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Abstract  Clouds have evolved as the next-generation platform that facilitates 
creation of wide-area on-demand renting of computing or storage services for 
hosting application services that experience highly variable workloads and requires 
high availability and performance. Interconnecting Cloud computing system 
components (servers, virtual machines (VMs), application services) through peer-
to-peer routing and information dissemination structure are essential to avoid the 
problems of provisioning efficiency bottleneck and single point of failure that are 
predominantly associated with traditional centralized or hierarchical approaches. 
These limitations can be overcome by connecting Cloud system components using 
a structured peer-to-peer network model (such as distributed hash tables (DHTs)). 
DHTs offer deterministic information/query routing and discovery with close to 
logarithmic bounds as regards network message complexity. By maintaining a 
small routing state of O (log n) per VM, a DHT structure can guarantee determin-
istic look-ups in a completely decentralized and distributed manner.

This chapter presents: (i) a layered peer-to-peer Cloud provisioning architecture; 
(ii) a summary of the current state-of-the-art in Cloud provisioning with particular 
emphasis on service discovery and load-balancing; (iii) a classification of the exist-
ing peer-to-peer network management model with focus on extending the DHTs for 
indexing and managing complex provisioning information; and (iv) the design and 
implementation of novel, extensible software fabric (Cloud peer) that combines 
public/private clouds, overlay networking, and structured peer-to-peer indexing 
techniques for supporting scalable and self-managing service discovery and load-
balancing in Cloud computing environments. Finally, an experimental evaluation is 
presented that demonstrates the feasibility of building next-generation Cloud 
provisioning systems based on peer-to-peer network management and information 
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dissemination models. The experimental test-bed has been deployed on a public 
cloud computing platform, Amazon EC2, which demonstrates the effectiveness of 
the proposed peer-to-peer Cloud provisioning software fabric.

12.1 � Introduction

Cloud computing [1–3] has emerged as the next-generation platform for hosting 
business and scientific applications. It offers infrastructure, platform, and software 
as services that are made available as on-demand and subscription-based services 
in a pay-as-you-go model to users. These services are, respectively, referred to as 
Infrastructure as a Service (IaaS), Platform as a Service (PaaS), and Software as a 
Service (SaaS). Adoption of Cloud computing platforms [4–9] as an application 
provisioning environment has the following critical benefits: (i) software enter-
prises and startups with innovative ideas for new Internet services are no longer 
required to make large capital outlays in the hardware and software infrastructures 
to deploy their services or human expense to operate it; (ii) government agencies 
and financial organizations can use Cloud services as an effective means for cost 
cutting by leasing their IT service hosting and maintenance from external cloud 
providers; (iii) organizations can more cost-effectively manage peak-load by using 
the cloud, rather than planning and building for peak load, and having under-utilized 
servers sitting there idle during off peak time; and (iv) failures due to natural disasters 
or regular system maintenance/outage may be managed more gracefully as services 
may be more transparently managed and migrated to other available cloud resources, 
hence enabling improved service-level agreement (SLA).

The process of deploying application services on publically accessible clouds 
(such as Amazon EC2 [8]) that expose their capabilities as a network of virtualized 
services (hardware, storage, database) is known as Cloud provisioning. The Cloud 
provisioning process consists of two key steps [10]: (i) VM provisioning, involving 
instantiation of one or more VMs on physical servers hosted within public or pri-
vate Cloud computing environments – the selection of a physical server for hosting 
VMs in a cloud is based on a number of mapping requirements including available 
memory, storage space, and proximity of the parent cloud; and (ii) application ser-
vice provisioning, with mapping and scheduling of requests to the services that are 
hosted within a VM or on a set of VMs. In this chapter, we mainly focus on the 
second step, which involves dynamically distributing the incoming requests among 
the services in a load-balanced and decentralized manner, given a set of VMs that 
are hosting different types of application services.

Cloud provisioning from a business services point of view involves deriving 
cloud-based application component deployments driven by expected performance 
(Quality of Service (QoS)). Clouds offer an unprecedented pool of software and 
hardware resources, which gives businesses a unique ability to handle the temporal 
variation in their service demands through dynamic provisioning or deprovisioning 
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of capabilities. Whenever there is a variation in temporal and spatial locality of 
workload such as number of concurrent users, total users, and load conditions, each 
application component must dynamically scale (application service elasticity) to 
offer good quality of experience to users, and maintain an optimal usage of cloud 
resources. Cloud-enabling any class of application service would require develop-
ing models for service placement, computation, communication, and storage, with 
emphasis on important scalability requirements.

Currently, one of the prominent Cloud service providers Amazon EC2 offers 
two services, namely CloudWatch [11] and Elastic Load Balancer [12]. 
Fundamentally, CloudWatch and Elastic Load Balancer are centralized web ser-
vices that can be associated with numerous EC2 instances. However, centralized 
approaches have several critical design limitations including: (i) single point of 
failure; (ii) lack of scalability; (iii) high network communication cost at links 
leading to the service; (iv) requirement of high computational power to serve a 
large number of resource look-up and updated queries on the server running the 
central service.

As Clouds become ready for mainstream acceptance, scalability [13] of services 
will come under more severe scrutiny due to the increasing number of online ser-
vices in the Cloud, and massive numbers of global users. To overcome the afore-
mentioned limitations, fundamental Cloud services for discovery, monitoring, and 
load-balancing should be decentralized by nature and different service components 
(VM instances and application elements) must interact to adaptively maintain and 
achieve the desired system wide connectivity and behaviour.

The rest of this chapter is organized as follows: First, a layered approach to 
architecting peer-to-peer Cloud provisioning system is presented. This is followed 
by some survey results on Cloud provisioning capabilities in leading commercial 
public clouds. The finer details related to architecting peer-to-peer Cloud service 
discovery and load-balancing techniques over DHT overlay is then presented, fol-
lowed by a discussion of the design and implementation of peer-to-peer Cloud 
provisioning (Cloud peer) software fabric. Lastly, we present the analysis and 
experimental results of the peer-to-peer Cloud provisioning implementation across 
a public Cloud (Amazon EC2) environment (Table 12.1).

Table 12.1  Summary of provisioning capabilities exposed by public Cloud platforms

Cloud platforms Load balancing Provisioning Autoscaling

Amazon Elastic 
Compute Cloud

√ √ √

Eucalyptus √ √ ×
Microsoft Windows  

Azure
√ √ √

(Fixed templates so far) (Manually at the moment)
Google App Engine √ √ √
GoGrid Cloud 

Hosting
√ √ √

(Programmatic way only)
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12.2 � Layered Peer-to-Peer Cloud Provisioning Architecture

This section presents information on various architectural elements that form the 
basis for peer-to-peer Cloud provisioning architecture. It also presents an overview 
of the applications that would benefit from the architecture, which envisages a host-
ing infrastructure consisting of multiple geographically distributed private and 
public clouds owned by one or more service providers. Figure 12.1 shows the lay-
ered design of the peer-to-peer Cloud provisioning architecture. Physical Cloud 
servers, along with core middleware capabilities, form the basis for delivering IaaS. 
The user-level middleware aims at providing PaaS capabilities. The top layer 
focuses on application services (SaaS) by making use of services provided by the 
lower layers. PaaS/SaaS services are often developed and provided by third-party 
service providers, who are different from IaaS providers.

Cloud Applications (SaaS): Popular Cloud applications include Business to 
Business (B2B) applications, traditional eCommerce type of applications, enter-
prise business applications such as CRM and ERP, social computing such as 
Facebook and MySpace, and compute, data intensive applications and content 
delivery networks (CDNs). These applications have radically different application 
characteristics and workload profiles, and hence, to cope with the variation in tem-
poral and spatial locality of service request, the application services must be sup-
ported by a Cloud provisioning infrastructure that dynamically scales the deployed 
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Fig. 12.1  A layered peer-to-peer Cloud provisioning architecture
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services in order to achieve good performance, optimal resource usage, and hence 
offer quality experience to its end-users.

Development Framework Layer: This layer includes the software frameworks 
such as Web 2.0 Interfaces (Ajax, IBM Workplace, and Visual Studio.net Azure 
plug-in) that help developers in creating rich, cost-effective, user-interfaces for 
browser-based applications. The layer also provides the data-intensive, parallel pro-
gramming environments (such as MapReduce, Hadoop, Dryad) and composition 
tools that ease the creation, deployment, and execution of applications in Clouds.

Core Services Layer (PaaS): This layer implements the platform-level ser-
vices that provide run-time environment-enabling Cloud computing capabilities 
to application services built using User-Level Middleware. Core services at this 
layer include scheduling, fault-management, monitoring, dynamic SLA manage-
ment, accounting, billing, and pricing. Further, the services at this layer must 
be able to provide support for decentralized co-ordinated interaction, scalable 
selection, and messaging between distributed Cloud components. Some of the 
existing services operating at this layer are Amazon EC2’s CloudWatch and 
Load-balancer service, Google App Engine, Microsoft Azure’s fabric controller, 
and Aneka [14].

To be able to provide support for decentralized service discovery [15] and load-
balancing between cloud components (VM instances, application services), novel 
distributed hash table (DHT)-based PaaS layer services, techniques, and algorithms 
need to be developed at this layer for supporting complex interactions with guaran-
tees on dynamic management. In Fig. 12.1, this component of PaaS layer is shown 
as Cloud peer service. Architecting Cloud services based on decentralized network 
models or overlays (such as DHTs) is significant since DHTs are highly scalable, 
can gracefully adapt to the dynamic system expansion (new host/VM/service 
instantiation) or contraction (host/VM/service instance destruction) and outage, 
and are not susceptible to single point of failure in massive scale, internetworked 
private and public cloud environments.

Infrastructure Layer (IaaS): The computing power in Cloud computing environ-
ments is supplied by a collection of data centers that are typically installed with 
many thousands of servers. At the IaaS layer, there exist massive physical servers 
(storage servers and application servers) that power the data centers. These servers 
are transparently managed by the higher-level virtualization services and toolkits 
that allow sharing of their capacity among virtual instances of servers. These virtual 
machines (VMs) are isolated from each other, which aids in achieving fault-tolerant 
behaviour and the isolation of security contexts.

Another trend in Cloud usage is combination of private clouds with public 
clouds, in order to attend unexpected or periodic peaks in local demand without 
investing in acquiring new equipment for the local infrastructure. Resources from 
the data center may be either available for public in general (public clouds) or may 
be restricted to users belonging to the organization that owns the data center (pri-
vate clouds). It is also possible to have hybrid models, in which resources are leased 
from the public cloud whenever the private cloud cannot cope with the incoming 
demand.
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12.3 � Current State-of-the-Art and Practice in Cloud 
Provisioning

Key players in public Cloud computing, including Amazon, Microsoft, Google App 
Engine, Eucalyptus [16], and GoGrid, offer a variety of prepackaged services for 
monitoring, managing, and provisioning resources. However, the techniques imple-
mented in each of these Clouds vary.

The three Amazon Web Services (AWS), Elastic Load Balancer [12], Auto 
Scaling [17], and CloudWatch [11], together expose functionalities that are required 
for undertaking provisioning of application services on Amazon EC2. Elastic Load 
Balancer service automatically provisions incoming application workload across 
available Amazon EC2 instances. Auto-scaling service can be used to dynamically 
scale-in or scale-out the number of Amazon EC2 instances for handling changes in 
service demand patterns. And finally, the CloudWatch service can be integrated 
with the above services for strategic decision-making based on collected real-time 
information.

Eucalyptus is an open source Cloud computing platform. It is composed of three 
controllers. Among the controllers, the cluster controller is a key component to 
application service provisioning and load balancing. Each cluster controller is 
hosted on the head node of a cluster to interconnect outer public networks and inner 
private networks together. By monitoring the state information of instances in the 
pool of server controllers, the cluster controller can select the available service/
server for provisioning incoming requests. However, when compared with AWS, 
Eucalyptus still lacks some of the critical functionalities, such as autoscaling for 
built-in provisioner.

Fundamentally, Windows Azure Fabric has a weave-like structure, which is 
composed of nodes (servers and load balancers), and edges (power, Ethernet, and 
serial communications). The fabric controller manages a service node through a 
built-in service, the Azure fabric controller agent, which runs in the background 
tracking the state of the server and reporting these metrics to the controller. If a fault 
state is reported, the controller can manage a reboot of the server or a migration of 
services from the current server to other healthy servers. Moreover, the controller 
also supports service provisioning by matching the services/VMs that meet the 
required demands.

GoGrid Cloud Hosting offers developers F5 Load Balancers [18] for distributing 
application service traffic across servers, as long as IPs and specific ports of these 
servers are attached. The load balancer provides the Round Robin algorithm and 
Least Connect algorithm for routing application service requests. Also, the load 
balancer is able to sense a crash of the server, redirecting further requests to other 
available servers. But currently, GoGrid Cloud Hosting only gives developers pro-
grammatic APIs to implement their custom autoscaling service.

Unlike other Cloud platforms, Google App Engine offers developers a scalable 
platform in which applications can run, rather than providing access directly to a 
customized virtual machine. Therefore, access to the underlying operating system 
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is restricted in App Engine. Load-balancing strategies, service provisioning, and 
autoscaling are all automatically managed by the system behind the scenes.

In addition, no single Cloud infrastructure provider has its data centers at all pos-
sible locations throughout the world. As a result, Cloud application service (SaaS) 
providers will have difficulty in meeting QoS expectations for all their users. Hence, 
they would like to logically construct hybrid Cloud infrastructures (mixing multiple 
public and private clouds) to provide better support for their specific user needs. This 
kind of requirement often arises in enterprises with global operations and applications 
such as Internet service, media hosting, and Web 2.0 applications. This necessitates 
building technologies and algorithms for seamless integration of Cloud infrastructure 
service providers for provisioning of services across different Cloud providers.

12.4 � Cloud Service Discovery and Load-Balancing Using  
DHT Overlay

12.4.1 � Distributed Hash Tables

Structured systems such as DHTs offer deterministic query search results within 
logarithmic bounds on network message complexity. Peers in DHTs such as Chord, 
CAN, Pastry, and Tapestry maintain an index for O (log n) peers where n is the total 
number of peers in the system. Inherent to the design of a DHT are the following 
issues [19]: (i) generation of node-ids and object-ids, called keys, using crypto-
graphic/randomizing hash functions such as SHA-1 [19–22] – the objects and nodes 
are mapped on the overlay network depending on their key value and each node is 
assigned responsibility for managing a small number of objects; (ii) building up 
routing information (routing tables) at various nodes in the network – each node 
maintains the network location information of a few other nodes in the network; 
and (iii) an efficient look-up query resolution scheme.

Whenever a node in the overlay receives a look-up request, it must be able to 
resolve it within acceptable bounds such as in O (log n) routing hops. This is 
achieved by routing the look-up request to the nodes in the network that are most 
likely to store the information about the desired object. Such probable nodes are 
identified by using the routing table entries. Though at the core various DHTs 
(Chord, CAN, Pastry, and Tapestry, etc.) are similar, still there exist substantial dif-
ferences in the actual implementation of algorithms including the overlay network 
construction (network graph structure), routing table maintenance, and node join/
leave handling. The performance metrics for evaluating a DHT include fault-toler-
ance, load-balancing, efficiency of look-ups and inserts, and proximity awareness 
[23]. In Table 12.2, we present the comparative analysis of Chord, Pastry, CAN, 
and Tapestry based on basic performance and organization parameters. 
Comprehensive details about the performance of some common DHTs under churn 
can be found in [24].
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Other classes of structured peer-to-peer systems such as Mercury [25] do not 
apply randomizing hash functions for organizing data items and nodes. The 
Mercury system organizes nodes into a circular overlay and places data contigu-
ously on this ring. As Mercury does not apply hash functions, data partitioning 
among nodes is not uniform. Hence, it requires an explicit load-balancing scheme. 
In recent developments, new-generation P2P systems have evolved to combine both 
unstructured and structured P2P networks. We refer to this class of systems as 
hybrid. Structella [26] is one such P2P system that replaces the random graph 
model of an unstructured overlay (Gnutella) with a structured overlay, while still 
adopting the search and content placement mechanism of unstructured overlays to 
support complex queries. Other hybrid P2P design includes Kelips [27] and its vari-
ants. Nodes in Kelips overlay periodically gossip to discover new members of the 
network, and during this process nodes may also learn about other nodes as a result 
of look-up communication. Other variants of Kelips allow routing table entries to 
store information for every other node in the system. However, this approach is 
based on the assumption that the system experiences low churn rate [24]. Gossiping 
and one-hop routing approach has been used for maintaining the routing overlay in 
the work [28].

12.4.2 � Designing Complex Services over DHTs

Limitations of Basic DHT Implementations and Query Types: Traditionally, DHTs 
have been efficient for single-dimensional queries such as “finding all resources 
that match the given attribute value.” Since Cloud computing IaaS and PaaS level 
services such as servers, VMs, enterprise computers (private cloud resources), stor-
age devices, and databases are identified by more than one attribute, a search query 
for these services is always multidimensional. These search dimensions or attri-
butes can include service type, processor speed, architecture, installed operating 
system, available memory, and network bandwidth.

Based on recent information published by Amazon EC2 CloudWatch service, 
each Amazon Machine Image (AMI) instance has seven performance metrics (see 
Table 12.3) and four dimensions (see Table 12.4) associated with it. Additionally, 
these AMIs can host different application service types, including web hosting, 

Table 12.3  Performance metrics associated with an Amazon EC2 AMI instance

CPU 
Utilization

Network 
Incoming 
Traffic

Network 
Outgoing 
Traffic

Disk Write 
Operations

Disk Read 
Operations

Disk 
Write 
Bytes

Disk 
Read 
Bytes

Table 12.4  Performance dimensions associated with an Amazon EC2 AMI instance

Image ID Autoscaling group name Instance ID Instance type
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social networking, content-delivery, and high-performance computing, that have 
varying request invocation, access, and distribution patterns. The type of application 
services hosted by an AMI instance is dependent on the business needs and scien-
tific experiments. In these cases, a Cloud service discovery query (which can be 
issued by provisioning software) will combine the aforementioned attributes related 
to AMI instances and application service types and therefore can have the following 
semantics:

Cloud Service Type = “web hosting” && Host CPU Utilization < “50%” && Instance 
OSType = “WinSrv2003” && Host Processor Cores > “1” && Host Processors Speed > 
“1.5 GHz” && Host Cloud Location = “Europe”

On the other hand, VM instances deployed on the Cloud hosts needs to publish their 
information so that provisioning software can search and discover them. VM 
instances update their software and hardware configuration and the deployed 
services’ availability status by sending update query to the DHT overlay. An update 
query has the following semantics:

Cloud Service Type = “web hosting” && Host CPU Utilization = “30%” && Instance 
OSType = “WinSrv2003” && Host Processor Cores = “2” && Host Processors Speed 
= “1.5 GHz” && Host Cloud Location = “Europe”

Extending DHTs to support indexing and matching of multidimensional range (ser-
vice discovery query) or point (update query) queries, to index all resources whose 
attribute value overlaps a given search space, is a complex problem. Multidimensional 
range queries are based on ranges of values for attributes rather than on specific 
values. Compared to single-dimensional queries, resolving multidimensional que-
ries is far more complicated, as there is no obvious total ordering of the points in the 
attribute space. Further, the query interval has varying size, aspect ratio, and position 
such as a window query. The main challenges involved in enabling multidimensional 
queries in a DHT overlay include designing efficient service attribute data: (i) distri-
bution or indexing techniques; and (ii) query routing techniques.

Data Indexing Techniques for Mapping Multidimensional Range and Point 
Queries: A data indexing technique partitions the multidimensional attribute 
space over the set of VMs in a DHT network. Efficiency of the distribution 
mechanism directly governs how the query processing load is distributed among 
the Cloud peers. A good distribution mechanism should possess the following 
characteristics [29]: (i) locality: data points nearby in the attribute space should 
be mapped to the same Cloud peer, hence limiting the distributed lookup com-
plexity; (ii) load balance: the number of data points indexed by each Cloud peer 
should be approximately the same to ensure uniform distribution of query pro-
cessing; (iii) minimal metadata: prior information required for mapping the attri-
bute space to the overlay space should be minimal; and (iv) minimal management 
overhead: during VM instantiation and destruction operation, update policies 
such as the transfer of data points to a newly joined Cloud peer should cause 
minimal network traffic. Note that the assumption here is that every VM instance 
hosts a Cloud peer service, which is responsible for managing activities related 
to overlay network.
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There are different kinds of database indices [30] that can handle mapping of 
multidimensional objects such as the space filling curves (SFCs) (including the 
Hilbert curves, Z-curves), k-d tree, MX-CIF Quad tree, and R*-tree in a DHT over-
lay. In literature, these indices are referred to as spatial indices [31]. Spatial indices 
are well suited for handling the complexity of multidimensional queries. Although 
some spatial indices can have issues as regards to routing load-balance in case of a 
skewed attribute/data set, all the spatial indices are generally scalable in terms of 
the number of hops traversed and messages generated while searching and routing 
multidimensional/spatial service discovery and update queries. However, there are 
different tradeoffs involved with each of the spatial indices, but basically they can 
all support scalability and Cloud service discovery. Some spatial index would per-
form optimally in one scenario but the performance could degrade if the attribute/
data distribution changed significantly.

Routing Techniques for Handling Multidimensional Queries in DHT Overlay: 
DHTs guarantee deterministic query look-up with logarithmic bounds on network 
message cost for single-dimensional queries. However, Cloud’s service discovery 
and update query are multidimensional (as discussed in previous sections). Hence, 
the existing DHT routing techniques need to be augmented in order to efficiently 
resolve multidimensional queries. Various data structures that we discussed in the 
previous section effectively create a logical multidimensional index space over a 
DHT overlay. A look-up operation involves searching for an index or set of indexes 
in a multidimensional space. However, the exact query routing path in the multidi-
mensional logical space is directly governed by the data distribution mechanism 
(i.e. based on the data structure that maintains the indexes). In this context, various 
approaches have proposed different routing/indexing heuristics.

Efficient query routing algorithms should exhibit the following characteristics 
[29]: (i) routing load balance: every peer in the network should route forward/route 
approximately the same number of query messages; and (ii) low routing state per 
Cloud peer: each Cloud peer should maintain a small number of routing links hence 
limiting new Cloud peer (VM) join and Cloud peer (VM) state update cost. In the 
current peer-to-peer literature, multidimensional data distribution mechanisms 
based on the following structures have been proposed: (i) space filling curves; and 
(ii) tree-based structures. Resolving multidimensional queries over a DHT overlay 
that utilizes SFCs for data distribution consists of two basic steps [10]: (i) mapping 
the multidimensional query onto the set of relevant clusters of SFC-based index 
space; and (ii) routing the message to all VMs that fall under the computed SFC-
based index space. On the other hand, routing multidimensional query in a DHT 
overlay that employs tree-based structures for data distribution requires routing to 
start from the root. However, the root VM presents a single point of failure and load 
imbalance. To overcome this, the authors introduced the concept of fundamental 
minimum level. This means that all the query processing and the data storage 
should start at that minimal level of the tree rather than at the root. There are a 
number of techniques available for distributed routing in multidimensional space. 
The performance of techniques varies depending on the distribution of data in the 
multidimensional space, and VM in the underlying DHT overlay.
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12.5 � Cloud Peer Software Fabric: Design and Implementation

The Cloud peer implements services for enabling decentralized and distributed 
discovery supporting status look-ups and updates across the internetworked Cloud 
computing systems, enabling inter-application service co-ordinated provisioning for 
optimizing load-balancing and tackling the distributed service contention problem. 
The dotted box in Fig. 12.1 shows the layered design of Cloud peer service over 
DHT based self-organizing routing structure. The services built on the DHT routing 
structure extends (both algorithmically and programmatically) the fundamental 
properties related to DHTs including deterministic look-up, scalable routing, and 
decentralized network management. The Cloud peer service is divided into a number 
of sublayers (see Fig. 12.1): (i) higher level services for discovery, co-ordination, 
and messaging; (ii) low level distributed indexing and data organization techniques, 
replication algorithms, and query load-balancing techniques; (iii) DHT-based self-
organizing routing structure. A Cloud peer undertakes the following critical tasks 
that are important for proper functioning of DHT-based provisioning overlay.

12.5.1 � Overlay Construction

The overlay construction refers to how Cloud peers are logically connected over the 
physical network. The software implementation utilizes (the open source implemen-
tation of Pastry DHT known as the FreePastry) Pastry [32] as the basis for creation of 
Cloud peer overlay. A Pastry overlay interconnects the Cloud peer services based on 
a ring topology. Inherent to the construction of a Pastry overlay are the following 
issues: (i) Generation of Cloud peer is and query (discovery, update) ids, called keys, 
using cryptographic/randomizing hash functions such as SHA-1. These IDs are 
generated from 160-bit unique identifier space. The ID is used to indicate a Cloud 
peer’s position in a circular ID space, which ranges from 0 to 2160 − 1. The queries 
and Cloud peers are mapped on the overlay network depending on their key values. 
Each Cloud peer is assigned responsibility for managing a small number of queries; 
and (ii) building up routing information (leaf set, routing table, and neighborhood 
set) at various Cloud peers in the network. Given the Key K, the Pastry routing 
algorithm can find the Cloud peer responsible for this key in O (log

b
 n) messages, 

where b is the base and n is the number of Cloud Peers in the network.
Each Cloud peer in the Pastry overlay maintains a routing table, leaf set, and 

neighborhood set. These tables are constructed when a Cloud peer joins the overlay, 
and it is periodically updated to take into account any new joins, leaves, or failures. 
Each entry in the routing table contains the IP address of one of the potentially 
many Cloud peers whose id have the appropriate prefix; in practice, a Cloud peer 
is chosen, which is close to the current peer, according to the proximity metric. 
Figure 12.2 shows a hypothetical Pastry overlay with keys and Cloud peers distributed 
on the circular ring based on their cryptographically generated IDs.
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12.5.2 � Multidimensional Query Indexing

To support multidimensional query indexing (Cloud service type, Host utilization, 
Instance OS type, Host Cloud location, Host Processor speed) over Pastry overlay, 
a Cloud peer implements a distributed indexing technique [33], which is a variant 
of peer-to-peer MX-CIF Quad tree [34] data structure. The distributed index builds 
a multidimensional attribute space based on the Cloud service attributes, where 
each attribute represents a single dimension. An example of a two-dimensional 
attribute space that indexes service attributes including speed and CPU type is 
shown in Fig. 12.2. The first step in initializing the distributed index is the process 
called minimum division (f

min
). This process divides the Cartesian space into mul-

tiple index cells when the multidimensional distributed index is first created. As a 
result of this process, the attribute space resembles a grid-like structure consisting 
of multiple index cells. The cells resulting from this process remain constant 
throughout the life of the indexing domain and serve as entry points for subsequent 
service discovery and update query mapping. The number of cells produced at the 
minimum division level is always equal to (f

min
)dim, where dim is dimensionality of 

the attribute space. Every Cloud peer in the network has basic information about 
the attribute space co-ordinate values, dimensions, and minimum division level. 
Cloud peers can obtain this information (cells at minimum division level, control 
points) in a configuration file from the bootstrap peer. Each index cell at f

min
 is 

uniquely identified by its centroid, termed as the control point. In Fig. 12.2, 
f

min
 = 1, dim = 2. The Pastry overlay hashing method (DHash (co-ordinates)) is used 

to map these control points so that the responsibility for an index cell is associated 
with a Cloud peer in the overlay. For example in Fig. 12.2, DHash(x

1
, y

1
) = k10 is 

the location of the control point A (x
1
,y

1
) on the overlay, which is managed by 

Cloud peer 12.

12.5.3 � Multidimensional Query Routing

This action involves the identification of the index cells at minimum division level 
f

min
 in the attribute space to map a service discovery and update query. For a mapping 

service discovery query, the mapping strategy depends on whether it is a multidi-
mensional point query (equality constraints on all search attribute values) or multi-
dimensional range query. For a multidimensional point service discovery query, the 
mapping is straightforward since every point is mapped to only one cell in the 
attribute space. For a multidimensional range query, mapping is not always singular 
because a range look-up can cross more than one index cell. To avoid mapping a 
multidimensional service discovery query to all the cells that it crosses (which can 
create many unnecessary duplicates), a mapping strategy based on diagonal hyper-
plane of the attribute space is utilized. This mapping involves feeding the service 
discovery query’s spatial dimensions into a mapping function, IMap(query). 
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This function returns the IDs of index cells to which given query can be mapped 
(refer to step 7 in Fig. 12.2). Distributed hashing (DHash(cells)) is performed on 
these IDs (which returns keys for Pastry overlay) to identify the current Cloud peers 
responsible for managing the given keys. A Cloud peer service uses the index 
cell(s) currently assigned to it and a set of known base index cells obtained at the 
initialization as the candidate index cells. Similarly, mapping of the update query 
also involves the identification of the cell in the attribute space using the same 
algorithm. An update query is always associated with an event region [35] and all 
cells that fall fully or partially within the event region would be selected to receive 
the corresponding objects. The calculation of an event region is also based on the 
diagonal hyperplane of the attribute space. Giving in-depth information here is out 
of the scope for this chapter; however, the readers who would like to have more 
information can refer the paper [15, 30, 33] that describes the index in detail.

Fig. 12.2  A pictorial representation of Pastry (DHT) overlay construction, multidimensional data 
indexing, and routing: (1) a service hosted within a VM publishes an update query; (2) Cloud peer 
8 computes the index cell, C(x

3
,y

3
), to which the update query maps by using mapping function 

IMap(query); (3) next, distributed hashing function, DHash(x
3
, y

3
), is applied on the cell’s co-ordinate 

values, which yields an overlay key, K14; (4) Cloud peer 8 based on its routing table entry for-
wards the request to peer 12; (5) similarly, peer 12 on the overlay forwards the request to Cloud 
peer 14; (6) a provisioning service submits a service discovery query; (7) Cloud peer 2 computes 
the index cell, C(x

1
, y

1
), to which the service discovery query maps; (8) DHash(x

1
, y

1
) is applied 

that yields an overlay key, K10; (9) Cloud peer 2 based on its routing table entry forwards the 
mapping request to peer 12
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12.5.4 � Designing Decentralized and Co-ordinated  
Load-Balancing Mechanism

A co-ordinated provisioning of requests between virtual machine instances deployed 
in Clouds is critical, as it prevents the service provisioners from congesting the 
particular set of VMs and network links, which arises due to lack of complete 
global knowledge. In addition, it significantly improves the Cloud user Quality of 
Service (QoS) satisfaction in terms of response time. The Cloud peer service in 
conjunction with the Pastry overlay and multidimensional indexing technique is 
able to perform a decentralized and co-ordinated balancing of service provisioning 
requests among the set of available VMs. The description of the actual load-balancing 
mechanism follows next.

As mentioned in previous section, both service discovery query (issued by 
service provisioner) and update query (published by VMs or Services hosted 
within VMs) are spatially hashed to an index cell i in the multidimensional attri-
bute space. In Fig. 12.3, a service discovery query for provisioning request P1 is 
mapped to an index cell with control point value A, while for P2, P3, and P4, the 
responsible cell has control point value C. Note that these service discovery que-
ries are posted by service provisioners. In Fig. 12.3, a provisioning service inserts 
a service discovery query with Cloud peer p, which is mapped to index cell i. The 
index cell i is spatially hashed through IMap(query) function to an Cloud peer s. 
In this case, Cloud peer s is responsible for co-ordinating the provisioning of 
services among all the service discovery queries that are currently mapped to the 
cell i. Subsequently, VM u issues a resource ticket (see Fig. 12.3) that falls under 
a region of the attribute space currently required by the provisioning requests P3 
and P4. Next, the Cloud peer s has to decide which of the requests (either P3 or 
P4 or both) is allowed to claim the update query published by VM u. The load-
balancing decision is based on the principle that it should not lead to over-provi-
sioning of service(s) hosted within VM u. This mechanism leads to co-ordinated 
load-balancing across VMs in Clouds and aids in achieving system-wide objec-
tive function.

The examples in Table 12.5 are service discovery queries that are stored with 
a Cloud peer service at time T = 700 s. Essentially, the queries in the list arrived 
at a time £700 and waited for a suitable update query that could meet their pro-
visioning requirements (software, hardware, service type, location). Table 12.6 
depicts an update query that arrived at T = 700. Following the update query 
arrival, the Cloud peer service undertakes a procedure that allocates the available 
service capacity with VM (that published the update query) among the list of 
matching service discovery queries. Based on the updating VM’s attribute speci-
fication, only service discovery query 3 matches. Following this, the Cloud 
peer notifies the provisioning services that posted the query 3. Note that queries 
1 and 2 have to wait for the arrival of update queries that can match their 
requirements.



210 R. Ranjan et al.

Table 12.5  Service discovery query stored with a Cloud Peer service at time T

Time
Discovery 
query ID Service type Speed (GHz) Cores Location

300 Query 1 Web hosting >2 1 USA
400 Query 2 Scientific simulation >2 1 Singapore
500 Query 3 Credit card authenticator >2.4 1 Europe

Fig. 12.3  Co-ordinated provisioning across VM instances: multidimensional service provisioning 
requests {P1, P2, P3, P4}, index cell control points {A, B, C, D}, multidimensional update queries 
{l, s}, and some of the spatial hashing to the Pastry overlay, i.e. the multidimensional (spatial) coor-
dinate values of a cell’s control point is used as the Pastry key. For this figure, f

min
 =2, dim = 2
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12.6 � Experiments and Evaluation

In this section, we evaluate the performance of the proposed peer-to-peer Cloud 
provisioning concept by creating a service and VM pool that consists of multiple 
virtual machines that are hosted within the Amazon EC2 infrastructure. We assume 
unsaturated server availability for these experiments, so that enough capacity can 
always be allocated to a VM for any service request. Next, we describe the various 
details related to Cloud peer (peer-to-peer network, multidimensional index struc-
ture, and network configuration parameters), PaaS layer provisioning software, and 
application characteristics related to this experimental evaluation.

12.6.1 � Cloud Peer Details

A Cloud peer service operates at PaaS layer and handles activities related to decentral-
ized query (discovery and update) routing, management, and matching. Additionally, 
it also implements the higher-level services such as publish/subscribe-based 
co-ordinated interactions and service selections. Every VM instance, which is deployed 
on a Cloud platform, hosts a Cloud peer service (see Figs. 12.2 and 12.3) that loosely 
glues it to the overlay. Next follows the details related to Cloud peer configuration.

FreePastry1 Network Configuration: Both Cloud Peers’ nodeIDs and discovery/
update queries’ IDs are randomly generated from and uniformly distributed in the 
160-bit Pastry identifier space. Every Cloud peer service is configured to buffer a 
maximum of 1,000 messages at a given instance of time. The buffer size is chosen 
to be sufficiently large such that the FreePastry does not drop any messages. 
Other network parameters are configured to the default values as given in the file 
freepastry.params. This file is provided with the FreePastry distribution.

Multidimensional Index Configuration: The minimum division f
min

 of logical mul-
tidimensional index is set to 3, while the maximum height f

max
 of the distributed index 

tree is constrained to 3. In other words, the division of the multidimensional attribute 
space is not allowed beyond f

min
 for simplicity. The index space has provision for 

defining service discovery and update queries that specify the VM characteristics in 
four dimensions including number of application service type being hosted, number 
of processing cores available on the server hosting the VM, hardware architecture of 
the processor(s), and their processing speed. The aforementioned multidimensional 
index configuration results into 81(34) index cells at f

min
 level.

Table 12.6  Update query published with a Cloud Peer service at time T

Time VM ID Service type Speed (GHz) Processors Type

700 VM 2 Credit card authenticator 2.7 One 
(available)

Europe

1 An open source pastry DHT implementation. http://freepastry.rice.edu/FreePastry
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Service Discovery and Update Query’s Multidimensional Extent: Update queries, 
which are posted by VM instances, express equality constraints on service, installed 
software environments, and hardware configuration attribute values (e.g. =).

12.6.2 � Aneka: PaaS Layer Application Provisioning  
and Management Service

At PaaS layer, we utilize the Aneka [14] software framework that handles activities 
related to application element scheduling, execution, and management. Aneka is a 
.NET-based service-oriented platform for constructing Cloud computing environ-
ments. To create a Cloud application provisioning system using Aneka, a developer 
or application scientist needs to start an instance of the configurable Aneka con-
tainer hosting required services on each selected VM.

Services of Aneka can be clearly characterized into two distinct spaces: 
(i) Application Provisioner, a service that implements the functionality that 
accepts application workload from Cloud users, performs dynamic discovery of 
application management services via the Cloud peer service, dispatches workload 
to application management service, monitors the progress of their execution, and 
collects the output data, which returned back to the Cloud users. An Application 
Provisioner need not be hosted within a VM, it only needs to know the end-point 
address (such as web service address) of a random Cloud peer service in the overlay 
to which it can connect and submit its service discovery query; and (ii) Application 
Management Service, a service, hosted within a VM, which is responsible for han-
dling execution and management of submitted application workloads. An applica-
tion management service sits within a VM and updates its usage status, software, 
and hardware configurations by sending update queries to the overlay. One or more 
instance of application management service can be connected in a single-level 
hierarchy to be controlled by a root-level Aneka Management Co-ordinator. This 
kind of service integration is aimed at making application programming flexible, 
efficient, and scalable.

12.6.3 � Test Application

The PaaS layer software service, Aneka, supports composition and execution of 
application programs that are composed using different service models to be 
executed within the same software environment. The experimental evaluation in 
this chapter considers execution of applications programmed using a multithreaded 
programming model. The Thread programming model [14] defines an application 
as a collection of one or more independent work units. This model can be suc-
cessfully utilized to compose and program embarrassingly-parallel programs 
(parameter sweep applications). The Thread model fits better for implementing and 
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architecting new applications and algorithms on Cloud infrastructures since it gives 
finer degree of control and flexibility as regards to runtime control.

To demonstrate the feasibility of architecting Cloud provisioning services based on 
peer-to-peer network models, we consider composition and execution of Mandelbrot 
Set computation. Mathematically, the Mandelbrot set is an ordered collection of points 
in the complex plane, the boundary of which forms a fractal. The Application 
Provisioner service implements and cloud enables the Mandelbrot fractal calculation 
using a multithreaded programming model. The application submission interface 
allows the user to configure a number of horizontal and vertical partitions into which 
the fractal computation can be divided. The number of independent thread units cre-
ated is equal to the horizontal x vertical partitions. For evaluations, we vary the values 
for horizontal and vertical parameters over the interval 5 × 5, 10 × 10, and 15 × 15. 
This configuration results in observation points.

12.6.4 � Deployment of Test Services on Amazon EC2 Platform

To test the feasibility of the aforementioned services with regard to the provisioning 
of application services on Amazon EC2 cloud platform, we created Amazon 
Machine Images (AMIs) packaged with a Cloud peer, Application Management, and 
Aneka Management Co-ordinator services. The image that hosts the Aneka 
Management Co-ordinator is equipped with Microsoft Windows Server 2003 R2 
Datacenter edition, Microsoft SQL Server 2005 Express, and Internet Information 
Services 6, while the AMI hosts only the Management Service and has Microsoft 
Windows Server 2003 R2 Datacenter system installed. For every AMI, we installed 
only the essential software including mandatory Cloud peer service, which is hosted 
within a Tomcat 6.0.10, Axis2 1.2 container. Cloud peer is exposed to the provision-
ing and management services through WS* interfaces. Later, we built our custom-
ized Amazon Machine Images from the two instances, creating and starting up more 
management co-ordinator and application management services by using customized 
images. We configured three management co-ordinators and nine management ser-
vices. The management service is divided into groups of three that connect with a 
single co-ordinator resulting in a hierarchical structure. The management co-ordinator 
services communicate and internetwork through the Cloud peer fabric service. 
Figure 12.4 shows the pictorial representation of the experiment setup.

12.7 � Results and Discussions

To measure the performance of peer-to-peer Cloud provisioning technique in 
regard to response time, co-ordination delay, and Pastry overlay network message 
complexity, we consider simultaneous provisioning of test applications at Application 
Provisioner A and B (see Table  12.7). The response time for an application is 
calculated by subtracting the output arrival time of the last thread in the submission 
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list from the time at which the application is submitted. The metric co-ordination 
delay sums up the latencies for: (i) a service discovery query to be mapped to a 
Cloud peer, (ii) waiting time till an update query matches the discovery query; and 
(ii) notification delay from the Cloud peer to the Application Provisioner that origi-
nally posted the service discovery query. Pastry overlay message complexity mea-
sures the details related to the number of messages that flow through the network 
in order to: (i) initialize the multidimensional attribute space, (ii) map the discovery 
and update queries, (iii) maintain overlay, and (iv) send notifications.

Table 12.7 (response time vs. complexity) shows the results for response time in 
seconds with increasing complexity/problem size for the test application. Cloud 
consumers submit their applications with provisioner A and B. The initial experi-
mental results reveal that with increase in problem complexity (number of horizon-
tal and vertical partitions), the Cloud consumers experience increase in response 
times. The basic reason behind this behaviour of the provisioning system is related 

Table 12.7  Response time, co-ordination delay, message count versus complexity

Problem complexity 5 × 5 10 × 10 15 × 15

Provisioner A B A B A B

Response time (s) 27 27 107 104 245 229
Coordination delay (s) 5.58 7.13 26.08 24.97 60.06 48.09
Update message 3,203 3,668 3,622
Discovery message 75 400 450
Total message count 5,760 7,924 8,006

Fig. 12.4  Experiment Setup in Amazon EC2
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to the fixed number Application Management services, i.e. 9, available to the 
Application Provisioners. With increase in the problem complexity, the number of 
job threads (a job thread represents a single work unit, e.g. for a 5 × 5 Mandelbrot 
configuration, 25 job threads are created and submitted with the Application 
Provisioner) that are to be executed with management services increase, hence 
leading to worsening queuing and waiting delays. However, this behaviour of the 
provisioning system can be fixed through implementation of reactive provisioning 
of new VM instances to reflect the sudden surge in application workload processing 
demands (problem complexity). In our future work, we want to explore how to 
dynamically provision or de-provision VMs and associated Application Management 
services driven by workload processing demands.

Table 12.7 (coordination delay vs. complexity) presents the measurements for 
average co-ordination delay for each discovery query with respect to increase in the 
problem complexity. The results show that at higher problem complexity, the dis-
covery queries experience increased co-ordination delay. This happens because the 
discovery queries of the corresponding job threads have to wait for a longer period 
of time before they are matched against an update query object. However, the job 
thread processing time (CPU time) is not affected by the co-ordination delay; hence, 
the response time in Table 12.7 shows a similar trend to delay.

In Table  12.7 (message count vs. complexity), we show the message overhead 
involved with management of multidimensional index, routing of discovery and 
update query messages, and maintenance of Pastry overlay. We can clearly see that 
as application size (problem complexity) increase, the number of messages required 
for mapping the query objects and maintenance of the overlay network increase. The 
number of discovery and update messages produced in the overlay is a function of the 
multidimensional index structure that indexes and routes these queries in a distributed 
fashion. Hence, the choice of the multidimensional data indexing structure and rout-
ing technique governs the manageability and efficiency of the overlay network 
(latency, messaging overhead). Hence, there is much work required in this domain as 
regards to evaluating the performance of different types of multidimensional indexing 
structures for mapping the query messages in peer-to-peer settings.

12.8 � Conclusions and Path Forward

Developing provisioning techniques that integrate application services in a peer-to-
peer fashion is critical to exploiting the potential of Cloud computing platforms. 
Architecting provisioning techniques based on peer-to-peer network models (such 
as DHTs) is significant; since peer-to-peer networks are highly scalable, they can 
gracefully adapt to the dynamic system expansion (join) or contraction (leave, 
failure), and are not susceptible to a single point of failure. To this end, we pre-
sented a software fabric called Cloud peer that creates an overlay network of VMs 
and application services for supporting scalable and self-managing service discov-
ery and load-balancing. The functionality exposed by the Cloud peer service is very 
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powerful and our experimental results conducted on Amazon EC2 platform confirm 
that it is possible to engineer and design peer-to-peer Cloud provisioning systems 
and techniques.

As part of our future work, we would explore other multidimensional data 
indexing and routing techniques that can achieve close to logarithmic bounds on 
messages and routing state, balance query (discovery, load-balancing, coordination) 
and processing load, preserve data locality, and minimize the metadata. Another 
important algorithmic and programming challenge in building robust Cloud peer 
services is to guarantee consistent routing, look-up, and information consistency 
under concurrent leave, failure, and join operations by application services. To 
address these issues, we will investigate robust fault-tolerance strategies based on 
distributed replication of attribute/query subspaces to achieve a high level of robustness 
and performance guarantees.
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