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Abstract—Uncertainties in the wireless communication
medium do not allow for guarantees in network performance
for cognitive radio applications envisaged for mobile ad hoc
emergency networking. The novel concept of mission policies,
which specify the Quality of Service (QoS) requirements
of the incumbent network as well as the cognitive radio
networks, is introduced. The use of mission policies, which
vary over time and space, enables graceful degradation in
the QoS of incumbent network (only when necessary) based
on mission-policy specifications. A Multi-Agent Reinforcement
Learning (MARL)-based cross-layer communication framework,
RescueNet, is proposed for self-adaptation of nodes in cognitive
radio networks. Also, the novel idea of knowledge sharing among
the agents (nodes) is introduced to significantly improve the
performance of the proposed solution.

Index Terms—Cognitive Radio, Licensed Spectrum, Mission
Policies, Reinforcement Learning, Multi-agent Systems.

I. INTRODUCTION

Reliable and high data-rate wireless multimedia commu-
nication (e.g., images, voice, and live video streams) among
mobile computing devices is becoming a fundamental require-
ment for emerging wireless applications such as emergency
networking, smart-grid, and body-area networking. The im-
practicality of dedicating spectrum resources for each futuristic
wireless application has led to the emergence of Cognitive
Radio Networking (CRN) in licensed spectrum as the most
promising wireless networking paradigm of the future.

However, the use of various non-interoperable CRN solu-
tions by different applications prevents seamless information
sharing among Cognitive Radio (CR) nodes of different net-
works and does not guarantee any form of Quality of Service
(QoS) to both the licensed incumbent network and the co-
existing CR networks. In an effort to provide such statistical
guarantees, the wireless networking research community tried
to analyze uncertainties in wireless environment by model-
ing or controlling their causes. Moreover, uncertainties (or
non-stationarity) in the wireless communication medium —
due to its shared nature (limited bandwidth), time-varying
characteristics, network attacks, and node mobility — do not
always allow for guarantees in terms of reliability and network
performance. Uncertainties render conformance with specified
QoS requirements at all the nodes in the wireless network a
significant challenge. The causes for uncertainties are hard to
model because the wireless environment changes over time
and space based on the choice of many network parameters
associated with different protocol layers at various nodes —
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Fig. 1. Ad hoc emergency networks operating in the vicinity of licensed
incumbents in the event of an emergency. Mission policies, which reflect the
criticality and, hence, the QoS of both networks, vary over space (depending
on proximity to the scene of the disaster) and over time (depending on the
phase of the mission).

transmission power, modulation, and error correction in the
physical layer; medium access parameters in the link layer;
routing scheme in the network layer; and traffic pattern in
the application layer. Note that the network nodes may vary
their network parameters either in response to changes in
their immediate environment or in response to changes in the
high-level application QoS requirements (also referred to as
“policies”) in time and space.

An “optimal” choice of parameters may be obtained by solv-
ing a centralized cross-layer networking optimization problem,
which optimizes network parameters in different layers, based
on unrealistic assumptions such as instantaneous knowledge of
global network state, complete knowledge of incumbent user
performance, and availability of infinite computational capabil-
ities. Another approach is solving a number of localized opti-
mization problems (based only on locally observed and shared
information), which cannot balance the opposing requirements
of capturing local interference constraints as well as satisfying
end-to-end (e2e) QoS requirements of the CRN and incumbent
network traffic. To eliminate reliance on unrealistic assump-
tions, we propose a model-free communication framework
based on Multi-Agent Reinforcement Learning (MARL) [1]
for self-adaptation of coordinating CR nodes (autonomous
agents). Our distributed solution converges to a local optimal
joint control policy (i.e., optimal choice of transmission param-
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(a) Average Signal to Interference-plus-Noise Ratio (SINR) at EU and LU receivers when EU transmitters perform transmission power control using

Independent MARL (only EU Rx2’s SINR requirement is met); (b) Average SINR at EU and LU receivers when EU transmitters perform transmission power
control using Global reward MARL (only LU Rx’s SINR requirement is met); (c) Average SINR at EU and LU receivers when EU transmitters perform
transmission power control using our hybrid approach based on DVF-MARL (LU Rx’s SINR requirement as well as the EU Rxs’ requirements are met).

eters at all agents in the neighborhood) through coordination.
The optimal control policy ensures conformance to the QoS
requirements of the CR and incumbent networks as specified
by the high-level policy. We also address the challenges to
the convergence of our MARL-based approach posed by the
non-stationarity of the environment in our problem (due to
dynamic mission policies and node mobility) on the fly.

The proposed concepts are shown in Fig. 1 using ad
hoc emergency networking. Emergency networks deployed on
rescue and recovery missions in the aftermath of disasters are
usually composed of multiple teams of first responders, or
Emergency Users (EUs), dispersed over a wide geographical
region coexisting with Licensed Users (LUs). The data and
voice traffic, and the corresponding QoS requirements of EUs
as well as LUs, are tightly coupled to the criticality of the
mission. In this paper, we present a policy-aware MARL-based
communication framework for ad hoc emergency networking,
called RescueNet. There have been prior efforts in applying
distributed multi-agent reinforcement learning for wireless
networking [2] as well as specific studies on RL for spectrum
sensing, scheduling, and selection [3] in mesh networks, QoS
support in wireless sensor networks with and without relay
selection [4], [5], and sensing coverage [6].

Presently, to the best of our knowledge, there are no MARL-
based policy-aware CR solutions. Also, our solution represents
a shift from the established primary-secondary model, which
uses fixed priorities, towards graceful QoS change of LUs
(only when necessary) based on policies. The following are
our contributions: i) we cast the ad hoc CR emergency
networking problem as a MARL problem, i.e., identify states,
actions and rewards, and design a flexible reward function that
captures the degree of conformance to the high-level policies;
ii) we address the significant challenge to the convergence
of the learning process posed by the non-stationarity of the
problem of ad hoc CR networking in licensed spectrum; iii)
we introduce the novel idea of transferring knowledge from
experienced agents to young agents to expedite the learning
process, and, hence, the conformance to policies.

The rest of this paper is organized as follows: in Sect. 11, we
provide the necessary background on RL, motivate the need
for our framework, and present the RescueNet framework; in
Sect. III, we evaluate the performance of RescueNet in terms
of convergence and conformance; finally, in Sect. IV, we draw
our conclusion.

II. PROPOSED SOLUTION
A. Background and Motivation

We provide here the necessary background on RL and then
present the intuitions and preliminary analysis behind our
choice of a hybrid learning strategy (distributed yet localized)
as the foundation of our policy-aware CR networking frame-
work.

Multi-Agent Reinforcement Learning: Policy-aware CR
networking in licensed spectrum resembles a multi-agent sys-
tem trying to converge to the optimal joint control policy in
a distributed manner. The generalization of the multi-agent
system is the Markov Decision Process (MDP) specified by
the following tuple: (S, A4, ¢, p), where the discrete sets of en-
vironment states, S = [[,. 1 Si, and actions, 4 = ], Ai
are made up of individual agent states and actions. Here, M
represents the set of autonomous agents in the multi-agent
system. It is important to note that the transition function
¢() and reward function p() depend on the joint environment
state and action information, which is not available at any
individual agent. Hence, ensuring convergence in a multi-
agent scenario requires coordination among the autonomous
agents. There are three possible approaches to solve MARL
problems using Q-learning, a model-free RL technique. The
state-action pair’s goodness value is called the Q-value and the
function that determines the Q-value is called the Q-function.
An agent can find an optimal control policy by approximating
iteratively its Q-values using prior estimates, short-term reward
r = p(s,a) € R, where s € § and a € A4, and discounted
future reward. We explain each of those approaches with an
example of emergency-networking scenario and motivate the
need for our hybrid approach, which is explained in Sect. II-B.
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Toy example scenario: The transmitters (EU Tx1 and EU
Tx2) of two EU pairs operating in the vicinity of a LU pair
perform transmission power control to ensure that the Signal
to Interference-plus-Noise Ratios (SINRs) at their receivers
(EU Rx1 and EU Rx2) are within prescribed intervals, which
are depicted as shaded regions in Fig. 2(a-c). These SINR
requirements at both the emergency and the incumbent net-
work nodes represent a simple mission-policy specification.
The different SINR requirements are derived directly from
the corresponding throughput requirements as SINR dictates
the achievable channel efficiency in bps/Hz. All the devices
operate in the same frequency band and the EU transmitters
choose from one of the possible five power levels (4 to 20 dBm
in steps of 4 dB). Log-distance path loss model is used to
calculate the transmission loss.

Independent MARL [7]: In this fully distributed approach,
each agent acts independently without coordination. The Q-
learning procedure at a node can be summarized as,

QnJrl(Sa a) = (1 - Oén)Qn(S, a) + o [T + g,léﬁ Qn(sla a/)]a

where a,, € (0,1] is the learning factor and v € [0,1) is
the discount factor. Mission-policy conformance in emergency
networking depends heavily on intra-emergency-network and
inter-network (emergency and incumbent) interference. As
independent MARL does not allow for any information ex-
change among the agents, it is impossible to mitigate the
intra-emergency-network interference and, hence, there is no
guarantee for conformance even to simple one-sided mission
policies that do not guarantee any QoS to the LUs. Figure 2(a)
shows the average SINR at the EU and LU receivers when the
EUs try to satisfy their own QoS requirements without any
coordination and feedback about the LUs’ performance.

Global reward MARL [8]: In this approach, even though
the agents are only aware of their individual states and actions
(exactly as in Independent MARL), the Q-value estimates
are updated based on a global reward that is disseminated
across all the agents. The aggregated interference generated
by the emergency network nodes at the incumbent users can
be measured and a global reward can be estimated based on the
QoS experienced by the LUs. However, the intra-emergency-
network dynamics (effect of joint actions at each EU Rx)
cannot be captured at a central entity. Hence, global reward
MARL can only support mission policies that convey the
QoS of the LUs alone, making it unsuitable for emergency
networking. The average received SINR at the EU and LU
receivers when Global reward MARL is employed by the
emergency network nodes is shown in Fig. 2(b).

Distributed Value Function (DVF) MARL [9]: In this
approach, the Q-value estimates at each autonomous agent
are updated based on the individual short-term rewards as
well as on additional information obtained from other agents
in the neighborhood. Neighborhood here refers to a group
of agents that are within the radio communication range of
each other. Every agent exchanges the largest Q-value that is
associated with its current state with every other agent in its

neighborhood. More complex strategies taking into account the
fact that not all neighbors are equally affected by the actions
of an agent are possible. The additional information obtained
from agents ensures that the agent takes into account the effect
of its own actions on all its neighbors. DVF-MARL approach
can support mission policies that convey the QoS requirements
of the emergency networks due to its ability to capture in-
network dynamics. However, it cannot support a two-sided
mission policy (which specifies both EU and LU QoS) due to
the inability to capture the effect of EUs’ actions on the LUs.

B. An Hybrid Approach: our RescueNet Framework

In order to effectively support two-sided mission policies,
we propose a hybrid learning approach that incorporates
localized feedback (either partial or full) regarding the effect
of its own actions on the neighboring EUs as well as the LUs.
The performance of such an approach is shown in Fig. 2(c).
The convergence of the hybrid approach exhibits sensitivity to
initial states and to the choice of the three learning parameters,
namely, exploration factor €, learning factor o, and discount
factor ~y. Longer convergence times may hamper critical
communication among the EUs. Moreover, conformance to the
specified mission policy is determined by how well the reward
function captures the dynamics between the e2e behavior and
the effect of an agent’s action on its neighborhood (observed
through information exchange).

States: We represent the state of each network node s* € S°
as a tuple (',  BW?® n', P' M® R' k), where the starting
frequency F! . [Hz] and bandwidth BW?® [Hz| together
represent the frequency band of operation, 1’ represents the
modulation and coding scheme, P’ [W] is the transmission
power, M? and R’ are parameters associated with the Medium
Access Control (MAC) and routing layers, and, finally, £ is
the destination node to which node 4 is currently sending data
packets. Note that M* may correspond to a specific time slot,
random access delay, or spreading factor depending on the
type of MAC used; and R’ corresponds to the specific routing
protocol employed to select the next hop.

Reward function: The reward function uses direct feedback
from the environment and the QoS requirements specified by
the mission policy to produce scalar rewards whose magnitude
conveys the degree of conformance with the high-level policy.
The reward function produces an aggregated reward 7%%°t
at agent ¢ (source) by incorporating feedback from agent &
(destination) about e2e goodput (gp**) and delay (d’*) as well
as SINR about the incumbent network performance (lu). The
positive reward for delay performance is high (i.c., close to the
maximum reward value of 1) when the achieved average delay
is close to the minimum delay requirement. The positive re-
ward for goodput performance is high if the achieved goodput
is close to the maximum goodput requirement. This specific
choice of positive reward values indicates a preference towards
short transmission times so to minimize packet collisions and
costly retransmissions. The agents receive negative rewards
(or penalties) if they do not conform to the mission policy’s
requirements. The magnitude of the rewards (in conjunction
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with the learning and discount factors) have been chosen to
ensure that the Q-value estimates do not fluctuate drastically
with a single reward. The mission policy specifies the QoS
requirements of the emergency network in terms of minimum
and maximum values. The reward function uses these values
to give scaled positive rewards when the requirements are met
and to give negative rewards when they are not.

Exploration-exploitation trade-off: Non-stationarity of the
environment in ad hoc emergency networks can be attributed to
time-varying mission policies, dynamics of the emergency and
incumbent network traffic, node mobility, and the time-varying
wireless channel. We overcome the challenge for the stabi-
lization of the learning procedure by balancing exploration-
exploitation trade-off and by appropriately choosing the learn-
ing factor. The exploration factor e (of the e-greedy approach)
is time varying with a very high value in the beginning of each
static game (more exploration) and with very low value at the
end of each static game (more exploitation). We determine
the decay rate . of the exploration factor at all agents based
on the degree of mobility, i.e., ¢ = ¥(v), where v is the
average speed of all nodes in the emergency network. In case
of low mobility, nodes should exploit their knowledge more
as their environment changes very slowly. In higher mobility,
nodes should explore more than they exploit as their acquired
knowledge may become outdated sooner. The evolution of the
exploration factor over time is given by €’ = €/, - .

Knowledge sharing among agents: RescueNet can enable
convergence of multiple agents to an optimal joint control pol-
icy, but the convergence takes time as the process of Q-learning
requires exploration of all possible local control policies with
non-zero probability. When the mission policy changes over
time, the agents have to learn the new optimal joint control
policy all over again. To expedite the convergence, we propose
a novel mechanism of knowledge sharing among agents. This
bootstraps the new agents to start from a good initial state
as well as to use a significantly higher exploitation rate and a
significantly lower learning rate than the usual so that they can
converge to an optimal joint control policy much faster (Fig. 3)
than they would have under usual circumstances (Fig. 2(c))

Specification of learning factor: The learning factor deter-
mines the weights associated with prior experience and with
the new information in the iterative approximation of the Q-
function. In RescueNet, the learning factor is time varying
in order to ensure stabilization of the learning process, i.e.,
greater importance is given to new information initially in the
static game while prior experience is leveraged more as time
progresses. The decay rate d,, of learning factor at all agents
depends not only on the stage of the static game but also on
the degree of node mobility, i.e., o, = o(v). In the case of
very high node mobility, nodes should refrain from using their
experience as it may be outdated. The time evolution of the
learning factor is given by of, | = o, - dq.

III. PERFORMANCE EVALUATION

To evaluate the performance of RescueNet, we implemented
it on ns3, a packet-based discrete-event network simulator.
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Fig. 3. Average SINR at EU and LU receivers when EU transmitters perform
transmission power control using our hybrid approach along with knowledge
sharing, i.e., sharing the knowledge of good initial states for the learning
process (both LU and EU Rx’s SINR requirements are met).

We performed two different types of simulations: in static
and mobility scenarios. The tunable transmission parameters
and assumptions regarding the loss model, MAC, and routing
schemes are listed in Table I.

TABLE 1
SIMULATION SETTINGS AND TUNABLE TRANSMISSION PARAMETERS

4 — 20 dBm in steps of 4 dB
3 channels in 515-527 MHz band (4MHz wide)
8-, 16-, 32-QAM

Transmission power
Transmission band
Modulation scheme

MAC DS-CDMA with chaotic spreading codes [10]
Routing Most Forward within Radius (MFR) [11]
Loss model Log-distance path loss model

Static scenario: The topology of EU and LU nodes used
in this scenario is depicted in Fig. 4, which shows two teams
of EUs operating in the vicinity of a LU receiver.

EU Team 2

EU Team 1

250m

S
O

O

500m

QO Sources of
unicast flows

@ Destinations of
unicast flows

Fig. 4. Static scenario used to evaluate the performance of RescueNet in
terms of conformance to mission policy and convergence to an optimal control
policy. Two teams of EU nodes operating in the vicinity of a LU.

We compared RescueNet with i) a framework that employs
the localized optimization approach similar to the ones pro-
posed in [12], [13] (referred to as “Baseline”), ii) a fully
distributed independent MARL-based framework (referred to
as “Ind-MARL”), and iii) a global reward MARL-based frame-
work (referred to as “Glo-MARL”). The EUs decide on the
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Fig. 6. Static Scenario: RescueNet’s ability to adapt to time-varying mission policies (a) Goodput of flows 1 and 2; (b) Average packet delay of flows 1 and
2; and (c) Average SINR at the LU receiver when the mission-policy specification changes over time.

appropriate values of the following transmission parameters
in a cross-layer manner: transmission power level, frequency
band of operation (from 2 channels), and modulation scheme
using one of the four aforementioned frameworks.

The data traffic in the EU teams was assumed to be
three unicast flows, 500 Kbps each, one in Team 1 and
two in Team 2. Figures 5(a) and (b) show the aggregated
goodput and average packet delay, respectively, of all the three
unicast flows in the emergency network. Figure 5(c) shows
the average SINR measured at the LU. It can be observed
that the emergency network fully conforms to the mission-
policy specification (depicted as blue-shaded regions) when it
employs RescueNet. However, the policy is violated when the
other three frameworks are employed for self-adaptation. EUs
employing Ind-MARL try to satisfy only the QoS require-
ments of the flows that they handle and do not consider the
effect of their actions on both the neighboring EUs and the
incumbent network nodes. As a result, the EU unicast flows
suffer from high delays due to packet collisions, which also
affects their goodput. The performance of incumbents is also
adversely affected and that is evident from the average SINR
measurements at the LU receiver. When EUs employ Glo-
MARL, the incumbent network performance is guaranteed,
as shown in Fig. 5(c). However, the EUs do not account for
their own QoS and, hence, violate the pre-specified mission-
policy specifications. The localized optimization approach,
Baseline, suffers the most in terms of performance because
of its inability to capture global network dynamics (it relies
only on local observations). To account for the effect of an

agent’s action on its neighbors, Baseline needs information
about ongoing receptions, the received power, and the noise
interference levels in each frequency channel. Hence, the Base-
line incurs an overhead to exchange such information while not
guaranteeing any optimality. Conversely, in RescueNet, agents
in the vicinity coordinate to tackle intra-emergency-network
interference by exchanging only the maximum state-action-
pair values associated with their current states. Hence, EUs
not only conform to their own QoS requirements but also take
into account the effect of their actions on their neighbors.

One of the main attributes of RescueNet is its ability to
conform to dynamic time-varying mission policies. To verify
this ability, we used the set up depicted in Fig. 4 but with only
Team 2 operating in the vicinity of a LU receiver. The EUs
decide on the appropriate values of the following transmission
parameters in a cross-layer manner: transmission power level
and modulation scheme using the RescueNet framework. Fig-
ures 6(a) and (b) show the average (moving window) goodput
and packet delay, respectively, of each unicast flow in the team
of EUs. Figure 6(c) shows the average SINR measured at the
LU. It can be observed that the emergency network employing
the RescueNet framework fully conforms to the time-varying
QoS requirements (shaded regions). This flexibility is due to
the generic nature of the reward function of the proposed
RescueNet framework.

Mobility scenario: To obtain results that will show con-
clusively RescueNet’s ability to adapt to non-stationarity in
the operating environment, we performed simulations with
node mobility as well as with time- and space-varying mission
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growth of exploitation factor on conformance with a mission policy at different node velocities.

policies. The EUs in all teams perform a random walk (for
a randomly chosen duration between 5 and 20 s) within a
rectangular area (200 x 200 m?) around their initial positions
with a pause (randomly chosen between 5 and 10 s) after
every walk. This mobility pattern simulates movement patterns
of first responders in the scene of disaster by incorporating
uniformly distributed random walking durations and random
pause durations. This was done to eliminate any bias that may
be introduced by a static network topology.

Our simulation results in Figs. 7(a) and (b) show clearly
that the average goodput and average delay of unicast flows
corresponding to the three different mission policies A, B, and
C are very close to the goodput and delay specifications of
each of those policies with small relative confidence intervals.
The average SINR at the LU receiver did not drop below
the minimum required SINR (25 dB) at any point in time
during the experiments. The consistency in the performance of
RescueNet under node mobility clearly demonstrates its ability
to adapt to dynamic time- and space-varying mission policies
as well as to non-stationarity in the environment. Figure 7(c)
compares the performance of the emergency network in terms
of average packet delay at various decay periodicity values
for four different average node velocities. We can observe
that, as the node velocity increases, the decay period has to
be increased to achieve delays that conform to the mission
policy. This is due to the fact that, at higher node velocities,
the knowledge acquired by agents do not hold for long and,
hence, they should have the capability to learn and adapt to
the new environment quickly.

IV. CONCLUSION

We envisioned a policy- and learning-based paradigm for
Cognitive Radio (CR) networking in licensed spectrum. We
introduced the concept of mission policies, which specify the
Quality of Service (QoS) for CR as well as incumbent network
traffic. The learning-based paradigm for CR networks enables
graceful QoS change of incumbent networks based on mission-
policy specifications. We developed a Multi-Agent Reinforce-
ment Learning (MARL)-based communication framework,

RescueNet, for realizing this new paradigm and showed fast
conformance to dynamic time-varying mission policies.
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