Self-adaptive Architectures for Autonomic
Computational Science

Shantenu Jha'!, Manish Parashar?, and Omer Rana®

1 Center for Computation & Technology and Department of Computer Science,
Louisiana State University, USA, and e-Science Institute,
University of Edinburgh, UK
sjha@cct.lsu.edu

2 Department of Electrical & Computer Engineering, Rutgers University, USA

parashar@rutgers.edu
3 School of Computer Science, Cardiff University, UK

o.f.rana@cs.cf.ac.uk

Abstract. Self-adaptation enables a system to modify it’s behaviour
based on changes in its operating environment. Such a system must uti-
lize monitoring information to determine how to respond either through
a systems administrator or automatically (based on policies pre-defined
by an administrator) to such changes. In computational science appli-
cations that utilize distributed infrastructure (such as Computational
Grids and Clouds), dealing with heterogeneity and scale of the underly-
ing infrastructure remains a challenge. Many applications that do adapt
to changes in underlying operating environments often utilize ad hoc,
application-specific approaches. The aim of this work is to generalize
from existing examples, and thereby lay the foundation for a framework
for Autonomic Computational Science (ACS). We use two existing appli-
cations — Ensemble Kalman Filtering and Coupled Fusion Simulation —
to describe a conceptual framework for ACS, consisting of mechanisms,
strategies and objectives, and demonstrate how these concepts can be
used to more effectively realize pre-defined application objectives.

1 Introduction

Developing and deploying self-adaptive applications over distributed infrastruc-
ture provides an important research challenge for computational science. Sig-
nificant recent investments in national and global cyberinfrastructure, such as
the European EGEE/EGI, the US TeraGrid, the Open Science Grid and the
UK National Grid Service, have the potential for enabling significant scientific
insights and progress. The use of such infrastructure in novel ways has still not
been achieved however, primarily because of the inability of applications that
are deployed over such infrastructure to adapt to the underlying heterogeneity,
fault management mechanisms, operation policies and configuration parameters
associated with particular software tools and libraries. This problem is only
compounded by new and more complex application formulations such as those

D. Weyns et al. (Eds.): SOAR 2009, LNCS 6090, pp. 177 , 2010.
© Springer-Verlag Berlin Heidelberg 2010

178 S. Jha, M. Parashar, and O. Rana

based on dynamic data. Tuning and adapting an application is often left to
the skills of specialist developers, with limited time and motivation to learn
the behaviour of yet another deployment environment. In applications where
automation has been achieved, this generally involves understanding specific ap-
plication behaviours, and in some instances, specialised capabilities offered by
the underlying resources over which the application is to be executed. General-
ising from such applications and developing a more generic framework has not
been considered. We take an application-centric approach to better understand
what such a framework should provide, focusing on how: (i) applications can
be characterized, to enable comparison across different application classes — the
basis of our previous work [17]; (ii) understanding tuning mechanisms and as-
sociated strategies that can be applied to particular application classes. The
longer term objective of this work is to derive adaptation patterns that could be
made available in a software library, and directly made use of when constructing
distributed scientific applications.

It is useful to note that the development of self-adaptive systems has generally
followed either: (i) a top-down approach, where overall system goals need to be
achieved through the modification of interconnectivity or behaviour of system
components — realized through a system manager; (ii) a bottom-up approach,
where local behaviour of system components needs to be aggregated (without
a centralized system manager) to generate some overall system behaviour. In
our approach we are primarily focused on (i), as this relates closely with ex-
isting approaches within computational science. However, we also believe that
approach (ii) could be used as an initial phase, whereby resource ensembles
could be dynamically formed within Grid and Web-based communities, using
self-organization approaches, and as discussed in Serugendo et al. [24]. Such an
approach would enable application characteristics or resource characteristics to
be used as an initial phase to cluster resources/applications prior to utilizing an
autonomic deployment strategy.

2 A Conceptual Framework for Autonomic
Computational Science

A conceptual framework to support autonomic computational science applica-
tions is presented in this section. We identify possible architectures, and relate
the approaches discussed here to reflective middleware and control loop models.
In the context of Grid computing environments considered in this work, the use
of a shared, multi-tasking environment is assumed. An application (or user) in
such an environment requests access to a pre-determined number of resources
(CPUs, memory, etc), and it is the responsibility of the resource management
system (generally a batch queuing system) to ensure that access to these re-
sources is granted over the requested time interval. The resource manager does
not (in most cases) provide any quality of service guarantees.

Self-adaptive Architectures for Autonomic Computational Science 179

2.1 The Autonomic Computing Paradigm

The autonomic computing paradigm is modelled after the autonomic nervous
system and enables changes in its essential variables (e.g., performance, fault,
security, etc.) to trigger changes to the behavior of the computing system such
that the system is brought back into equilibrium with respect to the environ-
ment [I6]. Conceptually, an autonomic system requires: (a) sensor channels to
sense the changes in the internal state of the system and the external environ-
ment in which the system is situated, and (b) motor channels to react to and
counter the effects of the changes in the environment by changing the system
and maintaining equilibrium. The changes sensed by the sensor channels have to
be analyzed to determine if any of the essential variables have gone out of their
viability limits. If so, it has to trigger some kind of planning to determine what
changes to inject into the current behavior of the system such that it returns
to the equilibrium state within the new environment. This planning requires
knowledge to select the right behavior from a large set of possible behaviors
to counter the change. Finally, the motor neurons execute the selected change.
Sensing, Analyzing, Planning, Knowledge and Execution are thus the keywords
used to identify an autonomic computing system. A common model based on
these ideas was identified by IBM Research and defined as MAPE (Monitor-
Analyze-Plan-Execute) [19]. There are, however, a number of other models for
autonomic computing [23], [I1] — in addition to work in the agent-based systems
community that share commonalities with the ideas presented above. In what
follows, we explore the applications of this paradigm to support computational
science.

2.2 Conceptual Architectures for ACS

Looking at existing practices in computational science, two corresponding con-
ceptual architectures can be observed, which are described below. These archi-
tectures are composed of the application, a resource manager that allocates,
configures and tunes resources for the application, and an autonomic manager
that performs the autonomic tuning of application and/or system parameters.
Figure [illustrates the first conceptual architecture, where the application and
resources are characterized using a number of dynamically modifiable param-
eters/variables that have an impact on the overall observed behaviour of the
application. Each of these parameters has an associated range over which it can
be modified, and these constraints are known a priori. The autonomic tuning
engine alters these parameters based on some overall required behaviour (hereby
referred to as the application objective) that has been defined by the user. Tun-
ing in this case is achieved by taking into account, for example, (i) historical
data about previous runs of the application on known resources, obtained us-
ing monitoring probes on resources; (ii) historical data about previous selected
values of the tunable parameters; (iii) empirically derived models of application
behavior; (iv) the specified tuning mechanism and strategy; etc.

180 S. Jha, M. Parashar, and O. Rana

Resources
Result R
esults
Application |~ | Resource é -

Inputs Manager '\
“«

I Tuning
@ Tuning Parameters R

Paramsters |

T— Autonomic v

Tuning @

Historical (monitoring) data

Fig. 1. Autonomic tuning of application and resource manager. R refers to a compu-
tational resource. parameters.

For example, an autonomic tuning mechanism in this architecture may involve
changing the size of the application (for instance, the number of data partitions
generated from a large data set, the number of tiles from an image, etc.), or the
set of parameters over which execution is being requested. This tuning is used
to make desired tradeoffs between quality of solution, resource requirements and
execution time or to ensure that a particular Quality of Service (QoS) constraint,
such as execution time, is satisfied.

A variant, also illustrated in Figure[I], involves updating the resource manager
based on information about the current state of the application. As an example
of such an approach, consider an application using dynamic structured adaptive
mesh refinement (SAMR) [9] techniques on structured meshes/grids. Compared
to numerical techniques based on static uniform discretization, SAMR, meth-
ods employ locally optimal approximations and can yield highly advantageous
ratios for cost/accuracy by adaptively concentrating computational effort and
resources to regions with large local solution error at runtime. The adaptive na-
ture and inherent space-time heterogeneity of these SAMR implementations lead
to significant challenges in dynamic resource allocation, data-distribution, load
balancing, and runtime management. Identifying how the underlying resource
management infrastructure should adapt to changing SAMR, requirements (and
possibly vice versa) provides one example of the architecture in Figure [l

Figure [2] illustrates another conceptual architecture, where the application is
responsible for driving the tuning of parameters, and choosing a tuning strategy.
The autonomic manager is now responsible for obtaining monitoring data from
resource probes and the strategy specification (for one or more objectives to be
realized) from the application. Tuning now involves choosing a resource man-
agement strategy that can satisfy the objectives identified by the application.
This approach primarily relates to the system-level self-management described

Self-adaptive Architectures for Autonomic Computational Science 181

Resources

Results
*— | Resource /

Application N
B Inputs Manager \IE‘

Tuning Fd

Strategy
Tuning
@ Parameters IE‘

!
Autonomic
Tuning Ej

Historical {monitoring) data

Fig. 2. Autonomic tuning by application. R refers to a computational resource.

in Section[Il An example of such an architectural approach is the use of resource
reservation to achieve a particular QoS requirement. The G-QoSM framework [I]
demonstrates the use of such an architecture, involving the use of a soft real-time
scheduler (DSRT) along with a bandwidth broker to make resource reservation
over local compute, disk and network capacity, in order to achieve particular
application QoS constraints.

We reiterate that the conceptual architectures — tuning by and of applications,
defined above are not exhaustive, but provide an initial formulation with a view
towards understanding a set of applications that we discuss.

2.3 A Conceptual Framework

A conceptual framework for ACS can be developed based on the conceptual
architectures discussed above (and illustrated in Figures [l and 2l), comprised of
the following elements:

Application-level Objective (AO): An AO refers to an application require-
ment that has been identified by a user — somewhat similar to the idea of a
“goal” in Andersson et al. [2]. Examples of AO include increase throughput,
reduce task failure, balance load, etc. An AO needs to be communicated to the
autonomic tuning component illustrated in Figures [and The autonomic
tuning component must then interact with a resource manager to achieve these
objectives (where possible). There may be multiple AOs that need to be satisfied,
and there may be relationships between them.

Mechanism: a mechanism refers to a particular action that can be used by
the application or the resource manager (from Figures [l and 2]) to achieve an
AO. A mechanism is triggered as a consequence of some detected event(s) in the
application or it’s environment over some pre-defined duration.

Hence, a mechanism m may be characterized in terms of: {m¢} — the set of
events that lead to the triggering (activation) of the mechanism; {m;} — the

182 S. Jha, M. Parashar, and O. Rana

Application
lhas

{Application Objectives}
e.g. load balancing

achieved through organised using
{mechanisms} prescrioe {strategies}
e.g. change DAG fan-in/fan-out e.g. work
adaptation

Fig. 3. Relationship between AO, mechanism and strategy. An Application can have
multiple application objectives (indicated by {...} notation). Each objective can be
achieved through a set of mechanisms based on strategies. The set and organization of
mechanisms used to achieve an AQO is prescribed by the specific strategy used.

set of data inputs to the mechanism; {m,} — the set of output data generated;
and {m¢} — the set of output events that are generated during the execution of
the mechanism or after its completion. An example of a mechanism includes file
staging. In this mechanism, {m;} corresponds to one or more file and resource
references prior to the staging process has started, {m,} corresponds to the
file references after staging has completed, {m¢} refers to the input events that
trigger the file staging to begin, and {m¢} corresponds to output events that are
generated once file staging is completed.

Comparing with the view of a mechanism in [2], where the action undertaken
is classified as being: (i) structural or parametric (primarily parametric in this
framework); (ii) system or human assisted; (iii) centralized or decentralized; (iv)
local or global; (v) short, medium or long term; (vi) best effort or guaranteed;
and (vii) event or time triggered. All of these classifications also apply in the
context of the ACS presented here.

Strategy: One or more strategies may be used to accomplish a particular AO.
A strategy is defined in terms of one or more partially-ordered mechanisms. A
strategy may be specified manually (by a systems administrator, for instance) or
constructed using an autonomic approach. The focus of this particular work is on
the latter. A strategy is managed by the autonomic tuning component illustrated
in Figures[lland 2] and may be maintained as a collection of templates that are
adapted depending on the application or the resource manager properties.

Note that given AO can be fulfilled by multiple strategies, and the same
strategy can be used for different AO. For example, self-configuration can be
used for both load-balancing as well as higher-throughput. Figure [illustrates
the relationship between these concepts.

Self-adaptive Architectures for Autonomic Computational Science 183

2.4 Relationship to Reflective Middleware

Reflective middleware [21] attempts to adapt the behaviour of an application
depending on the deployment platform. One primary motivation for this work
stems from the need to expose the dynamic state of the underlying middleware
(and provide tuning capability) to the application, so that it can utilize more
effective control strategies to adapt it’s behaviour as the underlying deployment
infrastructure changes (assuming that an instance of the same reflective mid-
dleware is available on these different infrastructures). Two key features enable
this capability within the middleware: (i) “reflection” to enable the system to
reason about and act upon itself, through a representation of its own behaviour,
amenable to examination and change; (ii) “causal connectivity” to enable any
changes made to the system’s self-representation to impact it’s actual state and
behavior, and vice-versa. A component-based approach is generally adopted to
enable different component instances to be chosen depending on the underlying
deployment platform.

Reflective middleware relies on the existence of multiple component imple-
mentations that can be deployment over multiple platforms. In addition, such
middleware relies on the ability of the underlying platform to expose it’s state
to the middleware, so that it can be managed externally. This is not always pos-
sible, as many scheduling engines, for instance, would not allow an application
to alter job execution priorities on a given platform. From Section 2] in the
conceptual architecture in figure 1, the autonomic tuning engine is considered
to be external to the application. In figure 2, the application interacts with the
tuning engine and not directly with the resource manager. Hence, behaviour or
structural reflection capabilities could be used by the tuning engine, but not
directly by the application. In many practical application deployments, it is un-
realistic to assume the availability of specialist middleware on externally hosted
platforms.

There are three key differences between the approach advocated here and
concepts identified in reflective middleware efforts: (i) tuning of the application
is logically external to the application and undertaken through a tuning engine;
(ii) the tuning engine does not rely on the availability of specialist modules to
be hosted/executed by the resource manager, instead relying on existing tuning
parameters that are already made available by the resource manager; (iii) there
is also generally a separation between adaptation policy and mechanisms — both
of which can be dynamic, and combined in different ways to get different auto-
nomic behaviors. In the reflective middleware this is not the case - policy and
mechanisms are generally integrated in middleware design.

Andersson et al. [3] take a wider view and suggest how self-adaptation could be
supported in software systems through reflection. They describe a self-adaptive
software system as one that is able to “change it’s behaviour by reflecting
on itself”. In this work, reflection is primarily associated with developing a
meta-model of computation undertaken by a system. The meta-model is pro-
posed as the basis for allowing a computational system to reason about and act
upon itself. Hence, two types of activities are supported at such a meta-level,

184 S. Jha, M. Parashar, and O. Rana

“introspection” and “intercession”. Introspection is the process of inspection and
reasoning about the system, whereas intercession is the subsequent modification
of the system’s meta-model. Self-Representation, Reflective Computation and
Separation of Concerns are used to characterize the properties of a reflective
system. The overall framework provided in this work provides a useful basis for
developing adaptive systems that can be driven through the development of a
meta-model and a suitable representation of a domain-model. However, devel-
oping such a meta-model (or domain-model) is difficult in complex applications.
In our work, we therefore do not require a meta-model to be created, instead
relying on a tuner component that is able to observe the outputs only, and not
the internal working of a system. In the same context, when considering the
tuning of an application, the granularity of what can be modified is also limited
in many realistic applications, and access to granularity at the level of classes,
objects, methods and method calls (as advocated in [3]) is often not possible.

2.5 Relationship to Control Loop Models

It is useful to note that the MAPE architecture identified in section 2] shares
similarities with architectures adopted in feedback control, such as Model Refer-
ence Adaptive Control (MRAC) [25] and Model Identification Adaptive Control
(MIAC) [26]. MRAC relies on comparing existing system state with that of a
known model, and using this response to drive a controller that manipulates the
system, whereas MIAC relies on deriving known properties of the model from
system function (observations and measurements). Both of these approaches
have been found to be of most benefit when the system being controlled has
limited capability, and where the control loop is explicit. In many computa-
tional science applications, control loops are often hidden / abstracted, or hard
to identify in the same way as in the types of applications utilizing a traditional
MRAC architecture. Where control loops do exist, either the construction of a
model (to steer the controller) or the tunable parameters that can be externally
modified are limited. It is also possible in distributed computational science ap-
plication for multiple control loops to exist, one associated with each resource
(or ensemble).

As outlined in [I0] adaptation mechanisms may be external to an application
and not hard-wired. Developing an autonomic tuner that is external to the ap-
plication provides a separation between system capability and tuning strategies.
In the conceptual architectures presented in section 2.2, we have identified an
explicit control loop external to the application. It is also possible to use the
catalogue of self-adaptive mechanisms derived from natural systems (as outlined
n [10]), by combining a top down approach (as being advocated in this work)
and top-down approaches based on ‘emergent’ coordination mechanisms.

Model-driven approaches in software engineering have also been proposed to
maintain a link between high and low-level views of software. Such approaches
advocate the inclusion of particular run-time configurable parameters that are
added at design time to a model of the software being adapted. However, as
Nierstrasz et al. [22] point out, certain types of anomalies arise only after the

Self-adaptive Architectures for Autonomic Computational Science 185

software has been deployed (and cannot be known at design time) — thereby mak-
ing it difficult to anticipate what and where to trace to observe the problematic
behaviour. Nierstrasz et al. [22] propose the idea of a model-centric view that can
take the context of deployment and execution into account, in order to control
the scope of adaptations to be made to the software system. Our approach is
closely aligned with this thinking, as we believe that the context is important in
the types of tuning that can be supported. In the case of the application scenarios
we describe, such context is based on the particular computing environment over
which the application is deployed. A key difference from the work of Nierstrasz
et al. [22] is that our adaptation is not at the same level of granularity — as [22]
propose software modification at the level of source code and the dynamic addi-
tion of instrumentation code (through the use of an aspect-oriented approach).
For many scientific applications, having access to source code is often not pos-
sible. Similarly, such applications may use external libraries (such as numeric
libraries) that would be difficult to instrument directly. In our approach, there-
fore, identifying what needs to be monitored has to be specified beforehand —
and we cannot overcome the constraints of anticipating where monitoring should
take place.

3 Application Case Study

In Jha et al. [I8] we provided a discussion of application vectors that may be used
to characterize scientific applications. Every distributed application must, at a
minimum, have mechanisms to address requirements for communication, coordi-
nation and execution, which form the vectors we use: Execution Unit, Communi-
cation (Data Exchange), Coordination, and Execution Environment.
Ezecution unit refers to the set of pieces/components of the application that are
distributed. Communication (data exchange) defines the data flow between the
executions units. Data can be exchanged by messages (point-to-point, all-to-all,
one-to-all, all-to-one, or group-to-group), files, stream (unicast or multicast), pub-
lish /subscribe, data reduction (a subset of messaging), or through shared data.
Coordination describes how the interaction between execution units is managed
(e.g. dataflow, control flow, SPMD (where the control flow in implicit in all copies
of the single program), master-worker (tasks executed by workers are controlled
by the master), or events (runtime events cause different execution units to be-
come active.)) An ezecution environment captures what is needed for the applica-
tion to run. It often includes the requirements for instantiating and starting the
execution units (which is also referred to as deployment) and may include the re-
quirements for transferring data between execution units as well as other runtime
issues (e.g. dynamic process/task creation, workflow execution, file transfer, mes-
saging (MPI), co-scheduling, data streaming, asynchronous data 1/0, decoupled
coordination support, dynamic resource and service discovery, decoupled coordi-
nation and messaging, decoupled data sharing, preemption, etc.).

Two applications are described in sections B3] and which demonstrate
how the conceptual architectures described in section are utilized, and which
make use of the application vectors described above.

186 S. Jha, M. Parashar, and O. Rana

3.1 Ensemble Kalman Filters

Ensemble Kalman filters (EnKF) are widely used in science and engineering [14].
EnKF are recursive filters that can be used to handle large, noisy data; the data
can be the results and parameters of ensembles of models that are sent through
the Kalman filter to obtain the true state of the data. EnKF-based History
Matching for Reservoir simulations [I3] is an interesting case of an application
with irregular, hard-to-predict run time characteristics. The variation in model
parameters often has a direct and sizable influence on the complexity of solving
the underlying equations, thus varying the required runtime of different models
(and consequently the availability of the results). Varying parameters sometimes
also leads to varying systems of equations and entirely new scenarios. This in-
creases the computational size requirements as well as memory requirements. For
example as a consequence of the variation in size, the underlying matrix might
become too large or even effectively lead to doubling the number of the system
of equations, which could more than double the memory required to solve these
system of equations. The forecast model needs to run to completion — which is
defined as convergence to within a certain value. The run time of each model
is unpredictable and uncorrelated with the run-time of models running on the
same number of processors. At every stage, each model must converge, before
the next stage can begin. Hence dynamically load-balancing to ensure that all
models complete as close to each other as possible is the desired aim. The num-
ber of stages that will be required is not determined a priori. In the general case
the number of jobs required varies between stages. Table [Il provides the tuning
mechanisms used in the EnKF application.

We define T, as the time in seconds it takes to complete a defined applica-
tion workload — comprising of a fixed ensemble size (one hundred members) and
number of stages (five iterations of ensemble runs followed by KF). Any con-
sistent reduction in the total time to completion will eventually have a greater
impact on larger runs with more stages. There are three main components that
are necessary to consider in order to understand T, . The first is the time that
it takes to submit to the queuing system and time for file-transfers (in and out)
— labelled as toyerhead, and which is typically small for these large, long-running

Table 1. Tuning Mechanisms in EnKF

Vectors Mechanisms

Coordination Centralized Data-store (SAGA)
Pilot-Job (BigJob) abstraction

Communication File staging, File indexing

Execution Centralized Scheduler

Environment Resource Selection/Management,
Task re-execution,
Task migration, Storage management,
File caching, File distribution,
Checkpointing

Self-adaptive Architectures for Autonomic Computational Science 187

simulations. The second component is the time that the submitted jobs wait in
queue for resources requested to become available — labelled as t,4i; the final
component is the run-time that simulations actually take to complete — labelled
as tryn- ThUS, Tc = toverhead + twait + trun-

Experiments to determine T, using different number of machines working con-
currently towards a solution of the same application instance were performed;
an increase in performance was measured by a reduced T, for up to three ma-
chines. Although there were fluctuations in both the wait-time in queue and the
time to complete the work-load, the fluctuations were dominated by the former.
Therefore in an attempt to minimise wait-times in queue and thus to lower the
overall T, , this application attempts to launch jobs on multiple TeraGrid (TG)
resources using a Batch Queue Predictor (BQP) [4] [8]- a tool available on a
number TG resources that allows users to make bounded predictions about the
time a job of a given size and duration will spend in the queue. The objective is
to run a number of jobs corresponding to a different stage of EnKF execution.
BQP-based prediction is given with a degree of confidence (probability) that the
job will start before a certain deadline (i.e. the time in the queue) and quantile.
Quantile value is a measure of repeatability; more precisely it is an indication of
the probability that jobs of similar sizes and durations will have the same wait
time. This information is vital when submitting jobs to various machines as the
longer a job sits in the queue, the longer the delay for the entire stage. BQP
provides the ability to predict, with given probability, which resource and when
a job (with a specified number of processors and estimated run-time) is most
likely to finish.

Figure @ shows the results when using three TG machines: Ranger, Queen-
Bee and Abe. Ranger is the flagship machine of the Texas Advanced Computing
Centre; QueenBee (QB) the flagship machine of LONI and Abe a large machine
at NCSA. This figure demonstrates how machine combinations can be used, with
and without BQP. To ensure that each machine is used efficiently, it is neces-
sary to undertake load balancing that takes account of the properties of each
machine (such as queue times and predictions derived from BQP). This there-
fore becomes an application objective that could be achieved manually by an
application scientist or supported through an autonomic strategy, as identified
in Table 2l Hence, either the size of a job/task could be adapted based on what
machines are available to run the application, or suitable resources could be dis-
covered using queue prediction information derived from BQP. It is also possible
to make use of BQP to autonomically chose resources for a particular job (based
on resource properties), and to guide the selection of resource configuration on
a predetermined machine. When using more than one machine, e.g., RQA-BQP,
both the selection of the resources and the selection of resource configuration
are variables. For RQA-BQP, it is possible that even though three resources are
available, all jobs will be submitted to a single resource with much higher capac-
ity or temporary lower load-factors (e.g, after a power-down/start-up). These
results are further explained in [13].

188 S. Jha, M. Parashar, and O. Rana

Mean Total Wall-Clock Time To Completion

- } === Gtandard Error

Time in Seconds

g 3

3000 4000 5000 6000 7000

R R-BQP Q RQ RQA RQA-BQP
Machines

Fig. 4. Time to completion for different configurations. Left to Right: (i) Ranger (ii)
Ranger when using BQP, (iii) QueenBee, (iii) Ranger and QueenBee, (iv) Ranger,
QueenBee and Abe, (v) Ranger, QueenBee and Abe when using BQP. [12]

Table 2. EnKF application management through autonomic strategies

Application Autonomic Strategy

Objective
Load 1. Adapt task mapping granularity
Balancing based on system capabilities/state

File staging, File splitting/merging
Task rescheduling, Task migration
File distribution and caching,
Storage Management

2. Resource Selection
Resource selection (using BQP),
resource configuration update,
Task rescheduling, Task migration
File distribution and caching
Storage Management

Scientific Algorithmic Adaptivity

Fidelity Change solvers

This application therefore demonstrates that the use of queue information
to guide the selection of resources and to configure resources, provides a better
overall job execution performance. Rather than postponing such a decision until
run-time, utilizing prior information to enable an autonomic manager to support
resource selection can lead to better overall quality of service. This application

Self-adaptive Architectures for Autonomic Computational Science 189

also demonstrates the use of the conceptual architecture in Figure[ll where each R
utilizes a queuing system with BQP, and collects historical data. The Autonomic
Tuning manager can then communicate with a Resource Manager to determine
which resource to select. The EnKF application utilizing the resource manager
does not need to be modified, as the tuning is undertaken external to the appli-
cation.

3.2 Coupled Fusion Simulation

The DoE SciDAC CPES fusion simulation project [20] is developing an inte-
grated, Grid-based, predictive plasma edge simulation capability to support
next-generation burning plasma experiments, such as the International Ther-
monuclear Experimental Reactor (ITER). The typical application workflow for
the project consists of coupled simulation codes, i.e., the edge turbulence particle-
in-cell (PIC) code (GTC) and the microscopic MHD code (M3D), which run
simultaneously on thousands of processors on separate HPC resources at super-
computing centers, requiring data to be streamed between these codes to achieve
coupling. Furthermore, the data has to be processed en-route to the destination.
For example, the data from the PIC codes has to be filtered through “noise
detection” processes before it can be coupled with the MHD code. As a result,
effective online management and transfer of the simulation data is a critical part
for this project and is essential to the scientific discovery process.

As a result, a core requirement of these coupled fusion simulations is that the
data produced by one simulation must be streamed live to the other for cou-
pling, as well as, possibly to remote sites for online simulation monitoring and
control, data analysis and visualization, online validation, archiving, etc. The
fundamental objective being to efficiently and robustly stream data between live
simulations or to remote applications so that it arrives at the destination just-in-
time — if it arrives too early, times and resources will have to be wasted to buffer
the data, and if it arrives too late, the application would waste resources waiting
for the data to come in. A further objective is to opportunistically use in-transit
resources to transform the data so that it is more suitable for consumption by
the destination application, i.e., improve the quality of the data from the desti-
nation applications point of view. Key objectives/constraints for this application
can be summarized as: (1) Enable high-throughput, low-latency data transfer to
support near real-time access to the data; (2) Minimize overheads on the execut-
ing simulation; (3) Adapt to network conditions to maintain desired QoS — the
network is a shared resource and the usage patterns typically vary constantly. (4)
Handle network failures while eliminating loss of data — network failures usually
lead to buffer overflows, and data has to be written to local disks to avoid loss,
increasing the overhead on the simulation. (5) Effectively schedule and manage
in-transit processing while satisfying the above requirements — this is particu-
larly challenging due to the limited capabilities and resources and the dynamic
capacities of the typically shared processing nodes.

These objectives can be effectively achieved using autonomic behaviors [5J6]
based on a range of strategies and mechanisms. Autonomic behaviors in this case

190 S. Jha, M. Parashar, and O. Rana

Table 3. Tuning mechanisms in the Coupled Fusion Simulation application

Vectors Mechanisms

Coordination Peer-2-Peer interaction

Communication Data Streaming, Events

Execution Storage Selection (local/remote),

Environment Resource Selection/Management,
Task migration, Checkpointing
Task execution (local/remote)
Dynamic provisioning (provisioning of
in-transit storage/processing nodes)

span (1) the application level, e.g., adapting solver behavior, adapting iteration
count or using speculative computing by estimating the delayed data and rolling
back if the estimation error exceeds a threshold; (2) the coordination level, e.g.,
adapting end-to-end and in-transit workflows as well as resources allocated to
them; and (3) the data communication level, e.g., adaptive buffer management
and adaptive data routing. Furthermore, this application also involves the use
of a hybrid autonomic approach that combines policy-based autonomic manage-
ment with model-based online control [7].

A conceptual overview of the overall architecture is presented in Figure [l
It consists of two key components. The first is an application-level autonomic
data streaming service, which provides adaptive buffer management mechanisms
and proactive QoS management strategies, based on online control and governed
by user-defined polices, at application end-points. The second component oper-
ates at the in-transit level, and provides scheduling mechanisms and adaptive

In-Transit Level
“Reactive” management
Budget

B el
] T Manager
L 2

e
A
Application Level w
“Proactive” management Sink

Budget
Manager

Budget
estimation

Budget
Manager

Budget correction

Fig. 5. Conceptual overview of the self-managing data streaming and in-transit pro-
cessing service

Self-adaptive Architectures for Autonomic Computational Science 191

runtime management strategies for in-transit data manipulation and transforma-
tion. These two components cooperate to address overall application constraints
and QoS requirements.

Application level autonomic data streaming: The application level autonomic
data streaming service combines model-based limited look-ahead controllers
(LLC) and rule-based autonomic managers, with adaptive multi-threaded buffer
management and data transport mechanisms at the application endpoints. The
service manager monitors the state of the service and its execution context, col-
lects and reports runtime information, and enforces the adaptation actions deter-
mined by its controller. Augmenting the manager with an LLC controller allows
human defined adaptation polices, which may be error-prone and incomplete, to
be combined with mathematically sound models and optimization techniques for
more robust self-management. Specifically, the controller decides when and how
to adapt the application behavior, and the service managers focus on enforcing
these adaptations in a consistent and efficient manner.

In-transit data processing: The in-transit data manipulation framework consists
of a dynamic overlay of in-transit nodes, which is on the path between the source
and the destination. The in-transit node services run on commodity clusters (or
possibly public clouds) with heterogeneous capabilities, interconnects and loads,
and are shared between multiple scientific workflows. They perform simple oper-
ations such as processing, buffering, and forwarding. The processing performed
by a node on a data item depends on the node’s capacity and capability, and the
amount of processing outstanding for the data item. The latter information is
contained in the data item itself as metadata. Any processing that is outstanding
when the data item reaches the sink will have to be performed at the sink. The
processing capabilities themselves can be pre-staged at the in-transit nodes or
can be dynamically deployed. Our initial explorations have assumed the former.

Cooperative self-management: Coupling application level and in-transit manage-
ment: The application level and in-transit management can be coupled to achieve
cooperative end-to-end self-management. Such a coupling has many benefits, es-
pecially in cases of congestion, which often occurs at a shared links in the data
path between the sources and sink nodes. Without such a coupling, the appli-
cation level controller would detect congestion by observing a decrease of the
effective bandwidth, and in response, it would advise the service manager to
reduce the amount of data sent on the network and increase the amount of data
written to the local storage, to avoid data loss. While this would eventually
reduce the congestion in the data path, it would require that the data blocks
written to the local storage be separately transferred to and processed at the
sink. By contrast, using coupling between the application and in-transit man-
agement levels, the in-transit node signals the application level controller at the
source in response to the local congestion that it has detected by observing its
buffer occupancy, and sends the information about its current buffer occupancy.

192 S. Jha, M. Parashar, and O. Rana

This allows the application level controller to detect congestion much earlier,
rather than having to wait until the congestion propagates back to the source,
and in response, it can increase its buffer size and buffer data items until con-
gestion at the in-transit nodes is relieved. This, in turn, reduces the amount of
data that has to be written to the local disk at the source and improves QoS at
the sink.

Summary of results: An experimental evaluation demonstrating the feasibil-
ity and benefits of the concepts and the framework described above, as well as
investigating issues such as robustness, stability and overheads are presented
in [5U706]. These experiments are conducted using a data streaming service that
is part for the CPES FSP workflow and streams data between applications run-
ning between Rutgers and PPPL in NJ, ORNL in TN, and NERSC in CA. The
data transport service managed the transfer of blocks of data from applications
buffers at NERSC to PPPL/ORNL or to local storage. Service adaptations in-
cluded the creation of new instances of the streaming service when the network
throughput dipped below a certain threshold. Furthermore, during network con-
gestion, adaptations included changing the buffer management scheme used to
ensure better network throughput and lower average buffer occupancy. In cases
of extreme congestion and buffer overflows, the data was moved to local storage
rather than over the network to prevent further congestions and buffer overflows
and thus maximizes the amount of data reaching the sink. These adaptation re-
sulted in an average buffer occupancy of around 25% when using a combination of
model and rule based self-management. This leads to lower application overheads
and this avoids writing data to shared storage. The percentage overhead due to
the service at the application level was less than 5% of the computational time.
We also performed experiments with in-transit data processing, which demon-
strated processing at the in-transit nodes reduced buffering time from 40% to
2% (per data item) during network congestion. Using cooperative management,
the & buffer occupancy further reduced by 20% and 25% fewer data items had
to be diverted to local storage at end-points in spite of network congestions and
high loads. Furthermore, the “quality” of data reaching “in-time” at the sink
increased, effectively reducing the processing time at the sink by an average of
6 minutes per run.

This application demonstrates the use of the conceptual architecture in
Figure @ where the application can interact with the Autonomic Tuning en-
gine to undertake model correction, modify solver behaviour or iteration count,
for instance. In this architecture, the tuning engine also utilizes performance
data to undertake buffer management and data routing.

4 Discussion and Analysis

In Sections B and B.2] we identify how two scientific applications make use of
the conceptual architectures illustrated in figures[Il and 2l In the first application
scenario, a tuning engine is responsible for interacting with a resource manager

Self-adaptive Architectures for Autonomic Computational Science 193

Table 4. Coupled fusion simulation application management using autonomic strategies

Application Autonomic Strategy
Objective
Maintain Resource Management
latency-sensitive adaptive data buffering (time, size),
data delivery adaptive buffering strategy,
adaptive data transmission & destination selection
Maximize data Resource Management

quality opportunistic in-transit processing

adaptive in-transit buffering
Scientific Algorithmic Adaptivity
Fidelity in-time data coupling

model correction using dynamic data
solver adaptations

to support resource selection, whereas in the second, the tuning engine can mod-
ify the application behaviour directly based on the observed outcome. In both
instances, the tuning engine is external to the application and resource manage-
ment components, thereby making it more general purpose and re-usable. In the
first application scenario, we make use of a centralized tuning engine, while in
the second application scenario, we have multiple coordinated tuning engines.
It is also important to emphasize that as an application can have multiple
objectives, an application can operate in multiple usage modes. Hence, the ex-
amples of application scenario mappings to particular conceptual architectures
presented above were selected to provide illustrative examples of particular us-
age. For example, an alternative version of the EnKF application (presented in
Section B]) could utilize the conceptual architecture in figure 2l This involves
combining individual jobs into job aggregates (batches) based on their particular
properties. Hence, if the same application was to be deployed over a combination
of the TeraGrid and commercial Cloud computing infrastructure, such as Ama-
zon EC2 and S3 for instance, it would be possible to match jobs to resource char-
acteristics. In this approach, computation intensive jobs could be mapped to the
TeraGrid, whilst those that require a quick turn around may be mapped to EC2.
As discussed in Ref. [I5], in this scenario the autonomic tuning engine is respon-
sible for modifying the behaviour of the application to aggregate computations
based on an estimate of which resource type is: (i) currently available; (ii) most
likely to respond within some time threshold; and/or (iii) within cost/allocation
budgets. Such characterisation may also be used for capacity planning, for in-
stance to determine the number of virtual machine/EC2 instances required for
a particular group of jobs. This would be supported through an abstraction
such as customized pilot-jobs, allowing a sufficiently large number of resources
to be instantly available for executing jobs in the future, thereby minimising
data transfer and queuing overheads. Utilizing job and resource properties in

194 S. Jha, M. Parashar, and O. Rana

this way would also lead to a complementary self-organizing architecture — i.e.
one that is able to adapt application properties and job scheduling based on
the characteristics of resources on offer. The two proposed architectures could
also be integrated, so that the tuning by and of approaches could be applied
during different periods of execution for the same application. Integrating these
architectures also provided mulitple redundant pathways for adaptation. For
example, in case of the coupled fusion simulations, tunning by the application
is used to adapt buffer management strategies or in-transit processing based
on data productions rates and tunning of the application is used to adjust data
production rates to react to congestion or in-network loads. Also, increased buffer
occupances due to link congestion can be tolerated by adapting in-transit paths,
buffering strategies, and/or data production rates.

As illustrated in figure Bl an application objective is organized using an ap-
plication tuning strategy. However, it is important to emphasize that when sup-
porting autonomic tuning, it is necessary to chose tuning strategies that are able
to satisfy multiple application objectives concurrently. For instance, in the case
of the EnKF application, it is necessary to support both load balancing and sci-
entific fidelity, within some pre-defined bounds. In future work we will discuss
how the same application instance can use multiple pathways towards achieving
multiple objectives.

5 Conclusion

The need for self-adaptation within computational science applications is out-
lined, along with two conceptual architectures that can be used to support
such adaptation. The approach utilizes ideas from control theory and reflective
middleware, although it differs from these approaches by considering practical
concerns in realistic application deployments — where the application tuning
mechanism needs to be separated from the application itself. Such an architec-
tural approach also renders it more general purpose, and therefore re-usable.
Two specific real world applications are used to demonstrate the use of the two
conceptual architectures, outlining the basis for a framework for autonomic com-
putational science — consisting of mechanisms, strategies and objectives. It is also
important to emphasize that reflective middleware as well as the control models
may be used as specific mechanisms to achieve autonomic behaviors.

In section we identify how our approach aligns with that of Nierstrasz
et al. [22], primarily considering a model-centric view that takes account of de-
ployment and execution. The primary reason is the particular focus we adopt
in section [2.2] which involves managing the execution of such an application on
computational resources. However, the general autonomic computing concepts
identified in section 2] are much broader in scope and a model-driven approach
could also considered more generally. We believe such an approach would be use-
ful to better understand how an application could be re-formulated, for instance,
based on different scientific objectives (e.g. time to solution, error tolerance, ac-
curacy etc); such criteria being mostly application domain specific.

Self-adaptive Architectures for Autonomic Computational Science 195

Our motivation has come from existing work in executing computational sci-
ence applications over distributed infrastructure. Using autonomic computing
approaches to improve this execution has been the primary focus of the concep-
tual architectures outlined in section and the conceptual framework in sec-
tion 23l Developing an adaptive design methodology that extends these would
be the next step in our work. Such a methodology would provide a set of stages
that a designer of an application would need to follow to map application-level
objectives to autonomic strategies and mechanisms. Furthermore, the concep-
tual architecture presented in figures 2] and [[l represents a centralized autonomic
tuner — which may be co-located with the application. However, an implementa-
tion of such an architecture may have a tuning process that is distributed — for
instance, each resource may itself use a tuning strategy for improving queuing
times for particular types of jobs.

Acknowledgment

This paper is the outcome of the e-Science Institute sponsored Research Theme
on Distributed Programming Abstractions. We would like to thank Murray Cole,
Daniel Katz and Jon Weissman for being partners in the DPA expedition and
having contributed immensely to our insight and understanding of distributed
applications and systems, which form the basis of their application specifically
to Autonomic Computational Science. We would also like to thank Hyunjoo Kim
(Rutgers University), Viraj Bhat (Yahoo! Research) and Yaakoub El Khamra
(TACS, Univ. of Texas Austin) for the two applications described in this paper.

References

1. Al-Ali, R.J., Amin, K., von Laszewski, G., Rana, O.F., Walker, D.W., Hategan, M.,
Zaluzec, N.J.: Analysis and Provision of QoS for Distributed Grid Applications.
Journal of Grid Computing 2(2), 163-182 (2004)

2. Andersson, J., de Lemos, R., Malek, S., Weyns, D.: Modeling dimensions of self-
adaptive software systems. In: Cheng, B.H.C., de Lemos, R., Giese, H., Inver-
ardi, P., Magee, J. (eds.) Software Engineering for Self-Adaptive Systems. LNCS,
vol. 5525, pp. 27-47. Springer, Heidelberg (2009)

3. Andersson, J., de Lemos, R., Malek, S., Weyns, D.: Reflecting on self-adaptive
software systems. In: Proceedings of Workshop on Software Engineering for Adap-
tive and Self-Managing Systems (SEAMS), Vancouver, BC, Canada. IEEE, Los
Alamitos (2009)

4. Batch Queue Predictor,
http://nws.cs.ucsb.edu/ewiki/nws.php?id=Batch+Queue+Prediction| (last ac-
cessed: May 2010)

5. Bhat, V., Parashar, M., Khandekar, M., Kandasamy, N., Klasky, S.: A Self-
Managing Wide-Area Data Streaming Service using Model-based Online Control.
In: 7th IEEE International Conference on Grid Computing (Grid 2006), Barcelona,
Spain, pp. 176-183. IEEE Computer Society, Los Alamitos (2006)

http://nws.cs.ucsb.edu/ewiki/nws.php?id=Batch+Queue+Prediction

196

6.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

S. Jha, M. Parashar, and O. Rana

Bhat, V., Parashar, M., Klasky, S.: Experiments with In-Transit Processing for
Data Intensive Grid workflows. In: 8th IEEE International Conference on Grid
Computing (Grid 2007), Austin, TX, USA, pp. 193-200. IEEE Computer Society,
Los Alamitos (2007)

. Bhat, V., Parashar, M., Liu, H., Khandekar, M., Kandasamy, N., Abdelwahed, S.:

Enabling Self-Managing Applications using Model-based Online Control Strategies.
In: 3rd IEEE International Conference on Autonomic Computing, Dublin, Ireland,
pp. 15-24 (2006)

. Brevik, J., Nurmi, D., Wolski, R.: Predicting bounds on queuing delay for batch-

scheduled parallel machines. In: Proc. ACM Principles and Practices of Parallel
Programming (PPoPP), New York, NY (March 2006)

. Chandra, S., Parashar, M.: Addressing Spatiotemporal and Computational Het-

erogeneity in Structured Adaptive Mesh Refinement. Journal of Computing and
Visualization in Science 9(3), 145-163 (2006)

Cheng, B.H.C., de Lemos, R., Giese, H., Inverardi, P., Magee, J.: Software En-
gineering for Self-Adaptive Systems: A Research Roadmap. In: Cheng, B.H.C.,
de Lemos, R., Giese, H., Inverardi, P., Magee, J. (eds.) Software Engineering for
Self-Adaptive Systems. LNCS, vol. 5525, pp. 1-26. Springer, Heidelberg (2009)
Dobson, S., Denazis, S.G., Ferndndez, A., Gaiti, D., Gelenbe, E., Massacci, F.,
Nixon, P., Saffre, F., Schmidt, N., Zambonelli, F.: A survey of autonomic commu-
nications. ACM TAAS 1(2), 223-259 (2006)

El-Khamra, Y., Jha, S.: Developing autonomic distributed scientific applications:
A case study from history matching using ensemble kalman-filters. In: GMAC
2009: Proceedings of the 6th International Conference on Grids Meets Autonomic
Computing. ACM Press, New York (2009)

El-Khamra, Y., Jha, S.: Developing autonomic distributed scientific applications:
a case study from history matching using ensemblekalman-filters. In: Proceedings
of the 6th International Conference on Autonomic Computing (ICAC); Industry
session on Grids meets Autonomic Computing, pp. 19-28. ACM, New York (2009)
Evensen, G.: Data Assimilation: The Ensemble Kalman Filter. Springer, New York
(2006)

Kim, S.J.H., Khamra, Y., Parashar, M.: Autonomic approach to integrated hpc
grid and cloud usage. Accepted for IEEE Conference on eScience 2009, Oxford
(2009)

Hariri, S., Khargharia, B., Chen, H., Yang, J., Zhang, Y., Parashar, M., Liu, H.:
The autonomic computing paradigm. Cluster Computing 9(1), 5-17 (2006)

Jha, S., Cole, M., Katz, D., Parashar, M., Rana, O., Weissman, J.: Abstractions for
large-scale distributed applications and systems. ACM Computing Surveys (2009)
(under review)

Jha, S., Parashar, M., Rana, O.: Investigating autonomic behaviours in grid-based
computational science applications. In: GMAC 2009: Proceedings of the 6th In-
ternational Conference on Grids Meets Autonomic Computing, pp. 29-38. ACM
Press, New York (2009)

Kephart, J.O., Chess, D.M.: The vision of autonomic computing. Computer 36(1),
41-50 (2003)

Klasky, S., Beck, M., Bhat, V., Feibush, E., Ludé&scher, B., Parashar, M., Shoshani,
A., Silver, D., Vouk, M.: Data management on the fusion computational pipeline.
Journal of Physics: Conference Series 16, 510-520 (2005)

Kon, F., Costa, F., Campbell, R., Blair, G.: A Case for Reflective Middleware.
Communications of the ACM 45(6), 33—-38 (2002)

22.

23.

24.

25.

26.

Self-adaptive Architectures for Autonomic Computational Science 197

Nierstrasz, O., Denker, M., Renggli, L.: Model-centric, context-aware software
adaptation. In: Cheng, B.H.C., de Lemos, R., Giese, H., Inverardi, P., Magee,
J. (eds.) Software Engineering for Self-Adaptive Systems. LNCS, vol. 5525,
pp. 128-145. Springer, Heidelberg (2009)

Parashar, M.: Autonomic grid computing. In: Parashar, M., Hariri, S. (eds.) Au-
tonomic Computing — Concepts, Requirements, Infrastructures. CRC Press, Boca
Raton (2006)

Serugendo, G.D.M., Foukia, N., Hassas, S., Karageorgos, A., Mostefaoui, S.K.,
Rana, O.F., Ulieru, M., Valckenaers, P., Aart, C.: Self-organising applications:
Paradigms and applications. In: Di Marzo Serugendo, G., Karageorgos, A., Rana,
O.F., Zambonelli, F. (eds.) ESOA 2003. LNCS (LNAI), vol. 2977, Springer, Hei-
delberg (2004)

Sevcik, K.: Model reference adaptive control (mrac),
http://www.pages.drexel.edu/~kws23/tutorials/MRAC/MRAC.html| (last ac-
cessed: August 12, 2009)

Soderstrom, S.: Discrete-Time Stochastic Systems - Estimation and Control, 2nd
edn. Springer, London (2002)

http://www.pages.drexel.edu/~kws23/tutorials/MRAC/MRAC.html

	Self-adaptive Architectures for Autonomic Computational Science
	Introduction
	A Conceptual Framework for Autonomic Computational Science
	The Autonomic Computing Paradigm
	Conceptual Architectures for ACS
	A Conceptual Framework
	Relationship to Reflective Middleware
	Relationship to Control Loop Models

	Application Case Study
	Ensemble Kalman Filters
	Coupled Fusion Simulation

	Discussion and Analysis
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

