Adsorption-induced deformation of microporous carbons: pore size distribution effect

Piotr Kowalczyk*1, Alina Ciach2, and Alexander V. Neimark3

[1] Applied Physics, RMIT University, GPO Box 2476V, Victoria 3001, Australia; E72231@ems.rmit.edu.au

[2] Institute of Physical Chemistry, Polish Academy of Science, Kasprzaka Street 44/52, 01-224 Warsaw, Poland; aciach@ichf.edu.pl

[3] Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, 98 Brett Road, Piscataway, New Jersey 08854-8058, USA; aneimark@rutgers.edu

Number of pages: 4
Number of figures: 3
Figure 1S. Variation of solvation pressure and pore density of argon at 243 K versus external bulk pressure computed for slit-shaped carbon pore width 0.44 nm (red squares) and 0.29 nm (blue circles). The solid lines were computed from thermodynamics integration, whereas the points were evaluated from Gauge Cell Monte Carlo method.
Figure 2S. Right panel presents the variation of solvation pressure of argon at 243 K versus external pressure for selected slit-shape carbon pore $H_{\text{eff}} = 0.29$ nm computed from thermodynamics integration (open circles) and Gauge Cell MC (black circles and color crosses). Left Panel displays the corresponding local density profiles collected by Gauge Cell MC Simulation.
Figure 3S. Variation of pore density of argon at 243 K versus pore size computed from GCMC for external pressures of argon: 0.5, 1.6, 9.9, and 18.2 MPa.