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Abstract

An elementary method for controlling crop growth in Advanced Life Support Sys-
tems is presented. Two models for crop growth are considered, one developed by the
agricultural industry and used by the Ames Research Center, and a mechanistic model,
termed the Energy Cascade model. Two control laws are applied to both models using
wheat as the crop. A variety of circumstances are considered, such as model errors,
measurement errors, and the incapability of applying the desired control input. It
is shown that the proposed approach is a potentially viable way of controlling crop
growth.

Keywords: Advanced Life Support, crop growth, mathematical modeling, optimal
control.

Content Sentence: A method for controlling crop growth in Advanced Life Support
Systems is introduced. Feedback control is used to compensate for perturbations in
light intensity and model errors.

1 Introduction

Future manned space exploration will require life support systems that are independent of
the earth for re-supply of food and resources. Integrated physical, chemical, and biolog-
ical systems may provide mass closure for life support through recycling and recovery of
system resources via waste processing, atmospheric purification, and food production for
crew members from plant biomass production chambers. NASA (National Aeronautics and
Space Administration) researchers are developing aspects of this system through the ALS
(Advanced Life Support) program (15), (17), (20), (13).

Plant growth is expected to play an important role in ALS. Growth of higher plants
provides crew members with food, potable water via transpiration, atmospheric gas exchange
through photosynthesis, and a contribution to waste processing/resource recycling through
hydroponic nutrient uptake. A mix of 8 to 14 crops is required to satisfy crew nutrition
demands (16).
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Crops in an ALS environment will most likely be hydroponically grown in individual-
ized growth chambers with control over irradiance (photosynthetic photon flux or PPF),
photoperiod, air temperature, relative humidity, CO2 and O2 concentrations, and nutrient
delivery system quality (3). The environmental setpoints for each of these inputs should
be selected to produce the desired levels of plant growth that satisfy ALSS production
scheduling (i.e., timing and yield of each crop) for each crop. Production schedules would
initially be derived from crew nutrition demands. Disturbances and system failures can in-
fluence plant production in a closed environment. These include poor crop seed germination,
spread of plant pathogens and/or disease, and perturbations in environmental conditions in
the growth chamber (12). Environmental perturbations can be of either short (less than 1
day) or long term duration, and may ensue from deliberate actions (to modify plant transpi-
ration or photosynthetic rates to offset activities in other ALSS compartments, for example)
or system failures (such as fluctuations in power availability or mechanical problems). In
either case, crop growth, and hence production scheduling, may be adversely affected by
environmental perturbations. This can negatively affect reliability and persistence issues for
an ALS system (14).

Control strategies able to compensate for the effects of environmental perturbations on
plant growth would be useful for ALS. However, most growth chamber controllers work
to maintain static setpoints. These setpoint values are typically derived from heuristic
knowledge and empirical studies for each particular crop (e.g. (7), (6), (18)). As a result,
environmental control of growth chambers tends to concentrate on maintaining current set-
points at their predetermined levels; thus, environmental disturbances and their effects on
the plant are not incorporated into the control. Optimization techniques have also been used
to identify appropriate setpoint values. Modern greenhouse control integrates mathematical
models of the greenhouse environment with simple plant growth models to prescribe daily
environmental conditions. The result are management tools and control systems which dy-
namically determine optimal setpoints usually with the intention of increasing crop yield,
quality, or decreasing energy consumption (e.g. (2), (1), (8), (9), (21), (22)). Chun and
Mitchell (10) developed a dynamic controller that varied PPF to control lettuce canopy
net photosynthesis in a growth chamber based on real time measurements of canopy gas
exchange. In this case, the environmental input was dynamically varied so that the de-
sired plant growth rate could be obtained. Such systems could be adapted for ALSS use,
where controllers can both maintain setpoints and adjust them when necessary based on
the measured or predicted state of the plant. Measurement errors and uncertainties in the
mathematical models would need to be considered in developing this control.

In this paper, we propose to use feedback control to compensate for the effects of envi-
ronmental disturbances in crop growth chambers by adjusting PPF to maintain desired crop
growth rates. We consider two generic crop growth models and we develop two model-based
feedback controllers, using wheat as the crop. Small-order mathematical errors are consid-
ered. The controllers are evaluated with several scenarios simulating short-term environment
perturbations and control system errors.

2 Crop Growth Models

In order to apply model based control laws, we need to make use of crop growth models.
In this paper, we consider two such models. The first is a growth and assimilation model,
developed by the agricultural industry and used by the NASA Ames Research Center for
previous ALSS studies. The second model is called the Energy Cascade model, which
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takes a more mechanistic approach to predicting crop growth and overcomes some of the
shortcomings of the Ames model. Both models assume a linear relation between light
intensity and growth rates.

2.1 Ames Model

Originally developed by three agricultural companies (General Mills Inc., PhytoFarms of
America, and CEA Technologies International, Inc.), this model has been utilized to study
production systems for several crops including lettuce, spinach, wheat, and tomato. NASA’s
Ames Research Center has also applied the model towards design of environmental biore-
generative life support systems (4).

Relative growth rate (grams of new growth/grams of current growth on a dry or fresh
weight basis) is predicted as a function of photosynthetic photon flux (PPF), CO2 concen-
tration, air temperature, plant production area, plant parameters (quantum use efficiency,
canopy architecture), and initial plant dry or fresh weight:

Gi =
CEaiPi

Wi
ai = 1− e−k(Wi/Si) (1)

where
Gi: relative growth rate (defined previously)
C: canopy quantum use efficiency [g biomass produced per mol intercepted PPF]
E: non-dimensional environment response surface, between 0 and 1, for air temperature
and CO2

Pi: photosynthetic photon flux integrated for simulation time increment [µmol m−2 time−1]
Wi: dry or fresh crop weight [g plant−1]
ai: fraction of integrated photosynthetic photon flux intercepted by plant canopy
Si: plant spacing [cm2]
k: crop canopy constant
i: time increment [day]

The plant dry/fresh weight is determined as

Wi+1 = Wie
Gi (2)

The model can be iterated on daily or smaller time increments. Control of crop growth
can be achieved via manipulation of photoperiod and light intensity which contribute to
the light integral for the given time step. The model is terminated at a user specified plant
maturity date.

2.2 Energy Cascade Model

The energy cascade model (24) predicts crop productivity during plant growth and devel-
opment based on a three step analysis involving:
1) light absorption L, where a fraction of photosynthetically active radiation available to
the crop is absorbed by the canopy;
2) canopy quantum yield Q, the conversion of absorbed light energy into carbohydrate via
photosynthesis;
3) carbon use efficiency U , the conversion of carbohydrate into plant biomass.
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The model combines the above energy cascade process to predict gross and net photo-
synthesis (Pg and Pn), daytime respiration (R) and crop growth rate (CGR) as follows:

Pgi = Pni + Ri (3)

in which

Pni = UQiLiPi Ri = (1− U)QiLiPi (4)

To compute the daily crop growth rate (CGR), night time respiration needs to be taken
into account. Thus CGR is equal to the daily net photosynthetic rate (HiPni), where Hi is
the photoperiod, minus plant respiration occurring during the dark ((24−Hi)Ri)

CGRi = β (HiPni − (24−Hi)Ri) (5)

where
Pg, Pn, R: defined above with units [µmol CO2 m−2 s−1]
CGR: defined above with units [g m−2 d−1]
β: conversion factor between moles CO2 fixed by the plant and biomass
H: photoperiod [hr]

Dry weight is then calculated as:

Wi+1 = Wi + CGRi (6)

where Wi+1: plant dry weight [g m−2].
Unlike the Ames model, the Energy Cascade model also simulates the effect of senescence

by assuming a linearly decreasing value for quantum use efficiency:

Qi = Qmax −
(Qmax −Qmin)(i− iq)

im − iq
for i > iq

Qi = Qmax for i ≤ iq (7)

where
Qmax: maximum quantum yield achievable for particular experiment
Qmin: smallest quantum yield observed for particular experiment
im: time to maturity
iq: time at which Q begins to decline due to onset of senescence
i: time increment

Canopy growth and development are indirectly simulated with a linear increase in light
absorption L until a constant maximum value of light absorption (Lmax) is achieved accord-
ing to

Li =
Lmax ∗ i

il
for i ≤ il Li = Lmax for i > il (8)

where:
Lmax: maximum light absorption at canopy closure (between 0 and 1)
il: time at which Lmax is achieved

Model applications are restricted to the environmental ranges, plant cultivars, and plant-
ing densities from the data sets from which it was developed. Constant values are entered
in the model for Lmax, Qmax, Qmin, U, il, iq, and im. The model accepts light intensity as
an input.
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3 Controller Development

In this section, we construct a model based crop growth controller. The input to the
controller is taken as the PPF and the output is plant dry weight.

Consider a system described by the discrete time equations

xi+1 = [Ai]xi + [Bi]ui yi+1 = [Ci+1]xi+1 (9)

in which i denotes the time step, xi is the system vector of order n, describing the n states
of the system, ui is the control vector of order m, corresponding to m control inputs, and
yi is the output vector of p, denoting the measured states. The matrices [Ai], [Bi] and [Ci]
describe the properties of the state, the relation of the controls to the state, and the relation
between the measured values and the state variables, respectively.

The equations above can represent a discrete system, or they can be descriptive of a
discretized model. In the latter case, the time increment should be selected such that the
accuracy of the actual model is not compromised.

Let us denote the desired values of the output variables as ydi, (i = 1, 2, ...). We first
consider proportional control. Here, one designs the control input as

ui = [Ki](ydi − yi)− Zi (10)

where [Ki] is the control gain matrix and Zi = [Bi]−1(xdi+1 − [Ai]xdi). The gain matrix is
selected such that the closed-loop system matrix ([Ai] − [Bi][Ki][Ci], i = 1, 2, ...) describes
a stable system, that is, its eigenvalues lie within the unit circle. The procedures we use to
select the control gains will be described later.

Another control approach is based on pointwise-optimal control (23). The objective of
pointwise optimal control is to drive the system to a desired set of values and to do this
by minimizing the difference between the measured variables and their desired quantities at
each time step. Unlike conventional optimal control, which minimizes the difference between
a desired state and an initial state over a period of time, pointwise optimal control does this
at each time step. The result is a simpler, but a less sophisticated control law.

We wish to minimize the difference between ydi and yi at each time increment. To this
end, given the measurements at time step i, we predict the state at the next time increment
(i + 1) using Eq. (9) and we define a performance index as

Ji+1 = eTi+1[H1i+1 ]ei+1 + uTi [H2i ]ui (11)

where ei+1 is the error vector between the desired and actual values of the output,

ei+1 = ydi+1 − yi+1 = ydi+1 − [Ci+1]xi+1

= ydi+1 − [Ci+1]([Ai]xi + [Bi]ui) (12)

with [H1] and [H2] as error weighting matrices. Setting [H2i ] to zero implies that one can
use as much control effort as needed, without regard to the amount used.

We take the derivative of Ji+1 with respect to ui

∂Ji+1

∂ui
= 2eTi+1[H1i+1 ]

∂ei+1

∂ui
+ 2uTi [H2i ] (13)

where ∂ei+1
∂ui

= [Ci+1][Bi]. Setting Eq. (13) equal to zero and solving for ui we obtain

ui = [Ri]−1(ydi+1 − [Ci+1][Ai]xi) (14)
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in which [Ri] = [H2i ] + [Bi]T [Ci+1]T [H1i+1 ][Ci+1][Bi]. Equation (14) has xi in it, which
implies that if [Ci+1] is not a square matrix (not as many measurements as there are states)
an observer needs to be designed to estimate xi from yi. The same situation exists when
proportional control is used.

Both control laws can be applied to the two crop models. Both mathematical models
are of order n = 1 and there is one controller, m = 1. For now, we assume that the the state
variable Wi, the dry weight, can be directly measured so that [Ci] is a scalar and it is equal
to 1. To obtain [Ai] and [Bi], which are also scalars, we recognize that both models must
be in the state space form given by Eq.(9) (Note that the [−] will now be dropped since the
matrices are scalars for this application). This is now demonstrated using the Ames model.

In Eq. (3), dry weight is an exponential function of relative growth rate, Gi. The
first-order Taylor series expansion of eGi is

Wi+1 = Wie
Gi ≈Wi(1 + Gi) (15)

which is an accurate approximation when Gi is kept sufficiently small. This can be accom-
plished by reducing the model’s time step to a 0.2 day period. Values for Gi simulated in the
model do not exceed 0.7 per day. By utilizing a 0.2 day time period, the maximum simulated
value is reduced to 0.14 and the resulting error due to linearization is 0.9%. Because we are
designing a feedback controller and the dry weight Wi is measured at every time increment
(one day), each approximation is carried out for one day only. That is, the control is to be
applied at the end of each day of simulation, not at the 1/5 day time increment. Hence,
errors associated with this approximation do not increase with time.

In Eq. (2), exponential of the plant dry weight divided by the plant spacing is com-
puted to determine the fraction of light intercepted by the plant canopy. In this case, the
linearization expansion can not be performed accurately because the dry weight continually
increases throughout the simulation. This turns out to not be a drawback when designing
the control law.

Combining Eqs. (1), (2), and (15) gives the following expression for crop dry weight:

Wi+1 = Wi + CEaiPi (16)

which now is in desired form, with Ai = 1, Bi = CEai, Ci = 1, xi = Wi and ui = Pi.

4 Controller Implementation

In this section, we implement the two control laws described above for the Ames and Energy
Cascade models. We consider the following issues:

a) The type of control law (proportional or pointwise-optimal);
b) The model on which the control design is based;
c) The model which is used to simulate crop dry weight;
d) Presence of measurement as well as control input errors.
For example, one procedure is to simulate the plant state via the Energy Cascade model,

while designing the control law based on the Ames model. The reasoning behind this
approach is to see if a controller based on one model can effectively control a different model.
As the models of crop growth considered here are simplifications of complex phenomena, one
needs to design a controller that has certain robustness features and one that will work with
different models describing the same phenomena. Using more than one model to describe
the same system is a common procedure for control system development (5) and is frequently
done in the life sciences.
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4.1 Applied Control Law Expressions

The weighting matrices in the pointwise-optimal control law become scalars H1i+1 and H2i

when applied to the crop models considered here. Introducing all the coefficient terms used
to derive the previous equation into Eq. (16), the control input for the Ames model becomes

ui = Pi =
Wdi+1 −Wi

H2i + H1i+1(CEai)2
(17)

In general, the values for H1i+1 and H2i are selected by trial and error. Appropriate
values for these matrices are discussed later on in this section. For the special case of no
restrictions on the control effort, we can set H2i to zero and selecting H1i+1 = 1/CEai, we
obtain

Pi =
Wdi+1 −Wi

CE(1− e−kWi/Si)
(18)

Note that the above equation can also be derived directly from Eq. (12), by prescribing
that the difference Wdi+1 −Wi+1 be zero.

Basing the control design on the Energy Cascade model, and without putting a restriction
on the control effort in the control design, we obtain a pointwise-optimal control law in the
form

Pi =
Wdi+1 −Wi

BQiLi(Hi + 24(U − 24))
(19)

Finally, the proportional control law (Eq. (10)) as applied to the Ames model is

ui = Pi = Ki(Wdi −Wi)−
Wdi+1 −Wd

CEai
(20)

A similar expression can be developed for the Energy Cascade model.

4.2 Identification of Control and Simulation Model

Simulations with the Energy Cascade and partially linearized Ames models were conducted
prior to implementing feedback control. Baseline environmental conditions for simulation
were set at a CO2 concentration of 1200 ppm, a PPF level of 1400 µmol m−2 s−1, a 23◦C
constant day/night temperature, photoperiod of 20 hours, and a production area of 14.3
cm2 plant−1. Model parameters were taken from (24) for the Energy Cascade and then fit
to the Ames model (Table 1). Model simulations of wheat growth were similar until day 33
where productivity declined in the energy cascade model due to senescence (Figure 1). This
result has important consequences when determining which model to use for simulation and
for the control law.

Four separate simulations were performed to determine which model to use for control
and for simulation. For example, one simulation used the Ames-based controller with the
Energy Cascade model for dry weight prediction, while a second simulation used the Energy
Cascade-based controller with the Energy Cascade model. Desired dry weights, Wdi+1 , were
computed once for all four simulations using the Energy Cascade model under the baseline
conditions discussed above with a setpoint PPF of 1400 µmol m−2 s−1. The controller’s
response was restricted to a PPF range between 50 and 2000 µmol m−2 s−1 PPF, where
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Energy Cascade Ames
Lmax 0.93 C 1.12
Qmax 0.0625 k 100
Qmin 0.0125 E 0.85
U 0.68 Wo 0.001
il 12 days Si 14.3
iq 33 days
im 62 days

Table 1: Parameters for Ames and Energy Cascade models.

Figure 1: Comparison of Energy Cascade (EC) model versus partially linearized Ames model
(A-lin) for wheat dry weight over time.

wheat response to changes in light intensity was assumed linear (19). Each simulation was
judged on the controller’s ability to achieve the desired plant weight values and feasibility
of output PPF level; thus, no perturbations were included.

All four combinations were able to maintain the desired plant dry weights throughout the
simulation. However, when the Ames model was used for simulation of crop growth, input
PPF values were well off the nominal expected value of 1400. For example, when equation
(19), the control law applied to the Energy Cascade model, was combined with the Ames
model for plant simulations, PPF values following DAP 33 averaged 847 µmol m−2 s−1.
This unrealistic result occurred because the Ames model does not simulate the decline in
plant productivity following the onset of senescence. The Ames model overpredicted plant
dry weight, and the controller supplied lower PPF values to compensate.

Using either the Energy Cascade model or the Ames model for the control and the Energy
Cascade model for the simulation produced the similar results. For brevity, our subsequent
analysis is based on using the Ames-based control law (Eq. (18)) with the Energy Cascade
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model for simulations.

4.3 Control Implementation

Simulations using the Ames-based pointwise-optimal control law (Eq. (18)) showed that the
PPF oscillated wildly during different days of the simulation. This was because our control
design did not weight the control effort. This is undesirable for two reasons: First, the control
action is not smooth, which usually leads to high sensitivity to changes in parameters and
instabilities in the control action. Secondly, such a control action will put large fluctuating
demands on the power supply in the ALS environment, which may result in a reduction in
power allocated to other components of the ALS. These considerations suggest that values
for the control gain needed to be determined.

Simulations were conducted to determine parameters for proportional control, Ki, and
weighing terms H1i+1 , H2i for pointwise optimal control. The results were evaluated in
terms of system response and required control effort. A normalized least squares criterion
was introduced to quantify control effort and deviation from desired set points. The criterion
evaluates the deviation in dry weight Wi as well as the control input PPF, and it has the
form

LSX =
√∑62

i=1(Xi −Xsi)2

LSXMAX
(21)

where X - dry weight W or light intensity PPF ,
Xsi - setpoint at time increment i, e.g., 1400 for X = PPF or Wdi for X = Wi

62 - number of days in simulation,
LSXMAX - maximum least squares value observed from all simulations

For proportional control, the control gain Ki was selected so that the eigenvalue of the
closed-loop system lay within the unit circle. This requires that values for Ki be negative.
For pointwise-optimal control, H1i+1 was kept equal to 1/CEai as in Eq. (18), but H2i

was set as a percentage of H1i+1 . Separate simulations were run with proportional and
pointwise-optimal control laws to determine appropriate constants for these parameters.

For both proportional and pointwise-optimal control simulations, least square values for
system response were similar regardless of trial values selected. However, the amount of
control effort varied greatly depending on the control gain selected. Figure 2 shows LSPPF
results for different proportional control gain values. It can be seen than a value of -0.6 (kept
constant throughout the simulation) minimized PPF fluctuations. For pointwise-optimal,
H2i set to 350% of H1i+1 minimized LSPPF .

Using the best values of the control gain parameters, the predicted plant growth and
input PPF for pointwise-optimal control and proportional control were compared. Table 2
summarizes the results for the least square values in plant growth and PPF for a variety
of disturbances and for the two control laws considered. Disturbances consisted of ± 40%,
20% or 10% short term perturbations to the input PPF. Short term disturbances were
implemented from day 11 to 20 for single disturbances and from days 11 to 15 and 31 to
35 for the double disturbances. Figure 3 compares control input over time between the two
controllers for the case of no disturbances and the short term +10% case.

Using only the pointwise-optimal controller, four additional simulations were performed
where ± 40% and 20% perturbations were maintained throughout the simulation. These
simulations were conducted to determine the ability of the controller to respond to long
term disturbances. Long term measurement errors (± 20% of Wi) were also input to the
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Figure 2: Effect of gain value for Ames-based proportional controller on control effort.

controller in separate simulations. Results are also summarized in Table 2. Figure 4 shows
results from short and long term -40% perturbations respectively.

Figure 3: Control effort comparisons between proportional (P) and pointwise-optimal (PW)
controllers. Examples shown are for -20%, +10% (left) and -10% short term perturbation
(right).

5 Discussion

The results in Table 2 indicate that the proportional and pointwise-optimal controller per-
formances are comparable in terms of maintaining desired plant dry weights. However,
proportional control shows slightly more sensitivity to input disturbances as can be seen in
Figure 3 and the larger LSPPF values in Table 2. This higher sensitivity is a disadvantage.
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scenario proportional pointwise pointwise
Wi PPFi Wi PPFi %deviation

+40% PPF, 10 day 0.140 0.732 0.173 0.723 2 (8.6)
−40% PPF, 10 day 0.273 0.671 0.289 0.570 2 (9.2)
+20% PPF, 10 day 0.0749 0.463 0.128 0.473 2 (4.1)
−20% PPF, 10 day 0.156 0.512 0.188 0.345 2 (4.8)
+10% PPF, 10 day 0.0683 0.356 0.126 0.325 2 (2)
−10% PPF, 10 day 0.111 0.403 0.153 0.227 2 (2.6)
+20% , −10% 5 days 0.0665 0.365 0.139 0.376 2
−20% , +10% 5 days 0.098 0.653 0.152 0.341 2
+40% PPF, long – – 0.129 0.701 1.4
−40% PPF, long – – 1.0 0.825 19
+20% PPF, long – – 0.147 0.73 1.6
−20% PPF, long – – 0.229 0.742 2.5
+20% Wi, long – – 0.85 0.829 18
−20% Wi, long – – 0.954 0.972 22

Table 2: Normalized (0 to 1) least square values for plant growth Wi and PPF for different
scenarios. Percent final deviation at maturity date presented for pointwise-optimal control
only. Values in parenthesis are % deviation when no control action is applied.

Large fluctuations in input PPF may lead to a reduction in the energy supplied to other
components of the ALS system and decrease longevity of the growth chamber lighting sys-
tems. The even distribution of energy and avoidance of excess variations in power demands
will be an important concern as ALS subsystems are integrated (11). For this reason, the
pointwise-optimal controller was shown to be a better controller choice for this application.

The short term disturbances introduced to the pointwise-optimal controller represent a
range of some possible external perturbations to light intensity. The controller was able to
compensate for all short term disturbances in PPF, as well as small (less than 20%) long
term disturbances (Table 2 and Figure 4-right). However, for a long term perturbation of
-40% PPF, predicted final dry weight ended 19% below its desired value. This occurred
because PPF output was restricted due to the constraints set on the control law. Thus,
the crop could not be restored to the original production schedule when a -40% disturbance
was applied during the entire simulation (Figure 4-left). This implies that the simulation
results are dependent on both the PPF setpoint and the PPF range constraints placed on
controller response.

Table 2 also shows the resulting final dry weight errors for each short term scenario
when no controller action was applied. That is, following the perturbation, PPF was set
back to the nominal value of 1400 µmol m−2 s−1. Errors ranged from about 10% to 2%.
These deviations were reduced to less than 2% with the controller (Figure 4 shows the
short term -40% result). It is worth noting that as the duration of perturbation increases,
the deviations will increase. Thus, for short term and certain long term perturbations,
utilization of a controller to restore the crops back to their original production schedule is
a viable and necessary approach.

Useful real-time, non-destructive measurements of crop dry weight are not currently
achievable. Hence, for real-time feedback control, an observation scheme needs to be devel-
oped to estimate the crop dry weight in a non-destructive way.

In such a situation, crew members would input environmental perturbations to an ob-
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Figure 4: System response (Wi) from pointwise-optimal controller for -40% long term per-
turbation (left) and -40% short term perturbation (right). Simulated control values (PW)
are compared with desired dry weights (DES) and results in which no control is applied
(NC) to adjust for perturbation.

server to estimate the current dry weight Wi. This estimated dry weight would then be used
as the input to the controller. To investigate the sensitivity of the control action to incor-
rect measurements of the dry weight, the controller was evaluated for when values for dry
weight Wi in Eq. (16) were perturbed by ± 20%. As listed in Table 2, controller response
is adversely affected by errors in the estimated dry weight. We conclude that an accu-
rate estimation of Wi is critical to the controller’s ability to compensate for environmental
perturbations and is an important topic for research.

Ultimately, the development of dynamic controllers, such as the one presented here, for
individual ALS processes will need to be considered as sub-systems are linked together. The
simple method presented here is intended to outline one viable approach of developing such
control for biomass production. There are several areas where the control design requires
improvement. The controller is based on a single input, single output model. More realistic
controllers will have to handle multiple inputs, including CO2 concentration, temperature,
photoperiod, and weightlessness. An improved model should also account for the nonlinear
relationship between light intensity and growth rate. For example, constants that are fixed
in the Energy Cascade model are actually dynamic functions of the environment. Values
for Qmax and U depend on the current temperature, light intensity and CO2 concentration,
while photoperiod affects developmental parameters such as maturity and canopy closure
dates. Incorporating these relationships into the controller will be important. Growth
chamber experiments need to be developed to validate the results which are predicted by
the controller. Finally, an observation scheme needs to be developed for estimating values
of the dry crop weight.

6 Conclusions

A model-based controller is developed to maintain crop production schedules in advanced life
support systems, where perturbations in light intensity and measurement of crop growth
rates may be of concern. The control is applied to two plant growth models and wheat
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is used as the crop. The response is evaluated with several ‘what-if’ scenarios including
simulated short and long term errors in the input. The controller satisfactorily responds to
small perturbations in controller inputs.
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