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Abstract—Uncertainties in the wireless communication
medium do not allow for guarantees in network performance
for cognitive radio applications envisaged for mobile ad hoc
emergency networking. The novel concept of mission policies,
which specify the Quality of Service (QoS) requirements
of the incumbent network as well as the cognitive radio
networks, is introduced. The use of mission policies, which
vary over time and space, enables graceful degradation in
the QoS of incumbent network (only when necessary) based
on mission-policy specifications. A Multi-Agent Reinforcement
Learning (MARL)-based cross-layer communication framework,
RescueNet, is proposed for self-adaptation of nodes in cognitive
radio networks. Also, the novel idea of knowledge sharing among
the agents (nodes) is introduced to significantly improve the
performance of the proposed solution.

Index Terms—Cognitive Radio, Licensed Spectrum, Mission
Policies, Reinforcement Learning, Multi-agent Systems.

I. INTRODUCTION

Reliable and high data-rate wireless multimedia commu-

nication (e.g., images, voice, and live video streams) among

mobile computing devices is becoming a fundamental require-

ment for emerging wireless applications such as emergency

networking, smart-grid, and body-area networking. The im-

practicality of dedicating spectrum resources for each futuristic

wireless application has led to the emergence of Cognitive

Radio Networking (CRN) in licensed spectrum as the most

promising wireless networking paradigm of the future.

However, the use of various non-interoperable CRN solu-

tions by different applications prevents seamless information

sharing among Cognitive Radio (CR) nodes of different net-

works and does not guarantee any form of Quality of Service

(QoS) to both the licensed incumbent network and the co-

existing CR networks. In an effort to provide such statistical

guarantees, the wireless networking research community tried

to analyze uncertainties in wireless environment by model-

ing or controlling their causes. Moreover, uncertainties (or

non-stationarity) in the wireless communication medium –

due to its shared nature (limited bandwidth), time-varying

characteristics, network attacks, and node mobility – do not

always allow for guarantees in terms of reliability and network

performance. Uncertainties render conformance with specified

QoS requirements at all the nodes in the wireless network a

significant challenge. The causes for uncertainties are hard to

model because the wireless environment changes over time

and space based on the choice of many network parameters

associated with different protocol layers at various nodes –

Fig. 1. Ad hoc emergency networks operating in the vicinity of licensed
incumbents in the event of an emergency. Mission policies, which reflect the
criticality and, hence, the QoS of both networks, vary over space (depending
on proximity to the scene of the disaster) and over time (depending on the
phase of the mission).

transmission power, modulation, and error correction in the

physical layer; medium access parameters in the link layer;

routing scheme in the network layer; and traffic pattern in

the application layer. Note that the network nodes may vary

their network parameters either in response to changes in

their immediate environment or in response to changes in the

high-level application QoS requirements (also referred to as

“policies”) in time and space.

An “optimal” choice of parameters may be obtained by solv-

ing a centralized cross-layer networking optimization problem,

which optimizes network parameters in different layers, based

on unrealistic assumptions such as instantaneous knowledge of

global network state, complete knowledge of incumbent user

performance, and availability of infinite computational capabil-

ities. Another approach is solving a number of localized opti-

mization problems (based only on locally observed and shared

information), which cannot balance the opposing requirements

of capturing local interference constraints as well as satisfying

end-to-end (e2e) QoS requirements of the CRN and incumbent

network traffic. To eliminate reliance on unrealistic assump-

tions, we propose a model-free communication framework

based on Multi-Agent Reinforcement Learning (MARL) [1]

for self-adaptation of coordinating CR nodes (autonomous

agents). Our distributed solution converges to a local optimal

joint control policy (i.e., optimal choice of transmission param-
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Fig. 2. (a) Average Signal to Interference-plus-Noise Ratio (SINR) at EU and LU receivers when EU transmitters perform transmission power control using
Independent MARL (only EU Rx2’s SINR requirement is met); (b) Average SINR at EU and LU receivers when EU transmitters perform transmission power
control using Global reward MARL (only LU Rx’s SINR requirement is met); (c) Average SINR at EU and LU receivers when EU transmitters perform
transmission power control using our hybrid approach based on DVF-MARL (LU Rx’s SINR requirement as well as the EU Rxs’ requirements are met).

eters at all agents in the neighborhood) through coordination.

The optimal control policy ensures conformance to the QoS

requirements of the CR and incumbent networks as specified

by the high-level policy. We also address the challenges to

the convergence of our MARL-based approach posed by the

non-stationarity of the environment in our problem (due to

dynamic mission policies and node mobility) on the fly.

The proposed concepts are shown in Fig. 1 using ad

hoc emergency networking. Emergency networks deployed on

rescue and recovery missions in the aftermath of disasters are

usually composed of multiple teams of first responders, or

Emergency Users (EUs), dispersed over a wide geographical

region coexisting with Licensed Users (LUs). The data and

voice traffic, and the corresponding QoS requirements of EUs

as well as LUs, are tightly coupled to the criticality of the

mission. In this paper, we present a policy-aware MARL-based

communication framework for ad hoc emergency networking,

called RescueNet. There have been prior efforts in applying

distributed multi-agent reinforcement learning for wireless

networking [2] as well as specific studies on RL for spectrum

sensing, scheduling, and selection [3] in mesh networks, QoS

support in wireless sensor networks with and without relay

selection [4], [5], and sensing coverage [6].

Presently, to the best of our knowledge, there are no MARL-

based policy-aware CR solutions. Also, our solution represents

a shift from the established primary-secondary model, which

uses fixed priorities, towards graceful QoS change of LUs

(only when necessary) based on policies. The following are

our contributions: i) we cast the ad hoc CR emergency

networking problem as a MARL problem, i.e., identify states,

actions and rewards, and design a flexible reward function that

captures the degree of conformance to the high-level policies;

ii) we address the significant challenge to the convergence

of the learning process posed by the non-stationarity of the

problem of ad hoc CR networking in licensed spectrum; iii)

we introduce the novel idea of transferring knowledge from

experienced agents to young agents to expedite the learning

process, and, hence, the conformance to policies.

The rest of this paper is organized as follows: in Sect. II, we

provide the necessary background on RL, motivate the need

for our framework, and present the RescueNet framework; in

Sect. III, we evaluate the performance of RescueNet in terms

of convergence and conformance; finally, in Sect. IV, we draw

our conclusion.

II. PROPOSED SOLUTION

A. Background and Motivation

We provide here the necessary background on RL and then

present the intuitions and preliminary analysis behind our

choice of a hybrid learning strategy (distributed yet localized)

as the foundation of our policy-aware CR networking frame-

work.

Multi-Agent Reinforcement Learning: Policy-aware CR

networking in licensed spectrum resembles a multi-agent sys-

tem trying to converge to the optimal joint control policy in

a distributed manner. The generalization of the multi-agent

system is the Markov Decision Process (MDP) specified by

the following tuple: 〈S,A, φ, ρ〉, where the discrete sets of en-
vironment states, S =

∏

i∈M
Si, and actions, A =

∏

i∈M
Ai

are made up of individual agent states and actions. Here, M
represents the set of autonomous agents in the multi-agent

system. It is important to note that the transition function

φ() and reward function ρ() depend on the joint environment

state and action information, which is not available at any

individual agent. Hence, ensuring convergence in a multi-

agent scenario requires coordination among the autonomous

agents. There are three possible approaches to solve MARL

problems using Q-learning, a model-free RL technique. The

state-action pair’s goodness value is called the Q-value and the

function that determines the Q-value is called the Q-function.

An agent can find an optimal control policy by approximating

iteratively its Q-values using prior estimates, short-term reward

r = ρ(s, a) ∈ R, where s ∈ S and a ∈ A, and discounted

future reward. We explain each of those approaches with an

example of emergency-networking scenario and motivate the

need for our hybrid approach, which is explained in Sect. II-B.

Globecom 2013 - Cognitive Radio and Networks Symposium

991



Toy example scenario: The transmitters (EU Tx1 and EU

Tx2) of two EU pairs operating in the vicinity of a LU pair

perform transmission power control to ensure that the Signal

to Interference-plus-Noise Ratios (SINRs) at their receivers

(EU Rx1 and EU Rx2) are within prescribed intervals, which

are depicted as shaded regions in Fig. 2(a-c). These SINR

requirements at both the emergency and the incumbent net-

work nodes represent a simple mission-policy specification.

The different SINR requirements are derived directly from

the corresponding throughput requirements as SINR dictates

the achievable channel efficiency in bps/Hz. All the devices
operate in the same frequency band and the EU transmitters

choose from one of the possible five power levels (4 to 20 dBm
in steps of 4 dB). Log-distance path loss model is used to

calculate the transmission loss.

Independent MARL [7]: In this fully distributed approach,

each agent acts independently without coordination. The Q-

learning procedure at a node can be summarized as,

Qn+1(s, a) = (1− αn)Qn(s, a) + αn

[

r + γmax
a′∈A

Qn(s
′, a′)

]

,

where αn ∈ (0, 1] is the learning factor and γ ∈ [0, 1) is

the discount factor. Mission-policy conformance in emergency

networking depends heavily on intra-emergency-network and

inter-network (emergency and incumbent) interference. As

independent MARL does not allow for any information ex-

change among the agents, it is impossible to mitigate the

intra-emergency-network interference and, hence, there is no

guarantee for conformance even to simple one-sided mission

policies that do not guarantee any QoS to the LUs. Figure 2(a)

shows the average SINR at the EU and LU receivers when the

EUs try to satisfy their own QoS requirements without any

coordination and feedback about the LUs’ performance.

Global reward MARL [8]: In this approach, even though

the agents are only aware of their individual states and actions

(exactly as in Independent MARL), the Q-value estimates

are updated based on a global reward that is disseminated

across all the agents. The aggregated interference generated

by the emergency network nodes at the incumbent users can

be measured and a global reward can be estimated based on the

QoS experienced by the LUs. However, the intra-emergency-

network dynamics (effect of joint actions at each EU Rx)

cannot be captured at a central entity. Hence, global reward

MARL can only support mission policies that convey the

QoS of the LUs alone, making it unsuitable for emergency

networking. The average received SINR at the EU and LU

receivers when Global reward MARL is employed by the

emergency network nodes is shown in Fig. 2(b).

Distributed Value Function (DVF) MARL [9]: In this

approach, the Q-value estimates at each autonomous agent

are updated based on the individual short-term rewards as

well as on additional information obtained from other agents

in the neighborhood. Neighborhood here refers to a group

of agents that are within the radio communication range of

each other. Every agent exchanges the largest Q-value that is

associated with its current state with every other agent in its

neighborhood.More complex strategies taking into account the

fact that not all neighbors are equally affected by the actions

of an agent are possible. The additional information obtained

from agents ensures that the agent takes into account the effect

of its own actions on all its neighbors. DVF-MARL approach

can support mission policies that convey the QoS requirements

of the emergency networks due to its ability to capture in-

network dynamics. However, it cannot support a two-sided

mission policy (which specifies both EU and LU QoS) due to

the inability to capture the effect of EUs’ actions on the LUs.

B. An Hybrid Approach: our RescueNet Framework

In order to effectively support two-sided mission policies,

we propose a hybrid learning approach that incorporates

localized feedback (either partial or full) regarding the effect

of its own actions on the neighboring EUs as well as the LUs.

The performance of such an approach is shown in Fig. 2(c).

The convergence of the hybrid approach exhibits sensitivity to

initial states and to the choice of the three learning parameters,

namely, exploration factor ǫ, learning factor α, and discount

factor γ. Longer convergence times may hamper critical

communication among the EUs. Moreover, conformance to the

specified mission policy is determined by how well the reward

function captures the dynamics between the e2e behavior and

the effect of an agent’s action on its neighborhood (observed

through information exchange).

States:We represent the state of each network node si ∈ Si

as a tuple 〈F i
min, BW

i, ηi, P i,M i, Ri, k〉, where the starting
frequency F i

min [Hz] and bandwidth BW i [Hz] together

represent the frequency band of operation, ηi represents the
modulation and coding scheme, P i [W] is the transmission

power,M i and Ri are parameters associated with the Medium

Access Control (MAC) and routing layers, and, finally, k is

the destination node to which node i is currently sending data
packets. Note that M i may correspond to a specific time slot,

random access delay, or spreading factor depending on the

type of MAC used; and Ri corresponds to the specific routing

protocol employed to select the next hop.

Reward function: The reward function uses direct feedback

from the environment and the QoS requirements specified by

the mission policy to produce scalar rewards whose magnitude

conveys the degree of conformance with the high-level policy.

The reward function produces an aggregated reward ri,tot

at agent i (source) by incorporating feedback from agent k
(destination) about e2e goodput (gpik) and delay (dik) as well
as SINR about the incumbent network performance (lu). The
positive reward for delay performance is high (i.e., close to the

maximum reward value of 1) when the achieved average delay

is close to the minimum delay requirement. The positive re-

ward for goodput performance is high if the achieved goodput

is close to the maximum goodput requirement. This specific

choice of positive reward values indicates a preference towards

short transmission times so to minimize packet collisions and

costly retransmissions. The agents receive negative rewards

(or penalties) if they do not conform to the mission policy’s

requirements. The magnitude of the rewards (in conjunction
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with the learning and discount factors) have been chosen to

ensure that the Q-value estimates do not fluctuate drastically

with a single reward. The mission policy specifies the QoS

requirements of the emergency network in terms of minimum

and maximum values. The reward function uses these values

to give scaled positive rewards when the requirements are met

and to give negative rewards when they are not.

Exploration-exploitation trade-off:Non-stationarity of the

environment in ad hoc emergency networks can be attributed to

time-varying mission policies, dynamics of the emergency and

incumbent network traffic, node mobility, and the time-varying

wireless channel. We overcome the challenge for the stabi-

lization of the learning procedure by balancing exploration-

exploitation trade-off and by appropriately choosing the learn-

ing factor. The exploration factor ǫ (of the ǫ-greedy approach)
is time varying with a very high value in the beginning of each

static game (more exploration) and with very low value at the

end of each static game (more exploitation). We determine

the decay rate δǫ of the exploration factor at all agents based
on the degree of mobility, i.e., δǫ = ψ(v), where v is the

average speed of all nodes in the emergency network. In case

of low mobility, nodes should exploit their knowledge more

as their environment changes very slowly. In higher mobility,

nodes should explore more than they exploit as their acquired

knowledge may become outdated sooner. The evolution of the

exploration factor over time is given by ǫin+1 = ǫin · δǫ.
Knowledge sharing among agents: RescueNet can enable

convergence of multiple agents to an optimal joint control pol-

icy, but the convergence takes time as the process of Q-learning

requires exploration of all possible local control policies with

non-zero probability. When the mission policy changes over

time, the agents have to learn the new optimal joint control

policy all over again. To expedite the convergence, we propose

a novel mechanism of knowledge sharing among agents. This

bootstraps the new agents to start from a good initial state

as well as to use a significantly higher exploitation rate and a

significantly lower learning rate than the usual so that they can

converge to an optimal joint control policy much faster (Fig. 3)

than they would have under usual circumstances (Fig. 2(c))

Specification of learning factor: The learning factor deter-

mines the weights associated with prior experience and with

the new information in the iterative approximation of the Q-

function. In RescueNet, the learning factor is time varying

in order to ensure stabilization of the learning process, i.e.,

greater importance is given to new information initially in the

static game while prior experience is leveraged more as time

progresses. The decay rate δα of learning factor at all agents

depends not only on the stage of the static game but also on

the degree of node mobility, i.e., δα = σ(v). In the case of

very high node mobility, nodes should refrain from using their

experience as it may be outdated. The time evolution of the

learning factor is given by αi
n+1 = αi

n · δα.

III. PERFORMANCE EVALUATION

To evaluate the performance of RescueNet, we implemented

it on ns3, a packet-based discrete-event network simulator.

Fig. 3. Average SINR at EU and LU receivers when EU transmitters perform
transmission power control using our hybrid approach along with knowledge
sharing, i.e., sharing the knowledge of good initial states for the learning
process (both LU and EU Rx’s SINR requirements are met).

We performed two different types of simulations: in static

and mobility scenarios. The tunable transmission parameters

and assumptions regarding the loss model, MAC, and routing

schemes are listed in Table I.

TABLE I
SIMULATION SETTINGS AND TUNABLE TRANSMISSION PARAMETERS

Transmission power 4− 20 dBm in steps of 4 dB

Transmission band 3 channels in 515-527 MHz band (4MHz wide)

Modulation scheme 8-, 16-, 32-QAM

MAC DS-CDMA with chaotic spreading codes [10]

Routing Most Forward within Radius (MFR) [11]

Loss model Log-distance path loss model

Static scenario: The topology of EU and LU nodes used

in this scenario is depicted in Fig. 4, which shows two teams

of EUs operating in the vicinity of a LU receiver.

EU Team 1

LU Rx

EU Team 2

Sources of 

unicast flows

Destinations of 

unicast flows

2
5

0
m

500m

EUi

EUr

EUk

Fig. 4. Static scenario used to evaluate the performance of RescueNet in
terms of conformance to mission policy and convergence to an optimal control
policy. Two teams of EU nodes operating in the vicinity of a LU.

We compared RescueNet with i) a framework that employs

the localized optimization approach similar to the ones pro-

posed in [12], [13] (referred to as “Baseline”), ii) a fully

distributed independent MARL-based framework (referred to

as “Ind-MARL”), and iii) a global reward MARL-based frame-

work (referred to as “Glo-MARL”). The EUs decide on the
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Fig. 5. Static Scenario: Emergency network performance in terms of (a) aggregated goodput, (b) average packet delay, and (c) average SINR at LU receivers
when EU nodes employ a local optimization approach, independent MARL (Ind-MARL), global reward MARL (Glo-MARL), and RescueNet.

(a) (b) (c)

Fig. 6. Static Scenario: RescueNet’s ability to adapt to time-varying mission policies (a) Goodput of flows 1 and 2; (b) Average packet delay of flows 1 and
2; and (c) Average SINR at the LU receiver when the mission-policy specification changes over time.

appropriate values of the following transmission parameters

in a cross-layer manner: transmission power level, frequency

band of operation (from 2 channels), and modulation scheme

using one of the four aforementioned frameworks.

The data traffic in the EU teams was assumed to be

three unicast flows, 500 Kbps each, one in Team 1 and

two in Team 2. Figures 5(a) and (b) show the aggregated

goodput and average packet delay, respectively, of all the three

unicast flows in the emergency network. Figure 5(c) shows

the average SINR measured at the LU. It can be observed

that the emergency network fully conforms to the mission-

policy specification (depicted as blue-shaded regions) when it

employs RescueNet. However, the policy is violated when the

other three frameworks are employed for self-adaptation. EUs

employing Ind-MARL try to satisfy only the QoS require-

ments of the flows that they handle and do not consider the

effect of their actions on both the neighboring EUs and the

incumbent network nodes. As a result, the EU unicast flows

suffer from high delays due to packet collisions, which also

affects their goodput. The performance of incumbents is also

adversely affected and that is evident from the average SINR

measurements at the LU receiver. When EUs employ Glo-

MARL, the incumbent network performance is guaranteed,

as shown in Fig. 5(c). However, the EUs do not account for

their own QoS and, hence, violate the pre-specified mission-

policy specifications. The localized optimization approach,

Baseline, suffers the most in terms of performance because

of its inability to capture global network dynamics (it relies

only on local observations). To account for the effect of an

agent’s action on its neighbors, Baseline needs information

about ongoing receptions, the received power, and the noise

interference levels in each frequency channel. Hence, the Base-

line incurs an overhead to exchange such information while not

guaranteeing any optimality. Conversely, in RescueNet, agents

in the vicinity coordinate to tackle intra-emergency-network

interference by exchanging only the maximum state-action-

pair values associated with their current states. Hence, EUs

not only conform to their own QoS requirements but also take

into account the effect of their actions on their neighbors.

One of the main attributes of RescueNet is its ability to

conform to dynamic time-varying mission policies. To verify

this ability, we used the set up depicted in Fig. 4 but with only

Team 2 operating in the vicinity of a LU receiver. The EUs

decide on the appropriate values of the following transmission

parameters in a cross-layer manner: transmission power level

and modulation scheme using the RescueNet framework. Fig-

ures 6(a) and (b) show the average (moving window) goodput

and packet delay, respectively, of each unicast flow in the team

of EUs. Figure 6(c) shows the average SINR measured at the

LU. It can be observed that the emergency network employing

the RescueNet framework fully conforms to the time-varying

QoS requirements (shaded regions). This flexibility is due to

the generic nature of the reward function of the proposed

RescueNet framework.

Mobility scenario: To obtain results that will show con-

clusively RescueNet’s ability to adapt to non-stationarity in

the operating environment, we performed simulations with

node mobility as well as with time- and space-varying mission
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Fig. 7. Mobility Scenario: (a) Average goodput and (b) delay of flows corresponding to policies A, B, and C when 3 mobile teams under 3 distinct policies

are operating in the vicinity of a LU pair. Average node speed in this scenario is 1 m/s; (c) Impact of the periodicity of decay of learning factor and of
growth of exploitation factor on conformance with a mission policy at different node velocities.

policies. The EUs in all teams perform a random walk (for

a randomly chosen duration between 5 and 20 s) within a

rectangular area (200× 200 m2) around their initial positions

with a pause (randomly chosen between 5 and 10 s) after
every walk. This mobility pattern simulates movement patterns

of first responders in the scene of disaster by incorporating

uniformly distributed random walking durations and random

pause durations. This was done to eliminate any bias that may

be introduced by a static network topology.

Our simulation results in Figs. 7(a) and (b) show clearly

that the average goodput and average delay of unicast flows

corresponding to the three different mission policies A, B, and

C are very close to the goodput and delay specifications of

each of those policies with small relative confidence intervals.

The average SINR at the LU receiver did not drop below

the minimum required SINR (25 dB) at any point in time

during the experiments. The consistency in the performance of

RescueNet under node mobility clearly demonstrates its ability

to adapt to dynamic time- and space-varying mission policies

as well as to non-stationarity in the environment. Figure 7(c)

compares the performance of the emergency network in terms

of average packet delay at various decay periodicity values

for four different average node velocities. We can observe

that, as the node velocity increases, the decay period has to

be increased to achieve delays that conform to the mission

policy. This is due to the fact that, at higher node velocities,

the knowledge acquired by agents do not hold for long and,

hence, they should have the capability to learn and adapt to

the new environment quickly.

IV. CONCLUSION

We envisioned a policy- and learning-based paradigm for

Cognitive Radio (CR) networking in licensed spectrum. We

introduced the concept of mission policies, which specify the

Quality of Service (QoS) for CR as well as incumbent network

traffic. The learning-based paradigm for CR networks enables

graceful QoS change of incumbent networks based on mission-

policy specifications. We developed a Multi-Agent Reinforce-

ment Learning (MARL)-based communication framework,

RescueNet, for realizing this new paradigm and showed fast

conformance to dynamic time-varying mission policies.
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