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ABSTRACT OF THE DISSERTATION

Autonomic Management of Data Streaming and

In-Transit Processing for Data Intensive Scientific

Workflows

by Viraj Bhat

Dissertation Director: Professor Manish Parashar

High-performance computing is playing an important role in science and engineering
and is enabling highly accurate simulations, which provide insights into complex phys-
ical phenomena. A key challenge is managing the enormous data volumes and high
data rates associated with these applications, so as to have minimal impact on the
execution of the simulations. Furthermore these applications are based on seamless in-
teractions and coupling between multiple and potentially distributed computational,
data and information services. This requires addressing the natural mismatches in
the ways data is represented in different workflow components and on a variety of
machines, and being able to “outsource” the required data manipulation and trans-
formation operations to less expensive commodity resources “in-transit”. Satisfying
these requirements is challenging, especially in large-scale and highly dynamic in-

transit environments with shared computing and communication resources, resource
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heterogeneity in terms of capability, capacity, and costs, and where application be-

haviors, needs, and performance are highly variable.

In this research we address these requirements by developing a data streaming
and in-transit data manipulation framework that provides mechanisms as well as
the management strategies for large scale and wide-area data intensive scientific and
engineering workflows. The main objectives of this research are: (1) developing an
end-to-end QoS management framework for data intensive applications so that it is
able to provide robust underlying support for asynchronous, high-throughput, low-
latency data streaming, and (2) effectively and opportunistically utilize resources
in-transit for data processing, to match data mismatches between application entities

executing in scientific workflows.

In this thesis, we address problem at two levels, the first or application level deals
with satisfying QoS goals at the end points. Specifically, it ensures that the data
is delivered in a timely manner, with no loss at the source or destination, and with
minimal storage requirements at the end-points. The solution couples model-based
limited look-ahead controllers (LLC) with rule-based managers to satisfy data stream-
ing requirements under various operating conditions. The second or in-transit level
focuses on scheduling in-transit computations and data transfer in an opportunistic
manner on the in-transit overlay resources taking into account the higher level QoS
goals of the source and the sink. Additionally the in-transit level management is
coupled with the application level management at end points to manage QoS of grid

workflows.

This research is driven by the requirements of the Fusion Simulation Project
(FSP), which forms the basis of a predictive plasma edge simulation capability to
support next-generation burning plasma experiments such as the International Ther-
monuclear Experimental Reactor (ITER). These scientific workflows require in-transit

data manipulation and streaming in a wide area environment.

The self-managing data streaming service developed using this approach for the
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FSP workflow minimizes streaming overheads on the executing simulation to about
2% of the simulation execution time, reduces buffer occupancy at the source and thus
prevents data loss. Additionally experiments with self-managing data streaming and
in-transit processing demonstrates that adaptive processing using this service during
network congestions decreases average idle time per data block from 25% to 1%,
thereby increasing utilization at critical times. Furthermore, coupling end-point and
in-transit level management during congestion reduces average buffer occupancy at

in-transit nodes from 80% to 60.8%, thereby reducing load and potential data loss.
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Chapter 1

Introduction

1.1 Motivation

1.1.1 Data Intensive Application Workflows for High Perfor-

mance Computing

The emergence of high-performance distributed computational environments is en-
abling new practices in science and engineering. These are based on seamless in-
teractions and couplings across multiple and potentially distributed computational,
data, and information services. For example, current fusion simulation efforts are
exploring coupled models and codes that simultaneously simulate separate applica-
tion processes and run on different High Performance Computing (HPC) resources
at supercomputing centers. These codes will need to interact, at runtime, with each
other, and with additional services for online data monitoring, data analysis and vi-
sualization, and data archiving. Furthermore these analytics require high throughput
data movement methods that shield scientists from machine-level details, such as the
throughput achieved by a file system or the network bandwidth available to move
data from the supercomputer site to remote machines on which the data is analyzed
or visualized. Hence this requires a new computing environment in which scientists
can ask, “What if I increase the pressure by a factor of ten,” and have the ana-
lytics run the appropriate methods to examine the effects of such a change. Since
high performance simulations run for long periods of times, it is possible for scien-

tists to do in-situ visualization during the lifetime of the run. The outcome of this



approach is a paradigm shift in which potentially plentiful computational resources
(e.g., multi-core and accelerator technologies) are used to replace potentially scarce
/O capabilities by, for instance, introducing high performance 1/0O with visualization
without polluting the simulation code with additional visualization routines.

Such “analytic I/O” operations require efficient movement of data from compute
nodes of supercomputers to locations such as GPGPU’s (General-Purpose comput-
ing on Graphics Processing Units) or commodity clusters where data manipulation
through analysis and visualization is performed and/or to other I/O nodes where
data is archived to disk. Furthermore, the locations where analytics are performed
are flexible, with simple filtering or data reduction actions able to run on clusters, data
routing or reorganization performed on I/O nodes, and more generally, with meta-
data generation (i.e., the generation of information about data) performed wherever
appropriate to match end user requirements. For instance, analytics may require
that certain data be identified and tagged on I/O nodes while it is being moved, so
that it can be routed to analysis or visualization machines. At the same time, for
performance and scalability, other data may be moved to disk in its raw form, to be
reorganized later into file organizations desired by end users. In all such cases, how-
ever, high throughput data movement is inexorably tied to data analysis, annotation,
and cataloging, thereby enhancing raw data to become the information required by

end users.

1.1.2 Driving Application

The DoE SciDAC CPES Fusion Simulation Project(FSP) [46] aims to develop a
new integrated Grid-based predictive plasma edge simulation capability to support
next-generation burning plasma experiments such as the International Thermonuclear
Experimental Reactor (ITER). One of driving application for the FSP and this thesis
is the GTC [52] fusion simulation that scientists execute on the 250+ Tflop computer
at Oak Ridge National Laboratory (ORNL). GTC is a state of the art global fusion
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Figure 1.1: Workflow for the Fusion Simulation Project

code that has been optimized to achieve high efficiency on a single computing node
and nearly perfect scalability on massively parallel computers. It uses the Particle-
In-Cell (PIC) technique to model the behavior of particles and electromagnetic waves
in a toroidal plasma in which ions and electrons are confined by intense magnetic
fields. One of the goals of GTC simulation is to resolve the critical question of p*
scaling of confinement in large tokamaks such as ITER. The scientific impact of these
simulations will be substantial, as it will further the understanding of Collisionless
Trapped Electron Mode (CTEM) turbulence by validating this against modulated

Electron Cyclotron Heating heat pulse propagation in current fusion reactors.

In order to understand these effects, and validate the simulations against exper-
iments, scientists need to record enormous amounts of data. Further it is expected
that a number of simulations are to be executed for the scientific discovery process,
each simulation running on roughly thirty-two thousand processors, and occupying
over 50TB of memory on the Cray XT computer at ORNL. Ideally, it would be de-
sired to store all of the particle information generated by the simulations, but this will
be a daunting task, as it requires to store PB(PetaBytes) of information to the HPSS
with a sustained throughput of over 300 GB/sec while maintaining a low overhead

on the simulation. Finally, since human and system errors can occur, it is critical to



monitor the simulation during their execution via in-transit functions such as multi-
dimensional FFTs, correlation functions over a specified time range or coupled codes
executing on cheaper resources. These techniques can save over 100K CPU hours for
every hour of the simulation run on machines such as the Cray XT at ORNL.
Figure 1.1 shows a typical workflow comprising of coupled simulation codes the
edge turbulence particle-in-cell (PIC) code, Gyrokinetic Toroidal Code (GTC) [52]
and the microscopic MHD (Magnetohydrodynamics) code (Multilevel 3D or M3D) [25]
running simultaneously on thousands of processors at various supercomputing cen-
ters. As shown in the figure data produced by these simulations must be streamed
live to remote sites for online simulation monitoring and control, simulation coupling,

data analysis and visualization, online validation, and archiving.

1.2 Problem Description

Scientific application workflows require robust underlying support for asynchronous,
high throughput, low-latency data streaming between interacting components. For
example in a fusion workflow, for instance, large volumes and heterogeneous types of
data generated have to be continuously streamed from a petascale machine’s compute
to its I/O partition, and from there to compute systems running coupled simulation
components and to auxiliary data analysis and storage machines. Requirements im-

posed on such data-streaming and in-transit processing service are that it must

1. It should have minimal impact on the execution of the petascale simulations

with less than 10% of the simulation time spent on data transfer activities

2. It should satisfy stringent application/user space and time constraints by en-

suring “in-time” delivery of data at end-points

3. It should deal with natural mismatches in the ways data is represented in dif-

ferent components and on different machines while ensuring the strict deadline



requirements

4. Tt should also guarantee that no data is lost in-transit processing or during data

transfer

Satisfying the above requirements in large-scale, heterogeneous and highly dynamic
Grid environments with shared computing and communication resources, and where
the application behaviour and performance is highly variable, is a significant chal-
lenge. It typically involves multiple functional and performance-related parameters
that must be dynamically tuned to match the prevailing application requirements and
Grid operating conditions. As scientific applications grow in scale and complexity,
and with many of these applications running in batch mode with limited or no runtime
access, maintaining desired QoS using current approaches based on ad hoc manual
tuning and heuristics is not just tedious and error-prone, but infeasible. A practical
data streaming service and in-transit processing service must, therefore, be largely
self-managing, i.e., it must dynamically detect and respond, quickly and correctly, to

changes in application behaviour and state of the underlying resources.

1.2.1 Requirements for Data Streaming

The fundamental requirement of the wide area data streaming service is to efficiently
and robustly stream data from live simulations to remote services while satisfying
the following constraints: (1) Enable high-throughput, low-latency data transfer to
support near real-time access to the data. (2) Minimizing overheads on the executing
simulation. The simulation executes in batch for days and we would like the overhead
of the streaming on the simulation to be less than 10% of the simulation execution
time. (3) Adapting to network conditions to maintain desired QoS. The network
is a shared resource and the usage patterns typically vary constantly. (4) Handle
network failures while eliminating loss of data. Network failures usually lead to buffer

overflows, and data has to be written to local disks to avoid loss. This increases



the overhead in the simulation. Further, the data is no longer available for remote

analysis.

1.2.2 Requirements for In-Transit Processing

In-transit processing has to deal with multiple QoS requirements consisting of pos-
sibly unknown number of senders or initial data producers and sinks or final data
receivers. The main requirements for data in-transit processing service are that it
should (1) Ensure “in-time” delivery of data while (2) Introducing low overhead on-
transit functions and enabling quick forwarding of simulation data at the in-transit
nodes (3) Opportunistically process data so that the best quality of processed data
reaches the sink “in-time” (4) Effectively schedule and manage in-transit processing
while satisfying the above requirements - this is particularly challenging due to the
limited capabilities and resources and the dynamic capacities of the typically shared

processing nodes.

1.3 Problem Statement

The goal of the proposed research is to develop, deploy, and evaluate a self-managing
framework for high-performance and robust data transport, “in-transit” data manip-
ulation, and online analysis for data-intensive scientific applications. The objectives

of such a framework are to provide:

e Asynchronous data capture and 1/O services for capturing and then transporting
the right simulation data at the right time (“in-time”) from the computational
nodes of leadership class computing platforms to its I/O nodes and onwards.
The primary objectives of these services are to minimize data capture and 1/0
costs, their impact on the performance of the simulation, and to provide end

users with the data needed to monitor application progress and /or control them.



One reason for the latter is to quickly catch interesting simulation behaviors

(including problematic ones).

e High-throughput, low-latency data streaming services will enable the streaming
of terabytes of simulation data between coupled simulation components as well
as between simulations and online analysis components, while satisfying space

and time constraints.

e In-transit data manipulation services will enable efficient application-specific
manipulations of data as it is being captured, moved, analyzed, and stored, to
enable near real-time analysis and visualization capabilities and perhaps more
importantly, to leverage the computational capabilities of future machines to

better deal with the data floods expected from petascale simulations.

e (Control driven Policy-based mechanisms for QoS management will enable data
streaming services to be largely self-managing, enabling them to dynamically
detect and respond, quickly and correctly, yet compliant with end user policies,
to changes in application behavior, needs, and underlying system state. Such
automation is essential to be able to scale these services to future petascale
machines and to the support environments (e.g., auxiliary analysis, storage,

and visualization clusters) in which they operate.

o Validate the performance of such a framework on real scientific application
workflows such as the FSP executing on distributed heterogeneous resources

having varied QoS requirements.

1.4 Overview and Research Approach

To address the problem of self-managing data streaming and in-transit processing
we intend build a two level self-managing framework as illustrated in Figure 1.2 to

address QoS issues in data intensive scientific workflows operating on the Grid.
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Figure 1.2: Two Level Self-Managing Cooperative Framework for Data Intensive
Scientific Workflows involving Data in-Transit

A conceptual overview of the self-managing data streaming and in-transit process-
ing service for Grid-based data intensive scientific workflows is presented in Figure 1.2.
It consists of two key components: The first is an application level data streaming
service, which provides adaptive buffer management mechanisms and proactive QoS
management strategies based on online control and user-defined polices, at application
end-points. The application level component also captures constraints for in-transit
processing using a “slack metric” generated at the application level. The second com-
ponent provides scheduling mechanisms and adaptive runtime management strategies
for in-transit data manipulation and transformation. These two components work co-

operatively to address the overall application constraints and QoS requirements.

1.4.1 Application Level Self-Managing Data Streaming

The application level self-managing data streaming service combines model-based lim-
ited look-ahead controllers (LLC) and rule-based autonomic managers with adaptive
multi-threaded buffer management and data transport mechanisms at the application
endpoints. It is constructed using the Accord-WS infrastructure for self-managing

Grid services and supports high throughput, low latency, robust application level



data streaming in wide-area Grid environments. The autonomic data streaming ser-
vice consists of a service manager coupled with an LLC controller. The service man-
ager monitors the state of the service and its execution context, collects and reports
runtime information, and enforces the adaptation actions determined by its controller.
Augmenting the element manager with an LLC controller allows human defined adap-
tation polices, which may be error-prone and incomplete, with mathematically sound
models and optimization techniques for more robust self-management. Specifically,
the controller decides when and how to adapt the application behavior and the service
managers focus on enforcing these adaptations in a consistent and efficient manner.
Additionally the LLC controller is enhanced with a slack metric generator which
fixes a time deadline for delivery of simulation data at the sink. The input from the
LLC controller, sink slack correctors and in-transit slack managers, provide valuable

updates to the slack generator at the application level.

1.4.2 In-Transit Level Data Processing

The in-transit data manipulation framework consists of a dynamic overlay of available
in-transit processing nodes (e.g., workstations or small to medium clusters) with
heterogeneous capabilities and loads. Note that these nodes may be shared across
multiple workflows. Each node can perform a limited number of operations on the
in-transit data, these include processing, buffering and forwarding. The slack metric
managers at the in-transit level update the slack metric generated at the application
level after each of the following operations on the data. The processing on the in-
transit data depends on the capacity and capability of the node, the amount of
processing that is still required on the data which is depicted as the slack metric
(generated at the application level using the slack metric generator), the network
conditions between the in-transit nodes and the load on a particular in-transit node.
The amount of processing completed is logged in the data block itself. The goal of the

in-transit processing is to process as much data as possible before the data reaches
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the sink. A processing that is not completed in-transit will have to be performed at
the sink. The current design of the framework assumes that each node can perform
any of the required data manipulations functions. It also assumes that the in-transit

functions do not change the size of the data items during in-transit.

1.4.3 Cooperative Management

The application level and in-transit management are coupled to achieve cooperative
end-to-end self-management. Coupling is beneficial particularly in cases of congestion
at the in-transit level, which normally occur at one of the shared links in the data
path between the sources and sink nodes. In the standalone case (without cooperative
management), i.e. if application level management was used in isolation, the appli-
cation level controller would detect the congestion and advise the service manager
to reduce the amount of data sent on the network and increase the amount of data
written to the local storage thereby avoiding data loss. While this would eventually
reduce the congestion in the data path, it would require that the data blocks written
to the local storage be manually transferred to and processed at the sink. However
in the coupled scenario the in-transit node signals the controller at the application in
response to local congestion that it detects by observing its buffer occupancy. This
would in-turn allow the application level controller to detect congestion more rapidly,
rather than waiting until the congestion propagates back to the source and in re-
sponse, it increases the slack on the data item to a higher value. The would enable
future in-transit functions on application level data items to be provisioned to take
care of network congestion. The controller also throttle items in its buffer till the
congestion at the in-transit nodes is relieved. This, in turn, reduces the amount of
data that is written to the local disk at the source and improves quality of data items

reaching the sink.
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1.5 Contributions and Impact of the Research

The research presented has the potential to significantly impact how Grid applica-
tion workflows are formulated and managed. The broader impacts flow from a novel
development paradigm for resolving key complexities of distributed systems by (1)
identifying key challenges of the emerging self-managing software approaches and (2)
developing novel solutions using a combination of heuristics and systematically sound
theoretical techniques to design and deploy large-scale self-managing computer sys-
tems. Using a theoretic basis for self-management will provide a robust foundation, in
contrast to current largely ad hoc and heuristics-based approaches, allowing develop-
ers to reason about performance and reliability behaviors and guarantees. This will,
in turn, impact a range of distributed applications including science/engineering ap-
plications, business applications, and more generally, applications involving sensing,

collection, analysis and dissemination of information.

1.5.1 Contributions

Self-Managing Distributed Application Workflows:

The primary contribution of this research is the development of a cooperative two
self-managing data streaming and in-transit processing framework for application
workflows. The first level of this framework uses proactive application level man-
agement for data streaming while the second level uses reactive and opportunistic
strategies for data streaming and processing respectively. Proactive and Reactive
strategies at both layers work in tandem to satisfy end-to-end QoS requirements of
the application.

The specific contributions of this thesis include:

e Design of the Two level self-managing framework: Two level self-managing
framework which addresses end to end and in-network QoS management, forms

the basis for adaptive scientific workflows for processing data in-transit.
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e Design of the slack metric: The slack metric generated at the application
level is used for provisioning in-transit processing. The slack metric captures
QoS of the application data from end-to-end and guides the processing and

forwarding of the data at the shared in-transit nodes.

e Adaptive buffer management for data streaming: Adaptive buffer man-
agement scheme transfers data from live simulations or from in-transit functions
running in batch or interactively either on a remote supercomputer or shared
in-transit nodes over a WAN as efficiently as possible and provides minimal

overhead on the simulation or in-transit nodes.

e “Self-Managing” data streaming using policy based mechanisms: Pol-
icy based programming framework introduces adaptive behaviours into the data
streaming service and takes into account the key characteristics of unreliable

execution environments.

e “Self-Managing” data streaming using policy and model based online
control: A combination of rule-based self-management approaches with for-
mal model-based online control strategies produces adaptive behaviour in data

streaming applications.

1.5.2 Impact of the Presented Approach

The two level cooperative framework can be used in various scientific and financial
application workflows to achieve self-managing behaviour. A selection of potential

applications of the proposed research is highlighted below.
Efficient Monitoring and Coupling of Petascale Simulations for the Scien-
tific Discovery Process

The research approach described in this thesis enables a paradigm shift in which sci-

entists and end-users operate on the simulation data and effectively helps them to
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“find the needle in the haystack” of data, and perform complex code coupling. The
framework will seamlessly enable scientists to monitor and couple codes, and to move
large amount of data from one location to another with low overhead on executing
simulations. Further it will empower scientists to ask “what-if” questions and in-turn
provide answers to these questions in a timely fashion. Furthermore these techniques
will enable effective data management which will not only just become important-it
will become absolutely essential as current simulation and execution environments
move beyond current petascale system into the age of exascale computing. Further-
more as simulations increase in size and complexity, the main computational part of
the simulation will need to be scaled to larger machines, while the I/O routines need
to be transported to specialized machines such as GPGPUs or cheaper machines like

clusters and processed with the help of the framework discussed in this thesis.

Mathematical Programming Techniques

This thesis will allow programmers and application scientists to use mathematical
programming techniques and frameworks to achieve application-level adaptation in
distributed environments. Furthermore these techniques can be applied to a wide
range of simulations including financial applications where the data production rates
are stable due to their inherent load balanced and parallel nature. These novel so-
lutions based on systematic and theoretically sound techniques can be used to de-
sign and deploy large-scale self-managing distributed application workflows whose
correctness can be analyzed prior to deployment. Using a control-theoretic basis
for self-management will provide a robust foundation, in contrast to current largely
ad-hoc and heuristics based approaches, allowing developers to reason about perfor-
mance and reliability behaviors and guarantees. This will, in turn, impact a range
of distributed applications including science/engineering applications, business ap-
plications, and more generally, applications involving sensing, collection, analysis,

distribution of information, and monitoring to control environments.
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1.6 Outline of the Thesis

The rest of this thesis is organized into various chapters as follows.
Chapter 2 outlines the related work of the thesis.

Chapter 3 outlines the architecture of the two level self-managing framework.
It also presents the problem formulation for data streaming and in-transit process-
ing in scientific workflows which forms the basis for the design of the two level self
managing framework. The next three chapters describe various techniques for self
managing data streaming at the application level. The final two chapters before
the conclusion describe various techniques for management of in-transit processing.
They also present details of the cooperative management framework for self-managing

application workflows.

Chapter 4 describes our initial approach of data streaming through the use of
adaptive buffer management for scientific simulations. This technique for buffer man-
agement is used at the in-transit level for data forwarding due its low overhead on

executing in-transit functions.

Chapter 5 presents a self-managing data streaming service at the application level

designed using heuristics or a rule based programming system.

Chapter 6 enhances the self-managing data streaming which were rule based and

tightly coupled to applications, to include model based online control.

Chapter 7 presents in-transit level data processing using reactive strategies on
static data paths between source and destination to aid maximum in-transit process-
ing on the flow. These reactive strategies were coupled application level self-managing
data streaming discussed in Chapter 6 at end points to achieve good QoS on Grid

workflows.
Chapter 8 presents a novel technique for provisioning in-transit processing using a

slack metric generated at the application level. The slack metric approximates end-to-

end constraints and guarantees “in-time” delivery of data. Furthermore it minimizes



storage and processing requirements at end points.

Chapter 9 present conclusions and outlines the future work of this thesis.

15
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Chapter 2
Background and Related Work

Related work in self managing data streaming for scientific workflows has been divided
into two sections. The first section describes the on going work in data streaming
and QoS management for workflows, the second section describes work in model and

mechanisms for self management.

2.1 Data Streaming in Scientific Workflows

Data Grids [27] and related research efforts such as SRB [74, 89] and SRM [79] have
focused on the management and transport of large volumes of data for visualization
and analysis. Traditionally data movement on Grids have been done using specialized
protocols such as GridFTP [8] and the Globus XIO API [7], which define file manip-
ulation and file transfer protocols for general-purpose secure, reliable data movement
in Data Grids. These efforts have focused on file-based data movement and data
post-processing rather than data streaming and in-transit data manipulations. There
is existing work for scientific data manipulation such as DataCutter [14] which fo-
cuses on the constraints of partitioning for wide area and out-of-core computation.
Also, efforts such as [43, 78| have investigated other techniques of streaming data
from scientific simulations for analysis and visualization. The systems that are most
related to this work are adaptive Grid workflow systems, such as Active Buffering [62]
and Autoflow [76], address issues of data streaming and/or in-transit processing. Our
approach however differs from these efforts in that it develops a cooperative two level

integrated approach that is specifically targeted to address both data streaming and
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in-transit data processing challenges for Grid workflows.

2.1.1 High Throughput Data Movement using Specialized

Protocols

This section describes related work in data movement using specialized protocols in
detail. Many of these protocols could be used with the adaptive buffer management
(as discussed in Chapter 4) techniques to yield high data throughput in scientific

simulations. Some Grid based protocols which are directly related to our work include:

SABUL: SABUL [38] is an application-level data transfer protocol for data-
intensive applications over high bandwidth-delay product networks such as ESnet [50].
SABUL was designed for reliability, high performance, fairness and stability. It uses
UDP to transfer simulation data and TCP to return control messages. A rate-based
congestion control that tunes the interpacket transmission time helps achieve both
efficiency and fairness. In order to remove the fairness bias between flows with differ-
ent network delays, SABUL adjusts its sending rate at uniform intervals, instead of
at intervals determined by round trip time. SABUL has demonstrated its efficiency
and fairness in both experimental and practical applications. SABUL has been im-
plemented as an open source C++ library, which has been successfully used in several

Grid computing applications.

bbcp: bbep [39] is a point-to-point network file copy application written by Andy
Hanushevsky at SLAC as a tool for the BaBar collaboration. It is capable of trans-
ferring files at approaching line speeds in the WAN. BBCP is currently in alpha at
the time of this writing and is useful for transferring files through high bandwidth
links. bbep is available on machines such as Jacquard [65] supercomputer at NERSC

as an alternative to secure copy (“scp”).

GridFTP: GridFTP is a protocol defined by Global Grid Forum Recommenda-
tion (GFD.020), RFC 959, RFC 2228, RFC 2389, and a draft before the IETF FTP
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working group. The GridF'TP protocol provides for secure, robust, fast and efficient
transfer of (especially bulk) data. GridF'TP provides reliable file transfer service, and
can be used to build Replica Location Service (RLS). Another important feature of
GridFTP is parallel data transfer on wide-area links, through the use of multiple TCP
streams in parallel (even between the same source and destination). It is found to
improve the aggregate bandwidth between endpoints over using a single TCP stream.
The other key features of GridF'TP include striped data transfer, partial file transfer,
support for reliable and restartable data transfers and Grid Security Infrastructure
(GSI) and Kerberos support for data security. GridF'TP could derive benefits of our
work on model-based online control (refer to Chapter 6) to predict application and

environment behaviour to enable self-managing data streaming.

IBP: The Internet Backplane Protocol (IBP) [71] is a middleware for managing
and using remote storage. The design of IBP is shaped by analogy with the design of
IP in order to produce a common storage service with similar characteristics. Though
it has been implemented as an overlay on TCP/IP, it represents the foundational layer
of the “network storage stack”. Just as IP datagram service is a more abstract service
based on link-layer packet delivery, so is IBP, a more abstract service based on blocks
of data (on disk, memory, tape or other media) that are managed as “byte arrays”
By masking the details of the local disk storage fixed block size, different failure
modes, local addressing schemes this byte array abstraction allows a uniform IBP
model to be applied to storage resources generally. The use of IP networking to access
IBP storage resources creates a globally accessible storage service. IBP was used in
the work on adaptive buffering and was found be achieve low streaming overhead on

scientific simulations with high data generating rates.

Unfortunately none of these systems address issues directly related with self-

managing aspects of data streaming for scientific workflows.
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2.1.2 QoS Management in Data Intensive Workflows

Recent research efforts on data-intensive scientific workflows include BioOpera [20]
Pegasus [30], Sphinx [42], GridBus [85] GridAnt [51] and myGrid [82]. All these ef-
forts focus on constructing end-to-end applications on the Grid. These efforts have
addressed QoS management issues in workflows using adaptive reservation and pre-
allocation of resources, cost based scheduling, brokering, negotiation (Grid Quality of
Service Management(G-QoSm)) and using publish subscribe for notification services.
Similarly workflow systems like Kepler [60], Discovery NET [75] and Triana [83], pro-
vide mature and generic platform for building and executing workflows, and support
multiple models of computation. These systems however leave QoS management is-
sues to the implementer of the workflow and are complementary to this work. QoS
management has also been addressed by general multimedia and business workflows
using game theoretic framework for incentives [22], microeconomic flow control tech-
niques [36], and multi-agent scheduling mechanisms [21] where adaptive pricing is
used. Medusa [10] a distributed stream processing system uses private pair wise con-
tracts for managing QoS issues. While these efforts are related, their target workflows
differ significantly from the data intensive workflows of high-performance scientific

applications in their data size.

2.2 Model and Mechanisms for Self Management

This section presents related work involving self-managing applications, which is di-

vided into rule based adaptation and control based adaptation.

2.2.1 Rule-based Adaptation of Application Behavior

Application or service adaptation using rule-based techniques was systematically
studied in Accord and applied to objects [53], components [55], [68] and Grid ser-

vices [b4] for scientific applications and workflows. Active buffering, a buffering
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scheme for collective I/O, in which processors actively organize their idle memory into
a hierarchy of buffers for periodic data output using heuristics was studied in [62], [63].
RESAS [19] was one of the early systems to support dynamic rule-based adaptation
of real-time software and provides tools for programmers. Specifically, it provides
algorithms to modify the reliability and/or timeliness of software without affecting
other aspects of its functionality. A key challenge in rule-based adaptations is the
generation of rules, which is typically manual. Correctness of rule-based management
has been investigated for business applications using complex mechanisms based on
databases [4] or business models [26], and in the security domain using types [61] as

part of the policy specification process and using auctions [23] at runtime.

2.2.2 Control-based Adaptation of Application Behavior

Recent research efforts [40], [41] have investigated using feedback (or reactive) con-
trol for resource and performance management for single-processor computing appli-
cations. These techniques observe the current application state and take corrective
action to achieve specified QoS, and have been successfully applied to problems such as
task scheduling [24], [58] bandwidth allocation and QoS adaptation in web servers [3],
load balancing in e-mail and file servers [40], [57], [70] network flow control [64], [81]
and processor power management [59], [77]. Feedback control theory was similarly ap-
plied to data streams and log processing for controlling the queue length and for load
balancing [90]. Classical feedback control, however, has some inherent limitations. It
usually assumes a linear and discrete-time model for system dynamics with an un-
constrained state space, and a continuous input and output domain. The objective
of the research presented in this thesis is to address this limitation and manage the
performance of distributed applications that exhibit hybrid behaviors comprised of
both discrete-event and time-based dynamics [2], and execute under explicit operating
constraints using the proposed LLC method. Predictive and change-point detection

algorithms have been proposed for managing application performance, primarily to
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estimate key performance parameters such as achieved response time, throughput,
etc., and predict corresponding threshold violations [86]. The approach used in this
thesis combines rule based adaptations with mathematically sound models and opti-

mization techniques to achieve self-management in distributed applications.
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Chapter 3

Two Level Self-Managing Framework

This chapter formally poses the problem of data streaming and in-transit processing
for scientific workflows and then illustrates the two level self-managing framework for

addressing this problem.

3.1 Problem Formulation for Data Streaming and In-Transit

Processing

B(s, sinis) Bandwidth

Applications
E ............. 3 Slflk; §
app;’ ... o .
4 : i In-Transit Overlay T
\ i LI ; : Sink: :
Sing
) s app'
Data app;ﬁ Dapp}-ﬁ Data P J o
Source 1 a Consumer Applications

Ui}

Figure 3.1: Problem Formulation for Data Streaming and In-Transit Processing

Consider a set of data generating applications app;..app, executing on resources
S1..5, termed as data sources in our workflow. Each of these applications belong
to a particular source S; and are denoted as app}gi . Similarly applications that
execute on resources called sinks Sink;..Sink, are denoted as applgsmki and have one
to one correspondence with applications executing at the source. app;-q  generates data
D;..D,, and at various time intervals 1..n depending on the nature of the application.
Each of these data items D,prf i need to be processed with functions f;..f, which

will be applied on them either at the in-transit overlay resources O,..0,, or at the
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sink/destination if the in-transit fail to operate on the data items. An important
Si
assumption in our system is that size(D:ppj ) is unchanged when functions fi..f,

are applied on them. These in-transit functions can be identical or varied (f; #

fo = ... fn). The in-transit functions f, are also applied on the whole data items

S;
szpj . The number of in-transit functions applied on the data item is termed as the

quality of the data, Qual S~ The bandwidth for end-to-end data streaming for
D, ’
applications executing on sources and sinks through the in-transit overlay is denoted
as Bs, sink;- The goal of the data streaming and in-transit manipulation framework
Si
app;

is to allow maximum maz(D, ’ ) data items to reach the sink, within a strict end-

S
J

to-end time window of Tendtoendeapp depending on the application characteristics

at the data source and sink, with maximum maz(Qual | s;) using resources in the
D, ?

in-transit overlay. The basic goal is for the processed data to arrive just “in-time”,

as faster arrival of processed /unprocessed data leads to storage problems at the sink

and slower arrival of processed /unprocessed data leads to QoS issues for applications

appl executing on the sink. It is assumed here that the latency for forwarding

/Sinki
J

data items between overlay nodes is smaller compared to end-end latency in other
words Bo, 0, < Bg, sink,- In other words, end-to-end QoS objectives at the application

and sink are to ensure:

Maximizing:
Si
Qual apps,-&size(Dprj )
D, "’
Subject to:

S; anpi
0 < Ttransit?™” < Tendtoend"” Vi, j, k

S
where Ttransit? s composed of T'proc, Thuf f and T forward at the overlay

O,. Therefore

n n S; n o S; @ Si a Si
0< Z Z TprockD’ ffjoﬁ‘Z(T forwardk? Op:] +Tbuf flfozpj ) < Tendtoende " Vi, j, k

r=1 s=1 s=1
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Si
Additionally the slack metric denoted as slack(Dprj ) is used to capture provi-
sioning of in-transit processing on the data items and is initially approximated using
time for end-to-end forwarding and processing entirely at the sink Sink; (obtained

through history). In other words:

SlaCkinitial(Dprfl) = SZ'Z@(DZW?Z)/ Bs, sink; + Z TPTOC?::ZNZ'J K
r=1
Each operation on the data item in the overlay which includes either process-
ing, buffering and forwarding updates the slack metric. A negative slack metric
value indicates that data items szpf i reached the sink later than expected (or
slack:m,-twl(Dprf ) had estimated), similarly a positive value indicates the earlier ar-
rival of data at the sink. Slack metric values are later corrected through feedback at
the sink to include time to buffer data items in the overlay nodes O,. The goal at the

in-transit nodes is that the slack metric on data items should have near zero value

Si
when it reaches the sink (slack(Dprj )~ 0).

3.2 Research Approach: Two Level Self~-Managing Frame-

work for Data Streaming and In-Transit Processing

To address the problem of self-managing data streaming and in-transit processing
discussed in the previous section a research approach consisting of two a level self-
managing framework (as illustrated in Figure 3.2) is designed to address QoS issues
in data intensive scientific workflows operating on the Grid. It consists of two key
components: The first is an application level self-managing data streaming service,
which provides adaptive buffer management mechanisms and proactive QoS man-
agement strategies based on online control and user-defined polices, at application

end-points. The application level component also captures constraints for in-transit
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Figure 3.2: Two Level Self-Managing Cooperative Framework

processing using a “slack metric” generated at the application level. The second com-
ponent provides scheduling mechanisms and adaptive runtime management strategies
for in-transit data manipulation and transformation. These two components work co-

operatively to address the overall application constraints and QoS requirements.

3.2.1 Application Level Self-Managing Data Streaming

The application level self-managing data streaming service combines model-based lim-
ited look-ahead controllers (LLC) and rule-based autonomic managers with adaptive
multi-threaded buffer management and data transport mechanisms at the applica-
tion endpoints. It is constructed using the Accord-WS infrastructure (discussed in
detail in Chapter 5) for self-managing Grid services and supports high throughput,
low latency, robust application level data streaming in wide-area Grid environments.
The autonomic data streaming service consists of a service manager coupled with
an LLC controller. The service manager monitors the state of the service and its
execution context, collects and reports runtime information, and enforces the adapta-
tion actions determined by the controller. Augmenting the element manager with an

LLC controller allows human defined adaptation polices, which may be error-prone



26

and incomplete, with mathematically sound models and optimization techniques for
more robust self-management. Specifically, the controller decides when and how to
adapt the application behavior and the service managers focus on enforcing these
adaptations in a consistent and efficient manner. Additionally the LLC controller is
enhanced with a slack metric generator which fixes a deadline for delivery of simula-
tion data at the sink. The input from the LLC controller, slack correctors at the sink
and in-transit slack metric managers or SLAM’s, drive the slack generator at the ap-
plication level. Chapter 4 , Chapter 6 and Chapter 5 discuss about the self-managing

Application Level data streaming in detail.

3.2.2 In-Transit Level Data Processing

The in-transit data manipulation framework consists of a dynamic overlay of available
in-transit processing nodes (e.g., workstations or small to medium clusters) with
heterogeneous capabilities and loads. Note that these nodes may be shared across
multiple workflows. Each node can perform a limited number of operations on the
in-transit data, these include processing, buffering and forwarding. The slack metric
managers at the in-transit level update the slack metric generated at the application
level after each of the following operations on the data. The processing on the in-
transit data depends on the capacity and capability of the node, the amount of
processing that is still required on the data which is depicted as the slack metric
(generated at the application level using the slack metric generator), the network
conditions between the in-transit nodes and the load on a particular in-transit node.
The amount of processing completed is logged in the data block itself. The goal of the
in-transit processing is to process as much data as possible before the data reaches
the sink. A processing that is not completed in-transit will have to be performed at
the sink. The current design of the framework assumes that each node can perform
any of the required data manipulations functions. It also assumes that the in-transit

functions do not change the size of the data items during in-transit. Chapter 7 and
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Chapter 8 discuss in detail about the In-Transit level data processing using reactive

and slack metric based mechanisms.
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Chapter 4

Data Streaming using Adaptive Buffer
Management

Large scale simulations are increasingly important in many fields of science. The
research described in this chapter grew from the requirement to deal with the output
of a major fusion plasma simulation, the Gyrokinetic Toroidal Code (GTC) [52]. This
code examines the highly complex, non linear dynamics of plasma turbulence using
direct numerical simulations, and currently generates about 1TB/week of simulation

results data during production use.

We have developed a system which efficiently and automatically transfers chunks
of data from the simulation to a local analysis cluster during execution. By over-
lapping the simulation with the data transfer and with the analysis, scientists can

analyze their results as they are being produced.

The rate at which fusion scientists generate data from their simulations today is
about 1 TB/week, but we expect this figure to increase by an order of magnitude in the
next five years. The conventional trend has been to place the generated computational
data on the supercomputing sites and later transfer the data manually, or, to execute
remote visualization and post-processing of the data. Both approaches encounter
difficulty, forcing scientists to concentrate on data transfer and remote visualization
issues rather than dealing with the physics. Remote visualization in particular raises
issues of latency and network quality of service. To overcome these challenges we
develop a low overhead threaded parallel buffer to transfer data from simulations to

the scientist’s local computing cluster(s) where access to the data is most convenient
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and efficient.

The driving force of the threaded buffer for data transfer has been to provide a
minimal overhead in simulations while utilizing network resources to the maximum.
The application uses simple APIs to activate the transfer. To make this data transfer
efficient with the added advantage of global scheduling, optimization of data move-
ment, storage and computation we exploit Logistical Networking (LN) [11] built on
the Internet Backplane Protocol (IBP). LN allows for a flexible sharing and utilization
of writable storage as a network resource, which is our natural choice for data flow in
a data “pipeline” [49] with various depots (storage) locations containing the data in
various stages of transformation. The existence of pervasive depots aids in the cre-
ation of a reliable data pipelines. It allows simulations to transparently store data to
adjacent depots in case of network failures at the receiving end or buffer overflows at
the sending end. Post-processing applications can automatically pull/fetch this data
through an alternate path from depots adjacent to the computing sites, as the data is
transferred from the simulations. This two-way push and pull mechanism enables us
to utilize the network bandwidth maximally and affect the simulation’s performance
minimally.

In this chapter we discuss our method of real time data streaming of the simulation
data through our threaded buffer, buffer management algorithm, and transformations
of the data. Our system creates a high performance data pipeline [9, 80] which enables
a more efficient interaction of the scientist with the data. We discuss the various fault

tolerant mechanisms used in case of buffer overflow or network failures.

The chapter is divided into the following sections. Section 4.1 discusses the GTC
workflow and the data pipeline for scientific simulations. Section 4.2 discusses the
threaded buffering scheme; Section 4.3 elaborates on the implementation, operation
and fault tolerance mechanism of the threaded buffer scheme using the Logistical
Networking (LN) technology. Section 4.4 discusses the experimental evaluation of

the adaptive buffering scheme. Section 4.5 discusses future work and conclusions.
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4.1 Automation of the GTC Data Pipeline

The need for computer aided tools increases with size and complexity of the simulation
generating the data. Without automation, Scientists spend a large portion of their
time managing the workflow and data flow. Such management includes organizing
and sharing raw and derived data between collaborators, transforming data formats,
etc. In this section we would like to illustrate a general data flow pattern of our
GTC simulation which runs in parallel on a supercomputer at NERSC, and how this
data undergoes continuous transformation until it reaches the desktops of scientist’s
collaborating with PPPL in analyzing the simulation data. We consider PPPL as one

transformation point as it flows along to other collaborators. Figure 4.1 illustrates

Analysis
Clusters

Visualization

Collaboration
Clusters

Collaborator
Desktop

Scientist's
Desktop

Figure 4.1: Data Pipeline for the GTC simulation

the end to end data pipeline used by the GTC simulation running at NERSC. The
simulated data is transferred concurrently as the simulation is taking place through
our buffering mechanism. The raw data (X) streams over to a data analysis center
and it is converted into appropriate formats (e.g. HDF5 or NetCDF) as required by
the scientists (scientists can specify the format in which they want to transform the
data using simple APIs in their codes). The analysis clusters start converting the
raw simulation data to an appropriate format for visualization as soon as the first
time-step arrives. The converted data (Y) is written to disk and fed into visualization
routines. This data flow scheme is particularly well suited for the analysis of fusion

codes as this makes efficient use of dedicated computing resources at the scientists’
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local resources and additionally provides the scientists with real-time visualization
capability for their simulations. Finally at the end of this data flow, the data reaches
the desktops of the collaborators working on the fusion codes who may then further

transform the data (Z).

4.2 Design of the Threaded Buffer Data Streaming

The goal of the buffering scheme is to transfer data from a live simulation running
in batch on a remote supercomputer over a Wide Area Network (WAN) to our local
analysis/visualization cluster as efficiently as possible and provide minimal overhead
on the simulation [31, 32, 63]. It should also have replication abilities so that the
processed data can be duplicated to collaborators’ clusters as and when needed. To
avoid loss of raw data either due to buffer overflows (when the generated data does not

fit into the buffer) or network failures, the data should be transferred fault tolerantly.

To achieve this data transfer we use a buffering algorithm that uses a circular queue
and a threaded queue manager (one for each node of the supercomputer) so that it
performs wide-area data transfer with minimal memory overhead on our simulations.
This buffering mechanism copies the simulation data to a small memory buffer which
is allocated by the user in his/her simulation. The buffer can be thought of as a
queue of data blocks expecting to be transferred. This queue is circular, thus it
wraps around after it reaches the end. Each data block generated by the user can
have varying sizes but the queue manager chops the data into a uniform block size,
which is configurable by the user. The queue manager maintains two pointers within
the buffer. The first is the write position, which is the position where the data is
being copied into the buffer (i.e. where the simulation writes data into the buffer).
The second is the send position to indicate the current position in the buffer where
the transfer mechanism is operating (position of last successful transfer). The send

position changes in multiples of blocksizes. The user can append small pieces of
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information to the data that contains information for the post-processing routine to
operate on data (i.e. metadata). In practice the metadata added to the data never
exceeds a small number of bytes and forms a tiny fraction of the actual data to be
transferred. The queue manager adds metadata to the data before placing the data
on the buffer. The queue manager then updates the values of the send position and
write position whenever data is transferred out of or added to the buffer. After the
data is transferred and the send position is moved, the application can write into that
space. In the next section, we describe the simple buffer management scheme which

adapts to the network conditions.

4.2.1 Adaptive Buffer Management

We use a simple algorithm to manage the buffer that adapts to both the computation’s
output rate and network conditions. First, we recognize that the simulation is based
on a series of time-steps. The data generation rate is the amount of data generated
per step, divided by the time to perform the step. For the GTC code, this can vary
from 1 to 90 Mbps, depending on simulation and analysis options.

We also recognize that the network connectivity between the supercomputer and
the analysis cluster places an upper limit on the transfer throughput. The smallest
pipe between the supercomputer and the analysis cluster will determine the theoret-
ical maximum throughput for the transfer. Since the transfer routines use TCP for
reliable data transfers, we understand that we will get even less than the theoretical
throughput [50]. The algorithm tries to dynamically adjust to the data generation
rate and the available network rate. It does this by sending all the data that has ac-
cumulated since the start of the last data transfer. If the data generation rate exceeds
the transfer rate, more data will be in the buffer. In this case, the queue manager will
increase the amount of multi-threading in the transfer routines to improve through-
put. If the transfer rate exceeds the data generation rate, then less data will appear

in the buffer for the next transfer. The queue manager will then reduce consumption
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of unnecessary network resources. The initial transfer begins after the first time-step
is output. All subsequent transfers start as soon as the prior transfer ends.

After some number of time-steps, if the network is stable and the data generation
rate is less than the network transfer capacity, then the queue manager tends to reach
equilibrium and match the transfer rate to the data generation rate.

Several buffer management states occur, depending on the relationship between

data generation and data transfer rates, as is described here:

e Data generation rate exceeds transfer rate In this state, we maximize
the network throughput and move as much of the data to the analysis cluster
as possible. In the adaptive buffer transfer mechanism we use the input from
the previous step (state) while sending data in the next step and form a loose
feedback mechanism. We send the excess data that cannot be transferred to
nearby disk and signal the receiving process of this data to start re-fetching this
data using any remaining bandwidth, or after completion of the simulation.
The queue manager detects this if the simulation needs to write data to the
buffer, but the write position is too close to the send position which indicates

that there is not enough space in the buffer for the new output.

This makes our scheme “network aware” as our transfers are dependent on the
network on which we are operating and the blocks sent out during each transfer

depend of the previous transfer.

e Data generation and transfer rates are similar In this situation, significant
new data accumulates in the buffer during each transfer. The size of the first
transfer is one block. Subsequent transfers usually involve a larger number of
blocks. These multi-block transfers use multiple IBP threads and can consume

available network capacity.

e Data generation rate is small compared to transfer rate If data is gen-

erated at a rate in which after every transfer the scheme finds the buffer empty
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it waits and does nothing till more data is generated in the buffer. In this state

the buffering scheme would send out block by block, using minimal network

resources.
Data Input Data Transfer
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Figure 4.2: Adaptive Buffer Management Scheme

Figure 4.2 shows the adaptive buffer management scheme that we use in this
chapter. This “latency aware” transfer mechanism is particularly useful in cases
where blocks are generated quickly around 65-75Mbps as compared to the simple
buffer scheme which sends each individual piece in the buffer. It is powerful in cases
where data is generated slowly (i.e. less than 1Mbps), in this case if the block size
is set to IMB we send just a single block of data continuously. We believe that that
this feedback-based buffer management scheme improves the transfer mechanism by
sending as much data as the network can handle and caching the rest to disk until
the end of the simulation run. It takes decisions based on the previous transfer when
deciding which blocks to transfer and which blocks to write locally. The scheme
illustrated in Figure 4.2 works well for transferring date from the simulations at

NERSC to PPPL and easily saturates the link as will be shown in the Section 4.4.
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4.2.2 Usage of Buffering Scheme

To take advantage of our transfer mechanism, the application first makes calls to
t_open(), which initializes a finite buffer and the queue manager. The queue man-
ager will then wait for any data generated by the simulation. The user then inserts
t_write() statements at appropriate places in his code where data is generated. The
t_write() statements copy the generated data to the buffer initialized the user. To
close and flush the buffer at the end of the simulation, the application uses t_close().
The application can also specify certain information about the data which will be use-
ful for post-processing, by using a write_metadata() statement in conjunction with
the t_write() statements. This statement is useful for starting post-processing at
the raw data receiving end. Metadata for the data transfer include global and local
dimensions for the global array which will be required for “HDF5” or “NETCDF” or
“ASCII” file creation, name of the variables transferred in the data block, name of

the final generated file. Metadata size is typically in the order of few hundred bytes.

4.3 Implementation of the Adaptive Buffering Scheme

4.3.1 Building Block

In this section we present the design and implementation of the adaptive buffer-
ing scheme using LN which forms the basic building block. Logistical Networking
(LN) [11] refers to the global scheduling and optimization of data movement, stor-
age, and computation based on a model that takes into account all of the network’s

physical resources.

Logistical Networking (LN)

Unlike traditional networking, which does not explicitly model storage or computa-

tional resources in the network, LN offers a general way of using computing resources
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to create a common distributed storage infrastructure that can share out storage and
computation the way the current network shares out bandwidth. The middleware
components that enable logistical networking are arranged in the “network storage
stack,” [11] analogous to the TP stack, using a bottom-up and layered design approach
that provides maximum scalability. Components of the network storage stack are de-
scribed below bottom up:

IBP - Internet Backplane Protocol: IBP is the foundation of the network storage
stack and provides a highly scalable, low-level mechanism for managing network stor-
age resources, through shared use of lightweight, time-limited allocations on storage
“depots”.

exNode - External Node: Similar to the concept of an inode in UNIX file systems,
this is a generalized data structure which holds the metadata necessary to manage
distributed content stored on IBP depots and allow file-like structuring of stored data.
L-Bone - Logistical Backbone: Directory and resource discovery service cataloguing
registered IBP storage depots world-wide.

LoRS - Logistical Runtime System: The LoRS software suite integrates the under-
lying capabilities of IBP, the exNode, and the L-Bone into a streamlined tool for

storing, accessing, and managing data.

Advantages of using LN

Data Replication for Fault Tolerance: The main reason for using the LN is the
ability to stream buffers of data (not necessarily entire files) to multiple storage loca-
tions simultaneously for fault-tolerance. The ubiquity of IBP storage means that it
is easy to stream data to a number of alternate depots close to the sender and create
replicas close to remote receivers. Storing replicas in multiple locations provides fault

tolerance in case of network or machine failures. Fault-tolerance through replication
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is internal to the exNode. The LoRS handles retrieving from multiple replicas auto-
matically [72].

IBP: Byte Array Abstraction: We chose IBP as the main transfer mechanism instead
of a rigid transfer protocols, because IBP is a more abstract service that is interop-
erable with a variety of storage resources (disk, ram, etc.). IBP manages blocks of
stored data as byte arrays, with details of the storage (fixed block size, differing failure
modes, local addressing schemes) masked at the local level. The use of IP network-
ing to access IBP storage resources creates a globally accessible network of storage
depots.

Logistical Networking offers advantages not available elsewhere. Since Grid Pro-
tocols [6] do not support replication internally, we would have to use a higher level
service such as the Replica Location Service (RLS) to track where copies of the com-
plete files reside [28]. When retrieving the data, we would then have to determine
which replica to download. If, on the other hand, we used raw sockets and wanted
to implement replication for fault-tolerance, we would have to write our own servers
to hold the data, write the transfer management code to use them, and design some
method for tracking the replicas and reassembling the pieces-effectively recreating the

LN software and infrastructure.

4.3.2 Operation of the Adaptive Buffering Scheme

The design of the streaming mechanism using our circular buffer and queue manager
consists of a buffer for each processor on the simulation/computing end which gener-
ates data. The threaded write library on the sending end calls the LoRS library which
ultimately transfers data using the IBP library to an IBP depot on the receiving end.
After the simulation data and its metadata have been transferred, the LoRS library
constructs an exNode which it returns to the queue manager. The queue manager
then sends the exNode to a waiting process, ernodercv, in the analysis cluster at

PPPL via a socket. Although this is an additional step for every transfer, the impact



38

is minimal and provides some benefits. First, each exNode does not exceed 10-20KB
in size. Second, the exNodes (represented as XML) are transferred separately to a
program on the receiving end and hence do not interfere with the main data transfer
or the computation. Third, since the exNodes are represented as in an XML format
they allow for platform interchangeability.

The simulations normally run in batch. The receiving part on the PPPL end
consists of the exnodercv daemon listening for exNodes on a well known port. This
program keeps track of the data transferred during the simulation and appropriately
calls the post-processing routines for visualization/data transformation specified by
the user. We have presently incorporated the HDF5 and ASCII routines which gener-
ate appropriate files for visualization/post-processing the simulation data. Since the
post-processing routines at PPPL read the transferred data from the depots using
the exNodes sent to the exnodercv daemon, this does not interfere with the running
simulation at NERSC. Simultaneously, the post-processing routines can invoke the
LoRS augmentation API which replicates the post-processed files and publishes the

exNode on a well known public web server for later access by collaborators.

Failsafe Mechanisms using LN

The overall goals of our data transfer mechanism was to provide a low overhead of
transfer and fault tolerance. Failures are common in the scenario of the threaded

buffer transfer mechanism. The primary causes of failure include:

e Buffer overflow at the sending end
This happens when the data generation rate at the simulation side far ex-
ceeds the capacity the network can sustain. This is typically the case when the
data generation rate of the program exceeds the maximum network throughput,
where the communication time far exceeds the computation time. Presently we
are writing the data resulting from buffer overflows which cannot be transferred

to our local depots in the form of binary files on NERSC General Parallel File
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System (GPFS). After the files have been successfully written, a status signal
for the failed transfer is sent to the exnodercv daemon. The status signal con-
tains the transfer rate, size of failed transfer, and the location of the file to fetch.
The daemon program then interprets the status of the failed transfers, like file
size and the transfer rate to try to concurrently get the data from GPFS using
GridFTP [8]. We would like to be consistent with the transfer mechanism by
using LoRS for fetching the failed transfer data written to a local depot (in-
stead of a file written to the GPFS) on the supercomputer, but presently due
to security restrictions we are not able to set up a local storage depot on the

supercomputer on NERSC.

e Network connection to local depot is temporarily severed

The LoRS transfer mechanism might be unable to upload data to our local
depots due to depot or host failures, lack of storage space, network conges-
tion, etc. To address these issues we upload simulation data to the nearest
available depots either on the supercomputer where the simulation is running
or on depots located at San Diego Supercomputing Center. We then trans-
fer /write a status/exNode generated for these types of upload to our eznodercv
daemon/alternate depots. Since exNodes act as inodes for a network file and
contain all replica information (locally and remotely stored), there is no need
to separately fetch this data using any special transfer mechanism. The data is
fetched from the depots only during post-processing of the data either during
an HDF5, NetCDF or ASCII file creation routines.

Figure 4.3 illustrates the failsafe mechanism in case of buffer overflows at the simulat-
ing end if the data transfer rate can’t keep up with the data generation rate. In this
case, we write the data to GPFS. We then transfer the status/exNodes which explic-
itly have an error code for buffer overflow. The eznodercv process uses GridFTP to

fetch data from GPFS at the simulation end. It is also possible that the some nodes
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Figure 4.3: Failsafe Mechanisms using LN

in the simulation undergo a network failure/timeout. In case of a network failure or
timeout of any depots at PPPL, the data is uploaded to the nearest depot using the
L-Bone. In our case the nearest reliable depot to the simulation end are the depots at
SDSC. We then send the exNodes/status over to our exnodercv process. The analysis
processes read these exNodes as usual, but the read performance is less than if the

data where written directly to the PPPL IBP depots.

4.4 Experimental Evaluation

The adaptive buffer management code, which we have developed, is easy to use and
has simple APIs which the user can efficiently combine in his simulation to yield a high
throughput data transfer. The objective of this work is that the threaded streaming
should not slow down the simulation on the supercomputer (i.e. the streaming should

add very little to the computation/CPU time).

To evaluate how the data transferred using this buffer and queue manager, we use
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a sample program that models the GTC simulation which generates simulation data at
every time step. This simulation runs on the supercomputer nodes at NERSC and the
data generated is transferred to our local clusters at PPPL. We have employed buffer
management with 80 MB buffers per computational node, using 1MB data block
sizes. We have used a time-step as the primary reference on the X-axis (each run has
300 time-steps). The Data Generation Rates (Mbps) for each of these experiments
is measured by the amount of data generated by the simulation and the time taken
to generate them with no I/O involved. Data Transfer Rates is computed by the
amount of MB transferred successfully divided by the time taken by the Buffering
mechanism to transfer the generated data. We then study the data transfer rate (in
Mbps) for various data generation rates which leads to varying data transfer sizes.
Buffer overflow corresponds to data written to the local GPFS on the simulation end
and must be retrieved by PPPL using the strategies described above. The block size
for the transfer is 1IMB. Metadata is also transferred along with the data which will

be required for post-processing the simulation data.
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Figure 4.4: Data Streaming with 320Mbps (Buffer Overflows)

Figure 4.4 plots the blocks transferred during each timestep and the Mbps cor-

responding to the blocks transferred. The data generation rate for this experiment
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is about 320Mbps. Our buffering scheme cannot keep up with this rate, and data
is written to local disk in cases where buffer is full (80MB). The buffering scheme
initially transfers the first block of data and later sends whatever is remaining in the
buffer after transferring the first block. The values at data points correspond to buffer
overflows since the maximum data the buffer can hold is 80MB, so when the 49 MB
is being transferred data fills the buffer and (63 MB is generated out of which) 32 MB
is written to disk. This process repeats itself until the simulation stops generating
data. Thus the data transfer rate is around 43 Mbps. The more data that is in the

buffer, the higher the chance for buffer overflow. Figure 4.5 depicts and interesting
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Figure 4.5: Data Streaming with 21.3 Mbps (Latency Aware)

case where data is generated at a rate of 21.3Mbps (300MB in 121 sec), all the data
generated is transferred without any data written to disk or left un-transferred at the
end of the simulation. The buffering scheme starts out with 1 block and then later
sends out 6 data blocks but in certain cases where the rate for 6 blocks drop below
20Mbps we transfer around 8 blocks; this leads to oscillations of the data transfer
block counts until around 120 timesteps when it reaches an equilibrium of 6 1MB
blocks per transfer. Figure 4.6 demonstrates the network adaptability of the buffer-

ing scheme for a simulation run on two processors. Initially, the data generation rates



43

50 50
—e— Transfer Size

40 | —o— Transfer Rate L 40
=
Q
o)
m 30 A - 30
= %]
g &
g s
& 20 - - 20
&
Q
2
. 10 - - 10

0 -0

0 50 100 150 200 250 300
Timestep/ Iterations

Figure 4.6: Network aware Self-Adjusting Buffer Management Scheme

(20Mbs/Processor) exceed the transfer rates. For each successive transfer, more data
is available in the buffer so the queue manager sends more data and increases the
level of IBP threading in the LoRS calls. The buffering scheme stabilizes itself and
achieves an overall data transfer rate of approximately 20Mbps. Figure 4.7 shows
the high performance buffering scheme which can keep up with rate of generation as
high as 85Mbps on 32 processors. All the data generated during this period in the
simulation at NERSC is transferred to our local cluster at PPPL. Figure 4.7 shows
significant oscillation due to the higher number of data generator nodes involved. The
best throughput that we can hope to achieve is the minimum of the data generation
rate and the theoretical network throughput adjusted for TCP. The data rate is the
traffic minus the headers. The maximum traffic from NERSC to PPPL is 100 Mbps,
of which we hit 97 Mbps. Thus, this flow used 97% of the link (and all other users got
the remaining 3%). The 100 Mbps rate assumes no one else is using the WAN connec-
tion so we can expect some value less than 100 Mbps. We can see from Figure 4.8 how
the network can be easily saturated using our buffering scheme. Figure 4.8 depict the
statistics when the simulation in Figure 4.7 is operational. It presents an enlarged

image of the router statistics. The data rates show that we can achieve a maximum
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around 22:00. Each Data Point is Calculated on a 5 Minute Average)

transfer rate of 97 Mbps as shown by the second blue spike. Figure 4.9 shows the
overhead of using the buffering scheme with varying Mbps rates and compares this
with writing the files to GPFS on the supercomputer nodes. We observe that in cases
which are typical for present GTC codes writing data to the GPFS (2Mbps or less per
node), overhead is less than for our buffering scheme 5%. In future when the GTC
data generation rates are around 8Mbps, the overhead of using buffering scheme is
still small. The present overhead without our buffering scheme (writing to the GPFS
at NERSC [47]) is around 20% when generating hdf5 files.
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Overhead of the Buffering Scheme compared to GPFS
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Figure 4.9: Overhead of Buffering as Compared to Writing to the General Purpose
File System(GPFS) at NERSC

4.5 Conclusions

In this chapter we described development of a threaded mechanism to transfer data
with a simple adaptive buffer management scheme for overlapping computation and
communication. The buffering scheme had little impact on the simulation with a

projected 2% overhead for codes such as GTC running on 1024 processors.

Our scheme adapts dynamically to data generation rates and network through-
put, and appropriately adjusts the amount of data transferred and the level of multi-
threading to achieve good transfer rates. Our buffering scheme using logistical net-
working allows for high-performance remote transfer of data with minimal overhead
on the computation system. If the data generation rate exceeds the available network
resources, we have a failsafe mechanism that uses the available bandwidth to send
the bulk of the data while writing the excess data locally and retrieving it later from

the remote site.

In the future we will make our fault tolerance mechanism more efficient and take

advantage of IBP depots within NERSC. We will work on incorporating our routines



46

into production runs of the GTC code. We have begun working on more optimal
MxN [12] mappings for future parallel post-processing modules in our data workflow
pipeline. Finally, we will incorporate priority-based transfers for optimized monitor-

ing of selected simulation data output.
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Chapter 5

Self-Managing Data Streaming using Rules

The goal of the Grid concept is to enable a new generation of applications com-
bining intellectual and physical resources that span many disciplines and organiza-
tions, providing vastly more effective solutions to important scientific, engineering,
business and government problems. The key characteristics of Grid execution envi-
ronments and applications include: (1) Heterogeneity: Both Grid environments and
applications aggregate multiple independent, diverse and geographically distributed
elements and resources; (2) Dynamism: Grid environments are continuously changing
during the lifetime of an application. Applications similarly have dynamic runtime
behaviors including the organization and interactions of its elements; (3) Uncertainty:
Uncertainty in Grid environment is caused by multiple factors, including dynamism
that introduces unpredictable and changing behaviors, failures that have an increas-
ing probability of occurrences as system/application scales increase, and incomplete
knowledge of global state, which is intrinsic to large distributed environments; (4)
Security: A key attribute of Grids is secure resource sharing across organization
boundaries, which makes security a critical challenge [68].

The characteristics listed above impose requirements on the programming and
management of Grid applications [69]. Grid applications must be able to detect
and dynamically respond during execution to changes in both, the state of execution
environment and the state and requirements of the application. This requirement
suggests that (1) Grid applications should be composed from discrete, self-managing
elements (components/services), which incorporate separate specifications for func-

tional, non-functional and interaction/coordination behaviors; (2) The specifications
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of computational (functional) behaviors, interaction and coordination behaviors, and
non-functional behaviors (e.g. performance, fault detection and recovery, etc.) should
be separated so that their combinations are compose-able; and (3) policy should be
separated from mechanisms and used to orchestrate a repertoire of mechanisms to
achieve context-aware adaptive runtime behaviors. Given these features, a Grid ap-
plication requiring a given set of computational behaviors may be integrated with
different interaction and coordination models or languages (and vice versa) and dif-
ferent specifications for non-functional behaviors such as fault recovery and QoS to
address the dynamism and heterogeneity of application state and the execution envi-

ronment.

This chapter presents the Accord autonomic services architecture that addresses
these requirements and enables self-managing Grid applications. Accord extends the
service-based Grid programming paradigm to relax static (defined at the time of
instantiation) application requirements and system/application behaviors and allow
them to be dynamically specified using high-level rules. Further, it enables the be-
haviors of services and applications to be sensitive to the dynamic state of the system
and the changing requirements of the application and to adapt to these changes at
runtime. This is achieved by extending Grid services to include the specifications of
policies (in the form of high-level rules) and mechanisms for self-management, and
providing a decentralized runtime infrastructure for consistently and efficiently en-
forcing these policies to enable autonomic self-managing functional, interaction, and
composition behaviors based on current requirements, state and execution context.
The design and implementation of Accord is presented. Accord is part of Project

AutoMate [69], which provides the underlying middleware services.

This chapter also describes the use of Accord to enable the adaptive transfer
of multi-terabyte data from live simulations running on supercomputers at NERSC
and ORNL to local visualization and analysis clusters at PPPL while minimizing

overheads to the simulation.



Adaptation rules Service manager
S ——
Interaction rules L——

Function
control ~| Control
N — V] port
Performance
Performance data control
Serwvice
Interaction Servi
emnice
. control \,_I//‘—" port
Invocations of
service interfaces
M
V]
R

Figure 5.1: An Autonomic Service in Accord

49

The rest of the chapter is organized as follows. Section 5.1 describes the design and

implementation of the Accord autonomic service architecture. Section 5.2 illustrates

self-managing behaviors enabled by Accord using the data streaming application.

Section 5.3 presents a conclusion.

5.1 Mechanisms for Self~-Management using Rules

The Accord programming framework defines conceptual, implementation and en-

forcement models for utilizing human knowledge (in the form of rules) to guide the

execution and adaptation of services. This is achieved by adapting the behaviors of

individual services and their interactions (communication and coordination) to chang-

ing application requirements/state and execution environments based on dynamically

defined rules.

5.1.1 Definition of Self-Managing Services

An autonomic (self-managing) service (see Figure 5.1) extends a Grid service with a

control port for external monitoring and steering, and a service manager that monitors

and controls the runtime behaviours of the managed element/service. The control
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port consists of sensors that enable the state of the service to be queried, and actuators
that enable the behaviours of the service to be modified. The control port and service
port are used by the service manager to control the functions, performance, and
interactions of the managed service. The control port is described using WSDL(Web
Service Definition Language) [29] and may be a part of the general service description,
or may be a separate document to control access to it. An example of the control port
is shown in Table 5.1. Rules are simple if-condition-then-action statements described
using XML and include service adaptation and service interaction rules. An example

of a rule is shown in Table 5.2.

5.1.2 The Runtime Infrastructure

The Accord runtime infrastructure (shown in Figure 5.2) consists of a user/developer
portal, peer service and application composition or coordination managers, the au-
tonomic services, and a decentralized rule enforcement engine. This infrastructure
enables adaptations of the behaviours of individual services as well as the interac-
tions between services.

Behaviour Adaptation: Behaviour adaptation rules are used to adapt the be-
haviours of individual services and do not change their functionalities (described by
service ports as contracts) and as a result, these adaptations are transparent to other
services. This localized adaptation simplifies the specification and execution of adap-
tation rules by restricting the conditions monitored and actions performed within the
individual services.

Behaviour adaptations include modification of service parameters and dynamic se-
lection of algorithms and implementations to optimize and tune service performance,
meet QoS requirements, correct detected errors, avoid or recover from failures, and /or
to protect the service. Service managers execute these rules to adapt the functional
behaviours of the managed services, and evaluate and tune their performance. These

adaptations are realized by invoking appropriate control (sensors, actuators) and
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functional interfaces.

Interaction Adaptation: An application composition manager decomposes in-
coming application workflows (defined by the user or a workflow engine) into inter-
action rules for individual services, and forwards these rules to corresponding service
managers. Service managers execute these rules to establish interaction relationships
among services by negotiating communication protocols and mechanisms and dy-
namically constructing coordination relationships in a distributed and decentralized

manner.

Interaction rules are used to adapt service interactions, for example communica-
tion paradigms and/or coordination relationships. When local optimization of in-
dividual services cannot satisfy the global objectives, interaction rules are used to

modify the application composition.

Application workflow Adaptation strategies
application requirements

| Accord portal / composition manager |

Interslictlon Interaction Adaptation InterTcﬂon
iies rules rules raies
N e N o

Adaptation Service Adaptation

_\w:“/'ff__\ manager || | \_L'jf,s__\
Service service |t Service
manager | | manager
service | | service

4 WS services

Figure 5.2: Accord Runtime Infrastructure: Solid Lines indicate Interactions among
Services and Dotted Lines represent Invocation of WS Instances Providing Supporting
Services such as Naming and Discovery

Rule Execution: Rule execution at the service managers consists of three phases:
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condition inquiry, condition evaluation and conflict resolution, and batch action in-
vocation. During condition inquiry, the service managers query the sensors used by
the rules in parallel, assimilates their current values and fire corresponding triggers.

During the next phase, condition evaluations for all the rules are performed in
parallel. Rule conflicts are detected during this phase when the same actuator is
invoked with different values. These conflicts are resolved by relaxing the rule con-
dition, using user-defined strategies, until the actuator-actuator conflict is resolved.
If the conflicts are not resolved, errors are reported to users. If interacting services
try to use different communication/coordination paradigms as a result of their inde-
pendent adaptation behaviours, the services negotiate with each other to resolve the
conflict [53].

After rule conflict resolution, the actions are executed in parallel. Note that the
rule execution model presented here focuses on correct and efficient execution of rules,
providing mechanisms to detect and resolve conflicts at runtime. However, correctness

of rules and conflict resolution strategies are the responsibilities of the users. Rules

service manager A

e e
\

service manager B

service manager C

Figure 5.3: Execution of a Simple Rule in Accord

are evaluated and executed by service managers as shown in Figure 5.3. In the figure,
the condition part of the sample rule consists of three triggers belonging to service
A and B, and the action part has two actions that invoke the actuators exposed by
service A and C. Triggers are injected into corresponding service managers A and B,
and their results are collected by the service manager A. Service manager A evaluates

the condition, invokes actuator! and notifies service manager C to invoke actuator2.
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5.1.3 Autonomic Service Adaptation and Composition

Dynamic and autonomic compositions are enabled in Accord using a combination
of interaction and adaptation rules. Composition consists of defining the organi-
zation of services and the interactions among them [53]. The service organization
describes a collection of services that are functionally compose-able, determined se-
mantically (e.g., using OWL(Ontology Workflow Language) [88]) or syntactically us-
ing WSDL [29]. Interactions among services define the coordination between services
and the communication paradigm used, e.g., message passing, RPC/RMI, or shared
spaces.

Once a workflow has been generated (e.g., using the mechanism in [5]), and the
services have been discovered (using middleware services), the Accord composition
manager decomposes the workflow into interaction rules. This decomposition pro-
cess consists of mapping workflow patterns [84] in the workflow into corresponding
rule templates [53]. Accord provides templates for basic communication paradigms
such as notification, publisher /subscriber, rendezvous, shared spaces and RPC/RMI,
and control structures such as sequence, AND-split, XOR-split, OR-split, AND-join,
XOR-join, and OR-join. More complex interaction and coordination structures (e.g.,
loops) can be constructed from these basic patterns.

The interaction rules are then injected into corresponding service managers, which
execute the rules to establish communication and coordination relationships among
involved services. Note that there is no centrally controlled orchestration. While the
interaction rules are defined by the composition manager, the actual interactions are
established by service managers in a decentralized and parallel manner.

The communication paradigms and coordination relationships among the interact-
ing autonomic services can be dynamically changed according to current application
state and execution context by replacing or changing the related interaction rules. As
a result, a new service can be brought into an application, and interactions among

services can be changed at runtime, without taking the application offline.
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The two adaptation approaches, adaptation within individual services and dy-
namic composition of services, can be used separately or in combination to enable
the autonomic self-configuring, self-optimizing and self-healing behaviours of services

and applications [53].

5.1.4 Implementation Overview

The prototype implementation of the Accord autonomic services architecture extends
the Apache Axis Toolkit and is being integrated with the Globus toolkit GT4 In our
current version, both control ports and service ports are implemented as WSDL doc-
uments. Service ports are invoked by interacting services, and control ports are used
by managers to periodically querying and modifying service behaviors. The publi-
cation/subscription structure is used between managers. Each manager maintains a
subscription tables and publishes trigger information to subscriber managers using

XML messages.

Further, it uses middleware services provided by AutoMate [69] to enable (1)
content-based routing/discovery, associative messaging, and a decentralized reactive
tuple space for interactions among service managers, and (2) context-based access
control and cooperative protection for service authorization and authentication. An

experimental evaluation of Accord and its overheads are presented in [53].

5.2 Self-Managing Data Streaming using Accord

5.2.1 Application Setup

This section illustrates the self-managing behaviors enabled by the Accord service
architecture using an autonomic data streaming service. The overall application is

presented in Figure 5.4. The application consists of the G.T.C. fusion simulation



95

Grid middleware,
Logistical MNetwarking
backbone

ORNL

Figure 5.4: The Self Managing Data Streaming Service

that runs for days on a parallel supercomputer at NERSC (CA) and generates multi-
terabytes of data. This data is analyzed and visualized live, while the simulation
is running, at PPPL (NJ). The data also has to be archived either at PPPL (NJ)
or ORNL (TN). Data streaming techniques from a large number of processors have
been shown to be more beneficial for such a runtime analysis than writing data to
the disk in the previous section [15, 47]. The goal of the autonomic data steaming
service is to stream data from the live simulation to support remote runtime analysis
and visualization at PPPL while minimizing overheads on the simulation, adapting to
network conditions, and eliminating loss of data. The application workflow consists

of following five core services:

e The Simulation Service (SS) executes in parallel on 6K processors of the
Seaborg IBM SP machine at NERSC and generates data at regular intervals
that has to be transferred at runtime for analysis and visualization at PPPL,

and archived at data stores at PPPL or ORNL.

e The Data Analysis Service (DAS) runs on a 32 node cluster located at

PPPL. The service analyzes and visualizes the steaming data.

e The Data Storage Service (DSS) archives the streamed data using the Lo-

gistical Networking backbone [73], which builds a Data Grid of storage services
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located at ORNL and PPPL.

e The Autonomic Data Streaming Service (ADSS) is constructed using the
Accord autonomic services architecture and manages the streaming of data from

the simulation service to the DAS (at PPPL) and DSS (at PPPL/ORNL). It is

a composite service composed of two services:

— The Buffer Manager Service (BMS) manages the buffers allocated
by the service based on the rate and volume of data generated by the

simulation and determines the granularity of blocks used for data transfer.

— Data Transfer Service (DTS) manages the transfer of blocks of data
from the buffers to remote services for analysis and visualization at PPPL,
and archiving at PPPL or ORNL. The transfer service uses the IBP [71]

protocol to transfer data

As mentioned above, the objective of ADSS is to minimize overheads of data
transfer on the simulation, adapt the transfer to network conditions, and ensure that

there is no loss of data. Three self-managing scenarios for ADSS are described below.

5.2.2 Self-Managing Scenarios using Rule based Adaptations

Scenario 1: Self-optimizing behaviour of BMS

This scenario illustrates the self-optimizing behaviour of the BMS using rules. The
service adaptation within BMS service is transparent to other services. BMS selects
the appropriate blocking technique, orders blocks in the buffer and optimizes the size
of the buffer(s) used to ensure low latency high performance steaming and minimize
the impact on the execution of the simulation. The adaptations are based on the
current state of the simulation and more specifically the following three runtime
parameters. (1) The data generation rate, which is the amount of data generated

per iteration divided by the time required for the iteration, and can vary from 1 to
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400 Mbps depending on the domain decomposition and the type of analysis to be
performed. (2) The network connectivity and the network transfer rate. The latter
is limited by the 100 Mbps link between NERC and PPPL. (3) The nature of data
being generated in the simulation, e.g., parameters, 2D surface data or 3D volume

data. BMS provides three algorithms:

e Uniform Buffer Management: This algorithm divides the data into blocks of
fixed sizes, which are then transmitted by the DTS. This static algorithm is
more suited for the simulations generating data at a small or medium rate
(50Mbps). Using smaller block sizes have significant advantages at the receiving
end as less time is required for decoding the data and processing it for analysis

and visualization.

o Aggregate Buffer Management: This algorithm aggregates blocks across itera-
tions and the DTS transmits these aggregated blocks. This algorithm is suited

for high data generation rates, i.e., between 60-400 Mbps.

e Priority Buffer Management: This algorithms orders data blocks in the buffer
based on the nature of the data. For example, 2D data blocks containing visu-
alization or simulation parameters are given higher priority as compared to 3D
raw volume data. To enable adaptations, the BMS exports two sensors, “Data-
GenerationRate” and “DataType”, and one actuator, “BlockingAlgorithm” as
part of its control port shown in Table 5.1. This document describes the name,
type, message format and protocol details for each sensor/actuator. Further,
the BMS self-optimization behaviour is governed by the rule shown in Table 5.2,
which states that if the data generation rate is greater than the peak network
transfer rate (i.e., 100 Mps), the aggregate buffer management is used otherwise

the uniform buffer management algorithm is used.

The resulting adaptation behaviour is plotted in Figure 5.5. The figure shows that

BMS switches to aggregate buffer management during simulation time intervals 75



Table 5.1: The Control Port for the BMS

<controlPort name="BMS_controlPort" service="BufferManagerService">
<types>
<sensor name="DataGenerationRate">
<element name="DataGenerationRateReq" type="string"/>
<element name="DataGenerationRateResp" type="double"/>
</sensor>
<sensor name="DataType">
<element name="DataTypeReq" type="string"/>
<element name="DataTypeResp" type="string"/>
</sensor>
<actuator = name="BlockingAlgorithm">
<element name="BlockingAlgorithmReq" type="string"/>
</actuator>
</types>
<message name="GetDataGenerationRateIn">
<part name="body" element="DataGenerationRateReq"/>
</message>
<message name="GetDataGenerationRateOut">
<part name="body" element="DataGenerationRateResp"/>
</message>
<message name="GetDataTypelIn">
<part name="body" element="DataTypeReq"/>
</message>
<message name="GetDataTypeOut">
<part name="body" element="DataTypeResp"/>
</message>
<message name="SetBlockingAlgorithm">
<part name="body" element="BlockingAlgorithmReq"/>
</message>
<portType name="BMSControlPortType">
<operation name="SensorDataGenerationRate">
<input message="tns:GetDataGenerationRateIn"/>
<output message="tns:GetDataGenerationRateOut"/>
</operation>
<operation name="SensorDataType">
<input message="tns:GetDataTypeIn"/>
<output message="tns:GetDataTypeQut"/>
</operation>
<operation name="ActuatorBlockingAlgorithm">
<input message="tns:SetBlockingAlgorithm"/>
</operation>
</portType>
</controlPort>
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Table 5.2: The Adaptation Rule for the BMS

<rule name="BlockingRule" attribute="active">
<trigger name="2D" sensor="DataType" op="EQ" value="2D" type="string"/>
<trigger name="DGR" sensor="DataGenerationRate" op="GT" value=peakRate type="float"/>
<when>
<and>
<operand trigger="2D"/>
<operand trigger="DGR"/>
</and>
</when>
<do>
<action actuator="BlockingAlgorithm">
<input value="priorityAggregation" type="string"/>
</action>
</do>
<when>
<and>
<operand trigger="2D"/>
<not>
<operand trigger="DGR"/>
</not>
</and>
</when>
<do>
<action actuator="BlockingAlgorithm">
<input value="priority" type="string"/>
</action>
</do>
<when>
<and>
<operand trigger="DGR"/>
<not>
<operand trigger="2D"/>
</not>
</and>
</when>
<do>
<action actuator="BlockingAlgorithm">
<input value="aggregate" type="string"/>
</action>
</do>
<else>
<action actuator="BlockingAlgorithm">
<input value="uniform" type="string"/>
</action>
</else>
</rule>

29
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sec to 150 sec and 175 sec to 250 sec, as the simulation data generation rate peaks
to 100Mbps and 120 Mbps during these intervals. The aggregation is an average
of 7 blocks. Once the data generation rate falls to 50Mbps, BMS switches back to
the uniform buffer management scheme, and constantly sends 3 blocks of data on
the network. Figure 5.6 plots the percentage overhead on the simulation execution
with and without autonomic management (using rules). Overhead is computed as
the absolute difference between the time required to generate data without the ADSS

service and the time required to stream the data using ADSS service.

The plot shows that the BMS switches from uniform buffer management to ag-
gregate buffer management at data generation rates of around 80-90 Mbps. This
increases the overhead slightly, however the overheads remains less than 5%. With-
out autonomic management, the overheads increase to about 10% for higher data

rates as the BMS continues to use uniform buffer management.

When the simulation service generates 2D visualization data in addition to 3D
data, the priority buffer management algorithm is triggered. The 2D data blocks are
given higher priority and are moved to the head to data transmission queue. As a
result, transmission of the 2D data is expedited with almost no impact to the 3D
data.

Scenario 2: Self-configuring/self-optimizing behaviour of the ADSS
The effectiveness of the data transfer between the simulation service at NERSC and
the analysis or visualization service at PPPL depends on the network transfer rate,
which depends on data generation rates and/or network conditions. Falling network
transfer rates can lead to buffer overflows and require the simulation to be throt-
tled to avoid data loss. One option to maintain data throughputs is to use multiple
data streams. Of course, this option requires multiple buffers and hence uses more
of the available memory. Implementing this option requires the creation of multiple
instances of ADSS. In this scenario, ADSS monitors the effective network transfer

rate, and when this rate dips below a certain threshold, the service causes another
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instance of the ADSS to be created and incorporated into the workflow. Note that the
maximum number of ADSS instances possible is predefined. Similarly, if the effective
data transfer rate is above a threshold, the number of ADSS instances is decreased
to reduce memory overheads. The upper and lower thresholds have been determined

using experiments in [15]. The self-configuration behaviour of ADSS is governed by

Table 5.3: The Self-Configuring Rule for the ADSS

<rule name="SplitRule" attribute="active">
<trigger name="SmallNTR" sensor="NetworkTransferRate"
op="LT" value=lowerthreshold type="float"/>
<trigger name="LargeNTR" sensor="NetworkTransferRate"
op="GT" value=upperthreshold type="float"/>
<trigger name="ADSSNum" sensor="NumOfADSS"
op="LT" value=num type="integer"/>
<when>
<and>
<operand trigger="SmallNTR"/>
<operand trigger="ADSSNum"/>
</and>
</when>
<do>
<action actuator="Accord:NewInstances">
<input value="BMS" type="service"/>
</action>
<action actuator="Accord:LoadRules">
<input value="BMS" type="service"/>
<input value="BMSRuleName" type="string"/>
</action>
<action actuator="Accord:NewInstances">
<input value="DTS" type="service"/>
</action>
<action actuator="Accord:LoadRules">
<input value="DTS" type="service"/>
<input value="DTSRuleName" type="string"/>
</action>
</do>
<when>
<operand trigger="LargeNTR"/>
</when>
<do>
<action actuator="Accord:GetInstances">
<input value="BMS" type="service"/>
<output value="BMSInstanceList"
type="servicelnstanceList"/>
</action>
<action actuator="Accord:Dellnstances">
<input value="BMSInstanceList"
type="servicelnstanceList"/>
<input value="number" type="integer"/>
</action>
</do>
</rule>

the rule shown in Table 5.3. When the network transfer rate is below a pre-defined

threshold, ADSS will use Accord to create new instances of ADSS including BMS and
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DTS and load corresponding rules into the new BMS and DTS instances to enable
interactions between them. When the network transfer rate is above a pre-defined
threshold, ADSS obtains the list of exiting ADSS instances using the Accord runtime,
and deletes a pre-defined number of instances. The resulting behaviours are plotted
in Figure 5.7. This figure plots the percentage of network throughput, which is the
difference between the current network transfer rate and the maximum network rate
between PPPL and NERSC, i.e., 100 Mbps. The figure shows that the number of
ADSS instances first increases as the network throughput dips below the 50% thresh-
old (corresponding to data generation rates of around 25 Mbps in the plot), as defined
by the rule in Table 5.3. This causes the network throughput to increase to above
80%. Even more instances of ADSS services are created at data generation rates of
around 40 Mbps and the network throughput once again jumps to around 80Mbps.
The ADSS instances increase until the limit of 4 is reached.
Scenario 3: Self-healing behaviour of the ADSS
This scenario addresses data loss in the cases of extreme network congestion or net-

work failures. These cases cannot be addressed using simple buffer management or



Table 5.4: The Self-Healing Rule for the ADSS

<rule name="TransferRule" attribute="active">
<trigger name="transferFailed" sensor="DataTransfer"
op="EQ" value="0" type="integer"/>
<trigger name="transferSwitch" sensor="NumOfSwitches"
op="LT" value=switchThreshold type="integer"/>
<when>
<and>
<operand trigger="transferFailed"/>
<operand trigger="transferSwitch"/>
</and>
</when>
<do>
<action actuator="TransferAlgorithm">
<input value="remote" type="string"/>
</action>
</do>
<when>
<not>
<operand trigger="transferSwitch"/>
</not>
</when>
<do>
<action actuator="TransferAlgorithm">
<input value="remote" type="string"/>
</action>
<action actuator="Accord:SetRuleAttribute">
<input value="TransferRule" type="string"/>
<input value="inactive" type="string"/>
</action>
</do>
</rule>

64
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replication. One option in these cases to avoid loss of data is to write data locally at
NERSC rather than streaming. However, this data will not be available for analysis
and visualization until the simulation complete, which could be days. Writing data to
the disk also causes significant overheads to the simulation [15]. ADSS addresses these
cases by temporarily or permanently switching the streaming of the data to the DSS
at ORNL instead of PPPL. NERSC and ORNL are connected by a low latency [50]
link which has a lower probability of being saturated. The data can be later trans-
mitted from ORNL to PPPL. Congestion is detected by observing the buffer - when
the buffer is filled to a capacity, the ADSS switches subsequent streaming to ORNL,
and when the buffer is no longer saturated, switches the steaming back to PPPL. If
the service observes that buffer is being continuously saturated, it infers that there
is a network failure and permanently switches the streaming to ORNL. In this case,
the blocks already in the PPPL buffer are transferred to the ORNL queue. Here
ADSS communicates with DSS at PPPL or DSS at ORNL under different network
conditions. This behaviour is defined by interaction rules in ADSS. The rule specify-

ing this self-management behaviour is listed in Table 5.4. The resulting self-healing



66

behaviour is plotted in Figure 5.8. The figure shows that as the ADSS buffer(s) get
saturated, the data streaming switches to the DSS at ORNL, and when the buffer
occupancy falls below 20% it switches back to PPPL. Note that while the data blocks
are written to ORNL, data blocks already queued for transmission to PPPL continue
to be streamed. The figure also shows that, at simulation time 1500 (X axis), the
PPPL buffers once again get saturated and the streaming switches to ORNL. If this

persists, the steaming would be permanently switched to ORNL.

5.3 Conclusions

This chapter presented the Accord services architecture for self-managing Grid ap-
plications. It enables the development of self-managing services and the formulation
of self-managing applications as the dynamic composition of these services, where
the runtime computational behavior of the services as well as their compositions
and interactions can be managed at runtime using dynamically injected rules. As
a result, applications are capable of adapting their runtime behaviors to deal with
the dynamism and uncertainty of the nature of Grids and Grid applications. An
self-managing data streaming application was used to illustrate the self-managing
behaviors enabled by this software framework. As platforms change and software
evolves, the rules may need to be changed and thresholds need to be modified. Using
this approach, rule maintenance in the self-managing data streaming approach was
performed manually. Advising these rules and automatically deriving thresholds [24]

will be explored in detail in the next chapter.
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Chapter 6

Self-Managing Data Streaming using Model based
Online Control

This chapter presents the design, implementation and experimental evaluation of
a self-managing data streaming service for wide-area Grid environments. The ser-
vice is deployed using an infrastructure for self-managing Grid services, including a
programming system for specifying self-managing behaviour as well as models and
mechanisms for enforcing this behaviour at runtime [18]. A key contribution of this
chapter is the combination of typical rule-based self-management approaches with
formal model-based online control strategies. While the former are relatively simple
and easy to implement, they require a great deal of expert knowledge, are very tightly
coupled to specific applications and their performance is difficult to analyse in terms
of optimality, feasibility and stability properties. Advanced control formulations offer
a theoretical basis for self-managing adaptations in distributed applications. Specif-
ically, this chapter combines model-based limited look-ahead controllers (LLC) with
rule-based managers to dynamically achieve adaptive behaviour in Grid applications
under various operating conditions [54].

This chapter demonstrates the operation of the proposed data streaming service
using a Grid-based fusion simulation workflow consisting of long-running coupled
simulations, executing on remote supercomputing sites at NERSC (National Energy
Research Scientific Computing Center) in California (CA) and ORNL (Oak Ridge
National Laboratory) in Tennessee (TN) and generating several terabytes of data,
which must be streamed over the network for live analysis and visualization at PPPL

(Princeton Plasma Physics Laboratory) in New Jersey (NJ) and for archiving at
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ORNL (TN). The service aims to minimize the overhead associated with data stream-
ing on the simulation, adapt quickly to network conditions and prevent any loss of
simulation data.

The rest of this chapter is organized as follows. Section 6.1 describes the models
and mechanism for enabling self-managing Grid services and applications. Section 6.2
presents the design, implementation, operation and evaluation of the self-managing
data streaming service. Section 6.3 addresses the scalability of the service and pro-

poses and evaluates hierarchical control strategies. Section 6.4 concludes the chapter.

6.1 Model and Mechanisms for Self~-Management
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Figure 6.1: A Self Managing Element and Interactions between the Element Manager
and Local Controller.

The data streaming service presented in this chapter is constructed using the
Accord infrastructure [18], [54], which provides the core models and mechanisms for
realizing self managing Grid services. Its key components are shown in Figure 6.1

and are described in the following sections.

6.1.1 A Programming System for Self-Managing Services

The programming system extends the service-based Grid programming paradigm to
relax assumptions of static (defined at the time of instantiation) application require-

ments and system/application behaviors and allows them to be dynamically specified
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using high-level rules. Further, it enables the behaviors of services and applications
to be sensitive to the dynamic state of the system and the changing requirements of
the application and to adapt to these changes at runtime. This is achieved by extend-
ing Grid services to include the specifications of policies (in the form of rules) and
mechanisms for self-management and providing a decentralized runtime infrastructure
for consistently and efficiently enforcing these policies to enable self-managing func-
tional, interaction and composition behaviors based on current requirements, state
and execution context.

A self-managing service extends a Grid service with a control port for external
monitoring and steering. An element manager monitors and controls the runtime
behaviors of the managed service/element according to changing requirements and
state of applications as well as their execution environment. The control port consists
of sensors and actuators, which may be parameters, variables, or functions and enable
the state of the service to be queried and the behaviors of the service to be modified.
The control port and service port are used by the service manager to control the
functions, performance and interactions of the managed service. The control port is
described using WSDL (Web Service Definition Language) [29] and may be a part of
the general service description, or may be a separate document with access control.
Polices are in the form of simple if-condition then-action rules described using XML
and include service adaptation and service interaction rules. Examples of control

ports and policy specifications can be found in [54].

6.1.2 Online Control Concepts

Figure 6.2 shows the overall LLC framework [1], [44], where the management prob-
lem is posed as a sequential optimization under uncertainty. Relevant parameters of
the operating environment (such as data generation patterns and effective network
bandwidth) are estimated and used by a mathematical model to forecast future ap-

plication behavior over a prediction horizon N. The controller optimizes the forecast
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behavior as per the specified QoS requirements by selecting the best control inputs
to apply to the system. At each time step k, the controller finds a feasible sequence
u*(i)|i € [k + 1,k 4+ N] of inputs (or decisions) within the prediction horizon. Then,
only the first move is applied to the system and the whole optimization procedure is

repeated at time k +1 when the new system state is available.

The LLC approach allows for multiple QoS goals and operating constraints to
be represented in the optimization problem and solved for each control step. It
can be used as a management scheme for systems and applications where control
or tuning inputs must be chosen from a finite set and those exhibiting both simple
and nonlinear dynamics. In addition, it can accommodate run-time modifications
to the system model itself caused by resource failures, dynamic data injection and
time-varying parameter changes. The following discrete-time state-space equation

describes the system dynamics.

w(k+1) = f(x(k), u(k),w(k))

where x(k) € R¥ is the system state at time step k and u(k) € U C R™ and w(k) € R

denote the control inputs and environment parameters at time k, respectively. The
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Figure 6.3: The Look-Ahead Optimization Problem

system dynamics model f captures the relationship between the observed system pa-
rameters, particularly those relevant to the QoS specifications and the control inputs

that adjust these parameters.

Though environment parameters such as workload patterns in Grid environments
are typically uncontrollable, they can be estimated online with some bounded error
using appropriate forecasting techniques, for example, a Kalman filter [45]. Since the
current values of the environment inputs cannot be measured until the next sampling

instant, the corresponding system state can only be estimated as:

2k +1) = f(x(k), u(k), @(k))

where Z(k + 1) is the estimated system state and w(k) denotes the environment pa-
rameters estimated by the forecasting model(s). A self-managing application must
achieve specific QoS objectives while satisfying its operating constraints. These ob-
jectives may be expressed as a set-point specification where the controller aims to
operate the system close to the desired state * € X where X is the set of valid sys-
tem states. The application must also operate within strict constraints on both the
system variables and control inputs. A general form is used to describe the operating
constraints of interest as H(x(k)) < 0 while u(z(k)) C U denotes the control-input
set u(z(k)) permitted in state x(k). It is also possible to consider transient or control

costs as part of the system operating requirements, indicating that certain trajectories
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towards the desired state are more preferable over others in terms of their cost to the
system. The overall performance specification will then require that the system reach
its setpoint while minimizing the corresponding control costs. This specification is
captured by the following norm-based function J that defines the overall operating

cost at time k.

J(x(k),u(k)) =[ 2(k) — 2" |[p + || (k) llo + | Au(k) ||

where Au(k) = u(k) — u(k — 1) is the change in control inputs; P, () and R are user-
defined weights denoting the relative importance of the variables in the cost function.
The optimization problem of interest is then posed in Figure 6.3 and solved using the

LLC structure introduced in Figure 6.2.

6.1.3 Operation

The element (service) managers provided by the programming system are augmented
with controllers, allowing them to use model-based control and optimization strate-
gies [18]. A manager monitors the state of its underlying elements and their execution
context, collects and reports runtime information and enforces adaptation actions de-
termined by its controller. The enhanced managers thus augment human-defined
rules, which may be error-prone and incomplete, with mathematically sound models,
optimization techniques and runtime information. Specifically, the controller decides
when and how to adapt the application behavior and the managers focus on enforcing

these adaptations in a consistent and efficient manner.

6.2 The Self Managing Data Streaming Service

This section describes a self-managing data streaming services to support a Grid-based

fusion simulation, based on the models and mechanisms presented in the previous
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section. A specific driving simulation workflow is shown in Figure 6.4 and consists
of a long running G.T.C. fusion simulation executing on a parallel supercomputer
at NERSC (CA) and generating terabytes of data over its lifetime. This data must
be analyzed and visualized in real time, while the simulation is still running, at a
remote site at PPPL (NJ) and also archived either at PPPL (NJ) or ORNL (TN).
Data streaming techniques from a large number of processors have been shown to be

more beneficial for such a runtime analysis than writing data to the disk [47].

The data streaming service in Figure 6.4 is composed of 4 core services:

1. A Simulation Service (SS) executing on an IBM SP machine at NERSC and
generating data at regular intervals that has to be transferred at runtime for

analysis and visualization at PPPL and archived at data stores at PPPL or

ORNL.

2. A Data Analysis Service (DAS) executing on a computer cluster located at
PPPL to analyze the data streamed from NERSC.

3. A Data Storage Service (DSS) to archive the streamed data using the Logistical
Networking backbone [73], which builds a Data Grid of storage services located
at ORNL and PPPL.
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4. An Autonomic Data Streaming Service (ADSS) that manages the data transfer
from SS (at NERSC) to DAS (at PPPL) and DSS (at PPPL/ORNL). It is a

composite service composed of two services:

(a) The Buffer Manager Service (BMS) manages the buffers allocated by the
service based on the rate and volume of data generated by the simulation

and determines the granularity of blocks used for data transfer.

(b) The Data Transfer Service (DTS) manages the transfer of blocks of data
from the buffers to remote services for analysis and visualization at PPPL
and archiving at PPPL or ORNL. The data transfer service uses the In-

ternet BackPlane Protocol(IBP) [71] to transfer data.

The objectives of the self-managing ADSS are the following;:

1. Prevent any loss of simulation data: Since data continuously generated and
the buffer sizes are limited, the local buffer at each data transfer node must
be eventually emptied. Therefore, if the network link to the analysis cluster is
congested, then data from the transfer nodes must be written to a local hard

disk at NERSC itself.

2. Minimize overhead on the simulation: In addition to transferring the gener-
ated data, the transfer nodes must also perform useful computations related
to the simulation. Therefore, the ADSS must minimize the computational and

resource requirements of the data transfer process on these nodes;

3. Maximize the utility of the transferred data: It is desirable to transfer as much
of the generated data as possible to the remote cluster for analysis and visual-
ization. Storage on the local hard disk is an option only if the available network
bandwidth is insufficient to accommodate the data generation rate and there is

a danger of losing simulation data.
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6.2.1 Design of the ADSS Controller
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Figure 6.5: LLC Model for the ADSS controller

The ADSS controller is designed using the LLC concepts discussed in Section 6.1.
Figure 6.5 shows the queuing model for the streaming service, where the key oper-
ating parameters for a data transfer node n; at time step k are as follows: (1) State
variable: The current average queue size at n; denoted as ¢;(k); (2) Environment
variables: \;(k) denotes the data generation rate into the queue ¢; and B(k) the ef-
fective bandwidth of the network link; (3) Control or decision variables: Given the
state and environment variables at time k, the controller decides pu;(k) and w;(k),
the data-transfer rate over the network link and to the hard disk respectively. The

system dynamics at each node n; evolves as per the following equations:

Gi(k + 1) = Gi(k) + (Ai(k).(1 — (k) — wi(k))).T
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Ai(k) = d(Ni(k — 1), k)

The queue size at time k+1 is determined by the current queue size, the estimated
data generation rate \;(k) and the data transfer rates, as decided by the controller,
to the network link and the local hard disk. The data generation rate is estimated
using a forecasting model ¢, implemented here by an exponentially-weighted moving-
average (EWMA) filter. The sampling duration for the controller is denoted as 7.
Both 0 < p;(k) <1 and 0 < w;(k) < 1 are chosen by the controller from a finite set
of appropriately quantized values. Note that in practice, the data transfer rate is a
function of the effective network bandwidth B(k) at time k, the number of sending
threads and the size of each data block transmitted from the queue. These parameters
are decided by appropriate components within the data-streaming service (discussed
in Section 6.2.2).

The LLC problem is now formulated as a set-point specification where the con-
troller aims to maintain each node n;’s queue ¢; around a desired value ¢* while
maximizing the utility of the transferred data, that is, by minimizing the amount of
data transferred to the hard disk/local depots [71].

k+N n

Minimize : Z Z ai(q" — qi(5))? + Biwi(5)?

j=k i=1

Subject to: Y " pi(j) < B(j) and ¢i(j) < uax Vi
=1

Here, N denotes the prediction horizon, ¢m., the maximum queue size and «; and
0; denote user-specified weights in the cost function.

When control inputs must be chosen from a set of discrete values, the LLC for-
mulation, as posed above, will show an exponential increase in worst-case complexity
with an increasing number of control options and longer prediction horizons — the so
called “curse of dimensionality”. Since the execution time available for the controller

is often limited by hard application bounds, it is necessary to consider the possibility



7

that it may have to deal with suboptimal solutions. For adaptation purposes, how-
ever, it is not critical to find the global optimum to ensure system stability that is; a
feasible suboptimal solution will suffice. Taking advantage of the fact that the oper-
ating environment does not change drastically over a short period of time, suboptimal
solutions are obtained using local search methods, where given the current values of
wi(k) and w;(k), the controller searches a limited neighborhood of these values for a

feasible solution for the next step.

6.2.2 Implementation and Deployment of ADSS
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Figure 6.6: Implementation Overview of the ADSS

ADSS (refer to Figure 6.6) is implemented as a composite service comprising a
Buffer Manager Service (BMS) that manages the buffers allocated by the ADSS and
a Data Transfer Service (DTS) that manages the transfer of blocks of data from the
buffers. The BMS supports two buffer management schemes, Uniform and Aggregate

buffering. Uniform buffering divides the data into blocks of fixed sizes and is more
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suitable when the simulation can transfer all its data items to a remote storage.
Aggregate buffering, on the other hand, aggregates blocks across multiple time steps
for network transfer and can be used when the network is congested. The control

ports for these services are described in detail in [54].

The ADSS Online Controller consists of the system model, the set-point specifica-
tion and the LLC scheme. The system model obtains inputs from the data generation
rate prediction and buffer size prediction sub-module, which provides it with future
values of the data rates (sizes) and future buffer capacities respectively. The predic-
tion of the data generation rate uses a EWMA filter with a smoothing constant of
0.5. A single-step LLC scheme (N = 1) is implemented on each node/data transfer
processor n; with a desired queue size of ¢* = 0. The weights in the multi objec-
tive cost function are set to a; = 1 and 3; = 108, to penalize the controller very
heavily for writing data to the hard disk. The decision variables p; and w; are quan-
tized in intervals of 0.1. The controller sampling time 7' is set to 80 seconds in the

implementation.

The ADSS Element Manager supplies the controller with internal state of the
ADSS and SS services, including the observed buffer size on each node, n; the
simulation-data generation rate and the network bandwidth. The effective network
bandwidth of the link between NERSC and PPPL is measured using Iperf [67], which

reports the TCP bandwidth available, delay jitter and datagram loss.

The element manager also stores a set of rules, which are triggered based on
controller decisions and enforce adaptations within the DT'S/BMS. For example, the
controller decides the amount of data to be sent over the network or to local storage
and the element manager decides the corresponding buffer management scheme to
be used within the BMS to achieve this. The element manager also adapts the DTS
service to send data to local /low latency storage, example, NERSC/ORNL, when the

network is congested.



79

60

—— Actual Data Generation in MB
Data Prediction using EWMA in MB

m}#mwwl@rﬂ | ﬁwhﬁ.@rm

<))
o
|

Data Size (MB)
N
o
|

B
a
|

40 I I I I I I I I I I I I I

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140
Controller Interval

Figure 6.7: Actual and Predicted Data Generation Rates for the GTC simulation

6.2.3 Performance Evaluation

The setup for experiments presented in this section consisted of the GTC fusion sim-
ulation running on 32 to 256 processors at NERSC and streaming data for analysis
to PPPL. A 155 Mbps ESNET connection between PPPL and NERSC was used.
A single controller was used and the controller and managers were implemented
using threading. Up to four simulation processors were used for data streaming.
Predicting data generation rates:

Figure 6.7 compares the actual amount of data generated by the simulation against
the corresponding estimation. The simulation ran for three hours at NERSC on 64
processors and used four data streaming processors. The incoming data rate into each
transfer processor was estimated with good accuracy by a EWMA filter as follows:
Xi(k) = v Xi(k) + (1 —~).A(k — 1), where 4 = 0.5 is the smoothing factor. It follows
from the plot that the EWMA can accurately predict the data generation for GTC
simulations.

Controller behaviour for long-running simulations:
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Figure 6.8: Controller and DTS operation for the GTC simulation

Figure 6.8 plots a representative snapshot of the streaming behaviour for a long-
running GTC simulation. During the shown period, DTS always transfers data to
remote storage and no data is transferred to local storage, as the effective network
bandwidth remains steady and no congestions are detected. This plot illustrates the
stable operation of the controller.
DTS adaptations based on control strategies:

To observe adaptation in the DTS, we congested the network between NERSC and
PPPL between controller intervals 9 and 19 (recall that each controller interval is 80
sec), as shown in Figure 6.9. During intervals (1, 9), we observe no congestion in
the network and data is transferred by DTS over the network to PPPL. During the
intervals of network congestion (9, 18), the controller observes the environment and
state variables and advices the element manager to adapt the DTS behaviour accord-
ingly, causing some data to be transferred to a local storage/hard disk in addition to
sending data to the remote location. This prevents data loss due to buffer overflows.
It is observed from Figure 6.9 that this adaptation is triggered multiple times until
the network is no longer congested at around the 19" controller interval. The data

sent to the local storage falls to zero at this point.
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Figure 6.9: DTS Adaptation due to Network Congestion

Adaptations in the BMS:

This scenario demonstrates the adaptation of the BMS service. A uniform BMS
scheme is triggered in cases when data generation is constant and in cases when the
congestion increases an aggregate buffer management is triggered. The triggering of
the appropriate buffering scheme in the BMS is prescribed by the controller to over-
come network congestion. Figure 6.10 shows the corresponding adaptations. During
intervals (0, 7), the uniform blocking scheme is used and during (7, 16), the aggregate
blocking scheme used to compensate for network congestion.
Comparison of Rule-based and Control-based Adaptation in the ADSS:
This evaluation illustrates how the percentage buffer vacancy (i.e., the empty space
in the buffer) varies over time for two scenarios; one in which only rules are used
for buffer management and the other in which rules are used in combination with
controller inputs. Figure 6.11 plots the %buffer vacancy for the first case. In this
case, management was purely reactive and based on heuristics (rule based). The ele-
ment manager was not aware of the current and future data generation rate and the
network bandwidth. The average buffer vacancy in this case was around 16%, i.e., in

most cases 84% of the buffer was full.



8 Uniform I Aggregate Buffer 120
Buffer Management| Management —/ Blocks
7 — | &l 1 Block = 4MB
o¢ - 100
6 - — — Congestion
—a— Bandwidth [ &

a
1

i

3
Bandwidth (Mb/sec)

w
|
2

e e ] — — — —

Blocks Grouped by BMS
i
|
]

N
|

| L 20

! | ”””ﬂ”””
- | 0
I I T I I [ T I I T
0 2 4 6 8 10 12 14 16 18 20 22 24 26

Controller Interval

N
|

o

Figure 6.10: BMS Adaptations due to Varying Network Conditions

%Buffer Vacancy vs Time
— — Mean %Buffer Vacancy

0 I II_I T__I__I_ I I ! \.

0 100 200 300 400 500 600 700 800 900 1000
Time (sec)

Figure 6.11: %Buffer Vacancy using Heuristically based Rules



83

100
90 —

80 —
70 —
60 —
50 —

40 —
30 — — Mean %Buffer Vacancy
Controller Interval

%Buffer Vacancy vs Time

%Buffer Vacancy

20 -
10

0 | | T 1 T T | T T
0 100 200 300 400 500 600 700 800 900 1000
Time(sec)
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Such a high occupancy leads to a slow down of the simulation [15] and also results
in increased loss of data due to buffer overflows. Figure 6.12 plots the corresponding
%buffer vacancy when the model-based controller was used in conjunction with rule-
based management. The mean buffer vacancy in this case is around 75%. Higher
buffer vacancy leads to reduced overheads and data loss.

Overhead of the Self-Managing Data Streaming:

Overheads on the simulation due the self-managing data streaming service are primar-
ily due to two factors. The first are the activities of the controller during a controller
interval. This includes the controller decision time, the cost of adaptations triggered
by rule executions and the operation of BMS and DTS. The second is the cost of the

data streaming itself. These overheads are presented below.

Overheads due to controller activities: For a controller interval of 80 seconds, the
average controller decision-time was ~2.1 sec (2.5%) at the start of the controller
operation. This reduced to ~0.12 sec (0.15%) as the simulation progressed due to
local search methods used. The network measurement cost was 18.8 sec (23.5%).

The operating cost of the BMS and DTS was 0.2 sec (0.25%) and 18.8 sec (23.5%)
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respectively. Rule execution for triggering adaptations required less than 0.01 sec.
The controller was idle for the rest of the control interval. Note that the controller was
implemented as a separate thread (using pthread [66]) and its execution overlapped

with the simulation.

Overhead of data streaming: A key requirement of the self managing data stream-
ing was that its overhead on the simulation be less than 10% of the simulation exe-
cution time. %Overhead of the data streaming is defined as: (TS —Ty)/Ts, where T,
and T, denote the simulation execution time with and without data streaming respec-
tively. The %Overhead of data streaming on the GTC simulation was less than 9%
for 16-64 processors and reduced to about 5% for 128-256 processors. The reduction
was due to the fact that as the number of simulation processors increased, the data

generated per processors decreased.

6.3 Addressing Scalability Using Hierarchical Control

In a distributed application consisting of multiple interacting elements, a centralized
scheme for enforcing self-managing behaviours is not scalable - the number of control
options to be explored is simply too large. However, the dimensionality of the over-
all optimization problem is drastically reduced, if it can be decomposed into simpler
sub-problems, where each is solved independently. Higher-level control can be used
to enable coordinated adaptations across these sub domains, as discussed below. To
solve performance management problems of interest tractably in a distributed setting,
service managers in Accord can be dynamically composed in hierarchical fashion, as
shown in Figure 6.13, where interactions between element controllers are managed
by higher-level ones. Decisions made by high-level controllers are aimed at satis-
fying overall QoS goals and act as additional operating constraints on lower-level
elements. Each element optimizes its behaviour using its local controller, while sat-

isfying these constraints. The Accord runtime framework ensures coordinated and
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consistent adaptations across multiple service (element) managers. The overall op-
eration is as follows. At runtime, each element or service manager independently
collects element and context state information using sensors exposed by the indi-
vidual elements and the environment. The managers then report this information
to associated controllers, which then computes control actions and informs the ser-
vice manager of desired adaptation behaviours. Service managers then execute these
adaptation behaviours using actuators exposed by the environment and elements. If
these local adaptations do not achieve the desired objectives, service managers col-
lectively invoke higher-level controllers, which results in coordination among multiple
interacting managers to change the element state and their interactions. Composition

managers coordinate adaptations across service managers as described above.

6.3.1 Hierarchical Controller Design for Data Streaming

Recall that when control inputs must be chosen from a set of discrete values, the
optimization problem described in Section 6.2.1 will show an exponential increase
in worst-case complexity with an increasing number of control options and longer

prediction horizons. We can, however, substantially reduce the dimensionality of
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the optimization problem via hierarchical control decomposition. FExhaustive and
bounded search strategies are then used at different levels of the hierarchy to solve
the corresponding optimization problems with low run-time overhead. As an example
of how to apply hierarchical control to the data streaming problem, consider the multi-
level structure shown in Figure 6.14. Here, we have a larger system compared to the
one described in Section 6.2.1 - 256 processors generate simulation data while 16
data-transfer nodes (instead of 4) collect this data and stream it over the network
link to PPPL. As before, the QoS goals are to prevent any loss of simulation data
and maximize the utility of the transferred data. First, the data-transfer nodes are
logically partitioned, for the purposes of scalable control, into four modules My, M,
M3 and M, where each module M, itself comprises four nodes. The data-generation or
flow rate from the simulation cluster into each M; at time k is denoted by F;(k). This
flow can be further split into sub-flows Fj;(k), Fis(k), Fis(k) and Fiu(k), incoming

into each node within module M;.

Figure 6.14 shows L1 and LO controllers within a two level hierarchy working
together to achieve the desired QoS goals with the following responsibilities. The L1
controller must decide the fraction of the available network bandwidth to distribute
to the various modules. Therefore, given the incoming flow-rates into the various
modules, the effective network bandwidth B(k) and the current state of each module
in terms of the average buffer size of the sending processors, the L1 controller must
decide the vector +;, i.e., the fraction of the network bandwidth ~;.B(k) to allocate
to each M;. The LO controller within M; solves the problem, originally formulated
in Section 6.2. It decides the following variables for each node n; in the module:
the fractions p;; and w;; of the incoming flow rate Fj;(k) to send over the network
link and to the local /nearby storage, respectively. It is important to note that the L0
controller within a module operates under the dynamic constraints imposed by the L1
controller, in terms of the bandwidth ~;.B(k) that the L0 controller must distribute

among its sending processors.
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Figure 6.14: Hierarchical Controller Formulation for Data Streaming

The hierarchical structure in Figure 6.14 reduces the dimensionality of the original
control problem substantially. Where a centralized solution must decide the variables
w1 and w for each of the 16 sending processors, in our method, the L1 controller only
decides a single-dimensional variable v for each of the four modules. Similarly, the
L0 controller decides control variables only for those processors within its module -

far fewer compared to the total number of sending processors in the system.

To realize the hierarchical structure in Figure 6.14, each L1 controller must know
the approximate behavior of the components comprising the L0 level. For example,
to solve the combinatorial optimization problem of determining ~;, the fraction of the

available network bandwidth to allocate to the modules, the L1 controller must be
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able to quickly approximate the behavior of each module. More specifically, given
the observed state of each M; and the estimated environment parameters in terms
of the effective network bandwidth and flow rates, the L1 controller must obtain
the cost incurred by module M; for various choices of +;. Note, however, that M;’s
behavior includes complex and non-linear interaction between its L0 controller and
the corresponding sending processors and the resulting dynamics cannot be easily
captured via explicit mathematical equations. A detailed model for each M; will
also increase the L1 controller’s overhead substantially, defeating our goal of scalable

hierarchical control.

We use simulation-based learning techniques [13] to generate a look-up table that
quickly approximates M;’s behavior. Here, M;’s behavior is learned by simulating the
module with a large number of training inputs from the (quantized) domains of Fj,
B and ;. Once such an approximation is obtained off-line, it can be used by the L1

controller to generate decisions fast enough for use in real time.
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Figure 6.15: GTC Workload Trace and Effective Bandwidth between NERSC and
PPPL
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6.3.2 Simulation Results for Hierarchical Data Streaming

Figure 6.15 shows a workload trace representing the data generated by a simulation
cluster comprising 256 processors and the effective network bandwidth available for
data transfer between NERSC and PPPL. Both traces are plotted with a time gran-
ularity of 120 seconds. Note that though the data generation rate holds steady, the
effective network bandwidth shows time-of-day variations. For example, the network
is somewhat congested during the time steps 12 to 18. Both the data generation rate
and the effective bandwidth can be estimated effectively using an ARIMA (AutoRe-

gressive Integrated Moving Average) filter with properly tuned smoothing parameters.

Figure 6.16 summarizes the performance of the control hierarchy when both the
L0 and L1 controllers use a single step look-ahead LLC scheme. We assume a total
of 16 data transfer nodes, arranged in four modules comprising four nodes each.
The sampling times for the L0 and L1 controllers are both set to 120 seconds. The
maximum buffer size on each node was ¢4 = 3.107 bits (=29MB) and the desired
queue size at the end of the prediction horizon was set to ¢* = 0. The decision variable
0 <~; <1 supplied by the L1 controller to each M; was quantized in intervals of 0.1.
Figure 6.16 shows the data, in terms of Mbits, streamed by the L0 controller within
each module over the network link and hard disk. It is clear that during periods of
network congestion, between 12 and 18, the L0 controllers within modules M; and

M3 write a fraction of the incoming data to hard disk to prevent data loss.

6.4 Conclusions

The chapter presented the design and implementation of a self-managing data stream-
ing service that enables efficient data transport to support emerging Grid-based scien-
tific workflows. The presented design combines rule-based heuristic adaptations with
more formal model-based online control strategies to provide a self-managing service

framework that is robust and flexible and can address the dynamism in application
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requirements and system state. A fusion simulation workflow was used to evaluate
the data-streaming service and its self-managing behaviours. The results demonstrate
the ability of the service to meet Grid-based data-streaming requirements, as well as
its efficiency and performance. A hierarchical control architecture was also presented
to address scalability issues for large systems. Simulations were used to demonstrate

the feasibility and effectiveness of the scheme.
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Chapter 7

Experiments with In-Transit Processing for Data
Intensive Grid Workflows

The Grid cyberinfrastructure is rapidly enabling new data intensive scientific and
engineering application workflows, which are based on seamless interactions and cou-
pling between geographically distributed application components. For example, a
typical fusion simulation consists of coupled codes running simultaneously on sepa-
rate HPC resources at supercomputing centers, and interacting at runtime with addi-
tional services for interactive data monitoring, online data analysis and visualization,
data archiving, and collaboration. A key requirement of these applications is the sup-
port for asynchronous, high-throughput low-latency robust data streaming between
the interacting components. The fusion codes, for instance, require continuous data
streaming from the HPC machine to ancillary data analysis and storage machines.
Moreover, these data-streaming services must deal with high data volumes and data
rates, have minimal impact on the execution of the simulations, deal with natural
mismatches in the ways data is represented in different program components and
on different machines, be able to “outsource” data manipulation and transformation
operations to less expensive commodity resources in the data path while satisfying
stringent application/user space and time constraints, and guarantee that no data
is lost. Satisfying these requirements presents many challenges, especially in large-
scale and highly dynamic environments with shared computing and communication
resources, resource heterogeneity in terms of capability, capacity and costs, and where
application behaviour, needs, and performance are highly variable.

The overall goal of this research to develop a data streaming and in-transit data
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manipulations service that provides the mechanisms as well as the management strate-
gies for data intensive scientific and engineering workflows to addresses the require-
ments outlined above. In our previous work we addressed efficient and robust wide-
area data streaming, and developed autonomic management strategies based on online
control [16]. The developed service minimizes overheads on the simulations, provided
proactive model-based Quality of Service (QoS) control at the data source, and avoids

loss of data.

In this chapter, we address in-transit data manipulation and transformation us-
ing resources in the data path between the source and the destination. The specific
objectives of this chapter are (1) to experiment with reactive management strate-
gies for in-transit data manipulation, and (2) to investigate the coupling of these
strategies with the application level self-managing data streaming service developed
in our previous work, to create a cooperative management framework for wide-area
data-streaming and in-transit data manipulation for data-intensive scientific and en-
gineering workflows. This research is driven by the requirements for the Department
of Energy (DOE) Scientific Discovery through Advanced Computation Solicitation
(SciDAC), Center for Plasma Edge Simulation (CPES) Project [48] and the Grid-
based coupled fusion simulations that are used in the experiments presented in this

chapter.

The rest of this chapter is organized as follows. Section 7.1 describes the driving
Grid-based fusion simulation project and highlights its data streaming and in-transit
data processing challenges and requirements. Section 7.2 presents the overall ar-
chitecture of the proposed data streaming service and the cooperative management
framework, and summarizes our previous work on autonomic application level data
streaming using model based online control. Section 7.3 describes the in-transit data
manipulation framework and presents experimental evaluations of various strategies
for managing the in-transit operation and cooperative end-to-end management. Sec-

tion 7.4 concludes the chapter and presents future work.
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7.1 The Fusion Simulation Project and its Data Streaming

Requirements

7.1.1 Fusion Simulation Workflow

The overarching goal of the DOE SciDAC CPES fusion simulation project [48] is to
develop a new integrated Grid-based predictive plasma edge simulation capability to
support next-generation burning plasma experiments, such as the International Ther-
monuclear Experimental Reactor (ITER). Effective online management and transfer
of the simulation data is a critical part for this project and is essential to the scientific
discovery process. It consists of coupled simulation codes, i.e., the edge turbulence
particle-in-cell (PIC) code XGC coupled with Nimrod and the microscopic MHD
code (M3D), which run simultaneously on thousands of processors on separate HPC
resources at possibly distributed supercomputing centers. The data produced by
these simulations must be streamed at runtime, to remote sites, for online simulation
monitoring and control, simulation coupling, data analysis and visualization, online
validation, and archiving. Furthermore, the data may have to be processed enroute
to the destination as the data may have to transformed to match the coordinate sys-
tem, representation, format, distribution and mapping, etc., of the destination node.
Similarly, features of interest may need to be extracted and processed enroute to

visualization or monitoring applications.

7.1.2 Data Streaming and In-Transit Processing Requirements

The fundamental requirement for a wide area data streaming and in-transit data pro-
cessing service is to efficiently and robustly stream data from live simulations to re-
mote services while satisfying the following constraints: (1) Enable high-throughput,
low-latency data transfer to support near real-time access to the data. (2) Minimizing

overheads on the executing simulation. The simulation executes in batch for days and
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we would like the overhead of the streaming on the simulation to be less than 10%
of the simulation execution time. (3) Adapting to network conditions to maintain
desired QoS. The network is a shared resource and the usage patterns typically vary
constantly. (4) Handle network failures while eliminating loss of data. Network fail-
ures usually lead to buffer overflows, and data has to be written to local disks to avoid
loss. This increases the overhead in the simulation. Further, the data is no longer
available for remote analysis. (5) Effectively schedule and manage in-transit process-
ing while satisfying the above requirements - this is particularly challenging due to the
limited capabilities and resources and the dynamic capacities of the typically shared

processing nodes.

7.2 A Self-Managing Service for Data Streaming and In-

Transit Processing
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Figure 7.1: Conceptual Overview of the Self-managing Data Streaming and In-Transit
Processing Service
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A conceptual overview of the self-managing data streaming and in-transit process-
ing service for Grid-based data intensive scientific workflows is presented in Figure 7.1.
It consists of two key components: The first is an application level data streaming
service, which provides adaptive buffer management mechanisms and proactive QoS
management strategies based on online control and user-defined polices, at applica-
tion end-points. The second component provides scheduling mechanisms and adaptive
runtime management strategies for in-transit data manipulation and transformation.
These two components work cooperatively to address the overall application con-
straints and QoS requirements outlined in Section 7.1.2. The first component has
been addressed in our previous work [16] and is briefly summarized below. This
chapter focuses on the second component and experiments with different in network

processing strategies as well as their couplings with the application level mechanisms.

7.2.1 Application Level Data Streaming

The application level self-managing data streaming service combines model-based lim-
ited look-ahead controllers (LLC) and rule-based autonomic managers with adaptive
multi-threaded buffer management and data transport mechanisms at the application
endpoints. It is constructed using the Accord-WS infrastructure for self-managing
Grid services [53] and supports high throughput, low latency, robust application level
data streaming in wide-area Grid environments as demonstrated in [16]. The au-
tonomic data streaming service is illustrated in Figure 7.2 and consists of a service
manager and an LLC controller. The service manager monitors the state of the ser-
vice and its execution context, collects and reports runtime information, and enforces
the adaptation actions determined by its controller. Augmenting the element man-
ager with an LLC controller allows human defined adaptation polices, which may
be error-prone and incomplete, with mathematically sound models and optimiza-
tion techniques for more robust self-management. Specifically, the controller decides

when and how to adapt the application behavior and the service managers focus on
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Figure 7.2: A Self-Managing Application Level Data Streaming Service

enforcing these adaptations in a consistent and efficient manner. The structure of
the LLC-based online controller is shown in Figure 7.3. The figure shows the key
operating parameters for the controller at simulation node n; at time step k£ which
are as follows. (1) State variable: The current average buffer size at n; denoted as
¢i(k). (2) Environment variables: \;(k) denotes the data generation rate into the
buffer ¢; and B(k) the effective bandwidth of the network link from source to the
sink. (3) Control or decision variables: Given the state and environment variables at
time k, the controller decides w;(k) and pu;(k), the data-transfer rate over the remote
storage (Data Grid) and to the local storage respectively [16]. The objective of the
controller denoted by ¢* is to keep the %buffer occupancy ¢;(k) (%data blocks in the
buffer) at zero. Note that ¢;(k) should be less than 100% so that the buffer does not

overflow.

The self-managing service behaves as follows. The element manager supplies the



97

Bk

A
Y

Application Level | 4
or LLC Controller QA

= 2
Service 2
‘ g'r?fézz';'; \{ Remote Storage

¢;(k)

¢ = Controller Objective

Figure 7.3: Design of the LLC controller for an Application Level Data Streaming
Service

LLC controller (as shown in Figure 7.2) with information about the internal state
of the application and the environment, which includes the observed buffer size,
simulation-data generation rate, and the network bandwidth. When the controller
detects congestion due to a decrease in parameter B(k), it advises the service manager
to increase w;(k) and decrease p;(k) to avoid loss of simulation data. The element
manager contains the set of rules, which are invoked based on the controller’s advice
or decisions to adapt the service. For example, the controller decides the amount of
data to be sent over the network or to local storage, and the service manager uses
the controllers advise to select the corresponding buffer management scheme to be
used within the data streaming service to achieve this. The element manager can also
adapt the data streaming service to send data to local storage rather than streaming
it to a remote site when the network is congested. Experimental evaluation of the
application level data streaming service in a wide area Grid environment demonstrate
its scalability, stability, its ability to effectively maintain application QoS and avoid

data loss, as well as its low overheads on the simulation [16].
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7.2.2 In-Transit Data Manipulations

The in-transit data manipulation framework consists of a dynamic overlay of avail-
able in-transit processing nodes (e.g., workstations or small to medium clusters) with
heterogeneous capabilities and loads. Note that these nodes may be shared across
multiple workflows. The conceptual architecture of a node is illustrated in Figure 7.4.
Each node performs three steps, viz., processing, buffering and forwarding. The
processing depends on the capacity and capability of the node and the amount of
processing that is still required. The basic idea is that each node completes at least
its share of the processing (which may be predetermined or dynamically computed)
and can perform additional processing if the network is too congested for forwarding.
The amount of processing completed is logged in the data block itself. The goal of the
in-transit processing is to process as much data as possible before the data reaches the
sink. A processing that is not completed in-transit will have to be performed at the
sink. The current design of the framework assumes that each node can perform any
of the required data manipulations functions. Each in-transit node maintains a buffer
associated with each flow. The structure of this buffer is shown in Figure 7.5. The
buffer has a fixed size and wraps around once it fills up. The data input rate at each
in-transit node is the amount of data queued at the buffer per second and the buffer
drainage rate is proportional to the network connectivity of the outgoing link. The
buffering algorithm at the node is reactive in that it attempts to dynamically adjust

to the buffer input and buffer drainage rates. It does this by aggregating the blocks
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of data that have accumulated since the start of the transfer and transfers this aggre-
gated block of data in the next transmission. The size of the block transferred thus
depends on the network connectivity and the transfer time of the previous transfer.
Data transmission is multi-threaded and the number of transmission threads is con-
trolled dynamically. Depending on the data input and drainage rates, the following

situations can occur:

e Input rate exceeds drainage rate: In this situation the node attempts to maxi-
mize the data sent out by increasing the level of multi-threading at the trans-

mission layer and improves throughput.

e Input rate is approximately equal to the drainage rate: In this situation new
data accumulates in the buffer during each transfer. The first transfer will
be the first data block queued, and the subsequent transfers will consist of
blocks aggregated during the previous transfer. The buffer management scheme

subsequently achieves equilibrium on the number of blocks transferred.

e Input rate is smaller than the drainage rate: In this situation, if the buffer

manager encounters an empty buffer, it waits until more data is queued.
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The operation of an in-transit node is a follows. Each incoming data block is first
processed, then queued in the buffer and finally forwarded to the next stage. Thus,
the time spent by a data block at each in-transit node is thus the sum of the processing
time (t,), buffering time (4, ss) and forwarding time (¢). During congestion, 4, sy can
sharply increase in relation to t, and ¢;. Since congestion can cause buffer overflows
and loss of data at the in-transit nodes. In this case, rather the node attempts to
further process the data block. The heuristic used is based on %Buffer Occupancy,
i.e. the %data blocks stored in the buffer - when a node’s buffer occupancy exceeds
a certain threshold; the node decides to perform additional computation on the data
blocks. This is illustrated in Figure 7.6. The rationale is that subsequent in-transit
nodes downstream or the sink will then have to perform a smaller processing, which

will offset the increased latency due to congestion.

7.2.3 Cooperative Self~-Management: Coupling Application

Level and In-Transit Management

The application level and in-transit management can be coupled to achieve coop-
erative end-to-end self-management. Coupling is beneficial particularly in cases of
congestion, which normally occur at one of the shared links in the data path between

the sources and sink nodes.
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In the standalone case as illustrated in Figure 7.7, if application level management
was used in isolation, the application level controller would detect the congestion by
observing a decrease of parameter B(k), and it would advise the service manager
to increase w;(k) and decrease pu;(k), i.e., to reduce the amount of data sent on the
network and increase the amount of data written to the local storage thereby avoiding
data loss. While this would eventually reduce the congestion in the data path, it would
require that the data blocks written to the local storage be manually transferred to

and processed at the sink.
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Figure 7.8: Cooperative End-to-End Management - In-Transit Node Signals Appli-
cation Level Controller about Network Congestions (with Coupling)
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However in the coupled scenario (see Figure 7.8), the in-transit node signals the
controller at the source in response to local congestion that it detects by observing its
buffer occupancy and sends it information about its current buffer size. This allows
the application level controller to detect congestion more rapidly, rather than have to
wait until the congestion propagates back to the source, and in response, it increases
its ¢;(k) (or in turn ¢*) to a value higher than zero so as to throttle items in its
buffer till the congestion at the in-transit nodes is relieved. This, in turn, reduces the

amount of data that is written to the local disk at the source.

7.3 Implementation and Experiments

Rutgers University

Data In-Transit

)

Data Producers

ORNL &

4O

Figure 7.9: The Fusion Simulation Workflow used in the Experiments

This section presents experiments using the cooperative self-managing data stream-
ing service as part of a fusion workflow. The overall application setup is shown in
Figure 7.9. It consists of the Simulation Service (SS), i.e., the GTC fusion simulation,
which runs at NERSC (CA) and ORNL (TN), and streams data for analysis to PPPL
(NJ) and final data archiving at Rutgers University (NJ). The simulation service (SS)
executes on 32 to 256 processors on “Seaborg”, an IBM SP machine at NERSC, and

on 256 processors on “RAM”, an SGI Altix machine. The Autonomic (self-managing)
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Data Streaming Service (ADSS) is co-located with the SS at NERSC and ORNL. The
in-transit processing is performed by the Data Analysis Service (DAS) located at the
in-transit nodes at PPPL and Rutgers. Data Archiving Service (ArchS) is also lo-
cated at Rutgers which is referred to as the sink or data consumer. Three in-transit
nodes were used in these experiments. These included 32 AMD Athlon MP 2100+
processors (“gridn” cluster), 4 dual-core AMD Opteron processors (“portalx” cluster)
both located at PPPL and a 64 processor Intel Pentium (1.70GHz) Beowulf cluster
(“Frea”) located at Rutgers. Note that there is a 155 Mbps (peak) ESNET [50] con-
nection between PPPL and NERSC and a 100 Mbps network connection between
PPPL and Rutgers.

The ADSS service consists of a Controller based Buffer Management Service
(CBMS), which contains an LLC online controller, and a Data Transfer Service (DTS).
The controller interval for the CBMS was set to 80 seconds based on the data gener-
ation rates at the simulation end [16]. DTS uses a generic high performance transfer
library for transferring data from simulation machines and is based on Logistical
Networking (LN) [73].

The Data Analysis Service (DAS) operating at PPPL and Rutgers consists of
the Processing Service (PS), Reactive Buffer Management Service (BMS) and Data
Transfer Service (DTS). DAS consumes data blocks streamed from the simulation
or adjacent DAS services, and after applying the right PS it forwards them to the
following DAS. Three in-transit processing functions were used in these experiments,
viz., sorting, scaling and FFT, each of which could be run on any of the in-transit

nodes. The experiments conducted are presented below.

7.3.1 Normal Operation of DAS without Congestion

This experiment evaluates the behavior of DAS at the in-transit nodes during normal
operation, i.e., when there is no congestion. Figure 7.10 plots the average relative

times spent per data block on each of the three component services, i.e., processing
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Figure 7.10: Breakup of the %Time Spent at the Each of the Services Comprising
the DAS per Data Block

(PS), buffering (BMS) and forwarding (DTS). As seen from the figure, processing
time (i.e., PS) is 80% on average, buffering time (i.e., BMS) is 3.2% on average, and
forwarding time (i.e., DTS) is 17.8% on average. Buffering time mainly denotes the
idle time for the data block in the DAS. Note that during the initial phases of the
experiment, it is observed that the BMS time is significantly higher because of initial
buffer warm up. This experiment provides the baseline for the experiments presented

below.

7.3.2 Operation of the DAS during Congestion but without

Adaptation

In this experiment, congestion was introduced between PPPL and Rutgers using the
Trickle library [34], and the experiments conducted above were repeated. Figure 7.11
once again plots the average relative times spent per data block on each of the three
component services, i.e., processing (PS), buffering (BMS) and forwarding (DTS).

The plots show that during congestion, the forwarding time increases significantly
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when compared to the normal operation case (i.e., Figure 7.10) and accounts for
41.64% of the total time. The buffering time (i.e., BMS) also increases as expected.
Since there is no adaptation, the processing component (i.e., PS) remains the same

but only accounts for 33% of the total time in this case.
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Figure 7.11: Breakup of %Time Spent at the Each of the Services Comprising the
DAS per Data Block During Congestion and No Adaptation

7.3.3 Operation of DAS during Congestion with Adaptation

This experiment modifies the experiment above to introduce adaptation at the in-
transit nodes, i.e., the DAS service adaptively processes data in its buffers when it
observes the %buffer occupancy is above 60%. As seen in Figure 7.13, the buffering
(BMS) time decreases and the processing (PS) time increases correspondingly as
expected. The adaptation does not effect the forwarding (DTS) time. The effects of
the adaptation can be seen in Figure 7.12. In this figure, the buffering (BMS) time
(thick lines in the graph) reduces from an average of 1.2 seconds in the case without
adaptation to an average of 0.06 seconds with adaptation. The overall time per data
block in the DAS is slightly reduced from 4.83 seconds to 4.53 seconds as data blocks

would have to be written to high latency local storage without adaptation.
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Figure 7.12: Effects of Adaptation on DAS During Congestion - Buffering or Idle
Time Reduced Significantly

7.3.4 Operation of ADSS with and without Coupling

This experiment evaluates the end-to-end behavior of the application level ADSS
service with and without cooperative management and coupling with the in-transit
DAS service. The cumulative data transferred for different controller intervals for the
two cases are plotted in Figure 7.14. Since congestion events sent by the in-transit
nodes cause ADSS to buffer data blocks rather than having them written to local
storage, the effective cumulative data transferred during congestion (i.e., controller
intervals 9-20) drops. Figure 7.15 plots the average %buffer occupancy at an in-transit
node (averaged over the three in-transit nodes used in the experiments) before, during
and after congestion for this experiment. The average %buffer occupancy before the
congestion is between 48.2% and 51%, which corresponds to normal operation (slight
increase is due to the overheads of adaptation). During congestion, ADSS decides
to throttle data blocks in response to congestion events from the in-transit nodes.
This causes the average %buffer occupancy to decrease to about 60.8%. Without

throttling and coupling, the average %buffer occupancy is significantly higher above



107

100

a0 —
—_— Y Time at P38 during congestion and adaptation
80 | —— %, Time at BM S (idle time) during congestion and adaptation

70 %Time at DTS during congestion and adaptation

60 —|
50 _MWWMWWMMW
40 —
30 -

20

%Time spent per data block at DAS

10 —

0 T T T T T T T T T T
0 100 200 300 400 500 600 700 800 900 1000 1100
Number of data blocks received at DAS

Figure 7.13: Breakup of %Time Spent at the Each of the Services Comprising the
DAS per Data Block during Congestion with Adaptation

80%. Higher buffer occupancies at the in-transit nodes may lead to failures and result
in data being dropped, and can impact the QoS at the sink. After the congestion
clears and ADSS stops throttling data, the average %buffer occupancy at the in-

transit nodes resets to around 50-57%.

7.3.5 Effect of Adaptations at In-Transit Nodes on the Qual-

ity of Data Received at Sink

This experiment measures the quality of data received at the sink, in terms of the
number of processing functions completed, with congestion and with and without in-
transit adaptations. The higher the number of processing functions completed, the
higher the quality and utility of the data to the sink. The quality of data without
adaptations is plotted in Figure 7.16. It can be seen from the plot that during
congestion, the cumulative amount of data received at the sink with 3 processing
functions (PS) applied is 0 MB, while the cumulative amount of data received with

2 processing functions (PS) applied is around 300 MB. In contrast, when adaptation
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Figure 7.14: ADSS Behaviour with and without Coupling

at the in-transit nodes are turned on in Figure 7.17, the cumulative amount of data
received at the sink with 3 processing functions (PS) applied is around 232 MB.
Higher data quality can save significant time at the sink. For example, if the average
processing time per data block is 1.6 sec, adaptations save about 372 sec (approx. 6

minutes) of processing time at the sink.

7.3.6 Effectiveness of End-to-End Cooperative Management

This experiment measures the cumulative amount of data that is not delivered on time
to the sink with only application level management and with end-to-end cooperative
management. This is plotted in Figure 7.18. In all cases, when there is no congestion,
all data blocks reach the sink. However, when there is congestion, if only application
level management is used, about 399 MB does not reach the sink. When cooperative

management is used, this drops to around 294 MB.
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Figure 7.15: Average %Buffer Occupancy at the In-Transit Nodes with Coupling

7.4 Conclusion

This chapter presented the two level self-managing framework for in-transit manip-
ulations of data in scientific workflows. The first level uses application level online
controllers for high throughput data streaming while the second level of management
operating at the in-transit nodes uses reactive strategy for processing data. It was
found that this two level cooperative scheme achieves good QoS management for real-
workflows involving the GTC application even during network congestions. In future
we will investigate various strategies involving utility and micro-economic principles

for scheduling in-transit computations in Grid workflows.
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Chapter 8

Slack-based Provisioning of In-Transit Processing
for Data Intensive Scientific Workflows

8.1 Introduction

High-performance computing is playing an important role in science and engineer-
ing and is enabling highly accurate simulations, which provide insights into complex
physical phenomena. However as computing systems grow in scale, complexity, and
capability, effectively utilizing these platforms to achieve desired computational effi-
ciency in both time and space becomes increasingly important and challenging. A key
challenge is managing the enormous data volumes and high data rates associated with

these applications, so as to have minimal impact on the execution of the simulations.

Furthermore emerging scientific and business application workflows are based on
seamless interactions and coupling between multiple and potentially distributed com-
putational, data and information services. This requires addressing the natural mis-
matches in the ways data is represented in different workflow components and on a
variety of machines, and being able to “outsource” the required data manipulation
and transformation operations to less expensive commodity resources “in-transit”.
Satisfying these requirements is challenging, especially in large-scale and highly dy-
namic in-transit environments with shared computing and communication resources,
resource heterogeneity in terms of capability, capacity, and costs, and where applica-

tion behaviors, needs, and performance are highly variable.

The overall goal of this research to develop a data streaming and in-transit data
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scheduling and manipulations service that provides mechanisms as well as the manage-
ment strategies for data intensive scientific workflows to addresses the requirements
outlined above. In the previous chapter (Chapter 7) in-transit data manipulation and
transformation was addressed using static resources in the the data path between the

source and the destination.

In this chapter, slack metric based strategies are used to address the issue of
scheduling and provisioning in-transit computations on an dynamic overlay of in-
transit nodes. As discussed in Chapter 3 QoS objectives of both the Application
level and In-Transit level are captured using a slack metric which bounds the time
availability for data processing and transmission, such that the data reaches the
sink or end-point in a timely manner. The in-transit nodes use the slack metric to
make an optimum selection of resources in the dynamic overlay path and in turn
minimize the end-to-end delay and maximize the quality of processed data in the
overall workflow. The specific objectives of this chapter are (1) To capture QoS
objectives at both application and in-transit levels using the concept of slack for
in-transit data scheduling and manipulation (2) To investigate the coupling of slack
metric strategies at the application level with slack managers at the in-transit level to

create a cooperative management framework for data-intensive scientific workflows.

The rest of this chapter is organized as follows. Section 8.2 briefly presents the
overall architecture of the cooperative management framework for data streaming
and in-transit processing using the slack metric. Section 8.3 illustrates the design
of the slack metric at the LLC controller. Section 8.4 discusses about the design
and interaction of the in-transit nodes using the slack metric to adaptively process
data generated at the application level. Section 8.5 couples both the in-transit and
application level management to achieve QoS for the workflow. Section 8.6 describes
the implementation of the slack based in-transit data manipulation framework for the
Fusion Simulation Workflow (FSP). Section 8.7 presents preliminary results using the

slack metric. Section 8.8 concludes the chapter.
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8.2 A Self-Managing Service for Data Streaming and In-

Transit Processing

In-Transit Level
Slack metric “Reactive” management

Slack metric

[ Slack metfric
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Figure 8.1: Self-managing Data Streaming and In-Transit Processing Service

A conceptual overview of the self-managing data streaming and in-transit process-
ing service for data intensive scientific workflows is presented in Figure 8.1. It consists
of two key components: The first is an application level data steaming service, which
provides adaptive buffer management mechanisms and proactive QoS management
strategies based on online control and user-defined polices, at application end-points.
It also consists of slack generator at the LLC controller and slack corrector at end-
points to ensure timely delivery of data. The second component provides scheduling
mechanisms and adaptive runtime management strategies for in-transit data manip-
ulation and transformation. Each in-transit node updates the slack metric on each
data item. It also uses the slack metric to make an optimum selection of resources
in the dynamic overlay path and in turn minimizes the end-to-end delay and maxi-

mizes the quality of processed data in the overall workflow. These two components
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work cooperatively to address the overall end-to-end application constraints and QoS
requirements outlined in Section 1.2. Some components in this service have been ad-
dressed in our previous Chapters 6, 7 and papers [16] [17] and is briefly summarized
below. This chapter however focuses on the slack based provisioning and in-transit
processing on dynamic overlays consisting of heterogeneous resources as well as their

couplings with the application level mechanisms.

8.3 Application Level Data Streaming
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Figure 8.2: Application Level Data Streaming Service and Slack Generator

The application level self-managing data streaming service combines model-based
limited look-ahead controllers (LLC) and rule-based autonomic managers with adap-
tive multi-threaded buffer management and data transport mechanisms at the ap-
plication endpoints. It is constructed using the Accord-WS infrastructure for self-
managing Grid services [53] and supports high throughput, low latency, robust appli-

cation level data streaming in wide-area Grid environments as demonstrated in [16,
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18]. The autonomic data streaming service is illustrated in Figure 8.2 and consists
of a service manager and an LLC controller. The service manager monitors the state
of the service and its execution context, collects and reports runtime information,
and enforces the adaptation actions determined by its controller. Augmenting the
element manager with an LLC controller allows human defined adaptation polices,
which may be error-prone and incomplete, with mathematically sound models and
optimization techniques for more robust self-management. Specifically, the controller
decides when and how to adapt the application behavior and the service managers
focus on enforcing these adaptations in a consistent and efficient manner. Addition-
ally the slack generator at the application level uses input from the LLC controller to
initially fix slack on data items generated. It also uses inputs received from the slack
manager at the in-transit node (SLAM) and from the slack correctors at the sink to

update (increase/decrease) the slack metric.

8.3.1 Slack Metric Generator
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Figure 8.3: Design of the Slack Metric Generator for an Application Level Data
Manipulation and Streaming
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The structure of the LLLC-based online controller is shown in Figure 8.3. The figure

shows the key operating parameters for the controller at simulation node n; at time
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step k which are as follows. (1) State variable: The current average buffer size at n;
denoted as ¢;(k). (2) Environment variables: \;(k) denotes the data generation rate
into the buffer ¢; and B(k) the effective bandwidth of the network link from source to
the sink. (3) Control or decision variables: Given the state and environment variables
at time k, the controller decides w;(k) and p;(k), the data-transfer rate over the remote
storage (Data Grid) and to the local storage respectively [16]. The objective of the
controller denoted by ¢* is to keep the %buffer occupancy ¢;(k) (%data blocks in the
buffer) at zero. Note that ¢;(k) should be less than 100% or size of buffer so that the

buffer does not overflow.

The LLC controller is augmented with the slack metric generator to minimize
the execution and forwarding time in-transit while meeting a strict deadline of QoS
requirements at the sink. Slack metric is the deadline fixed by the controller by which
the processing and forwarding of the data must be completed in-transit before the
data item reaches the sink. In doing so, it is guided by factors such as cost and speed of
transferring, processing and queuing data items along the path. The slack at the LLC
controller denoted as Slack;(k), is initially calculated based on the number (db,(k))
of standard data blocks of size (stdblock,) (for example 1MB, 2MB, 4MB) contained
in the data items being transferred (u;(k) * ¢;(k)) over the network with bandwidth
B(k). It also includes the time taken to process each data block of standard size
(stdblock,) with its respective in-transit function fi..f,, (denoted as t(f;) at the sink
(obtained through previously executing in-transit functions at the sink (history)). It
is assumed here that the computational capacity at the sink is substantially lower
than the in-transit nodes. The size of the each datablock is fixed depending on the
application which generates the data. The slack calculation at each data streaming

application level node n; is as per the following equation:

n

Slacki(k) = (ui(k) * q:(K)/B() + 3 dby(k) = D (1)

J=1
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Vdb, (k) = (pi(k) * ¢;(k))/(stdblock,)

Each in-transit node updates the Slack;(k) as it is processed and forwarded by sub-
tracting the time spent by the data item in-transit from Slack;(k). When the data
item reaches the sink, it has a value Slack}(k) and denotes if the data items generated
at the application reached the sink on time. A negative value indicates that the data
items reached the sink later than than the slack generator had estimated. A positive
value indicates that the slack generator over-estimated the processing and forwarding
requirements at the in-transit level. A feedback of this value will be reported to the

slack generator for further action in the next controller cycle.

8.4 In-Transit Nodes

Neighboring Neighboring
in-transit hodes in-transit nodes

Slack Manager (SLAM)

Incoming

queue

Figure 8.4: Architecture of an In-Transit Node

The in-transit data manipulation framework consists of a dynamic overlay of in-
transit nodes which are on the path from the source to the destination. The in-
transit node services run on small to medium commodity clusters with heterogeneous
capabilities, loads and networks connecting them. These nodes are shared between
multiple scientific workflows. The conceptual architecture of a node is illustrated in
Figure 8.4. Each node performs the following steps during its normal operation, it
first places the data it receives in a data processing queue for performing in-transit

functions. The decision to forward or process the data is based on slack of the received
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data item and various network or load conditions on the in-transit node. The decision
of doing processing of a data item or forwarding it to the next hop is taken by the slack
metric manager or SLAM. If the SLAM decides to process data items it does so by
placing data on top of the data processing queue and invoking a processing thread.
The processing thread applies the right in-transit function on it, by observing the
metadata of the data. The amount of in-transit processing which has been done on
the data item is logged back into the data item itself. The amount of data processing
done in the in-transit node depends on the capacity and capability of the node and
the available slack for the data item received. Negative or near 0 slack values result
in data being immediately forwarded to the destination, while positive slack triggers
further in-transit processing. The in-transit node then buffers the data items for
forwarding to the next hop in the in-transit overlay or to the sink. The SLAM then
updates the current slack (Slack;(k)) on the data item based on the in-transit time
which includes data processing, queuing and forwarding time. If the in-transit node
cannot do a local processing on the data and the data has positive slack value, SLAM
searches for the best in-transit node in its neighborhood that can satisfy its slack
constraints on the data, in doing so it also takes into account the time required for
sending the data item to the next hop. A processing that is not completed at the
in-transit nodes has to be done at the sink. The current design of the framework

assumes that each node can perform any of the required in-transit functions.

8.4.1 Adaptations at In-Transit Nodes
Adaptive Processing of Data at In-Transit Nodes

Congestion and overloading of an in-transit node can cause buffer overflows, loss
of data and failure or delay of data reaching the sink. The slack metric managers
(SLAM) at the in-transit nodes need to take corrective action to prevent such failures.

As seen from Chapters 3 and 7, the time spent by a data item per in-transit node is
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Figure 8.5: Adaptive Processing of Data at In-Transit Nodes by Re-Queuing

the sum of processing, buffering and forwarding times. During network congestions or
increased loads downstream (due to overloading of data processing queues), buffering
time significantly increases in relation to processing and forwarding times. If the
buffer occupancy of current data forwarding queues reach a certain threshold and
data processing queue is lightly loaded, SLAM adaptively re-queues data items to the
data processing queue. This re-queuing is also based on the present slack value of the

data item. This scenario is highlighted in Figure 8.5.
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Figure 8.6: Adaptive Load Balancing of Data at In-Transit during Overloading
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Adaptive Load Balancing of Data at In-Transit Nodes

Similarly during overloading of a in-transit node due to the execution of in-transit
functions or other shared jobs, data in the data processing queue may suffer long
waiting times. If data processing queues are saturated (i.e. node is heavily loaded)
and forwarding queues are lightly loaded (downstream node(s) are lightly loaded and
no congestion), SLAM re-queues data to forwarding queue instead of processing the
data items (as illustrated in Figure 8.6). The data items from the processing queues
are selected based on their slack metric. Data items with negative slack are prioritized
over positive slack values, when selecting and re-queuing to the forwarding queues.
Alternatively if the forwarding queues are also saturated (downstream node(s) are
heavily loaded or there is congestion), SLAM first forwards data items to peer nodes in
the overlay with the smallest median slack metric for data items in its data processing
queue. Once the buffer occupancy in the forwarding queue is reduced, the SLAM
then re-queues data from processing queue to the forwarding queue. This helps in

minimizing impact of congestion/high loads on end-to-end performance.

8.5 Cooperative Self-management: Coupling Application Level

and In-Transit Management

The application level and in-transit management can be coupled to achieve coopera-
tive end-to-end self-management. Coupling is beneficial in cases of network congestion
or CPU overload. In cases of network congestion data may not reach the sink and in
cases CPU overload the in-transit node may become unavailable for in-transit pro-
cessing. In the standalone case as illustrated in Figure 8.7, if the application level
controller and the slack manager was used in isolation without feedback from the
in-transit nodes and through the sink, the controller would detect a decrease of pa-
rameter B(k). It would advise the service manager to increase w;(k) and decrease

i (k) to reduce the amount of data sent over the network. While this would eventually
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reduce network congestion, it would not compensate for the time required to manually
transfer the data items once the simulation has completed and process it at the sink.
It also does not take into account the nature of varying application QoS requirements
and the possibility of potential CPU overloading and current state at the in-transit

nodes. In the coupled scenario, there are two levels of interaction, which help the
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Figure 8.8: Interaction between Application and In-Transit Level during Load Imbal-
ance and Network Congestions at In-Transit Level

application level controller to learn about events in the in-transit nodes. First in
case of congestions at in-transit nodes, buffer occupancies of data forwarding queues
at in-transit queues increase significantly. These in-transit nodes signal application

level controllers about network congestion events. This allows the application level
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controller for that data stream to detect the congestion more rapidly, rather than
wait for the data item to reach the sink. In response to this event the application
level controller increases ¢;(k) (or in turn ¢* the controller objective) to a value higher

than zero so as to throttle data items in the buffer.

Though this approach reduces the amount of data written to hard disk at the
application level controller, it does not take into account the processing capacities
and the current state at the in-transit node. The slack corrector at the sink observe
the time taken for processing and forwarding at each in-transit node for a particular
data stream. If they observe, that slack for a particular data item has exceeded
more than the required threshold, they inform the application level controller, to
increase the slack allocated for the data items by increasing the processing time for
function fi..f,. Once the congestion clears, the slack correctors at the sink observe
that the slack allocated is sufficient (slack metric has a positive value) and instruct
slack generators at the application level controllers to decrease the slack metric per
data item. This end-to-end and in-transit interaction by observing the state of the
in-transit nodes, helps to achieve QoS under dynamic operating conditions for these

workflows.

8.6 Implementation of the Framework for the Fusion Simu-

lation Workflow

This section presents experiments using the cooperative self-managing data streaming
service as a part of the fusion workflow. The overall application setup is shown in
Figure 7.9. It consists of the Simulation Service (SS), i.e., the GTC fusion simulation,
which runs at NERSC (CA) and ORNL (TN), and streams data for analysis to PPPL
(NJ) and final data archiving at Rutgers University (NJ). The simulation service
(SS) executes on 32 to 256 processors on “Jacquard” [65], at NERSC, and on 256

processors on “RAM”, an SGI Altix machine. The Autonomic (self-managing) Data
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Figure 8.9: Slack based Fusion Simulation Workflow Implementation

Streaming Service (ADSS) is co-located with the SS at NERSC and ORNL. The
in-transit processing is performed by the Data Analysis Service (DAS) located at
the in-transit nodes at PPPL and Rutgers. Data Archiving Service (ArchS) is also
located at Rutgers which is referred to as the sink or data consumer. Three in-transit
nodes were used in these experiments. These included 32 AMD Athlon MP 2100+
processors (“gridn” cluster), 4 dual-core AMD Opteron processors (“portalx” cluster)
both located at PPPL and a 64 processor Intel Pentium (1.70GHz) Beowulf cluster
(“Frea”) located at Rutgers. Note that there is a 155 Mbps (peak) ESNET [50]
connection between PPPL and NERSC and a 100 Mbps network connection between

PPPL and Rutgers.

The ADSS service consists of a Controller based Buffer Management Service

(CBMS), which contains an LLC online controller, and a Data Transfer Service (DTS).
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The controller interval for the CBMS was set to 80 seconds based on the data genera-
tion at the simulation end [16]. DTS uses a generic high performance transfer library
for transferring data from simulation machines and is based on Logistical Network-
ing (LN) [73]. The ADSS was enhanced with the SLAGS (Slack Generator Service)
for generating slack metric on data items generated at the application. Similarly the
sink was enhanced with SLACS (Slack Correction Service) for observing slack on data
items received at sink and in-turn helps the SLAGS update slack metric value based

on current in-transit network congestion and load.

The Data Analysis Service (DAS) operating at PPPL and Rutgers consists of the
Processing Service (PS), Reactive Buffer Management Service (BMS), Data Transfer
Service (DTS) and Slack Management Service (SLAMS) for managing the slack’s
of data items in the workflow. The DAS consumes data blocks streamed from the
simulation or adjacent DAS services, and after applying the requisite PS it forwards
them to the appropriate DAS based on the decision of the SLAMS. Three in-transit
processing functions were used in these experiments, they included sorting, scaling
and FFT, each of which could be run on any of the in-transit nodes. The experiments

conducted are presented in the next section.

8.7 Evaluation

This section presents preliminary results obtained using the slack metric. It first
discusses the construction of the slack metric using the input from the LLC controller
and from history values obtained by previously executing the in-transit functions on

the sink.
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8.7.1 Benchmarking In-Transit Functions

This section studies the performance of three in-transit function which include Data
Scaling( “scale”), Quicksort(“gsort”) and Fast Fourier Transform(“fft”) over three dif-
ferent infrastructures which include the source, in-transit overlay and sink resources.
These functions were first executed on lightly loaded machines for various data sizes
ranging from 1MB to 1024 MB depending on the in-transit functions. Later these
functions were executed on the sink machine which had load simulator programs run-
ning. The purpose of this experiment was to derive slack values at the slack metric
generator in cases of congestion at the in-transit overlay resources. The idea is to
increase the value of the slack till they reach the maximum possible value allowed by

the system. Figure 8.10 illustrates that gsort time at the source for 4MB data is .69
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Figure 8.10: Benchmarking “gsort” In-Transit function for Deriving Slack Metric

sec., while the same 4MB data requires 1.5 sec. at the overlay nodes and 5.5 sec. at
the sink. But after the sinks are loaded the gsort function suffer and require 57 sec.
to complete. When the sinks are loaded they can also process data till around 128MB
due to memory available for processing is significantly reduced. For example 128MB

takes 3564 sec./~ 60 minutes to process at the sink. Hence it is essential to execute
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in-transit functions in the overlay for large data sizes making in-transit processing

attractive for end-to-end workflow. As seen from Figure 8.11 when running the fft
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Figure 8.11: Benchmarking “fft” In-Transit function for Deriving Slack Metric

benchmark the time to execute this function on both the in-transit overlay and sink
are nearly equivalent, as the function does not consume much memory and is not
recursive as compared to the gsort function. The time to execute the fft function on
the source is slightly lesser compared to both the in-transit and sink, but the source
is able to process data items of size 512MB as compared to the sink/overlay nodes.
When the sink is loaded, it takes around 1122 sec./~ 20 minutes to run fft function on
128MB. Finally we benchmark the scale function all resources, and we observe that
there is a linear scaling with increasing data sizes even with loading at the sink. We
also observe that there is a breakdown at the sink when the scale function executes
on 456MB of data, due to memory related issues. Similarly a loaded sink cannot

execute scale functions on data sizes above 128MB in a reasonable amount of time.
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Figure 8.12: Benchmarking “scale” In-Transit function for Deriving Slack Metric

8.7.2 Benchmarking Forwarding Time

To benchmark the end-to-end forwarding time data was sent from source to the sink
via the in-transit overlay, additionally data was sent among the in-transit nodes. From
Figure 8.13 it is observed that end-to-end forwarding time was significantly higher due
to lower buffering capacity at the sink. For example 4MB of data required 0.2 sec. for
forwarding in the overlay while the same data took 6 sec. for end-to-end forwarding.
Hence if the in-transit nodes are loaded and buffering capacity is limited, it incurs

lesser overhead to forward data items to nearby in-transit nodes for load-balancing.

8.8 Conclusion

This chapter presented the two level self-managing framework using a slack metric
for in-transit manipulations of data in scientific workflows. The first level operating
at application level uses proactive management strategies for data streaming and
generates the slack metric for capturing QoS of the application data at both levels and

ensures strict time deadlines are met at the sink. The second level of management
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Figure 8.13: Benchmarking Data Forwarding Time both End-to-End and Within the
In-Transit Overlay

operating at the in-transit nodes uses opportunistic strategies for processing data
using the slack metric as a guiding parameter. Initial experiments were conducted
to generate slack parameter at the application level using benchmarking techniques.
In future we plan to conduct extensive experiments on Emulab [35] infrastructure to
study the effects of slack metric on in-transit processing by creating interesting overlay
topologies. We also plan to evaluate methods to trade off slack for maximizing quality

of processed data reaching the sink.
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Chapter 9

Conclusions and Future Work

This chapter presents the summary of the thesis and the future work to be conducted.

9.1 Summary

This thesis presented the design and implementation of a self-managing data stream-
ing and in-transit processing service that enables efficient data transport and ma-
nipulation to support emerging Grid-based scientific workflows. The presented de-
sign of end-to-end QoS management combines rule-based heuristic adaptations with
more formal model-based online control strategies to provide a self-managing service
framework that is robust and flexible, and can address the dynamism in application
requirements and system state. The fusion simulation workflow was used to evaluate
the data-streaming and in-transit processing service and its self-managing behaviours.
The results demonstrate the ability of the service to meet Grid-based data-streaming
requirements, as well as its efficiency and performance. The work completed to date

is summarized below.

e End-to-End Self Management Mechanisms:

— Adaptive Buffer Management strategies: Buffer management using
simple strategies was used as an initial framework for deploying end-to-end

data streaming applications.

— Self-Managing Data Streaming using Accord: Policy and rule based

programming framework was used for inducing adaptive behaviors into the
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data streaming framework, taking into account the key characteristics of

Grid execution environments.

— Self-Managing Data Streaming using Rule and Model based On-
line Control: Advanced control formulations offered a theoretical basis
for self-managing adaptations in distributed applications. As a result a
combination of typical rule-based self-management approaches with for-
mal model-based online control strategies was used to introduce adaptive

behaviour in data streaming applications.

e Reactive and Opportunistic Mechanisms for In-transit Data Manip-
ulation: Quick reactive strategies operate at in-transit processing elements

which process data items from multiple streams.

e Slack-based Provisioning and In-Transit Data processing: to make an
optimum selection of resources in the dynamic overlay path and in turn minimize
the end-to-end delay and maximize the quality of processed data in the overall

workflow.

e Infrastructure and Deployment: The wide area data streaming framework
was deployed and operational for transferring data from NERSC to PPPL and
from ORNL to PPPL. The testbed also allows the scientist perform data in-

transit manipulations from NERSC/ORNL to Rutgers via PPPL clusters.

9.2 Future Work

Self-managing data streaming and in-transit processing framework was integrated in
several scientific applications proving that it is a valuable component for realizing
large-scale decentralized Grid workflows. Future workflow domains to be investi-
gated include financial data streaming. With the popularity of technologies such as

GPGPU’s efforts will be made to integrate GPGPU’s into the in-transit overlay which
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presently use commodity clusters for data processing. Similarly technologies such as
virtualization now makes it possible to enable efficient utilization of in-transit nodes.
Additionally the two level self-managing framework will incorporate learning meth-
ods at the application and in-transit levels to better understand network and system

behaviors, to tolerate overloads and system faults.

9.2.1 Study End-to-End Self-Management Mechanisms us-

ing Finite State Machines (FSM)

Model based online controllers are designed for stable operating parameters and are
not suited for in-transit application workflows, where environment conditions or op-
erating parameters, such as network state and CPU load, change rapidly. The end-
to-end self management mechanisms in these cases need to adapt quickly. To address
these issues, we will investigate self management mechanisms using a finite state ma-
chine approach. Each state of the finite state machine is associated with a feedback
controller that is customized to that state. Each feedback controller has a small
gain factor and is invoked in response to state transitions which occur due to fre-
quent and asynchronous environment events. Unlike our previous approach of model
based online control it is not necessary to construct models especially, in cases where
models are difficult to build and verify. We anticipate that this new end-to-end self-
management approach has a low overhead and works well at the data production

ends, particularly in cases of data in-transit application workflows.

9.2.2 Incorporate Learning Methods at Application and In-
Transit Levels
Self-managing data streaming applications in our framework are based on models

that are constructed offline by observing application characteristics and behaviour.

However when applications need to be reprogrammed or changed, they tend to exhibit
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varied and unpredictable behaviour and this may lead to a significant re-modeling
effort. We intend to use a learning loop (reinforcement learning (RL) techniques) to
increase the accuracy of the models, by adjusting the model based on the previous
mismatches between the model and performance of the application. Additionally
learning could be used at in-transit level to learn changes in processing times of in-
transit jobs and take corrective action on slack metrics. For this purpose it is intended
to use the winGamma [33] software from University of Cardiff to analyze data from
slack metric logs at in-transit nodes and also at the application level data streaming
models to better understand data streaming application and operating environment
behaviour. winGamma, is designed for non-linear data analysis (using the Gamma

test) and non-linear modeling (using neural networks and local-linear regression).

9.2.3 Application to Financial Data-Streaming

Financial data comprising of individual stock, bond, securities and currency trades
can be accumulated from multiple sources over the internet to produce massive data
streams. Additionally sophisticated data processing engines such as the Bloomberg
Terminal [56] (from Bloomberg L.P.) evaluate queries over real-time streaming finan-
cial data such as stock tickers and news feeds to produce meaningful data to traders
and market analysts. Furthermore these devices can push market data over the inter-
net to users on lightweight clients. Moreover consolidation of servers into data centers
or server farms where data is stored, can enable traders to have access to large amount
of data. All of these point to the fact that there is an increased data management
challenge when dealing with real-world financial applications that require streaming
application workflows. We intend to address these challenges by incorporating finan-
cial applications into the self-managing framework designed in this thesis. To solve
the problem of data streaming and in-transit processing for financial applications sev-

eral key assumptions need to be modified, one being that in-transit functions do not



134

change the size of the data. If these assumptions are removed from the problem for-
mulation new strategies could be devised at the in-transit nodes, wherein in-transit
functions which reduce the size of the data could be used to offset latency due to
network congestions. Simultaneously the in-transit nodes and end-point needs to
deal with issues where in-transit functions could produce more data than was input
to the functions. Overall financial data streaming applications presents significant
challenges and changes need to be made to the design of the slack metric at the LLC

controllers to incorporate financial data into the self-managing framework.

9.2.4 Integration with GPGPUs into the In-Transit Overlay

The general-purpose GPU (GPGPU or GP?2U) [37] computing phenomenon has
gained momentum over the last few years, and has reached the point where it has
been accepted as an application acceleration technique. Various innovative uses of
GPUs include computing game physics between frames, linear algebra (e.g., LU de-
composition), in-situ signal and image processing, database “SELECT” processing,
finite element and partial differential equation solvers, and tomography image recon-
struction, to name a few. Applications continue to appear on the horizon that exploit
the GPU’s parallelism and vector capabilities. In the future in-transit nodes in our
scientific workflow could be replaced with GPGPU’s to enable specialized process-
ing. To account for this change we need to devise strategies at the in-transit level
to take advantages of the parallel stream processing capabilities of GPGPU’s. These
strategies could involve exploiting the parallelism of these operations for scheduling
jobs at GPGPU’s and thus reducing overhead on in-transit nodes. Furthermore, we
need to study if adaptive forwarding mechanisms at GPGPU’s produce overhead on

executing stream applications.



135

9.2.5 Virtualization of In-Transit Nodes

Virtualization [87] technology basically lets one computer do the job of multiple com-
puters, by sharing the resources of a single computer across multiple environments.
Essentially commodity clusters used in our in-transit processing node will host mul-
tiple in-transit processing units, freeing the in-transit processing from limitations of
the underlying operating system. In addition the application of virtualization at
in-transit nodes could lead to potential energy savings and lower capital expenses
due to more efficient use of hardware resources. This can lead to better in-transit
management, increased security across multiple application workflows, and improved
disaster recovery processes. Virtualization technologies at in-transit nodes would en-
able us to spawn multiple instances of in-transit processing elements in a new virtual
machine(vm) in case of increased load on the current in-transit elements. Though
it needs to be seen if creating a new virtual machine, introduces significant over-
head on the executing system. Additionally it could enable creation of multiple data
streaming elements to allow for faster forwarding of in-transit data. Furthermore this
technology introduces challenges at the in-transit management layer, where the slack

manager need to deal with scheduling data processing efficiently across multiple vim’s.
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