Chapter 12
Peer-to-Peer Cloud Provisioning: Service
Discovery and Load-Balancing

Rajiv Ranjan, Liang Zhao, Xiaomin Wu, Anna Liu, Andres Quiroz,
and Manish Parashar

Abstract Clouds have evolved as the next-generation platform that facilitates
creation of wide-area on-demand renting of computing or storage services for
hosting application services that experience highly variable workloads and requires
high availability and performance. Interconnecting Cloud computing system
components (servers, virtual machines (VMs), application services) through peer-
to-peer routing and information dissemination structure are essential to avoid the
problems of provisioning efficiency bottleneck and single point of failure that are
predominantly associated with traditional centralized or hierarchical approaches.
These limitations can be overcome by connecting Cloud system components using
a structured peer-to-peer network model (such as distributed hash tables (DHTS)).
DHTs offer deterministic information/query routing and discovery with close to
logarithmic bounds as regards network message complexity. By maintaining a
small routing state of O (log n) per VM, a DHT structure can guarantee determin-
istic look-ups in a completely decentralized and distributed manner.

This chapter presents: (i) a layered peer-to-peer Cloud provisioning architecture;
(i1) a summary of the current state-of-the-art in Cloud provisioning with particular
emphasis on service discovery and load-balancing; (iii) a classification of the exist-
ing peer-to-peer network management model with focus on extending the DHTs for
indexing and managing complex provisioning information; and (iv) the design and
implementation of novel, extensible software fabric (Cloud peer) that combines
public/private clouds, overlay networking, and structured peer-to-peer indexing
techniques for supporting scalable and self-managing service discovery and load-
balancing in Cloud computing environments. Finally, an experimental evaluation is
presented that demonstrates the feasibility of building next-generation Cloud
provisioning systems based on peer-to-peer network management and information
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dissemination models. The experimental test-bed has been deployed on a public
cloud computing platform, Amazon EC2, which demonstrates the effectiveness of
the proposed peer-to-peer Cloud provisioning software fabric.

12.1 Introduction

Cloud computing [1-3] has emerged as the next-generation platform for hosting
business and scientific applications. It offers infrastructure, platform, and software
as services that are made available as on-demand and subscription-based services
in a pay-as-you-go model to users. These services are, respectively, referred to as
Infrastructure as a Service (IaaS), Platform as a Service (PaaS), and Software as a
Service (SaaS). Adoption of Cloud computing platforms [4-9] as an application
provisioning environment has the following critical benefits: (i) software enter-
prises and startups with innovative ideas for new Internet services are no longer
required to make large capital outlays in the hardware and software infrastructures
to deploy their services or human expense to operate it; (ii) government agencies
and financial organizations can use Cloud services as an effective means for cost
cutting by leasing their IT service hosting and maintenance from external cloud
providers; (iii) organizations can more cost-effectively manage peak-load by using
the cloud, rather than planning and building for peak load, and having under-utilized
servers sitting there idle during off peak time; and (iv) failures due to natural disasters
or regular system maintenance/outage may be managed more gracefully as services
may be more transparently managed and migrated to other available cloud resources,
hence enabling improved service-level agreement (SLA).

The process of deploying application services on publically accessible clouds
(such as Amazon EC2 [8]) that expose their capabilities as a network of virtualized
services (hardware, storage, database) is known as Cloud provisioning. The Cloud
provisioning process consists of two key steps [10]: (i) VM provisioning, involving
instantiation of one or more VMs on physical servers hosted within public or pri-
vate Cloud computing environments — the selection of a physical server for hosting
VMs in a cloud is based on a number of mapping requirements including available
memory, storage space, and proximity of the parent cloud; and (ii) application ser-
vice provisioning, with mapping and scheduling of requests to the services that are
hosted within a VM or on a set of VMs. In this chapter, we mainly focus on the
second step, which involves dynamically distributing the incoming requests among
the services in a load-balanced and decentralized manner, given a set of VMs that
are hosting different types of application services.

Cloud provisioning from a business services point of view involves deriving
cloud-based application component deployments driven by expected performance
(Quality of Service (QoS)). Clouds offer an unprecedented pool of software and
hardware resources, which gives businesses a unique ability to handle the temporal
variation in their service demands through dynamic provisioning or deprovisioning
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of capabilities. Whenever there is a variation in temporal and spatial locality of
workload such as number of concurrent users, total users, and load conditions, each
application component must dynamically scale (application service elasticity) to
offer good quality of experience to users, and maintain an optimal usage of cloud
resources. Cloud-enabling any class of application service would require develop-
ing models for service placement, computation, communication, and storage, with
emphasis on important scalability requirements.

Currently, one of the prominent Cloud service providers Amazon EC2 offers
two services, namely CloudWatch [11] and Elastic Load Balancer [12].
Fundamentally, CloudWatch and Elastic Load Balancer are centralized web ser-
vices that can be associated with numerous EC2 instances. However, centralized
approaches have several critical design limitations including: (i) single point of
failure; (ii) lack of scalability; (iii) high network communication cost at links
leading to the service; (iv) requirement of high computational power to serve a
large number of resource look-up and updated queries on the server running the
central service.

As Clouds become ready for mainstream acceptance, scalability [13] of services
will come under more severe scrutiny due to the increasing number of online ser-
vices in the Cloud, and massive numbers of global users. To overcome the afore-
mentioned limitations, fundamental Cloud services for discovery, monitoring, and
load-balancing should be decentralized by nature and different service components
(VM instances and application elements) must interact to adaptively maintain and
achieve the desired system wide connectivity and behaviour.

The rest of this chapter is organized as follows: First, a layered approach to
architecting peer-to-peer Cloud provisioning system is presented. This is followed
by some survey results on Cloud provisioning capabilities in leading commercial
public clouds. The finer details related to architecting peer-to-peer Cloud service
discovery and load-balancing techniques over DHT overlay is then presented, fol-
lowed by a discussion of the design and implementation of peer-to-peer Cloud
provisioning (Cloud peer) software fabric. Lastly, we present the analysis and
experimental results of the peer-to-peer Cloud provisioning implementation across
a public Cloud (Amazon EC2) environment (Table 12.1).

Table 12.1 Summary of provisioning capabilities exposed by public Cloud platforms

Cloud platforms Load balancing Provisioning Autoscaling
Amazon Elastic v \/ N
Compute Cloud
Eucalyptus \ J X
Microsoft Windows v y v
Azure (Fixed templates so far) (Manually at the moment)
Google App Engine \ \ \
GoGrid Cloud \ # \

Hosting (Programmatic way only)
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12.2 Layered Peer-to-Peer Cloud Provisioning Architecture

This section presents information on various architectural elements that form the
basis for peer-to-peer Cloud provisioning architecture. It also presents an overview
of the applications that would benefit from the architecture, which envisages a host-
ing infrastructure consisting of multiple geographically distributed private and
public clouds owned by one or more service providers. Figure 12.1 shows the lay-
ered design of the peer-to-peer Cloud provisioning architecture. Physical Cloud
servers, along with core middleware capabilities, form the basis for delivering IaaS.
The user-level middleware aims at providing PaaS capabilities. The top layer
focuses on application services (SaaS) by making use of services provided by the
lower layers. PaaS/SaaS services are often developed and provided by third-party
service providers, who are different from IaaS providers.

Cloud Applications (SaaS): Popular Cloud applications include Business to
Business (B2B) applications, traditional eCommerce type of applications, enter-
prise business applications such as CRM and ERP, social computing such as
Facebook and MySpace, and compute, data intensive applications and content
delivery networks (CDNs). These applications have radically different application
characteristics and workload profiles, and hence, to cope with the variation in tem-
poral and spatial locality of service request, the application services must be sup-
ported by a Cloud provisioning infrastructure that dynamically scales the deployed
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Fig. 12.1 A layered peer-to-peer Cloud provisioning architecture
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services in order to achieve good performance, optimal resource usage, and hence
offer quality experience to its end-users.

Development Framework Layer: This layer includes the software frameworks
such as Web 2.0 Interfaces (Ajax, IBM Workplace, and Visual Studio.net Azure
plug-in) that help developers in creating rich, cost-effective, user-interfaces for
browser-based applications. The layer also provides the data-intensive, parallel pro-
gramming environments (such as MapReduce, Hadoop, Dryad) and composition
tools that ease the creation, deployment, and execution of applications in Clouds.

Core Services Layer (PaaS): This layer implements the platform-level ser-
vices that provide run-time environment-enabling Cloud computing capabilities
to application services built using User-Level Middleware. Core services at this
layer include scheduling, fault-management, monitoring, dynamic SLA manage-
ment, accounting, billing, and pricing. Further, the services at this layer must
be able to provide support for decentralized co-ordinated interaction, scalable
selection, and messaging between distributed Cloud components. Some of the
existing services operating at this layer are Amazon EC2’s CloudWatch and
Load-balancer service, Google App Engine, Microsoft Azure’s fabric controller,
and Aneka [14].

To be able to provide support for decentralized service discovery [15] and load-
balancing between cloud components (VM instances, application services), novel
distributed hash table (DHT)-based PaaS layer services, techniques, and algorithms
need to be developed at this layer for supporting complex interactions with guaran-
tees on dynamic management. In Fig. 12.1, this component of PaaS layer is shown
as Cloud peer service. Architecting Cloud services based on decentralized network
models or overlays (such as DHTSs) is significant since DHTSs are highly scalable,
can gracefully adapt to the dynamic system expansion (new host/VM/service
instantiation) or contraction (host/VM/service instance destruction) and outage,
and are not susceptible to single point of failure in massive scale, internetworked
private and public cloud environments.

Infrastructure Layer (laaS): The computing power in Cloud computing environ-
ments is supplied by a collection of data centers that are typically installed with
many thousands of servers. At the IaaS layer, there exist massive physical servers
(storage servers and application servers) that power the data centers. These servers
are transparently managed by the higher-level virtualization services and toolkits
that allow sharing of their capacity among virtual instances of servers. These virtual
machines (VMs) are isolated from each other, which aids in achieving fault-tolerant
behaviour and the isolation of security contexts.

Another trend in Cloud usage is combination of private clouds with public
clouds, in order to attend unexpected or periodic peaks in local demand without
investing in acquiring new equipment for the local infrastructure. Resources from
the data center may be either available for public in general (public clouds) or may
be restricted to users belonging to the organization that owns the data center (pri-
vate clouds). It is also possible to have hybrid models, in which resources are leased
from the public cloud whenever the private cloud cannot cope with the incoming
demand.
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12.3 Current State-of-the-Art and Practice in Cloud
Provisioning

Key players in public Cloud computing, including Amazon, Microsoft, Google App
Engine, Eucalyptus [16], and GoGrid, offer a variety of prepackaged services for
monitoring, managing, and provisioning resources. However, the techniques imple-
mented in each of these Clouds vary.

The three Amazon Web Services (AWS), Elastic Load Balancer [12], Auto
Scaling [17], and CloudWatch [11], together expose functionalities that are required
for undertaking provisioning of application services on Amazon EC2. Elastic Load
Balancer service automatically provisions incoming application workload across
available Amazon EC2 instances. Auto-scaling service can be used to dynamically
scale-in or scale-out the number of Amazon EC2 instances for handling changes in
service demand patterns. And finally, the CloudWatch service can be integrated
with the above services for strategic decision-making based on collected real-time
information.

Eucalyptus is an open source Cloud computing platform. It is composed of three
controllers. Among the controllers, the cluster controller is a key component to
application service provisioning and load balancing. Each cluster controller is
hosted on the head node of a cluster to interconnect outer public networks and inner
private networks together. By monitoring the state information of instances in the
pool of server controllers, the cluster controller can select the available service/
server for provisioning incoming requests. However, when compared with AWS,
Eucalyptus still lacks some of the critical functionalities, such as autoscaling for
built-in provisioner.

Fundamentally, Windows Azure Fabric has a weave-like structure, which is
composed of nodes (servers and load balancers), and edges (power, Ethernet, and
serial communications). The fabric controller manages a service node through a
built-in service, the Azure fabric controller agent, which runs in the background
tracking the state of the server and reporting these metrics to the controller. If a fault
state is reported, the controller can manage a reboot of the server or a migration of
services from the current server to other healthy servers. Moreover, the controller
also supports service provisioning by matching the services/VMs that meet the
required demands.

GoGrid Cloud Hosting offers developers F5 Load Balancers [18] for distributing
application service traffic across servers, as long as IPs and specific ports of these
servers are attached. The load balancer provides the Round Robin algorithm and
Least Connect algorithm for routing application service requests. Also, the load
balancer is able to sense a crash of the server, redirecting further requests to other
available servers. But currently, GoGrid Cloud Hosting only gives developers pro-
grammatic APIs to implement their custom autoscaling service.

Unlike other Cloud platforms, Google App Engine offers developers a scalable
platform in which applications can run, rather than providing access directly to a
customized virtual machine. Therefore, access to the underlying operating system
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is restricted in App Engine. Load-balancing strategies, service provisioning, and
autoscaling are all automatically managed by the system behind the scenes.

In addition, no single Cloud infrastructure provider has its data centers at all pos-
sible locations throughout the world. As a result, Cloud application service (SaaS)
providers will have difficulty in meeting QoS expectations for all their users. Hence,
they would like to logically construct hybrid Cloud infrastructures (mixing multiple
public and private clouds) to provide better support for their specific user needs. This
kind of requirement often arises in enterprises with global operations and applications
such as Internet service, media hosting, and Web 2.0 applications. This necessitates
building technologies and algorithms for seamless integration of Cloud infrastructure
service providers for provisioning of services across different Cloud providers.

12.4 Cloud Service Discovery and Load-Balancing Using
DHT Overlay

12.4.1 Distributed Hash Tables

Structured systems such as DHTs offer deterministic query search results within
logarithmic bounds on network message complexity. Peers in DHTs such as Chord,
CAN, Pastry, and Tapestry maintain an index for O (log n) peers where n is the total
number of peers in the system. Inherent to the design of a DHT are the following
issues [19]: (i) generation of node-ids and object-ids, called keys, using crypto-
graphic/randomizing hash functions such as SHA-1 [19-22] — the objects and nodes
are mapped on the overlay network depending on their key value and each node is
assigned responsibility for managing a small number of objects; (ii) building up
routing information (routing tables) at various nodes in the network — each node
maintains the network location information of a few other nodes in the network;
and (iii) an efficient look-up query resolution scheme.

Whenever a node in the overlay receives a look-up request, it must be able to
resolve it within acceptable bounds such as in O (log n) routing hops. This is
achieved by routing the look-up request to the nodes in the network that are most
likely to store the information about the desired object. Such probable nodes are
identified by using the routing table entries. Though at the core various DHTs
(Chord, CAN, Pastry, and Tapestry, etc.) are similar, still there exist substantial dif-
ferences in the actual implementation of algorithms including the overlay network
construction (network graph structure), routing table maintenance, and node join/
leave handling. The performance metrics for evaluating a DHT include fault-toler-
ance, load-balancing, efficiency of look-ups and inserts, and proximity awareness
[23]. In Table 12.2, we present the comparative analysis of Chord, Pastry, CAN,
and Tapestry based on basic performance and organization parameters.
Comprehensive details about the performance of some common DHTSs under churn
can be found in [24].



R. Ranjan et al.

202

Joynuapl
Yy Jo aseq = q
“SJIomiau Yy ut PI-10AISS
(u 301) 0 q+ @'3019) o0 m3op) 0  SIOAIGS JO IoqunuU= U ur Xigns Suryoje ysow 9[A1s UoIXe[q Ansadey,
suoIsuawiIp = p
YI0MIU Y) UT Qoeds ur jurod
@00 Gy P) O P70  S10A19S Jo roqunu=u e o) dew ared onfea Aoy 9deds [euorsUSWIPHNIA NVD
Iaynuspt
Yy Jo aseq =q
“JIomiau Yy ut PI-I0AIS UT
(u 301) 0 q+ 3019 o0 3op) 0  smoAIes Jo Toqunu= u  x1ja1d pue Aoy Suryorepy ysow 9[A1s UoIXe[q Anseq
PI-TOAIdS Qoeds
(;(u 301)) 0 (u 301) 0 (u30]) 0  SIOAISS JO IQUINU= U pue Aoy Suryoje|N IQIJTIUSPI JR[NOID pIoyD
PBAYIOAO 9ABI[ Kyrxordwod Funnoy E7AY s1ojowered JI0MIAN [090301d dn-yoo] aImonns Ae[1oAQ0 wAIsAs LHA
Juior J1qe) Sunnoy

sAe[1oA0 2]qe) ysey panquisip jo Ayxardwos jo Arewrwing  7'Z d[qeL



12 Peer-to-Peer Cloud Provisioning: Service Discovery and Load-Balancing 203

Other classes of structured peer-to-peer systems such as Mercury [25] do not
apply randomizing hash functions for organizing data items and nodes. The
Mercury system organizes nodes into a circular overlay and places data contigu-
ously on this ring. As Mercury does not apply hash functions, data partitioning
among nodes is not uniform. Hence, it requires an explicit load-balancing scheme.
In recent developments, new-generation P2P systems have evolved to combine both
unstructured and structured P2P networks. We refer to this class of systems as
hybrid. Structella [26] is one such P2P system that replaces the random graph
model of an unstructured overlay (Gnutella) with a structured overlay, while still
adopting the search and content placement mechanism of unstructured overlays to
support complex queries. Other hybrid P2P design includes Kelips [27] and its vari-
ants. Nodes in Kelips overlay periodically gossip to discover new members of the
network, and during this process nodes may also learn about other nodes as a result
of look-up communication. Other variants of Kelips allow routing table entries to
store information for every other node in the system. However, this approach is
based on the assumption that the system experiences low churn rate [24]. Gossiping
and one-hop routing approach has been used for maintaining the routing overlay in
the work [28].

12.4.2 Designing Complex Services over DHTs

Limitations of Basic DHT Implementations and Query Types: Traditionally, DHTs
have been efficient for single-dimensional queries such as “finding all resources
that match the given attribute value.” Since Cloud computing IaaS and PaaS level
services such as servers, VMs, enterprise computers (private cloud resources), stor-
age devices, and databases are identified by more than one attribute, a search query
for these services is always multidimensional. These search dimensions or attri-
butes can include service type, processor speed, architecture, installed operating
system, available memory, and network bandwidth.

Based on recent information published by Amazon EC2 CloudWatch service,
each Amazon Machine Image (AMI) instance has seven performance metrics (see
Table 12.3) and four dimensions (see Table 12.4) associated with it. Additionally,
these AMIs can host different application service types, including web hosting,

Table 12.3 Performance metrics associated with an Amazon EC2 AMI instance

CPU Network Network Disk Write Disk Read Disk Disk
Utilization Incoming Outgoing Operations Operations Write Read
Traffic Traffic Bytes Bytes

Table 12.4 Performance dimensions associated with an Amazon EC2 AMI instance

Image ID Autoscaling group name Instance ID Instance type
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social networking, content-delivery, and high-performance computing, that have
varying request invocation, access, and distribution patterns. The type of application
services hosted by an AMI instance is dependent on the business needs and scien-
tific experiments. In these cases, a Cloud service discovery query (which can be
issued by provisioning software) will combine the aforementioned attributes related
to AMI instances and application service types and therefore can have the following
semantics:
Cloud Service Type = “web hosting” && Host CPU Utilization < “50%” && Instance

OSType = “WinSrv2003” && Host Processor Cores > “1” && Host Processors Speed >
“1.5 GHz” && Host Cloud Location = “Europe”

On the other hand, VM instances deployed on the Cloud hosts needs to publish their
information so that provisioning software can search and discover them. VM
instances update their software and hardware configuration and the deployed
services’ availability status by sending update query to the DHT overlay. An update
query has the following semantics:

Cloud Service Type = “web hosting” && Host CPU Utilization = “30%” && Instance

OSType = “WinSrv2003” && Host Processor Cores = “2” && Host Processors Speed
=“1.5 GHz” && Host Cloud Location = “Europe”

Extending DHTs to support indexing and matching of multidimensional range (ser-
vice discovery query) or point (update query) queries, to index all resources whose
attribute value overlaps a given search space, is a complex problem. Multidimensional
range queries are based on ranges of values for attributes rather than on specific
values. Compared to single-dimensional queries, resolving multidimensional que-
ries is far more complicated, as there is no obvious total ordering of the points in the
attribute space. Further, the query interval has varying size, aspect ratio, and position
such as a window query. The main challenges involved in enabling multidimensional
queries in a DHT overlay include designing efficient service attribute data: (i) distri-
bution or indexing techniques; and (ii) query routing techniques.

Data Indexing Techniques for Mapping Multidimensional Range and Point
Queries: A data indexing technique partitions the multidimensional attribute
space over the set of VMs in a DHT network. Efficiency of the distribution
mechanism directly governs how the query processing load is distributed among
the Cloud peers. A good distribution mechanism should possess the following
characteristics [29]: (i) locality: data points nearby in the attribute space should
be mapped to the same Cloud peer, hence limiting the distributed lookup com-
plexity; (ii) load balance: the number of data points indexed by each Cloud peer
should be approximately the same to ensure uniform distribution of query pro-
cessing; (iii) minimal metadata: prior information required for mapping the attri-
bute space to the overlay space should be minimal; and (iv) minimal management
overhead: during VM instantiation and destruction operation, update policies
such as the transfer of data points to a newly joined Cloud peer should cause
minimal network traffic. Note that the assumption here is that every VM instance
hosts a Cloud peer service, which is responsible for managing activities related
to overlay network.
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There are different kinds of database indices [30] that can handle mapping of
multidimensional objects such as the space filling curves (SFCs) (including the
Hilbert curves, Z-curves), k-d tree, MX-CIF Quad tree, and R*-tree in a DHT over-
lay. In literature, these indices are referred to as spatial indices [31]. Spatial indices
are well suited for handling the complexity of multidimensional queries. Although
some spatial indices can have issues as regards to routing load-balance in case of a
skewed attribute/data set, all the spatial indices are generally scalable in terms of
the number of hops traversed and messages generated while searching and routing
multidimensional/spatial service discovery and update queries. However, there are
different tradeoffs involved with each of the spatial indices, but basically they can
all support scalability and Cloud service discovery. Some spatial index would per-
form optimally in one scenario but the performance could degrade if the attribute/
data distribution changed significantly.

Routing Techniques for Handling Multidimensional Queries in DHT Overlay:
DHTSs guarantee deterministic query look-up with logarithmic bounds on network
message cost for single-dimensional queries. However, Cloud’s service discovery
and update query are multidimensional (as discussed in previous sections). Hence,
the existing DHT routing techniques need to be augmented in order to efficiently
resolve multidimensional queries. Various data structures that we discussed in the
previous section effectively create a logical multidimensional index space over a
DHT overlay. A look-up operation involves searching for an index or set of indexes
in a multidimensional space. However, the exact query routing path in the multidi-
mensional logical space is directly governed by the data distribution mechanism
(i.e. based on the data structure that maintains the indexes). In this context, various
approaches have proposed different routing/indexing heuristics.

Efficient query routing algorithms should exhibit the following characteristics
[29]: (i) routing load balance: every peer in the network should route forward/route
approximately the same number of query messages; and (ii) low routing state per
Cloud peer: each Cloud peer should maintain a small number of routing links hence
limiting new Cloud peer (VM) join and Cloud peer (VM) state update cost. In the
current peer-to-peer literature, multidimensional data distribution mechanisms
based on the following structures have been proposed: (i) space filling curves; and
(i1) tree-based structures. Resolving multidimensional queries over a DHT overlay
that utilizes SFCs for data distribution consists of two basic steps [10]: (i) mapping
the multidimensional query onto the set of relevant clusters of SFC-based index
space; and (ii) routing the message to all VMs that fall under the computed SFC-
based index space. On the other hand, routing multidimensional query in a DHT
overlay that employs tree-based structures for data distribution requires routing to
start from the root. However, the root VM presents a single point of failure and load
imbalance. To overcome this, the authors introduced the concept of fundamental
minimum level. This means that all the query processing and the data storage
should start at that minimal level of the tree rather than at the root. There are a
number of techniques available for distributed routing in multidimensional space.
The performance of techniques varies depending on the distribution of data in the
multidimensional space, and VM in the underlying DHT overlay.
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12.5 Cloud Peer Software Fabric: Design and Implementation

The Cloud peer implements services for enabling decentralized and distributed
discovery supporting status look-ups and updates across the internetworked Cloud
computing systems, enabling inter-application service co-ordinated provisioning for
optimizing load-balancing and tackling the distributed service contention problem.
The dotted box in Fig. 12.1 shows the layered design of Cloud peer service over
DHT based self-organizing routing structure. The services built on the DHT routing
structure extends (both algorithmically and programmatically) the fundamental
properties related to DHTs including deterministic look-up, scalable routing, and
decentralized network management. The Cloud peer service is divided into a number
of sublayers (see Fig. 12.1): (i) higher level services for discovery, co-ordination,
and messaging; (ii) low level distributed indexing and data organization techniques,
replication algorithms, and query load-balancing techniques; (iii) DHT-based self-
organizing routing structure. A Cloud peer undertakes the following critical tasks
that are important for proper functioning of DHT-based provisioning overlay.

12.5.1 Opverlay Construction

The overlay construction refers to how Cloud peers are logically connected over the
physical network. The software implementation utilizes (the open source implemen-
tation of Pastry DHT known as the FreePastry) Pastry [32] as the basis for creation of
Cloud peer overlay. A Pastry overlay interconnects the Cloud peer services based on
a ring topology. Inherent to the construction of a Pastry overlay are the following
issues: (i) Generation of Cloud peer IS and query (discovery, update) ids, called keys,
using cryptographic/randomizing hash functions such as SHA-1. These IDs are
generated from 160-bit unique identifier space. The ID is used to indicate a Cloud
peer’s position in a circular ID space, which ranges from 0 to 2'®° — 1. The queries
and Cloud peers are mapped on the overlay network depending on their key values.
Each Cloud peer is assigned responsibility for managing a small number of queries;
and (ii) building up routing information (leaf set, routing table, and neighborhood
set) at various Cloud peers in the network. Given the Key K, the Pastry routing
algorithm can find the Cloud peer responsible for this key in O (log, n) messages,
where b is the base and n is the number of Cloud Peers in the network.

Each Cloud peer in the Pastry overlay maintains a routing table, leaf set, and
neighborhood set. These tables are constructed when a Cloud peer joins the overlay,
and it is periodically updated to take into account any new joins, leaves, or failures.
Each entry in the routing table contains the IP address of one of the potentially
many Cloud peers whose id have the appropriate prefix; in practice, a Cloud peer
is chosen, which is close to the current peer, according to the proximity metric.
Figure 12.2 shows a hypothetical Pastry overlay with keys and Cloud peers distributed
on the circular ring based on their cryptographically generated IDs.
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12.5.2 Multidimensional Query Indexing

To support multidimensional query indexing (Cloud service type, Host utilization,
Instance OS type, Host Cloud location, Host Processor speed) over Pastry overlay,
a Cloud peer implements a distributed indexing technique [33], which is a variant
of peer-to-peer MX-CIF Quad tree [34] data structure. The distributed index builds
a multidimensional attribute space based on the Cloud service attributes, where
each attribute represents a single dimension. An example of a two-dimensional
attribute space that indexes service attributes including speed and CPU type is
shown in Fig. 12.2. The first step in initializing the distributed index is the process
called minimum division (f__ ). This process divides the Cartesian space into mul-
tiple index cells when the multidimensional distributed index is first created. As a
result of this process, the attribute space resembles a grid-like structure consisting
of multiple index cells. The cells resulting from this process remain constant
throughout the life of the indexing domain and serve as entry points for subsequent
service discovery and update query mapping. The number of cells produced at the
minimum division level is always equal to (f )%™, where dim is dimensionality of
the attribute space. Every Cloud peer in the network has basic information about
the attribute space co-ordinate values, dimensions, and minimum division level.
Cloud peers can obtain this information (cells at minimum division level, control
points) in a configuration file from the bootstrap peer. Each index cell at f . is
uniquely identified by its centroid, termed as the control point. In Fig. 12.2,
f . =1, dim=2. The Pastry overlay hashing method (DHash (co-ordinates)) is used
to map these control points so that the responsibility for an index cell is associated
with a Cloud peer in the overlay. For example in Fig. 12.2, DHash(x, y,) = k10 is
the location of the control point A (x,y,) on the overlay, which is managed by
Cloud peer 12.

12.5.3 Multidimensional Query Routing

This action involves the identification of the index cells at minimum division level
f . in the attribute space to map a service discovery and update query. For a mapping
service discovery query, the mapping strategy depends on whether it is a multidi-
mensional point query (equality constraints on all search attribute values) or multi-
dimensional range query. For a multidimensional point service discovery query, the
mapping is straightforward since every point is mapped to only one cell in the
attribute space. For a multidimensional range query, mapping is not always singular
because a range look-up can cross more than one index cell. To avoid mapping a
multidimensional service discovery query to all the cells that it crosses (which can
create many unnecessary duplicates), a mapping strategy based on diagonal hyper-
plane of the attribute space is utilized. This mapping involves feeding the service
discovery query’s spatial dimensions into a mapping function, IMap(query).
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Fig. 12.2 A pictorial representation of Pastry (DHT) overlay construction, multidimensional data
indexing, and routing: (1) a service hosted within a VM publishes an update query; (2) Cloud peer
8 computes the index cell, C(x,,y,), to which the update query maps by using mapping function
IMap(query); (3) next, distributed hashing function, DHash(x,, y,), is applied on the cell’s co-ordinate
values, which yields an overlay key, K14; (4) Cloud peer 8 based on its routing table entry for-
wards the request to peer 12; (5) similarly, peer 12 on the overlay forwards the request to Cloud
peer 14; (6) a provisioning service submits a service discovery query; (7) Cloud peer 2 computes
the index cell, C(x,, y,), to which the service discovery query maps; (8) DHash(x,, y,) is applied
that yields an overlay key, K10; (9) Cloud peer 2 based on its routing table entry forwards the
mapping request to peer 12

This function returns the IDs of index cells to which given query can be mapped
(refer to step 7 in Fig. 12.2). Distributed hashing (DHash(cells)) is performed on
these IDs (which returns keys for Pastry overlay) to identify the current Cloud peers
responsible for managing the given keys. A Cloud peer service uses the index
cell(s) currently assigned to it and a set of known base index cells obtained at the
initialization as the candidate index cells. Similarly, mapping of the update query
also involves the identification of the cell in the attribute space using the same
algorithm. An update query is always associated with an event region [35] and all
cells that fall fully or partially within the event region would be selected to receive
the corresponding objects. The calculation of an event region is also based on the
diagonal hyperplane of the attribute space. Giving in-depth information here is out
of the scope for this chapter; however, the readers who would like to have more
information can refer the paper [15, 30, 33] that describes the index in detail.



12 Peer-to-Peer Cloud Provisioning: Service Discovery and Load-Balancing 209

12.5.4 Designing Decentralized and Co-ordinated
Load-Balancing Mechanism

A co-ordinated provisioning of requests between virtual machine instances deployed
in Clouds is critical, as it prevents the service provisioners from congesting the
particular set of VMs and network links, which arises due to lack of complete
global knowledge. In addition, it significantly improves the Cloud user Quality of
Service (QoS) satisfaction in terms of response time. The Cloud peer service in
conjunction with the Pastry overlay and multidimensional indexing technique is
able to perform a decentralized and co-ordinated balancing of service provisioning
requests among the set of available VMs. The description of the actual load-balancing
mechanism follows next.

As mentioned in previous section, both service discovery query (issued by
service provisioner) and update query (published by VMs or Services hosted
within VMs) are spatially hashed to an index cell i in the multidimensional attri-
bute space. In Fig. 12.3, a service discovery query for provisioning request P1 is
mapped to an index cell with control point value A, while for P2, P3, and P4, the
responsible cell has control point value C. Note that these service discovery que-
ries are posted by service provisioners. In Fig. 12.3, a provisioning service inserts
a service discovery query with Cloud peer p, which is mapped to index cell i. The
index cell i is spatially hashed through IMap(query) function to an Cloud peer s.
In this case, Cloud peer s is responsible for co-ordinating the provisioning of
services among all the service discovery queries that are currently mapped to the
cell i. Subsequently, VM u issues a resource ticket (see Fig. 12.3) that falls under
a region of the attribute space currently required by the provisioning requests P3
and P4. Next, the Cloud peer s has to decide which of the requests (either P3 or
P4 or both) is allowed to claim the update query published by VM u. The load-
balancing decision is based on the principle that it should not lead to over-provi-
sioning of service(s) hosted within VM u. This mechanism leads to co-ordinated
load-balancing across VMs in Clouds and aids in achieving system-wide objec-
tive function.

The examples in Table 12.5 are service discovery queries that are stored with
a Cloud peer service at time 7 = 700 s. Essentially, the queries in the list arrived
at a time <700 and waited for a suitable update query that could meet their pro-
visioning requirements (software, hardware, service type, location). Table 12.6
depicts an update query that arrived at 7 = 700. Following the update query
arrival, the Cloud peer service undertakes a procedure that allocates the available
service capacity with VM (that published the update query) among the list of
matching service discovery queries. Based on the updating VM'’s attribute speci-
fication, only service discovery query 3 matches. Following this, the Cloud
peer notifies the provisioning services that posted the query 3. Note that queries
1 and 2 have to wait for the arrival of update queries that can match their
requirements.
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Fig. 12.3 Co-ordinated provisioning across VM instances: multidimensional service provisioning
requests {P1, P2, P3, P4}, index cell control points {A, B, C, D}, multidimensional update queries
{1, s}, and some of the spatial hashing to the Pastry overlay, i.e. the multidimensional (spatial) coor-
dinate values of a cell’s control point is used as the Pastry key. For this figure, f . =2, dim =2

Table 12.5 Service discovery query stored with a Cloud Peer service at time T

Discovery
Time query ID Service type Speed (GHz) Cores Location
300 Query 1 ‘Web hosting >2 1 USA
400 Query 2 Scientific simulation >2 1 Singapore

500 Query 3 Credit card authenticator >2.4 1 Europe
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Table 12.6 Update query published with a Cloud Peer service at time 7

Time VM ID Service type Speed (GHz) Processors Type
700 VM 2 Credit card authenticator 2.7 One Europe
(available)

12.6 Experiments and Evaluation

In this section, we evaluate the performance of the proposed peer-to-peer Cloud
provisioning concept by creating a service and VM pool that consists of multiple
virtual machines that are hosted within the Amazon EC2 infrastructure. We assume
unsaturated server availability for these experiments, so that enough capacity can
always be allocated to a VM for any service request. Next, we describe the various
details related to Cloud peer (peer-to-peer network, multidimensional index struc-
ture, and network configuration parameters), PaaS layer provisioning software, and
application characteristics related to this experimental evaluation.

12.6.1 Cloud Peer Details

A Cloud peer service operates at PaaS layer and handles activities related to decentral-
ized query (discovery and update) routing, management, and matching. Additionally,
it also implements the higher-level services such as publish/subscribe-based
co-ordinated interactions and service selections. Every VM instance, which is deployed
on a Cloud platform, hosts a Cloud peer service (see Figs. 12.2 and 12.3) that loosely
glues it to the overlay. Next follows the details related to Cloud peer configuration.

FreePastry' Network Configuration: Both Cloud Peers’ nodelIDs and discovery/
update queries’ IDs are randomly generated from and uniformly distributed in the
160-bit Pastry identifier space. Every Cloud peer service is configured to buffer a
maximum of 1,000 messages at a given instance of time. The buffer size is chosen
to be sufficiently large such that the FreePastry does not drop any messages.
Other network parameters are configured to the default values as given in the file
freepastry.params. This file is provided with the FreePastry distribution.

Multidimensional Index Configuration: The minimum division f__ of logical mul-
tidimensional index is set to 3, while the maximum height fmaX of the distributed index
tree is constrained to 3. In other words, the division of the multidimensional attribute
space is not allowed beyond f __ for simplicity. The index space has provision for
defining service discovery and update queries that specify the VM characteristics in
four dimensions including number of application service type being hosted, number
of processing cores available on the server hosting the VM, hardware architecture of
the processor(s), and their processing speed. The aforementioned multidimensional
index configuration results into 81(3*) index cells at f__level.

" An open source pastry DHT implementation. http://freepastry.rice.edu/FreePastry
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Service Discovery and Update Query’s Multidimensional Extent: Update queries,
which are posted by VM instances, express equality constraints on service, installed
software environments, and hardware configuration attribute values (e.g. =).

12.6.2 Aneka: PaaS Layer Application Provisioning
and Management Service

At PaaS layer, we utilize the Aneka [14] software framework that handles activities
related to application element scheduling, execution, and management. Aneka is a
NET-based service-oriented platform for constructing Cloud computing environ-
ments. To create a Cloud application provisioning system using Aneka, a developer
or application scientist needs to start an instance of the configurable Aneka con-
tainer hosting required services on each selected VM.

Services of Aneka can be clearly characterized into two distinct spaces:
(i) Application Provisioner, a service that implements the functionality that
accepts application workload from Cloud users, performs dynamic discovery of
application management services via the Cloud peer service, dispatches workload
to application management service, monitors the progress of their execution, and
collects the output data, which returned back to the Cloud users. An Application
Provisioner need not be hosted within a VM, it only needs to know the end-point
address (such as web service address) of a random Cloud peer service in the overlay
to which it can connect and submit its service discovery query; and (ii) Application
Management Service, a service, hosted within a VM, which is responsible for han-
dling execution and management of submitted application workloads. An applica-
tion management service sits within a VM and updates its usage status, software,
and hardware configurations by sending update queries to the overlay. One or more
instance of application management service can be connected in a single-level
hierarchy to be controlled by a root-level Aneka Management Co-ordinator. This
kind of service integration is aimed at making application programming flexible,
efficient, and scalable.

12.6.3 Test Application

The PaaS layer software service, Aneka, supports composition and execution of
application programs that are composed using different service models to be
executed within the same software environment. The experimental evaluation in
this chapter considers execution of applications programmed using a multithreaded
programming model. The Thread programming model [14] defines an application
as a collection of one or more independent work units. This model can be suc-
cessfully utilized to compose and program embarrassingly-parallel programs
(parameter sweep applications). The Thread model fits better for implementing and



12 Peer-to-Peer Cloud Provisioning: Service Discovery and Load-Balancing 213

architecting new applications and algorithms on Cloud infrastructures since it gives
finer degree of control and flexibility as regards to runtime control.

To demonstrate the feasibility of architecting Cloud provisioning services based on
peer-to-peer network models, we consider composition and execution of Mandelbrot
Set computation. Mathematically, the Mandelbrot set is an ordered collection of points
in the complex plane, the boundary of which forms a fractal. The Application
Provisioner service implements and cloud enables the Mandelbrot fractal calculation
using a multithreaded programming model. The application submission interface
allows the user to configure a number of horizontal and vertical partitions into which
the fractal computation can be divided. The number of independent thread units cre-
ated is equal to the horizontal x vertical partitions. For evaluations, we vary the values
for horizontal and vertical parameters over the interval 5 x 5, 10 x 10, and 15 x 15.
This configuration results in observation points.

12.6.4 Deployment of Test Services on Amazon EC2 Platform

To test the feasibility of the aforementioned services with regard to the provisioning
of application services on Amazon EC2 cloud platform, we created Amazon
Machine Images (AMIs) packaged with a Cloud peer, Application Management, and
Aneka Management Co-ordinator services. The image that hosts the Aneka
Management Co-ordinator is equipped with Microsoft Windows Server 2003 R2
Datacenter edition, Microsoft SQL Server 2005 Express, and Internet Information
Services 6, while the AMI hosts only the Management Service and has Microsoft
Windows Server 2003 R2 Datacenter system installed. For every AMI, we installed
only the essential software including mandatory Cloud peer service, which is hosted
within a Tomcat 6.0.10, Axis2 1.2 container. Cloud peer is exposed to the provision-
ing and management services through WS* interfaces. Later, we built our custom-
ized Amazon Machine Images from the two instances, creating and starting up more
management co-ordinator and application management services by using customized
images. We configured three management co-ordinators and nine management ser-
vices. The management service is divided into groups of three that connect with a
single co-ordinator resulting in a hierarchical structure. The management co-ordinator
services communicate and internetwork through the Cloud peer fabric service.
Figure 12.4 shows the pictorial representation of the experiment setup.

12.7 Results and Discussions

To measure the performance of peer-to-peer Cloud provisioning technique in
regard to response time, co-ordination delay, and Pastry overlay network message
complexity, we consider simultaneous provisioning of test applications at Application
Provisioner A and B (see Table 12.7). The response time for an application is
calculated by subtracting the output arrival time of the last thread in the submission
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Table 12.7 Response time, co-ordination delay, message count versus complexity

Problem complexity 5x5 10 x 10 1515
Provisioner A B A B A B
Response time (s) 27 27 107 104 245 229
Coordination delay (s) 5.58 7.13 26.08 24.97 60.06 48.09
Update message 3,203 3,668 3,622

Discovery message 75 400 450

Total message count 5,760 7,924 8,006

list from the time at which the application is submitted. The metric co-ordination
delay sums up the latencies for: (i) a service discovery query to be mapped to a
Cloud peer, (ii) waiting time till an update query matches the discovery query; and
(i1) notification delay from the Cloud peer to the Application Provisioner that origi-
nally posted the service discovery query. Pastry overlay message complexity mea-
sures the details related to the number of messages that flow through the network
in order to: (i) initialize the multidimensional attribute space, (ii) map the discovery
and update queries, (iii) maintain overlay, and (iv) send notifications.

Table 12.7 (response time vs. complexity) shows the results for response time in
seconds with increasing complexity/problem size for the test application. Cloud
consumers submit their applications with provisioner A and B. The initial experi-
mental results reveal that with increase in problem complexity (number of horizon-
tal and vertical partitions), the Cloud consumers experience increase in response
times. The basic reason behind this behaviour of the provisioning system is related
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to the fixed number Application Management services, i.e. 9, available to the
Application Provisioners. With increase in the problem complexity, the number of
job threads (a job thread represents a single work unit, e.g. for a 5 x 5 Mandelbrot
configuration, 25 job threads are created and submitted with the Application
Provisioner) that are to be executed with management services increase, hence
leading to worsening queuing and waiting delays. However, this behaviour of the
provisioning system can be fixed through implementation of reactive provisioning
of new VM instances to reflect the sudden surge in application workload processing
demands (problem complexity). In our future work, we want to explore how to
dynamically provision or de-provision VMs and associated Application Management
services driven by workload processing demands.

Table 12.7 (coordination delay vs. complexity) presents the measurements for
average co-ordination delay for each discovery query with respect to increase in the
problem complexity. The results show that at higher problem complexity, the dis-
covery queries experience increased co-ordination delay. This happens because the
discovery queries of the corresponding job threads have to wait for a longer period
of time before they are matched against an update query object. However, the job
thread processing time (CPU time) is not affected by the co-ordination delay; hence,
the response time in Table 12.7 shows a similar trend to delay.

In Table 12.7 (message count vs. complexity), we show the message overhead
involved with management of multidimensional index, routing of discovery and
update query messages, and maintenance of Pastry overlay. We can clearly see that
as application size (problem complexity) increase, the number of messages required
for mapping the query objects and maintenance of the overlay network increase. The
number of discovery and update messages produced in the overlay is a function of the
multidimensional index structure that indexes and routes these queries in a distributed
fashion. Hence, the choice of the multidimensional data indexing structure and rout-
ing technique governs the manageability and efficiency of the overlay network
(latency, messaging overhead). Hence, there is much work required in this domain as
regards to evaluating the performance of different types of multidimensional indexing
structures for mapping the query messages in peer-to-peer settings.

12.8 Conclusions and Path Forward

Developing provisioning techniques that integrate application services in a peer-to-
peer fashion is critical to exploiting the potential of Cloud computing platforms.
Architecting provisioning techniques based on peer-to-peer network models (such
as DHTs) is significant; since peer-to-peer networks are highly scalable, they can
gracefully adapt to the dynamic system expansion (join) or contraction (leave,
failure), and are not susceptible to a single point of failure. To this end, we pre-
sented a software fabric called Cloud peer that creates an overlay network of VMs
and application services for supporting scalable and self-managing service discov-
ery and load-balancing. The functionality exposed by the Cloud peer service is very
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powerful and our experimental results conducted on Amazon EC2 platform confirm
that it is possible to engineer and design peer-to-peer Cloud provisioning systems
and techniques.

As part of our future work, we would explore other multidimensional data
indexing and routing techniques that can achieve close to logarithmic bounds on
messages and routing state, balance query (discovery, load-balancing, coordination)
and processing load, preserve data locality, and minimize the metadata. Another
important algorithmic and programming challenge in building robust Cloud peer
services is to guarantee consistent routing, look-up, and information consistency
under concurrent leave, failure, and join operations by application services. To
address these issues, we will investigate robust fault-tolerance strategies based on
distributed replication of attribute/query subspaces to achieve a high level of robustness
and performance guarantees.
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