timoshenko,
several authors have obtained the frequency equations and the mode shapes for
various boundary conditions. Some are Kruszewski (1949) [9], Traill-Nash and
Collar (1953) [1], Dolph (1954) [10], and Huang (1961) [11].

Kruszewski obtained the "rst three antisymmetric modes of a cantilever beam,
and three antisymmetric and symmetric modes of a free}free beam.

Traill-Nash and Collar gave a fairly complete theoretical treatment as well as
experimental results for the case of a uniform beam. In the "rst part of their paper,
they obtained the expressions for the frequency equation and mode shapes for
six common boundary conditions: "xed}free, free}free, hinged}free,
hinged}hinged, "xed}"xed and "xed}hinged. In the second part of the paper,
they reported the experimental results with the numerical results obtained by
the Euler}Bernoulli, shear, and Timoshenko models. They used non-slender
beams in which the shear and rotary e!ects were important. They reported the
di!erence for the "rst and second natural frequencies predicted by each of the
theoretical models and the experimental values. The summary of the result is
shown in Table 1.

Huang (1961) independently obtained the frequency equations and expressions
for the mode shapes for all six end conditions. The frequency equations are di$cult
to solve except for the case of a simply supported beam. Even when the roots of the
frequency equations are obtained, it is a challenge to present them in a meaningful
way. For example, Traill-Nash and Collar (1953), Dolph (1954), Huang (1961) and
Abbas and Thomas (1977) presented them in di!erent ways.

Kruszewski, Traill-Nash and Collar, and Huang only gave expressions for the
natural frequencies and mode shapes. They did not solve for the complete response
TABLE 1

¹he percentage deviates from the experimental values obtained by ¹raill-Nash and
Collar (1953)

Beam models First natural frequency Second natural frequency

Euler}Bernoulli #14% to #26% #78% to #133%
Shear 0% to #3% !1% to #6%

Timoshenko !1% to #2% !1% to #6%
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of the beam due to initial conditions and external forces. To do so, knowledge of
the orthogonality conditions among the eigenfunctions is required. The
orthogonality conditions for the Timoshenko beam were independently noted by
Dolph (1954) and Herrmann (1955) [12]. Dolph solved the initial and
boundary-value problem for a hinged}hinged beam with no external forces. The
methods used to solve for the forced initial-boundary-value problem and for the
problem with time-dependent boundary conditions are brie#y mentioned in his
paper. A general method to solve for the response of a Timoshenko beam due to
initial conditions and the external forces is given in the book Elastokinetics by
Reismann and Pawlik (1974) [13]. They used the method of eigenfunction
expansion.

A crucial parameter in Timoshenko beam theory is the shape factor. It is also
called the shear coe$cient or the area reduction factor. This parameter arises
because the shear is not constant over the cross-section. The shape factor is
a function of Poisson's ratio and the frequency of vibration as well as the shape of
the cross-section. Typically, the functional dependence on frequency is ignored.
Davies (1948) [5], Mindlin and Deresiewicz (1954) [14], Cowper (1966) [15] and
Spence and Seldin (1970) [16] suggested methods to calculate the shape factor as
a function of the shape of the cross-section and Poisson's ratio. Stephen (1978) [17]
showed variation in the shape factor with frequency.

Despite current e!orts (Levinson (1979, 1981) [18}20] to come up with a new
and better beam theory, the Euler}Bernoulli and Timoshenko beam theories are
still widely used.

A summary of the four beam theories is tabulated in Table 2. The basic
assumptions made by all models are as follows.

1. One dimension (axial direction) is considerably larger than the other two.
2. The material is linear elastic (Hookean).
3. The Poisson e!ect is neglected.
4. The cross-sectional area is symmetric so that the neutral and centroidal axes

coincide.
5. Planes perpendicular to the neutral axis remain perpendicular after

deformation.
6. The angle of rotation is small so that the small angle assumption can be used.
TABLE 2

Four beam theories

Beam models Bending
moment

Lateral
displacement

Shear
deformation

Rotary
inertia

Euler}Bernoulli @ @ ] ]
Rayleigh @ @ ] @
Shear @ @ @ ]
Timoshenko @ @ @ @



2. EQUATION OF MOTION AND BOUNDARY CONDITIONS VIA
HAMILTON'S PRINCIPLE

2.1. THE EULER}BERNOULLI BEAM MODEL

Detailed derivations for the Euler}Bernoulli model can be found in text books
by Benaroya [21], Inman [22], Meirovitch [23}25], Rao [26] and Thomson [27].
Here, the equation of motion is obtained using Hamilton's variational principle.
The potential energy of a uniform beam due to bending is given by

PE*
bending

"

1
2 P

L*

0

E*I* A
L2v*(x*, t*)

Lx*2 B
2
dx*, (1)

where E* is the modulus of elasticity, I* the area moment of inertia of the
cross-section about the neutral axis, v*(x*, t*) the transverse de#ection at the axial
location x* and time t*, and ¸* the length of the beam. Superscript * symbols are
used to signify that they are dimensional quantities. Now, the length scales (¸*, v*,
and x*) are non-dimensionalized by the length of the beam so that dimensionless
quantities (¸, v, and x) are given by

¸"¸*/¸*"1, v"v*/¸*, x"x*/¸*. (2)

In terms of the dimensionless length scales, the potential energy is given by

PE*
bending

"

1
2 P

1

0

E*I*
¸* A

L2v (x, t)
Lx2 B

2
dx. (3)

The potential energy is non-dimensionalized by E*I*/¸* so that we can write

PE
bending

"

1
2 P

1

0
A
L2v(x, t)

Lx2 B
2
dx. (4)

The kinetic energy is given by

KE*
trans

"

1
2 P

L*

0

o*A* A
Lv*(x*, t*)

Lt* B
2
dx*, (5)

where o* is the density of the beam and A* the cross-sectional area. The
cross-sectional area A* is non-dimensionalized by ¸*2, and the time t by 1/u*

1
,

where u*
1

is the "rst natural frequency yet to be determined. The kinetic energy is
non-dimensionalized by E*I*/¸* so that we can write

KE
trans

"

1
2 P

1

0

o*
¸*6u*2

1
E*I*

A A
Lv(x, t)

Lt B
2
dx (6)

By non-dimensionalizing the density o* by E*I*/(¸*6u*2
1

), we can write

KE
trans

"

1
2 P

1

0

oA A
Lv (x, t)

Lt B
2
dx . (7)

The dimensionless Lagrangian, de"ned by KE!PE, is given by

¸"

1
2 P

1

0
CoA A

Lv (x, t)
Lt B

2
!A

L2v (x, t)
Lx2 B

2

D dx , (8)
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The virtual work due to the non-conservative transverse force per unit length
f *(x*, t*) is given by

d=*
nc
"P

L*

0

f *(x*, t*)dv* (x*, t*) dx* . (9)

Non-dimensionalizing the work by E*I*/¸* and the transverse external force f * by
¸*3/E*I*, the dimensionless non-conservative work is given by

d=
nc
"P

1

0

f (x, t)dv(x, t) dx. (10)

Using the extended Hamilton's principle, by including the non-conservative
forcing, the governing di!erential equation of motion is given by

oA
L2v(x, t)

Lt2
#

L4v(x, t)
Lx4

"f (x, t) , (11)

with the boundary conditions to be satis"ed

L2v
Lx2

d A
Lv
LxB K

1

0

"0,
L3v
Lx3

dv K
1

0

"0. (12)

Before we go on, let us examine the physical meaning of the boundary conditions
above. v is the dimensionless displacement, the "rst derivative Lv/Lx is the
dimensionless slope, the second derivative L2v/Lx2 is the dimensionless moment,
and the third derivative L3v/Lx3 is the dimensionless shear. Keep in mind that
dv"0 means that the variation of the displacement is zero. That is, the
displacement is known. It does not necessarily mean that the displacement is zero.
Here, we do not consider base excited or end forcing problems. Therefore, only in
our case, dv"0 or d(Lv/Lx)"0 means that the displacement or the slope is zero. In
order for equation (12) to be satis"ed, four combinations of end conditions are
possible,

L2v
Lx2

"0, v"0 for hinged end;
Lv
Lx

"0, v"0 for clamped end;

L2v
Lx2

"0,
L3v
Lx3

"0 for free end;
Lv
Lx

"0,
L3v
Lx3

"0 for sliding end. (13)

These conditions are shown in Figure 1 where D, S, M, and Q represent
displacement, slope, moment and shear respectively.

The equation of motion, boundary conditions, and initial conditions form an
initial-boundary-value problem which can be solved using the methods of
separation of variables and eigenfunction expansion. First, we consider
a homogeneous problem by setting f (x, t)"0 in order to obtain the natural
frequencies and eigenfunctions. By separating v(x, t) into two functions such that
v(x, t)"= (x)¹(t), the equation of motion (11) can be separated into two ordinary



Figure 1. Four types of boundary conditions: (a) hinged, M(0, t)"0, D (0, t)"0; (b) clamped,
D(0, t)"0, S (0, t)"0; (c) free, M(0, t)"0, Q (0, t)"0; (d) sliding, S(0, t)"0, Q(0, t)"0.
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di!erential equations,

d2¹(t)
dt2

#u2¹(t)"0,
d4=(x)

dx4
!a4=(x)"0, (14, 15)

where a is related to the angular frequency u by

a4"oAu2. (16)

The quantity a is 1/2n times the number of cycles in a beam length, and we call a the
dimensionless wave number.s Equation (16) is called the dispersion relationship.
From Equations (14) and (15), ¹ (t) is sinusoidal in time, and = (x) has both
sinusoidal and hyperbolic terms:

¹(t)"d
1
sinut#d

2
cosut, (17)

=(x)"C
1
sin ax#C

2
cos ax#C

3
sinh ax#C

4
cosh ax , (18)

where d
i
and C

i
are constant coe$cients.

Note that the boundary conditions can be expressed in terms of the spatial
function=(x) only. For instance, equation (12) can be rewritten as

d2=
dx2

d A
d=
dx B K

1

0

"0,
d3=
dx3

d= K
1

0

"0. (19)

from which we can obtain four possible end conditions, as in equation (13), in terms
of=(x) only. Now we are ready to apply the boundary conditions to the spatial
solution to obtain the corresponding frequency equations and eigenfunctions. This
is done is Section 3.2. We proceed next with the Rayleigh beam model.

2.2. THE RAYLEIGH BEAM MODEL

As mentioned in the introduction, the Rayleigh beam adds the rotary inertia
e!ects to the Euler}Bernoulli beam. The variables are non-dimensionalized in the
same fashion, and they are tabulated in Appendix A. The kinetic energy due to the
sWe are de"ning the wave number as a*"2n/wavelength* so that the dimensionless wave number
is given by a"2n/wavelength.
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rotation of the cross-section is given by

KE
rot
"

1
2 P

1

0

oI A
L2v(x, t)

LtLx B
2

dx , (20)

where I* is non-dimensionalized by ¸*4. Combining equation (20) with equations
(4), (7) and (10) to form the Lagrangian and using Hamilton's principle, we obtain
the equation of motion given by

oA
L2v(x, t)

Lt2
#

L4v(x, t)
Lx4

!oI
L4v (x, t)
Lx2Lt2

"f (x, t), (21)

with the boundary conditions given by

L2v
Lx2

dA
Lv
LxB K

1

0

"0, A
L3v
Lx3

!oI
L3v

LxLt2Bdv K
1

0

"0, (22)

where v is the dimensionless displacement, Lv/Lx the dimensionless slope, L2v/Lx2
the dimensionless moment and L3v/Lx3!oI(L3v/LxLt2) the dimensionless shear.
Four possible end conditions are

L2v
Lx2

"0, v"0 for hinged end;
Lv
Lx

"0, v"0 for clamped end;

L2v
Lx2

"0,
L3v
Lx3

!oI
L3v

LxLt2
"0 for free end;

Lv
Lx

"0,
L3v
Lx3

!oI
L3v

LxLt2
"0 for sliding end. (23)

The expression for shear might seem odd. Its validity can be veri"ed by summing
the forces and moments on an incremental beam element, as shown in Figure 2. The
sum of the forces on a beam element in the transverse direction iss

+F
y
"o*A*dx*

L2v*
Lt*2

"!(Q*#dQ*) cos(h#dh)#Q* cos h#f *(x*, t*) dx*, (24)

where h can be approximated as Lv/Lx or Lv*/Lx*, and dQ* and dh represent
(LQ*/Lx*) dx* and (Lh/Lx*) dx* respectively. Expanding cos(h#dh) about h using
a Taylor series expansion and using the small angle assumption,t we obtain

!

LQ*
Lx*

"o*A*
L2v*
Lt*2

!f * (x*, t*). (25)

Similarly, taking the sum of the moments about the center of the beam element, we
obtain

LM*
Lx*

!Q*"o*I*
L3v*

Lt*2Lx*
. (26)
sSymbols with superscript * are dimensional quantities.
tThe small angle assumption means that h2@1.



Figure 2. An incremental beam element.
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Taking the "rst derivative of equation (26) with respect to x*, and subtracting
equation (25) from it, we obtain

L2M*
Lx*2

"o*I*
L4v*

Lt*2Lx*2
!o*A*

L2v*
Lt*2

#f *(x*, t*) , (27)

whose dimensionless form is given by

L2M
Lx2

"oI
L4v

Lt2Lx2
!oA

L2v
Lt2

#f (x, t) . (28)

Comparing this with the equation of motion (21), the moment is given by

M"

L2v
Lx2

or M*"E*I*
L2v*
Lx*2

. (29)

Using equation (29) and (26), the shear is given by

Q*"E*I*
L3v*
Lx*3

!o*I*
L3v*

Lt*2Lx*
, (30)

or

Q"

L3v
Lx3

!oI
L3v

Lt2Lx
,

which veri"es our interpretation.
In order to obtain the homogeneous solution, f (x, t) is set equal to zero in

equation (21). Separating v(x, t) into spatial and time functions, v (x, t)"= (x)¹(t),
equation (21) can also be separated into two ordinary di!erential equations. The
time function ¹(t) obeys the same di!erential equation as the one for the
Euler}Bernoulli model given in equation (14), and the spatial di!erential equation
is given by

d4=(x)
dx4

!u2AoA=(x)!oI
d2=(x)

dx2 B"0. (31)
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Again, the time solution ¹ (t) is sinusoidal, and the spatial solution= (x) has both
sinusoidal and hyperbolic terms,

¹(t)"d
1
sinut#d

2
cosut, (32)

=(x)"C
1
sin ax#C

2
cos ax#C

3
sinh bx#C

4
cosh bx , (33)

where the dispersion relations are

a"JoIu2/2#J(oIu2/2)2#oAu2 ,

b"J!oIu2/2#J(oIu2/2)2#oAu2 . (34)

Note that there are two wave numbers in this case. It will be shown in Section 3.3
that these wave numbers are related only by the slenderness ratio.

The boundary conditions given in equation (22) can be written in terms of=(x)
only,

d2=
dx2

d A
d=
dx B K

1

0

"0, A
d3=
dx3

#oIu2
d=
dx Bd= K

1

0

"0. (35)

2.3. THE SHEAR BEAM MODEL

This model adds the e!ect of shear distortion (but not rotary inertia) to the
Euler}Bernoulli model. We introduce new variables a, the angle of rotation of the
cross-section due to the bending moment, and b, the angle of distortion due to
shear. The total angle of rotation is the sum of a and b and is approximately the "rst
derivative of the de#ection,

a (x, t)#b (x, t)"Lv (x, t)/Lx . (36)

Therefore, the potential energy due to bending given in equation (4) is slightly
modi"ed in this case such that

PE
bending

"

1
2 P

1

0
A
La(x, t)

Lx B
2

dx . (37)

The potential energy due to shear is given by

PE*
shear

"

1
2 P

L

0

k@G*A*A
Lv* (x*, t*)

Lx*
!a (x*, t*)B

2
dx*. (38)

Using the dimensionless length scales and the dimensionless potential energy
expressions,

PE
shear

"

1
2 P

L

0

k@
G*¸*4

E*I*
AA

Lv (x, t)
Lx

!a(x, t)B
2
dx . (39)

Non-dimensionalizing G* by E*I*/¸*4, we can write

PE
shear

"

1
2 P

1

0

k@GAA
Lv (x, t)

Lx
!a(x, t)B

2
dx , (40)



TABLE 3

¹he shear factor

Cross section k@

Circle 6(1#l)
7#6l

Hollow circle with m"r
inner

/r
outer

6(1#l)(1#m2)2

(7#6l) (1#m2)2#(20#12l)m2

Rectangle
10(1#l)
12#11l

Thin-walled round tube
2(1#l)
4#3l

Thin-walled square tube
20(1#l)
48#39l
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where k@ is the shape factor. Following Cowper's [15] work, some of the values are
tabulated in Table 3.

Together with the kinetic energy due to lateral displacement given in equation
(7), the Lagrangian is given by

¸"

1
2 P

1

0
CoAA

Lv(x, t)
Lt B

2
!A

La(x, t)
Lx B

2
!k@GAA

Lv (x, t)
Lx

!a(x, t)B
2

Ddx . (41)

Unlike in the Euler}Bernoulli and the Rayleigh beam models, there are two
dependent variables for the shear beam. The equations of motion, using Hamilton's
principle, are given by

oA
L2v(x, t)

Lt2
!k@GAA

L2v(x, t)
Lx2

!

La(x, t)
Lx B"f (x, t) , (42)

L2a(x, t)
Lx2

#k@GAA
Lv (x, t)

Lx
!a (x, t)B"0,

with the boundary conditions given by

La
Lx

da K
1

0

"0, k@GAA
Lv
Lx

!aB dv K
1

0

"0. (43)

v is the dimensionless displacement, a the angle of rotation due to the bending
moment, La/Lx the dimensionless moment, and k@GA(Lv/Lx!a(x, t)) the
dimensionless shear. Four possible boundary conditions are

La
Lx

"0, v"0 for hinged end; a"0, v"0 for clamped end; (44)

La
Lx

"0, k@GAA
Lv
Lx

!aB"0 for free end; a"0, A
Lv
Lx

!aB"0 for sliding end.
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Note that the slope due to the bending moment a is zero (instead of the total slope
Lv/Lx) at the clamped or sliding end.

Now, we try to solve the homogeneous problem without the external forcing
function. The two equations of motion (42) can be decoupled to yield

L4v (x, t)
Lx4

!

o
k@G

L4v(x, t)
Lx2Lt2

#oA
L2v (x, t)

Lt2
"0,

L4a(x, t)
Lx4

!

o
k@G

L4a(x, t)
Lx2Lt2

#oA
L2a(x, t)

Lt2
"0. (45)

Note that the forms of the di!erential equations for v and a are identical.s
Therefore, we can expect that the forms of v(x, t) and a(x, t) are the same.

The next step is to separate the variables. Here, we "rst assume that they share
the same time solution ¹(t). In other words, v(x, t) and a (x, t) are synchronized in
time,

C
v (x, t)
a (x, t)D"¹ (t)C

= (x)
W(x) D . (46)

Now, let us substitute the above expression into the governing di!erential equation
(42) without the term f (x, t) to obtain

oA=(x)¹G (t)!k@GA(=A(x)!W@ (x))¹(t)"0,

WA(x)¹ (t)#k@GA(=@(x)!W (x))¹ (t)"0, (47)

where the prime and dot notations are used for the derivatives with respect to x and
t respectively. The "rst expression in equation (47) can be separated into two
ordinary di!erential equations given by

¹G (t)#u2¹(t)"0,

k@GA(=A (x)!W@ (x) )#u2oA=(x)"0. (48)

Again, ¹(t) is sinusoidal with angular frequency u as in equation (17). The spatial
equations, the second in equation (47) and the second in equation (48), are written
using matrix notation as

0"C
k@GA

0
0
1DC
=A (x)
WA(x) D#C

0
k@GA

!k@GA
0 D C

=@(x)
W@ (x) D

#C
oAu2

0
0

!k@GAD C
= (x)
W(x) D . (49)

These equations can be decoupled to yield

=@@@@(x)#
ou2

k@G
=A(x)!oAu2=(x)"0,

W@@@@(x)#
ou2

k@G
WA (x)!oAu2W(x)"0. (50)
sThe equations can be decoupled in this way only when the cross-sectional area and the density are
uniform.
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Note that the di!erential equations for= (x) and W(x) have the same form, so that
we can further assume that the solutions of= (x) and W (x) also have the same form
and only di!er by a constant as

C
= (x)
W(x) D"duerx, (51)

where d is the constant coe$cient, u a vector of constant numbers and r the wave
number.

When equation (51) is substituted into equation (49), we obtain

C
k@GAr2#oAu2

k@GAr
!k@GAr
r2!k@GADu"0, (52)

from which we obtain the eigenvalues r and eigenvectors u. In order to have
a non-trivial solution, the determinant of the above matrix has to be zero, that is,

r4#
ou2

k@G
r2!oAu2"0. (53)

The eigenvalues are given by

r
i
"$S!

ou2

2k@G
$SA

ou2

2k@GB
2
#oAu2 for i"1, 2, 3, 4, (54)

of which two are real and the other two are imaginary. The corresponding
dimensionless eigenvectors u

i
are given by

u
i
"C

k@GAr
i

k@GAr2
i
#oAu2D or C

r2
i
!k@GA

!k@GAr
i
D . (55)

The spatial solution is given by

C
=(x)
W(x) D"

4
+
i/1

d
i
u
i
erix

"d
1
u
1
ebx#d

2
u
2
e~bx#d

3
u
3
e*ax#d

4
u
4
e~*ax, (56)

where

a"Sou2

2k@G
#SA

ou2

2k@GB
2
#oAu2 , b"S!

ou2

2k@G
#SA

ou2

2k@GB
2
#oAu2 .

(57)

We can write the spatial solution (56) in terms of the sinusoidal and hyperbolic
functions with real arguments,

C
=(x)
W(x) D"C

C
1

D
1
D sin ax#C

C
2

D
2
Dcos ax#C

C
3

D
3
D sinh bx#C

C
4

D
4
Dcosh bx. (58)
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It may seem that the spatial solution has eight unknown constant coe$cients,
C

i
and D

i
, instead of the four that we started with [d

i
in equation (56)]. By

expressing the exponential functions erix in equation (56) in terms of sinusoidal and
hyperbolic functions, the expressions for the coe$cients C

i
and D

i
are obtained in

terms of eigenvectors,

C
C

1
D

1
D"(d

3
u
3
!d

4
u
4
) i, C

C
2

D
2
D"d

3
u
3
#d

4
u
4
,

C
C

3
D

3
D"(d

1
u
1
!d

2
u
2
) , C

C
2

D
2
D"d

1
u
1
#d

2
u
2
. (59)

Keeping in mind that d
3

and d
4

are complex conjugates of each other, we obtain

D
1
"!

k@GAa2!oAu2

k@GAa
C

2
, D

2
"

k@GAa2!oAu2

k@GAa
C

1
,

D
3
"

k@GAb2#oAu2

k@GAb
C

4
, D

4
"

k@GAb2#oAu2

k@GAb
C

3
. (60)

Therefore, there are four unknowns. These relations can be obtained more
easily by substituting the assumed solution (58) into the spatial di!erential
equations (49).

The boundary conditions in equation (43) are written in terms of spatial solutions
as

dW
dx

dW K
1

0

"0, k@GAA
d=
dx

!WBd= K
1

0

"0. (61)

2.4. THE TIMOSHENKO BEAM MODEL

Timoshenko proposed a beam theory which adds the e!ects of shear distortion
and rotary inertia [7, 8] to the Euler}Bernoulli model.s Therefore, the Lagrangian
includes the e!ects of bending moment (37), lateral displacement (7), rotary inertia
(20) and shear distortion (40). We assume that there is no rotational kinetic energy
associated with shear distortion, but only with the rotation due to bending.
Therefore, the kinetic energy term used in the Rayleigh beam (20) is modi"ed to
include only the angle of rotation due to bending by replacing Lv/Lx with a.

Combining modi"ed equation (20) with equations (7), (37) and (40), the
Lagrangian is given by

¸"

1
2 P

1

0
CoAA

Lv(x, t)
Lt B

2
#oI A

La(x, t)
Lt B

2

!A
La (x, t)

Lx B
2
!k @GAA

Lv (x, t)
Lx

!a(x, t)B
2

D dx . (62)
sEquivalently, the Timoshenko model adds rotary inertia to the shear model or adds shear
distortion to the Rayleigh model.
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The equations of motion are given by

oA
L2v(x, t)

Lt2
!k@GAA

L2v(x, t)
Lx2

!

La(x, t)
Lx B"f (x, t) ,

oI
L2a(x, t)

Lt2
!

L2a(x, t)
Lx2

!k@GA A
Lv(x, t)

Lx
!a (x, t)B"0, (63)

and the boundary conditions are given by

La
Lx

da K
1

0

"0, k@GAA
Lv
Lx

!aB dv K
1

0

"0, (64)

which are identical to those of the shear beam.
In order to solve the homogeneous problem, the forcing function is set to zero.

The equations of motion (63) can be decoupled into

L4v
Lx4

!AoI#
o

k@GB
L4v

Lx2Lt2
#oA

L2v
Lt2

#

o2I
k@G

L4v
Lt4

"0,

L4a
Lx4

!AoI#
o

k@GB
L4a

Lx2Lt2
#oA

L2a
Lt2

#

o2I
k@G

L4a
Lt4

"0, (65)

where it is implied that v and a are functions of x and t. Again, both v(x, t) and a(x, t)
obey di!erential equations of the same form, so that we can make the same
argument as we did for the shear beam that v (x, t) and a(x, t) themselves are of the
same form.

First, we use the method of separation of variables to separate the equations of
motion (63) to obtain the time and the spatial ordinary di!erential equations. The
time equation is the same as the ones for the other models given in equation (14),
and the spatial equation is given by

0"C
k@GA

0
0
1DC
=A (x)
WA(x) D#C

0
k@GA

!k@GA
0 D C

=@(x)
W@ (x) D

#C
oAu2

0
0

Ju2!k@GAD C
= (x)
W (x) D . (66)

Following the procedure used previously from equations (46)} (53), we obtain the
characteristic equation

r4#AoI#
o

k@GBu2r2!oAu2#
o2I
k@G

u4"0, (67)

whose roots are

r"$S!AI#
1

k@GB
ou2

2
$SAI!

1
k@GB

2 o2u4

4
#oAu2 . (68)
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Of the four roots, the two given by

r
1,2

"$S!AI#
1

k@GB
ou2

2
!SAI!

1
k@GB

2 o2u4

4
#oAu2

are always imaginary, and the other two roots given by

r
3,4

"$S!AI#
1

k@GB
ou2

2
#SAI!

1
k@GB

2 o2u4

4
#oAu2 (69)

are either real or imaginary depending on the frequency u (for a given material and
geometry). They are real when the frequency is less than Jk@GA/oI and are
imaginary when the frequency is greater than Jk@GA/oI. We call this cuto!
frequency the critical frequency u

c
. Therefore, we must consider two cases when

obtaining spatial solutions: u(u
c
and u'u

c
.

When u(u
c
, the spatial solution is written in terms of both sinusoidal and

hyperbolic terms,

C
=(x)
W(x) D"C

C
1

D
1
D sin ax#C

C
2

D
2
D cos ax#C

C
3

D
3
D sinh bx#C

C
4

D
4
D cosh bx , (70)

where

a"SAI# 1
k@GB

ou2

2
#SAI!

1
k@GB

2 o2u4

4
#oAu2 ,

b"S!AI#
1

k@GB
ou2

2
#SAI!

1
k@GB

2 o2u4

4
#oAu2 . (71)

and C
i
and D

i
are related by equation (60).

When u'u
c
, the spatial solution only has sinusoidal terms,

C
= (x)
W(x) D"C

CI
1

D3
1
D sin ax#C

CI
2

D3
2
D cos ax#C

CI
3

D3
3
D sin bJ x#C

CI
4

D3
4
D cos bJ x , (72)

where

a"SAI# 1
k@GB

ou2

2
#SAI!

1
k@GB

2 o2u4

4
#oAu2 ,

bJ "SAI# 1
k@GB

ou2

2
!SAI!

1
k@GB

2 o2u4

4
#oAu2 , (73)

and CI
i
and D3

i
are related by

D3
1
"!

k@GAa2!oAu2

k@GAa
CI

2
, D3

2
"

k@GAa2!oAu2

k@GAa
CI

1
,

D3
3
"!

k@GAbJ 2!oAu2

k@GAbJ
CI

4
, D3

4
"

k@GAbJ 2!oAu2

k@GAbJ
CI

3
, (74)
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Notice that b and bJ are related by

b"ibJ . (75)

Let us examine the frequency and the wave number where the transition occurs.
This critical frequency can be written as

u
c
"S

k@GA
oI

"

1
k S

k@G
o

, (76)

where k is the dimensionless radius of gyration or the inverse of the slenderness
ratio,

k"S
I*
A*

1
¸*

"

1
s

. (77)

By substituting equation (76) into equations (71) and (73), the critical wave numbers
are

a
c
"

1
k

J(k@GI#1), b
c
"bJ

c
"0. (78)

Writing in terms of dimensional variables

a
c
"

1
k SAk@

G*
E*

#1B"
1
k SA

1
c2
#1B , (79)

where c is given bys

c2"
E*

k@G*
"

2(1#l)
k@

. (81)

Recall that k@ depends on the Poisson ratio and the shape of the cross-section. Both
k@ and l do not vary much so that we can say that the critical wave number
essentially depends on the slenderness ratio.

Also, the case when u(u
c
is equivalent to the case when a(a

c
. This can be

veri"ed by taking a derivative of a in the dispersion relationship [equations (71) or
(73)] with respect to u. We will "nd that the derivative is always positive implying
that a is a monotonically increasing function of u.

3. NATURAL FREQUENCIES AND MODE SHAPES

So far, we have obtained the spatial solutions with four unknowns [equations
(18) for the Euler}Bernoulli and Rayleigh models, equations (58) with equation (60)
for the shear and the Timoshenko models for u(u

c
, and equation (72) with

equation (74) for the Timoshenko model for u'u
c
], and we have identi"ed the

possible boundary conditions that the spatial solutions have to satisfy equation (19)
sHere, we use

G*"E*/2(1#l). (80)
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for the Euler}Bernoulli, equation (35) for the Rayleigh and equation (61) for the
shear and Timoshenko models]. The next step is to apply a set of boundary
conditions in order to obtain the four unknown coe$cients in the spatial solution.
Upon applying the boundary conditions, we obtain four simultaneous equations
which can be written as

[F]
4]4

MCN
4]1

"M0N
4]1

, (82)

where MCN is the vector of coe$cients in the spatial solution, and the matrix [F]
typically has sinusoidal and hyperbolic functions evaluated at the end points. The
determinant of [F] has to be zero to avoid the trivial solution or MCN"0. At this
point, the best we can do is to reduce the number of unknowns from four to one.
The equation obtained by setting the determinant to zero is the frequency equation,
which has an in"nite number of roots. For each root, the coe$cients C

i
of the

corresponding spatial solution are unique only to a constant. The roots are in the
form of dimensionless wave numbers, which can be translated into natural
frequencies using the dispersion relationships. The corresponding spatial solutions
are called the eigenfunctions or the mode shapes. The remaining constant in the
eigenfunction is usually determined by normalizing the modal equation for
convenience.s In this section, for each model, we obtain the frequency equations,
their roots and the mode shapes for four of the ten boundary conditions. Those for
the other six cases are obtained using the symmetric and antisymmetric modes.

3.1. SYMMETRIC AND ANTISYMMETRIC MODES

First, let us identify all 10 cases. They are free}free, hinged}hinged, clamped}
clamped, clamped}free, sliding}sliding, free}hinged, free}sliding, clamped}hinged,
clamped}sliding and hinged}sliding supports. Using the symmetric and
antisymmetric modes, we try to minimize the cases to be considered.

Excluding the rigid-body mode, the free}sliding is the symmetric modet and the
free}hinged is the antisymmetric mode of the free}free case as shown in Figure 3.

Similarly, the clamped}sliding is the symmetric mode and the clamped}hinged is
the antisymmetric mode of the clamped}clamped case. The hinged}sliding is the
symmetric mode of the hinged}hinged case and the antisymmetric mode of the
sliding}sliding case.

Once we obtain the dimensionless wave numbers of the free}free, hinged}hinged,
clamped}clamped, and clamped}free cases, we can "nd the dimensionless wave
numbers of the remaining cases using the de"nition of the dimensionless wave
number. The dimensionless wave number is 1/2n times the number of cycles
contained in the beam length. As shown in Figure 3 for the free}free beam, the
ssee sections 5.1 and 5.2 for normalization process.
tThe symmetric mode of the free}free beam requires that the total slope of the beam v@ (x, t) in the

middle of the beam is zero. On the other hand, for the shear and Timoshenko models, the free}sliding
beam requires that the angle of rotation due to bending a is zero at the sliding end. It seems that the
symmetric mode of the free}free beam cannot represent the free}sliding beam. However, if we look
more closely, the other condition for the sliding end is that b"0 which leads to v@"0. Therefore, the
free}sliding beam can be replaced by the symmetric mode of the free}free beam.



Figure 3. The (a) symmetric and (b) antisymmetric modes of the free}free beam.

Figure 4. The "rst three modes of the sliding}sliding beam: (a) "rst, (b) second, (c) third.
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symmetric (free}sliding) and the antisymmetric (free}hinged) cases contain half of
the cycles contained in the free}free case. Therefore, the dimensionless wave
numbers are also half of that of the free}free case. The dimensionless wave
numbers are related as shown in Table 4. Keep in mind that the rigid-body mode
(a

1
"0) is omitted for the free}sliding, free}hinged, free}free, sliding}sliding cases.

Note that the "rst mode of the free}free and the clamped}clamped cases are
symmetric whereas the "rst mode of sliding}sliding case is antisymmetric as shown
in Figure 4.

From the last four relations in Table 4, we can further deduce that the
sliding}sliding support case is the same as the hinged}hinged case. Therefore, there
are only four cases to be considered: free}free, hinged}hinged, clamped}clamped,
clamped}free. Similarly, the mode shapes of these four cases can be used to
generate the mode shapes of the other six cases. For instance, the "rst and third
mode shapes (symmetric modes) of the free}free case generate the "rst and second
mode shapes of the free}sliding case (excluding the rigid-body mode), and the
second and fourth mode shapes (antisymmetric modes) generate the "rst and



TABLE 4

¹he relationship between normalized wave numbers of various boundary conditions for
n"1, 2, 3,2

1. afree~sliding
n

"1
2
afree~free
2n~1

5. ahinged~sliding
n

"1
2
ahinged~hinged
2n~1

2. afree~hinged
n

"1
2
afree~free
2n

6. ahinged~hinged
n

"1
2
ahinged~hinged
2n

3. aclamped~sliding
n

"1
2
a clamped~clamped
2n~1

7. asliding~sliding
n

"1
2
a sliding~sliding
2n

4. aclamped~hinged
n

"1
2
aclamped~clamped
2n

8. asliding~hinged
n

"1
2
asliding~sliding
2n~1
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second mode shapes of the free}hinged case as shown in Figure 3. Similarly, mode
shapes of the sliding}sliding case can be generated by hinged}hinged case.

It is important to note that it is implied in Figure 3 that the cross-sectional areas
of the beams are the same, and the lengths of the free}sliding or free}hinged beams
are half of the free}free beam. In fact, this does not always have to be the case. As
long as the slenderness ratio of the free}free beam is twice that of the free}sliding or
free}hinged beam, this analysis works. Therefore, more precisely, we can say that
the dimensionless wave numbers of the free}free beam with the slenderness ratio of
s is twice the dimensionless wave numbers of the free}sliding or free}hinged case
with the slenderness ratio of s/2.

3.2. THE EULER-BERNOULLI BEAM MODEL

The spatial solution= (x) is given in equation (18), and the expressions for the
boundary conditions are given in equation (13). Here the dimensionless wave
numbers are obtained by applying the four sets of boundary conditions to the
spatial solution.

One special characteristic of this model is that the frequency equations for the
free}free and clamped}clamped cases are the same. This is the case only for this
model. The frequency equations for four cases and the "rst "ve dimensionless wave
numbers are tabulated in Table 5. The wave numbers for the remaining cases, using
Table 4, are tabulated in Table 6. Note that we were able to obtain the numerical
values for the dimensionless wave numbers. It will be shown that for other models,
it is not possible to do so.

The actual frequency of vibration can be found using the dispersion relationship
in equation (16). That is,

u*"S
E*I*

o*A*¸*4
a2 . (83)

Using the dispersion relationship, we can also write

u*
n
¸*Jo*/E*"

a2
n
s

, (84)

so that we can plot u*
n
¸*Jo*/E* as a function of 1/s. This will be useful when we

compare the natural frequencies predicted by other models.



TABLE 5

¹he frequency equations and the ,rst ,ve wave numbers of Euler}Bernoulli model

The frequency equation a
1

a
2

a
3

a
4

a
5

c-c and f-f cos a cosh a!1"0 4)730 7)853 10)996 14)137 17)279
h-h or s-s sin a sinh a"0 n 2n 3n 4n 5n
c-f cos a cosh a#1"0 1)875 4)694 7)855 10)996 14)137

TABLE 6

¹he ,rst ,ve wave numbers obtained using the symmetric and antisymmetric modes

a
1

a
2

a
3

a
4

a
5

c-s and f-s 2)365 5)498 8)639 11)781 14)923
c-h and f-h 3)927 7)069 10)210 13)352 16)493
h-s 0)5n 1)5n 2)5n 3)5n 4)5n
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3.3. THE RAYLEIGH BEAM MODEL

The expressions for the boundary conditions are given in equation (23). Unlike in
the Euler}Bernoulli beam case, there are two wave numbers in the Rayleigh beam,
a and b.s The frequency equation will have both a and b. In order to "nd the
solution to the frequency equations, one of the wave numbers has to be expressed in
terms of the other so that the frequency equation is a function of one wave number
only, let us say a. Following is the procedure used to express b in terms of a.

The dispersion relations given in equation (34) can be written as

a2"B
1
#JB2

1
#B

2
, b2"!B

1
#JB2

1
#B

2
, (85)

where B
1

and B
2
, in this case, are

B
1
"

oIu2

2
, B

2
"oAu2 . (86)

Solving for B
1

and B
2

in equation (85) we obtain

B
1
"(a2!b2)/2, B

2
"a2b2 (87)

Note that equations (87) are still the dispersion relations. Now, let us examine the
ratio of B

1
to B

2
. From equations (87) and (86),

B
1

B
2

"

1
2 A

1
b2

!

1
a2B"

I
2A

, (88)
sNote that the wave number of a hyperbolic function, b, does not have a physical meaning while the
wave number of a sinusoidal function, a, does. Nonetheless, we call b the wave number of the
hyperbolic function.



TABLE 7

¹he frequency equations of the Rayleigh model

f-f (b6!a6)sin a sinh b#2a3b3 cos a cosh b!2a3b3"0
c-c (b2!a2 ) sin a sinh b!2ab cos a cosh b#2ab"0

h-h or s-s sin a sinh b"0
c-f (b2!a2)ab sin a sinh b#(b4#a4) cos a cosh b#2a2b2"0
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where the ratio of I to A is k2 from equation (77). Now, we can write

1
b2

!

1
a2

"k2"
1
s2

. (89)

Therefore, the wave numbers of the Rayleigh beam are related by the slenderness
ratio. This contrasts with the case of the Euler}Bernoulli beam where the
dimensionless wave numbers are independent of the geometry of the beam
but dependent solely on the boundary conditions. Expressing b in terms of a and
k (or s),

b"aS
1

a2k2#1
"asS

1
a2#s2

. (90)

Let us consider the case when k"0. Then, a equals b by equation (89) or (90), and
B
1

is zero by equation (87). Comparing equation (85) with equation (16), we also
"nd that the wave numbers a and b are equal to the wave number of the
Euler}Bernoulli beam. For a slender beam where s is large (k is small), the two wave
numbers approach each other so that the result resembles that of the
Euler}Bernoulli beam.s

The frequency equations for four cases are given in Table 7. Notice that the
frequency equations contain both a and b as predicted earlier. Further, notice that
when b is expressed in terms of a using equation (90), the geometrical property,
slenderness ratio, enters the frequency equations. Therefore, the roots of the
frequency equations depend on the slenderness of the beam and are no longer
independent of the geometry of the beam. The signi"cance of the previous
statement is that it implies that the mode shapes also vary with the slenderness
ratio.

As mentioned earlier, as s approaches in"nity, the frequency equation becomes
identical to that of the Euler}Bernoulli beam. The best way to represent the
solution of the frequency equation is to plot wave numbers as a continuous
function of s or k. Here, we will use k for a reason which will become apparent
shortly. The frequency equations in Table 7 are transcendental equations that have
to be solved numerically. In order to obtain a smooth function, a (k), we use the
following analysis. Let one of the frequency equations be F(a, b). From equation
sIn general, the slenderness ratio of 100 is su$cient so that there is little di!erence among all four
models (Euler}Bernoulli, Rayleigh, shear and Timoshenko).
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(90), b is a function of a and k, b(a, k). dF and db are given by

dF"

LF
La

da#
LF
Lb

db , db"
Lb
La

da#
Lb
Lk

dk . (91)

Combining two expressions, dF is given by

dF"

LF
La

da#
LF
Lb A

Lb
La

da#
Lb
Lk

dkB"0, (92)

where dF is zero because F is zero. Solving for da/dk, we obtain

da
dk

"

!(LF/Lb)(Lb/Lk)
(LF/La)#(LF/Lb)(Lb/La)

, (93)

where the right-hand side is a function of a, b and k. After b is expressed in terms of
a and k by equation (90), the right-hand side is a function of a and k only. Now, this
is a "rst order ordinary di!erential equation which can be solved once we know the
initial value a(k"0). The initial value is identical to the wave numbers of the
Euler}Bernoulli model given in Tables 5 and 6. Note that depending on which
wave number we use as an initial value, a

1
, a

2
,2, we can track that particular wave

number as the slenderness ratio varies. The initial value problem is solved using
MATLAB, and the results are shown in Figures 5}8. The four solid lines in each
"gure are the wave numbers obtained using the Euler}Bernoulli theory. They are
not a!ected by the slenderness ratio. The two lines (dotted and dot-dashed) that
emerge from nth solid line near 1/s"0 are the nth waves numbers, a and b , of the
n n

Figure 5. The "rst four pairs of wave numbers of the free}free Rayleigh beam and clamped}
clamped shear beam: * , Euler}Bernoulli; 2, a; } )} )} , b.



Figure 6. The "rst four pairs of wave numbers of the clamped}clamped Rayleigh beam and
free}free shear beam: * , Euler}Bernoulli; 2, a; } )} )} , b.

Figure 7. The "rst four pairs of wave numbers of the hinged}hinged (or sliding}sliding) Rayleigh
and shear beam: * , Euler}Bernoulli or a; } )} )} , b.

958 S. M. HAN E¹ A¸.



Figure 8. The "rst four pairs of wave numbers of the clamped}free Rayleigh and shear beam:* ,
Euler}Bernoulli; 2, a; } )} )} , b.
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Rayleigh model. Using these plots, we obtain up to four sets of wave numbers for
each case.

Having such plots, we can instantly obtain the dimensionless wave numbers once
we know the slenderness ratio. These dimensionless wave numbers together with
the complete properties of the beam lead to the natural frequencies using the
dispersion relations. The natural frequency, solved in terms of the wave numbers
and the property of the beam using the dispersion relations (86) and (87), is given by

u2"
a2!b2

oI
or u2"

a2b2

oA
, (94)

which is equivalent to

u*2"(a2!b2)
E*

o*¸*2
or u*2"

a2b2

s2
E*

o*¸*2
. (95)

Since we know a and b as discrete functions of 1/s from Figures 5}8, we can plot
u*¸*Jo*/E* as a function of 1/s using the "rst relation in equation (95),

u*¸*Jo*/E*"Ja2!b2. (96)

The plots of u*¸*Jo*/E* as a function of 1/s are shown in Figures 9}12. The
bene"t of having such plots is that once we know s, ¸*, o*, and E*, u* can be
obtained instantly. For example, the "rst four pairs of wave numbers of the
clamped}free Rayleigh beam when s"9)1192 (or 1/s"0)11) can be obtained from
Figure 8 and the natural frequencies, where ¸*"1 m, o*"7830 kg/m3, and



Figure 9. The frequency curves for the free}free Rayleigh and clamped}clamped shear beam; * ,
u*

12
; 2, u*

22
; } )} )} , u*

32
; }}}, u*

42
.

Figure 10. The frequency curves for the clamped}clamped Rayleigh and free}free shear beam;* ,
u*

12
; 2, u*

22
; } )} )} , u*

32
; }}} , u*

42
.
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Figure 11. The frequency curves for the hinged}hinged (or sliding}sliding) Rayleigh and shear
beam; * , u*

12
; 2, u*

22
; } )} )} , u*

32
; }}} , u*

42
.

Figure 12. The frequency curves for the clamped}free Rayleigh and shear beam; * , u*
12

; 2,
u*

22
; } )} )} , u*

32
; }}} , u*

42
.
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E*"200 GPa, can be obtained from Figure 12. The exact numbers are

(a
1
, b

1
)"(1)869, 1)831), u

1
"1; (a

2
, b

2
)"(4)571, 4)086), u

2
"5)459;

(a
3
, b

3
)"(7)629, 5)851), u

3
"13)046; (a

4
, b

4
)"(10)686, 6)937), u

4
"21)664.

(97)

Note that the natural frequencies are non-dimensionalized by the "rst natural
frequency given by u*

1
"1896 rad/s. These numbers will be used in the example

problem at the end of this paper.
One comment is made here regarding the wave numbers and the frequency

charts for the other six sets of boundary conditions. It was mentioned earlier that
the dimensionless wave numbers of the free}free beam with the slenderness ratio of
s are twice the dimensionless wave numbers of the free}sliding or free}hinged case
with the slenderness ratio of s/2, where the same analogy is applied to the other
cases: the clamped}clamped and hinged}hinged beams. For example, the wave
numbers of the free}sliding beam are obtained from the wave numbers of the odd
modes of free}free beams (a

1
, b

1
), (a

3
, b

3
),2 by replacing the abscissa label 1/s with

1/(2s) and ordinate label wave numbers with 2](wave numbers) in Figure 5. In this
way, a point that corresponds to the inverse slenderness ratio of 1/s

0
and wave

numbers of a
0
and b

0
in Figure 5, would correspond to the inverse slenderness ratio

of 2/s
0
and the wave numbers of a

0
/2 and b

0
/2 in the new plot. The frequency charts

can be modi"ed in the same way so that the abscissa label 1/s is replaced by 1/(2s)
and the wave numbers in ordinate label, Ja2!b2, are replaced by 2](wave
number) so that the new ordinate label is 2Ja2!b2 or 2u*¸*Jo*/E*. The wave
numbers and the frequency charts of the shear and Timoshenko models are
obtained in the same way.

3.4. THE SHEAR BEAM MODEL

The same analysis as for the Rayleigh beam is applied here. Again, the dispersion
relationship given in equation (57) is written in the form of equation (85) where
B
1

and B
2

are given by

B
1
"

ou2

2k@G
, B

2
"oAu2 (98)

and

B
1
"(a2!b2)/2, B

2
"a2b2. (99)

The latter relations are identical to those of the Rayleigh beam (87). Using equation
(99), the ratio of B

1
to B

2
is reduced to

B
1

B
2

"

1
2 A

1
b2

!

1
a2B , (100)



TABLE 8

¹he frequency equations of the shear model

f-f (b2!a2)sin a sinh b!2ab cos a cosh b#2ab"0
c-c (b6!a6 ) sin a sinh b#2a3b3 cos a cosh b!2a3b3"0

h-h or s-s sin a sinh b"0
c-f (b2!a2)ab sin a sinh b#(b4#a4) cos a cosh b#2a2b2"0

TRANSVERSELY VIBRATING BEAMS 963
and using equation (98) the ratio is reduced to

B
1

B
2

"

1
2k@GA

"

E*I*¸*2

2k@G*¸*4A*
"

(1#l)
k@

1
s2
"

1
2 A

c
sB

2
, (101)

where c is given in equation (81) and G* is related to E* by equation (80). Therefore,
we can write

A
1
b2

!

1
a2B"A

c
sB

2
"(ck)2 . (102)

Solving for b, we obtain

b"aS
1

c2k2a2#1
"

as
c S

1
a2#s2/c2

. (103)

Looking again at equation (60), we "nd that the coe$cients in the spatial solutions
are related by

D
1
"!

b2

a
C

2
, D

2
"

b2

a
C

1
, D

3
"

a2

b
C

4
, D

4
"

a2

b
C

3
, (104)

so that we can write the spatial solution in terms of the wave numbers only.
The frequency equations for the shear beam are given in Table 8. Note that the

frequency equation for the free}free shear beam is identical to the clamped}
clamped Rayleigh beam. Also, the frequency equation for the clamped}clamped
shear beam is identical to that of the free}free Rayleigh beam. The frequency
equations for the other two cases are the same as the ones for the Rayleigh beam.
Also note that the relationship between wave numbers (102) is similar to that of the
Rayleigh beam (89). In fact, 1/s is modi"ed by the factor c. We can use the plots for
the Rayleigh beam here by just replacing the label for the abscissa 1/s with c/s and
switching the free}free case with the clamped}clamped case. The clamped}
clamped case is shown in Figure 5, free}free in Figure 6, hinged}hinged (or
sliding}sliding) in Figure 7, and clamped}free in Figure 8.

From equations (98) and (99), the natural frequency is given by

S
o*¸*2

E* S
2(1#l)

k@
u*"Ja2!b2 , (105)

where J2(1#l)/k@ is denoted as c throughout this paper as shown in equation
(81). Notice the similarity between equations (96) and (105). Therefore, we can use
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the plots used in the Rayleigh beam (Figures 9}12) by simply replacing the ordinate
with u*¸*cJo*/E*. The notation u*

n2
in the captions are representative of

u*
n
¸*Jo*/E* for the Rayleigh and u*

n
¸*cJo*/E* for the shear model.

Again, these plots are convenient for easily obtaining the natural frequencies for
a given s and c. From Figures 8 and 12, for 1/s"0)11, ¸*"1 m, c"2)205,
o*"7830 kg/m3, and E*"200 GPa, the pairs of wave numbers and the natural
frequencies are

(a
1
, b

1
)"(1)846, 1)686), u

1
"1; (a

2
, b

2
)"(4)352, 2)998), u

2
"4)1923;

(a
3
, b

3
)"(7)539, 3)626), u

3
"8)7823; (a

4
, b

4
)"(10)686, 3)857), u

4
"13)241;

(106)

where the natural frequencies are non-dimensionalized by the "rst natural
frequency u*

1
"1725 rad/s.

3.5. THE TIMOSHENKO BEAM MODEL

Here, we follow the same procedure used for the Rayleigh and the shear beams
by letting

B
1
"

oIu2

2
, B

2
"

ou2

2k@G
"B

1
c2, B

3
"oAu2 , (107)

so that the dispersion relations in equations (71) and (73) can be written as

a"J(B
1
#B

2
)#J(B

1
!B

2
)2#B

3
,

b"J!(B
1
#B

2
)#J(B

1
!B

2
)2#B

3
"ibJ . (108)

Solving for B
1
, B

2
and B

3
, we obtain

B
1
"

a2!b2

2(1#c2)
, B

2
"

c2 (a2!b2)
2(1#c2)

,

B
3
"

1
4 G(a2#b2)2!

(1!c2)2
(1#c2)2

(a2!b2)2H , (109)

where c is a constant given in equation (81). Note that B
1
, B

2
, and B

3
can be

obtained in terms of a and bJ by replacing b2 with bJ 2 in equation (109). By equating
the ratio of B

3
to B

1
using equations (107) and (109), we obtain the relationship

between the wave numbers given by

(c2b2#a2)(a2c2#b2)
(a2!b2) (1#c2)

"s2 . (110)

Again, the relationship between a and bJ can be obtained by replacing b with ibJ in
equation (110) as

(!c2bJ 2#a2)(c2a2!bJ 2)
(a2#bJ 2) (1#c2)

"s2 . (111)

Note that the wave numbers are related by s and c.
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Using equations (107) and (109), we can write equation (60) as

D
1
"!

a2#c2b2

(1#c2)a
C

2
, D

2
"

a2#c2b2

(1#c2)a
C

1
,

D
3
"

b2#c2a2

(1#c2)b
C

4
, D

4
"

b2#c2a2

(1#c2)b
C

3
, (112)

so that the spatial solution for u(u
c
can be written in terms of wave numbers

only. Using equations (107) and (109) with b replaced by ibJ , the coe$cients CI
i
and

D3
i
in equation (74) are then related by

D3
1
"!

a2!c2bJ 2
(1#c2)a

CI
2
, D3

2
"

a2!c2bJ 2
(1#c2)a

CI
1
,

D3
3
"!

bJ 2!c2a2

(1#c2)bJ
CI

4
, D3

4
"

bJ 2!c2a2

(1#c2)bJ
CI

3
, (113)

which we can use to express the spatial solution for u'u
c
in terms of the wave

numbers only.
Note that we only need to obtain one frequency equation for each boundary

condition. Once the frequency equation for the case a(a
c
is obtained, the other

frequency equation for a'a
c
can be obtained by replacing b with ibJ . The frequency

equations for the case a(a
c
are tabulated in Table 9 and for the case a'a

c
in

Table 10.
The frequency equations depend on a, b, (or bJ ) and c. From equations (110) [or

equation (111)], b (or bJ ) can be written as a function of a, s and c so that the
frequency equation can be written in terms of a, s, and c only. Therefore, the roots of
the frequency equations, a, depend on both s and c. After obtaining the roots of the
frequency equations in terms of a for a given s and c, b (or bJ ) can be found using the
relationship (110) [or equation (111)]. Similarly, a can be written as a function of
TABLE 9

¹he frequency equations of the ¹imoshenko model when a(a
c

f-f
(a2!b2)(a2#b2#c2ab!ab) (a2#b2!c2ab#ab)

2ab (b2#c2a2) (a2#c2b2)
sin a sinh b

!cos a cosh b#1"0

c-c
(a2!b2)(c2a2#c2b2#c2ab!ab) (c2a2#c2b2!c2ab#ab)

2ab (b2#c2a2) (a2#c2b2)
sin a sinh b

!cos a cosh b#1"0

h-h sin a sinh b"0

c-f (a2!b2) sin a sinh b!ab
(a4#a4c4#4c2a2b2#b4c4#b4)

(b2#c2a2)(a2#c2b2)
cos a cosh b!2ab"0



TABLE 10

¹he frequency equations of the ¹imoshenko model when a'a
c

f-f
(a2#bJ 2)[(a2!bJ 2)2#(abJ c2!abJ )2]

2abJ (!bJ 2#c2a2)(a2!c2bJ 2)
sin a sin bJ !cos a cos bJ #1"0

c-c
(a2#bJ 2)[(c2a2!c2bJ 2)2#(c2abJ !abJ )2]

2abJ (!bJ 2#c2a2)(a2!c2bJ 2)
sin a sin bJ !cos a cos bJ #1"0

h-h sin a sin bJ "0

c-f (a2#bJ 2) sin a sin bJ !abJ
(a4#a4c4!4c2a2bJ 2#bJ 4c4#bJ 4)

(!bJ 2#c2a2)(a2!c2bJ 2)
cos a cos bJ !2abJ "0
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b (or bJ ) using equations (110) [or equation (111)] so that the frequency equation can
be written in terms of b (or bJ ), s, and c. The roots of the frequency equation b (or bJ )
are found for a given s and c. Then, the corresponding a can be found using
equations (110) or (111).

The proper way to represent the roots is to make a three-dimensional plot of
wave numbers as functions of s and c. Note that the roots of the frequency
equations (a and b) in the shear beam case also depend on both s and c. However, in
that case, s and c always appear as c/s so that we can treat c/s as one variable.
Therefore, we only needed two-dimensional plots of wave numbers as functions of
c/s. In the case of the Timoshenko beam, such a simpli"cation cannot be made
because s and c do not always appear together. Therefore, the wave numbers are
plotted for c"2)205 which is a reasonable value for a thin steel hollow section.s

In order to obtain the pairs of wave numbers a
n
and b

n
for a

n
(a

c
that satisfy the

frequency equations, we would solve the initial-value problem given in equation
(93) with the nth wave number of the Euler}Bernoulli model as an initial value to
obtain a

n
"rst, and then we would obtain b

n
using equation (110) as we have done

for the Rayleigh and shear models. In order to obtain the pairs of wave numbers
a
n
and bJ

n
for a

n
'a

c
, we would again solve the same initial-value problem with a

n
at

the transition (a
c
) as the initial value instead. The value of the slenderness ratio at

the nth transition is denoted as s
n

so that a
n
(a

c
or u

n
(u

c
refers to the region

where 1/s(1/s
n
. The pairs of wave numbers are plotted in Figures 13}16. The

wave number for the Euler}Bernoulli beam is included for comparison. These plots
are obtained by solving an initial-value problem for the region 1/s(1/s

n
as done in

the Rayleigh and shear beam cases. For the region 1/s'1/s
n
, a root-"nding

program is used because the solution to the initial-value problem had di$culties in
converging.

Note that four separate plots are shown for the hinged}hinged beam in Figure
15. Only in this case, a

n
always corresponds to two values of b: a

n
corresponds to
sPoisson's ratio of 0)29, outer radius of 0)16 m, and the inner radius of 0)15 m are used to obtain
the shear factor k@"0)53066 using Table 3. The value of c"2)205 is then obtained using
equation (81).



Figure 13. The "rst four sets of wave numbers of the free}free Timoshenko beam: * ,
Euler}Bernoulli; 2, a; } )} )} , b; }}} , bJ .

Figure 14. The "rst four sets of wave numbers of the clamped}clamped Timoshenko beam: * ,
Euler}Bernoulli; 2, a; } )} )} , b; }}} , bJ .
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Figure 15. The "rst four sets of wave numbers of the hinged}hinged (or sliding}sliding)
Timoshenko beam: * , Euler}Bernoulli; 2, a; } )} )} , b; }}} , bJ . (a) n"1, (b) 2, (c) 3, (d) 4.

Figure 16. The "rst four sets of wave numbers of the clamped}free Timoshenko beam: * ,
Euler}Bernoulli; 2, a; } )} )} , b; }}} , bJ .
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b
n
and bJ (2)

n
for 1/s(1/s

n
and to bJ (1)

n
and bJ (2)

n
for 1/s'1/s

n
. It is important to note

that each pair corresponds to a distinct natural frequency. The consequence is that
there are twice as many natural frequencies in the hinged}hinged case as in other
cases.

In order to explain why this is the case, let us look at the frequency equation of
the hinged}hinged beam given in Table 9 or 10.

sin a sinh b"0 for a(a
c
, sin a sin bJ "0 for a'a

c
. (114)

Note that the frequency equation is satis"ed for any value of b (or bJ ) as long as
sin ax is zero (or a

n
"nn for n"1, 2, 3,2). When we solve for b

n
(or bJ ) that

corresponds to a
n

in equation (110) or (111), there are two unique expressions.
When 1/s(1/s

n
, one is real and the other is imaginary. We call the real root b

n
and

the imaginary root ibJ (2)
n

. When 1/s'1/s
n
, both roots are imaginary where one is

ibJ (1)
n

and the other is ibJ (2)
n

.
The natural frequencies that correspond to each pair can be calculated using the

relation for B
1

in equations (107) and (109). The natural frequencies for the
free}free, clamped}clamped, and clamped}free cases are given by

u*
n
¸*Jo*/E*"S

a2
n
!b2

n
1#c2

for 1/s(1/s
n

"S
a2
n
#(bJ

n
)2

1#c2
for 1/s'1/s

n
. (115)
Figure 17. The frequency curves for the free}free Timoshenko beam;* , u*
12

; 2, u*
22

; } )} )} ,
u*

32
; }}} , u*

42
.



Figure 18. The frequency curves for the clamped}clamped Timoshenko beam; * , u*
12

; 2,
u*

22
; } )} )} , u*

32
; }}} , u*

42
.

Figure 19. The frequency curves for the hinged}hinged Timoshenko beam; * , u(1 032)*
1 2; 2,

u(1032)*
2 2; } )} )} , u(1032)*

3 2; }}} , u(1032)*
4 2.
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The quantity u*
n
¸*Jo*/E* is plotted as a function of 1/s for c"2)205 in Figures

17, 18, and 20 using the values of a
n
, b

n
and bJ

n
that we know already from Figures

13, 14 and 16.
The natural frequency that corresponds to the wave number pairs (a

n
, b

n
) and

(a
n
, bJ (1)

n
) in the hinged}hinged case is denoted as u*(1)

n
and is given by

u*(1)
n

¸*Jo*/E*"S
a2
n
!b2

n
1#c2

for 1/s(1/s
n

"S
a2
n
#(bJ (1)

n
)2

1#c2
for 1/s'1/s

n
, (116)

and the natural frequency that corresponds to the pairs of wave numbers (a
n
, bJ (2)

n
)

for all 1/s is denoted as u*(2)
n

and given by

u*(2)
n

¸*Jo*/E*"S
a2
n
#(bJ (2)

n
)2

1#c2
for all 1/s . (117)

The quantities u*(1,2)
n

¸*Jo*/E* are plotted as functions of 1/s for c"2)205 in
Figure 19 using the values of a

n
, b

n
, bJ (1)

n
, and bJ (2)

n
that we know from Figure 15. Note

that as the slenderness ratio becomes larger (1/sP0), the natural frequencies
u*(2)

n
disappear by approaching in"nity. This is consistent with the other models for

which u*(2)
n

does not exist.
It is interesting to note that in Figures 17 and 18, curves cross each other. Thus, it

is possible for a set of wave numbers with a lower index to produce a higher natural
frequency. The indices of the wave numbers should not be used to gauge the order
of the natural frequencies. In the other cases*the Euler}Bernoulli, Rayleigh, and
shear cases*a set of wave numbers with a high index always corresponds to
a higher natural frequency.

These "gures can be used to obtain the wave numbers and the natural
frequencies. Let us consider a clamped}free beam for 1/s"0)11 and c"2)205. The
critical wave number a

c
, obtained using equation (79), at this slenderness ratio is

10)013, which is slightly above a
4
. Although a

5
is not plotted, we can guess that a

5
is

greater than a
c
. Therefore, only "rst four eigenfunctions will have hyperbolic terms.

The sets of the wave numbers can be extracted from Figure 16. For example, a
1

in
the "gure is slightly less than 1)875, which is the wave number of the
Euler}Bernoulli problem represented by the "rst solid line obtained from Table 5,
and b

1
is slightly below a

1
. Note that in order to obtain more accurate readings, the

"gures should be enlarged. When o*"7830 kg/m3, ¸*"1 m, and E*"200 GPa,
the natural frequencies can be obtained using Figure 20. For example, from the
"gure the quantity u*

1
¸*Jo*/E* is approximately 0)32 which corresponds to

u*
1
"1620 rad/s. The exact wave numbers and the natural frequencies are given by

(a
1
, b

1
)"(1)843, 1)655), u

1
"1; (a

2
, b

2
)"(4)236, 2)727), u

2
"3)991;

(a
3
, b

3
)"(7)305, 2)575), u

3
"8)412; (a

4
, b

4
)"(9)813, 0)803), u

4
"12)037;

(a
5
, bJ

5
)"(11)770, 2)581), u

5
"14)829; (a

6
, bJ

6
)"(13)463, 3)823), u

6
"17)224;

(118)



Figure 20. The frequency curves for the clamped}free Timoshenko beam; * , u*
12

; 2, u*
22

;
} )} )} , u*

32
; }}} , u*

42
.

Figure 21. The "rst set of wave numbers of the free}free Timoshenko beam when 1/s(1/s
1
: * ,

Euler}Bernoulli; 2, c"2)435; }}} , c"2)205; } )} )} , c"1)777.
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where the natural frequencies are non-dimensionalized by the "rst natural
frequency u*

1
"1696 rad/s. Note that frequencies can be read from the "gure more

accurately than the wave numbers.
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Figure 21 shows the variation of the "rst pair of wave numbers (a
1
, b

1
) for

1/s(1/s
1

for the free}free Timoshenko beam shown in Figure 13. The values of
c used here are 1)7777, 2)2050 and 2)435. c"1)7777 is a reasonable value for a solid
circular or rectangular section, and c"2)435 is a reasonable value for a thin square
tubes with the Poisson ratio of 0)29.

4. COMPARISONS OF FOUR MODELS

So far, we obtained the wave numbers and natural frequencies of four engineer-
ing beam theories. The di!erence among them was the inclusion of di!erent second
order terms: rotary and shear terms. The Euler}Bernoulli model included only the
"rst order terms, translation and bending. The Rayleigh model included the
rotation, the shear model included the shear and the Timoshenko model included
both rotation and shear in addition to the "rst order e!ects. In this section, we
compare the relative signi"cance of rotary and shear e!ects and see how it is
manifested in the natural frequency and mode shapes.

The rotary e!ect is represented by the term oI and the shear by o/k@G. Note that
the shear term is always c2 times larger than the rotary term,

o
k@G

"

o
k@

E*I*
G*¸*4

"

o
k@

E*I
G*

"oI
2(1#l)

k@
"oIc2. (119)

Recall that the Poisson ratio l is a physical property that depends on the material
and the shear factor k@ depends on the Poisson ratio and the geometry of the
cross-section. The Poisson ratio for a typical metal is about 0)3, and with this value,
the shear factor for di!erent cross-sections using, Table 3, ranges from 0)436 for the
thin-walled square tube to 0)886 for the circular cross-section. Using these values,
c2 ranges from 2)935 for the circular cross-section to 5)96 for the thin-walled square
tube. We have established, for a typical material and cross-section, the shear term is
roughly 3}6 times larger than the rotary term.

Now we look into circumstances under which those second order e!ects become
important. Consider the frequency equations obtained previously in Tables 5 and
7}10. We observe that the frequency equations for the Euler}Bernoulli model
depend neither on the geometrical nor the physical properties. Therefore, wave
number a is independent of any properties. On the other hand, the frequency
equations for the Rayleigh model are functions of a and b which are related by the
slenderness ratio s. Therefore, the wave numbers a and b depend on the geometrical
property s. The frequency equations for the shear and Timoshenko models depend
on both s and c. Therefore, the wave numbers depends on both geometrical and
physical properties. The e!ects of s and/or c on the wave numbers are shown in
Figures 5}8 for the Rayleigh and shear model and in Figures 13}16 and Figure 21
for the Timoshenko model. Generally, the wave numbers deviate from those of
sThe values of c are calculated using the Table 3 and equation (81).



Figure 22. The frequency curves for the "rst natural frequency:* , Euler}Bernoulli; 2, Rayleigh;
} )} )} , shear; }}} , Timoshenko. (a) Free}free beam, (b) clamped}clamped, (c) clamped}free,
(d) hinged}hinged.

Figure 23. The "rst four mode shapes of the clamped}free beam: * , Euler}Bernoulli; 2,
Rayleigh; } )} )} , shear; }}} , Timoshenko. (a) First mode, (b) second, (c) third, (d) fourth.

974 S. M. HAN E¹ A¸.
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Euler}Bernoulli model as s decreases and c increases. However, the range of c2 is
more restricted (between 3 and 6 for a typical metal and cross-section). Therefore,
the wave numbers are strong functions of the slenderness ratio.

As a numerical example, the "rst natural frequencies predicted by each of
the four models are plotted in Figure 22. The natural frequency is multiplied
by ¸*Jo*/E* and c"2)205 is used. The straight solid line for the Euler}Bernoulli
model is obtained using equation (84). Note that the natural frequency predicted
by the Euler}Bernoulli model approaches in"nity as the slenderness ratio
decreases whereas the natural frequencies predicted by other models level o!
at some point. In Figure 23, the "rst four mode shapes of a clamped}free
beam with s"9)1192 and c"2)205 are plotted. The mode shapes are
normalized with respect to each other for easy comparison. Notice that the natural
frequencies and mode shapes obtained using the Euler}Bernoulli and Rayleigh
models are similar, and those based on the shear and Timoshenko models are
similar. This con"rms our result that the shear is more dominant than the rotary
e!ects.

In summary, when the slenderness ratio is large (s'100), the Euler}Bernoulli
model should be used. When the slenderness ratio is small, either shear or
Timoshenko model can be used.

5. THE FREE AND FORCED RESPONSE

5.1. THE ORTHOGONALITY CONDITIONS FOR THE EULER}BERNOULLI, SHEAR
AND TIMOSHENKO MODELS

In order to obtain the free or forced response of the beam, we use the method
of eigenfunction expansion. Therefore, the orthogonality conditions of the
eigenfunctions have to be established for each beam model. For the models
discussed so far, with the exception of the Rayleigh beam,s the spatial equations of
the homogeneous problem, (15), (49) and (66) can be written using the operator
formalism

¸(W
n
)"u2

n
M(W

n
) , (120)

where W
n

can denote the nth eigenfunction=
n

for the Euler}Bernoulli model, or
the nth vector of eigenfunctions [=

n
W

n
]T for the shear and Timoshenko models,

and corresponds to the natural frequency u2
n

uniquely to within an arbitrary
constant [28, p. 135]. The expressions for the operators for each model are given
below.

Euler}Bernoulli model:

¸ (=
n
)"

d4=
n

dx4
, M(=

n
)"oA=

n
. (121)
sThe analysis for the Rayleigh beam is slightly di!erent due to the mixed term in the governing
di!erential equation. It will be discussed in detail in the next section.
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Shear model:

¸(W
n
)"

k@GA
d2

dx2

k@GA
d
dx

!k@GA
d
dx

d2

dx2
!k@GA

C
=

n
W

n
D , M (W

n
)"C

oA
0

0
0D C
=

n
W

n
D . (122)

¹imoshenko model:

¸(W
n
)"

k@GA
d2

dx2

k@GA
d
dx

!k@GA
d
dx

d2

dx2
!k@GA

C
=

n
W

n
D , M (W

n
)"C

oA
0

0
oID C

=
n

W
n
D . (123)

The operators ¸ and M are self-adjoint (with corresponding boundary
conditions) if [23]

P
1

0

[WT
n
¸(W

m
)!WT

m
¸(W

n
)] dx"0, (124)

P
1

0

[WT
n
M(W

m
)!WT

m
M(W

n
)] dx"0. (125)

Note that the second condition, equation (125), is automatically satis"ed for all
three models. Using equation (120) we can write equation (124) as

(u2
m
!u2

n
) P

1

0

WT
n
M(W

m
) dx"0. (126)

Since eigenvalues (squares of natural frequencies) are unique to the eigenfunctions,
u2

m
Ou2

n
for mOn, in order for above equation to be zero, the integral has to be

zero,

P
1

0

WT
n
M(W

m
) dx"0 for mOn. (127)

This is the orthogonality condition for the eigenfunctions. When m"n, we
normalize the eigenfunctions by setting the integral equal to one,

P
1

0

WT
n
M(W

n
) dx"1 for n"1, 2, 3,2 (128)

Combining equations (127) and (128), we can write

P
1

0

WT
n
M (W

m
) dx"d

nm
, (129)

where d
nm

is the Kronecker delta.
Now we discuss which boundary conditions make the operator ¸ self-adjoint or

satisfy equation (124). The conditions can be found by substituting the expression
for the operator ¸ into equation (124) and integrating by parts. For example, for the
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Euler}Bernoulli model, equation (124) becomes, substituting equation (121),

P
1

0
CWT

n

d4=
m

dx4
!WT

m

d4=
n

dx4 D dx"0. (130)

Integrating twice by parts, we obtain

A=n

d3=
m

dx3
!=

m

d3=
n

dx3 B K
1

0

#A!
d=

n
dx

d2=
m

dx2
#

d=
m

dx
d2=

n
dx2 B K

1

0

"0, (131)

where the remaining integrals cancel each other due to symmetry. These are the
conditions that have to be satis"ed in order for the system to be self-adjoint and the
orthogonality condition to hold. Note that the boundary conditions from the
variational problem (19) satisfy this condition.

For the shear and Timoshenko models, the corresponding boundary conditions
for the self-adjoint operator ¸ are found to be

0"k@GAC=n A
d=

m
dx

!W
mB!=m A

d=
n

dx
!W

nBD K
1

0

#CWn

dW
m

dx
!W

m

dW
n

dx D K
1

0

, (132)

where the boundary conditions obtained from the variational problem (61) also
satisfy this condition.

Therefore, for the systems we consider, they are self-adjoint and the
eigenfunctions are orthogonal to each other as given in equation (127).

5.2. THE ORTHOGONALITY CONDITIONS FOR THE RAYLEIGH MODEL

The spatial equation for the Rayleigh beam (31) can be written in the form given
by equation (120) as was done for the other three models with the operators ¸ and
M given by

¸(=
n
)"

d4=
n

dx4
, M(=

n
)"AoA=

n
!oI

d2=
n

dx2 B . (133)

However, in this case, the operator M is a di!erential operator unlike those in the
other cases. Equation (124), with the operator ¸ substituted with equation (120) is
given by

P
1

0

[=
n
¸(=

m
)!=

m
¸(=

n
)] dx"P

1

0

[u2
m
=

n
M(=

m
)!u2

n
=

m
M (=

n
)] dx . (134)

Substituting the expressions for the ¸ and M operators and integrating by parts
twice, the left-hand side of equation (134) is reduced to

A=n

d3=
m

dx3
!=

m

d3=
n

dx3 B K
1

0

#A!
d=

n
dx

d2=
m

dx2
#

d=
m

dx
d2=

n
dx2 B K

1

0

"0, (135)
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where the remaining integrals cancel each other. The right-hand side of equation
(134) is reduced to

(u2
m
!u2

n
) P

1

0
CoA=

m
=

n
#oI

d=
m

dx
d=

n
dx D dx!oICu2

m
=

n

d=
m

dx
!u2

n
=

m

d=
n

dx D K
1

0

.

(136)

Combining the left- and right-hand sides equations [(135) and (136)], we obtain

C=nA
d3=

m
dx3

#oIu2
m

d=
m

dx B!=m A
d3=

n
dx3

#oIu2
n

d=
n

dx BD K
1

0

#A!
d=

n
dx

d2=
m

dx2
#

d=
m

dx
d2=

n
dx2 B K

1

0

"(u2
m
!u2

n
) P

1

0
CoA=

m
=

n
#oI

d=
m

dx
d=

n
dx D dx . (137)

Let us examine the left-hand side of equation (137). Comparing with the boundary
conditions from the variational problem, we "nd that the left-hand side vanishes
[see equations (35)] so that the orthogonality condition is given by

P
1

0
CoA=

m
=

n
#oI

d=
m

dx
d=

n
dx D dx"d

nm
. (138)

There are other orthogonality conditions that we can obtain by manipulating
equation (120), where the expressions for the operators are given by equation (133).
Multiplying equation (120) by=

m
and integrating over the domain (0)x)1), we

obtain

P
1

0

=
n

d4=
m

dx4
dx"P

1

0

u2
m
=

nAoA=
m
!oI

d2=
m

dx2 Bdx , (139)

which can be rewritten as

P
1

0

=
n

d4=
m

dx4
dx#u2

m
oI P

1

0
C
d=

n
dx

d=
m

dx
#=

n

d2=
m

dx2 Ddx

"u2
m P

1

0
CoA=

n
=

m
#oI

d=
n

dx
d=

m
dx D dx , (140)

where the right-hand side equals u2
m
d
nm

from equation (138). We integrate the
left-hand side twice by parts to obtain

=
nA

d3=
m

dx3
#u2

m
oI

d=
m

dx B K
1

0

!P
1

0

d=
n

dx
d3=

m
dx3

dx"u2
m
d
nm

. (141)

From the boundary conditions (35), the "rst term vanishes and we are left with

!P
1

0

d=
n

dx
d3=

m
dx3

dx"u2
m
d
nm

. (142)
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Integrating equation (142) by parts and using the boundary conditions (35) again,
we obtain

P
1

0

d2=
n

dx2

d2=
m

dx2
dx"u2

m
d
nm

. (143)

Therefore, we now have three orthogonality conditions given by equations (138),
(142) and (143). The orthogonality condition in equation (142) will be used later.

Note that a similar procedure can be applied to the other models to obtain other
orthogonality conditions.

5.3. THE FREE AND FORCED RESPONSE VIA EIGENF;NC¹ION EXPANSION OF THE

EULER}BERNOULLI, SHEAR, AND TIMOSHENKO MODELS

The method of eigenfunction expansion assumes that the solutions v(x, t) [or
solutions v (x, t) and a (x, t)] to equations of motion given in equations (11), (42), (63)
and the forcing function f (x, t) can be represented as a summation of eigenfunctions
(the spatial solution to the homogeneous problem) multiplied by functions of time
that are to be determined, that is,

v (x, t)"
=
+
n/1

g
n
(t)W

n
(x), f (x, t)"

=
+
n/1

F
n
(t)M(W

n
(x) ). (144, 145)

Note that v (x, t) stands for v(x, t) for the Euler}Bernoulli and Rayleigh models and
[v(x, t) a (x, t)]T for shear and Timoshenko models. If we know time-dependent
coe$cients g

n
(t), we can solve for the complete solution to the problem as follows.

The expressions for g
n
(t) can be obtained by applying the operator M to equation

(144) multiplying it by WT
m

and integrating over the domain. Simpli"cations can be
made using the orthonormality conditions given in equation (129).

P
1

0

WT
m
M(v (x, t)) dx"

=
+
n/1

g
n
(t) P

1

0

WT
m
M(W

n
(x) ) dx . (146)

Therefore,

g
n
(t)"P

1

0

WT
m
M(v (x, t) ) dx . (147)

Similarly, F
m
(t) can be found by multiplying equation (145) by WT

m
and integrating

over the domain,

F
m
(t)"P

1

0

WT
m

f (x, t) dx . (148)

Substituting the assumed solution (144) and the forcing function (145) into the
equations of motion (11), (42), and (63), respectively, we obtain

=
+
n/1

d2g
n
(t)

dt2
M (W

n
(x))#

=
+
n/1

g
n
(t)¸ (W

n
(x) )"

=
+
n/1

F
n
(t)M(W

n
(x) ) , (149)
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where the expressions for the operators M and ¸ are given in equations (121), (122),
and (123) respectively. Using equation (120), the last equation becomes

=
+
n/1
C
d2g

n
(t)

dt2
#u2

n
g
n
(t)DM (W

n
(x))"

=
+
n/1

F
n
(t)M (W

n
(x)) . (150)

Multiplying by WT
m
(x) and integrating over the domain (0)x)1) results in

d2g
m
(t)

dt2
#u2

m
g
m
(t)"F

m
(t) , (151)

where the solution is given by

g
m
(t)"

1
u

m
P

t

0

F
m
(t) sinu

m
(t!q) dq

#g
m
(0) cosu

m
t#

1
u

m

dg
m

dt K
t/0

sinu
m
t . (152)

F
m
(t) is given by equation (148), and g

m
(0) and dg

m
/dt D

t/0
are obtained from the

initial conditions, v (x, 0) and vR (x, 0), using equation (147),

g
m
(0)"P

1

0

WT
m
M (v(x, 0)) dx, gR

m
(0)"P

1

0

WT
m
M(v5 (x, 0)) dx . (153)

We now know the time-dependent coe$cients g
m
(t) of equation (144) in terms of

initial conditions and the forcing function. Finally, the solution is given by

v (x, t)"
=
+
n/1

g
n
(t)W

n
(x) , (154)

where g
n
(t) is given by equation (152).

5.4. THE FREE AND FORCED RESPONSE VIA EIGENF;NC¹ION EXPANSION OF THE
RAYLEIGH MODEL

We follow a similar procedure to obtain the solution using the method of
eigenfunction expansion. It is assumed that the solution v (x, t) to the equation of
motion given in equation (21) can be expanded in terms of eigenfunctions as in
equation (144) or

v (x, t)"
=
+
n/1

g
n
(t)=

n
(x). (155)

We can obtain the time-dependent coe$cient g
n
(t) using the orthogonality

condition given in equations (138), (142) or (143). Note that it is awkward to use the
"rst orthogonality condition (138). Instead, we use equation (142). Taking a spatial
derivative of v (x, t) in equation (155), we obtain

Lv(x, t)
Lx

"

=
+
n/1

g
n
(t)

d=
n
(x)

dx
. (156)
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Multiplying equation (156) by d3=
m
/dx3 and integrating over the domain, we

obtain

g
m
(t)"!

1
u2

m
P

1

0

Lv(x, t)
Lx

d3=
m
(x)

dx3
dx . (157)

The equations of motion can be written as

=
+
n/1

g
n

d4=
n

dx4
#

d2g
n

dt2 AoA=
n
!oI

d2=
n

dx2 B"f (x, t). (158)

The boundary conditions given in equation (22) can be written as

d2=
n

dx2 Ad
d=

m
dx B K

1

0

"0, Ag
d3=
dx3

!oI
d2g
dt2

d=
dx B d= K

1

0

"0. (159)

Multiplying equation (158) by=
m

and integrating over the domain (0(x(1),
we obtain

=
+
n/1

P
1

0
Cgn

d4=
n

dx4
#

d2g
n

dt2 AoA=
n
!oI

d2=
n

dx2 BD=m
dx"P

1

0

f (x, t)=
m

dx . (160)

The left-hand side of this equation is integrated by parts,
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0
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#
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!oI
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n
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n
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n

dx2
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m

dx2
dx#

d2g
n

dt2 P
1

0
CoA=

n
=

m
#oI
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n

dx
d=

m
dx D dx . (161)

Note that the terms evaluated at the boundaries disappear due to boundary
conditions given in equation (159). Also, from the orthogonality conditions given in
equations (138) and (143) we can simplify to

P
1

0
Cgn

d4=
n

dx4
#

d2g
n

dt2 AoA=
n
!oI

d2=
n

dx2 BD=m
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n
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nm

, (162)

which is substituted into equation (160) so that

d2g
m

dt2
#u2

m
g
m
"P

1

0

f (x, t)=
m

dx . (163)

By denoting :1
0

f (x, t)=
m
dx as F

m
(t), g

m
(t) is given as in equation (152). The initial

conditions, g
m
(0) and gR

m
(0), can be obtained using equation (157),

g
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m
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(x)

dx3
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5.5. SAMPLE RESPONSES

In this section, the response of a non-slender clamped}free beam is obtained
using all four models. The transverse force is given by

f * (x*, t*)"x* cos 100t*. (165)

The beam is made of steel whose properties are given in Table 11. Using the
formula given in Table 3 and the Poisson ratio given in Table 11, the shear factor
for the thin round tube is k@"0)53066.

Note that the beam is not slender. Therefore, the critical wave number of the
Timoshenko beam is relatively low, and the di!erence among the models are
signi"cant. In reality, it is hard to build a beam with such geometry and obtain
reliable experimental results because the end e!ect will dominate the vibration. In
order to avoid such problems Traill-Nash and Collar built box beams supported by
diaphragms [1].

For the Euler}Bernoulli and Rayleigh models the initial displacement is given by

v* (x*, 0)"(1)667x*3!5x*2)10~3, (166)

and for the shear and Timoshenko models, the initial displacement and rotation are
given by

v*(x*, 0)"(2)021x*3!6)0635x*2#0)7094x*)10~3,

a* (x*, 0)"(6)0635x*2!12)127x*)10~3. (167)

The initial displacements are chosen so that they satisfy the boundary conditionss
and the magnitude of the tip displacements are the same.

The natural frequencies are obtained from the frequency charts. The "rst four
natural frequencies of the Rayleigh, shear, and Timoshenko beams are obtained
previously in equations (106), (97) and (118). The natural frequencies of the
Euler}Bernoulli model are obtained using the wave numbers tabulated in Table
5 and the dispersion relation given in Table 16. The natural frequencies predicted
by four models are given in Table 12. The natural frequencies of the Timoshenko
beam appear in pairs beyond the critical frequency because each pair of mode
shapes has the same number of nodes. It may seem odd that only the Timoshenko
model has more than one mode shape with same number of nodes. Experimentally,
Barr (1956) [31] observed two frequencies corresponding to the same number of
nodal points in the study of free}free vibration of a thick beam.

The responses are obtained using the method of eigenfunction expansion by
summing the "rst eight modes of equation (144) or (155) for the Euler}Bernoulli,
Rayleigh, and shear models and the "rst 12 modes of equation (155) for the
Timoshenko model. The reason why 12 modes instead of eight are included is that
by including eight modes, the Timoshenko model will be missing modes with higher
number of nodes. The responses are shown in Figure 24.
sIn fact, these initial displacements correspond to the shape of the beam when it is statically loaded
by a point force at the free end.



TABLE 11

Properties of the beam

Young's modulus E* 200 GPa [29]
Modulus of rigidity G* 77)5 GPa
Poisson's ratio l 0)29 [30]
Density o* 7830 kg/m3 [29]
Cross-section round tube with r

inner
"0)15 m, r

outer
"0)16 m

Cross-sectional area A* 0)0097389 m2
Area moment of inertia I* 0)0001171 m2
Length ¸* 1 m
Slenderness ratio ¸*JA*/I* 9)1192
Shear factor k@ 0)53066
c 2)205

TABLE 12

Natural frequencies (rad/s)

No. of nodes Euler}Bernoulli Rayleigh Shear Timoshenko

1 1948)62 1896)16 1797)07 * 1696)03
2 12211)80 10351)13 7231)92 * 6768)24
3 34193)39 24737)47 15150)10 * 14267)26
4 67005)41 41078)62 22842)44 * 20415)37
5 110764)74 58187)35 30509)81 25150)52 29211)86
6 165463)34 75396)16 37994)56 33792)23 38003)37
7 231101)69 92504)64 45437)80 44958)47 46401)78
8 307679)76 109447)44 52799)94 53183)33 58849)04
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Notice that the response obtained using the Euler}Bernoulli and Rayleigh
models are close to each other and that obtained using the shear and Timoshenko
models are close to each other.

5.6. DISCUSSION ON THE SECOND FREQUENCY SPECTRUM OF THE TIMOSHENKO BEAM

Traill-Nash and Collar (1953) "rst claimed the existence of two separate spectra
of frequencies beyond the critical frequency u

c
"Jk@GA/oI for the free}free and

hinged}hinged cases. That is, it is possible that two natural frequencies correspond
to a single mode shape.

Both Anderson (1953) [32] and Dolph (1954) in their studies of the Timoshenko
theory con"rmed the result of Traill-Nash and Collar for the hinged}hinged case.
Since their studies, it was generally accepted that the second spectrum existed for
the hinged}hinged case. More recently, Thomas and Abbas (1975, 1977) [33, 6]
showed using their "nite element model that &&2 except for the special case of
a hinged}hinged beam there is no separate second spectrum of frequencies''.



Figure 24. The response of the beam: * , Euler}Bernoulli; 2, Rayleigh; } )} )} , shear; }}} ,
Timoshenko.
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Bhashyam and Prathap (1981) [34] also came to the same conclusion using their
"nite element model.

However, what previous studies neglected is that the mode shape includes both
displacement and angle of rotation as a pair. If we see the displacement and the
angle of rotation together, the two natural frequencies do not correspond to one
mode shape. They correspond to two di!erent mode shapes. For example, let us
consider a hinged}hinged beam whose properties are given in Table 11. The
natural frequencies for 1/s"0)11 are shown in Figure 19, and the four lowest
natural frequencies are u(1)*

1
, u(1)*

2
, u(1)*

3
, and u(2)*

1
. From Figure 15, the "rst

natural frequency corresponds to the wave numbers (a
1
, b

1
)and the fourth natural

frequency corresponds to the wave numbers (a
1
, bJ (2)

1
). Note that the numerical

value of a
1

is n. The spatial function in each case is given in equations (70) and (72)
with coe$cients related by equations (112) and (113). Upon applying boundary
conditions, we "nd that the spatial functions are reduced to

C
=

1
W

1
D"C

1

sin a
1
x

a2
1
#c2b2

1
(1#c2)a

1

cos a
1
x

, (168)

C
=

4
W

4
D"CI

1

sin a
1
x

a2
1
!c2(bJ (2)

1
)2

(1#c2)a
1

cos a
1
x

, (169)
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where the coe$cients other than C
1

and CI
1

are zeros. The coe$cients C
1

and
CI

1
are then set so that the modes are normalized according to equation (129).

The "rst and the fourth modes with corresponding natural frequencies are
given by

C
=

1
W

1
D"C

0)158 sinnx
0)323 cosnxD , u(1)*

1
"4252)56 rad/s; (170)

C
=

4
W

4
D"C

0)035 sinnx
!1)443 cosnxD , u(2)*

1
"26881)97 rad/s. (171)

Note that when the beam is vibrating at the natural frequency belonging to the
&&"rst spectrum'', the amplitudes of the lateral displacement and the angle of
rotation could be comparable and the bending moment (E*I*W) and the shear
(k@G*A*(=@!W)) are in phase. When the beam is vibrating at the natural
frequency belonging to the &second spectrum', the amplitude of the angle of rotation
is considerably larger than that of the lateral displacement and the bending
moment and the shear are completely out of phase.

From Figure 15, we can establish inequalities given by

b
n
(a

n
(bJ (2)

n
for 1/s(1/s

n
and n"1, 2,2,

bJ (1)
n
(a

n
(bJ (2)

n
for 1/s'1/s

n
and n"1, 2,2. (172)

The amplitude of the angle of rotation (a2
1
!c2 (bJ (2)

1
)2 )/(1#c2)a

1
in equation (169)

is easily a large negative number. That is, the rotation of the cross-section may be
large whereas the lateral de#ection is minimal in the &&second spectrum''.

To see whether the bending moment and the shear are in phase or not, the ratios
of the bending moment to the shear are obtained in both spectra,

W
1

=@
1
!W

1

E*I*
k@G*A*

"

a2
1
#c2b2

1
(a2

1
!b2

1
)c2

E*I*
k@G*A*

,

W
4

=@
4
!W

4

E*I*
k@G*A*

"

a2
1
!c2 (bJ (2)

1
)2

c2(a2
1
#(bJ (2)

1
)2 )

E*I*
k@G*A*

. (173)

Note that the "rst expression is always positive because a
n
is always greater than b

n
,

and the second expression is always negative because bJ (2)
n

is always greater than a
n
.

Therefore, we arrive at the conclusion that the bending moment and the shear are
in phase in the &&"rst spectrum'' and completely out of phase in the &&second
spectrum''.

Now, we can say that the two pairs of mode shapes are indeed distinct and
correspond to distinct natural frequencies. There is no need to refer to them as
separate frequency spectra. This has been observed by Levinson and Cooke (1982)
[35] who said &&2the two spectra interpretation of the predictions of Timoshenko
beam theory is rather a matter of taste and not even a particularly fruitful
interpretation at that''.
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6. SUMMARY

In this paper, we examined four approximate models for a transversely
vibrating beam: the Euler}Bernoulli, Rayleigh, shear, and Timoshenko models.
The equation of motion and the boundary conditions were obtained and the
frequency equations for four end conditions were obtained. The solutions of
the frequency equations are presented in terms of dimensionless wave numbers.
Also the frequency charts are plotted so that, for a given material and geo-
metry, the natural frequency can be obtained instantly. For each model, the
orthogonality conditions are identi"ed, and the forced response is obtained using
the method of eigenfunction expansion. A numerical example is given for
a non-slender beam and a brief discussion on the second frequency spectrum is
included.

We found that the second order e!ects become more important for small
s and large c. The range of possible c is small when compared to that of s.
Therefore, the slenderness ratio alone can let us determine roughly whether or
not the second order e!ects are important. We also found that the shear is
always more dominant than the rotary e!ect for a given geometry and
material. Therefore, either the shear or the Timoshenko model should be used for
a beam with small s. The shear model may give reasonable results for less
complexity.
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Dimensional variables

A* cross-sectional area, m2
a*, b*, bJ * wave numbers, 1/m
E* Young's modulus, N/m2
f transverse force normal to the structure per length, N/m
G* shear modulus, N/m2
I* mass moment of inertia of the cross-section about the neutral axis, m4
Q* shear, N
¸* length of the beam, m
M* moment, Nm
k* radius of gyration I*/A*, m
k@ shape factor,
KE* kinetic energy, kgm2/s2
PE* potential energy, kgm2/s2
r*
i

ith root of the characteristic equation, 1/m
t* time, s
x* axial co-ordinate of the beam, m
v*(x*, t*) transverse displacement of the beam, m
a(x*, t*) angle of rotation due to bending, rad
b(x*, t*) angle of rotation due to shear, rad
l Poisson's ratio,
o* density of the beam, kg/m3
u*

i
ith natural frequency of the beam, rad/s

Dimensionless variables

A dimensionless area (A*/¸*2)
a, b, bJ dimensionless wave numbers (a*¸*, b*¸*, bJ *¸*)
Energy dimensionless energy [Energy*¸*/(E*I*)]
f dimensionless transverse force per unit length [ f *¸*3/(E*I*)]
G dimensionless shear modulus [G*¸*4/(E*I*)]
I dimensionless mass moment of inertia of the cross-section about the

neutral axis (I*/¸*4)
Q dimensionless shear [Q*¸*2/(E*I*)]
k dimensionless radius of gyration (k*/¸*"JI/A)
M dimensionless moment [M*¸*/(E*I*)"La/Lx]
r
i

dimensionless ith root of the characteristic equation (r*
i
¸)

s the slenderness ratio (¸*/k*)
t dimensionless time (t*u*

1
)

x dimensionless axial co-ordinate (x*/¸*)
v dimensionless transverse displacement (v*/¸*)
o dimensionless density [o*(¸*6u*2

1
)/(E*I*)]

u
n

dimensionless nth natural frequency (u*
n
/u*

1
)
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