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ABSTRACT

Enabling data- and compute-intensive applications that require real-
time in-the-field data collection and processing using mobile plat-
forms is still a significant challenge due to i) the insufficient com-
puting capabilities and unavailability of complete data on individ-
ual mobile devices and ii) the prohibitive communication cost and
response time involved in offloading data to remote computing re-
sources such as clouds for centralized computation. A novel re-
source provisioning framework is proposed for organizing the het-
erogeneous sensing, computing, and communication capabilities of
static and mobile devices in the vicinity in order to form an elas-
tic resource pool (a heterogeneous mobile computing grid) that
can be harnessed to collectively process massive amounts of lo-
cally generated data in parallel. The proposed framework is im-
parted with autonomic capabilities, namely, self-optimization and
self-organization, in order to be energy and uncertainty aware, re-
spectively, in the dynamic mobile environment.

Categories and Subject Descriptors

C.2.4 [COMPUTER-COMMUNICATION NETWORKS]: Dis-
tributed Systems

Keywords

Mobile grids, autonomic management, uncertainty

1. INTRODUCTION
The computation and communication capabilities of mobile hand-

held devices such as smart phones, tablets, netbooks, and laptops
have improved tremendously due to the advances in microproces-
sor, storage, and wireless technologies. As more and more of these
mobile devices are coupled with in-built as well as external sen-
sors capable of monitoring ambient conditions, acceleration, orien-
tation, gravity, biomedical data (e.g., electrocardiogram, galvanic
skin response, oxygen saturation) etc., and Global Positioning Sys-
tem (GPS) receivers, they can provide spatially distributed mea-
surements regarding the environment in their proximity.
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In this paper, we present a resource provisioning framework that
organizes the heterogeneous sensing, computing, and communica-
tion capabilities of static and mobile devices in the vicinity in order
to form an elastic resource pool – a heterogeneous mobile comput-
ing grid. This local computing grid can be harnessed to enable in-
novative data- and compute-intensive mobile applications such as
content-based distributed multimedia search and sharing [1], dis-
tributed object recognition and tracking, and ubiquitous context-
aware health monitoring [7]. The response time, quality, and rele-
vance of such mobile applications, which rely on real-time in-the-

field processing of locally generated data, can be drastically im-
proved using our envisioned framework. Presently, the primary
impediments to real-time in-the-field data processing are, 1) in-
sufficient sensing and computing capabilities on individual mobile
devices, which prevents them from producing meaningful results
within realistic time bounds in isolation, and 2) the prohibitive
communication cost and response time involved in enabling such
applications using the wired-grid-computing and/or cloud-computing

approaches alone [15] – in which computation and storage are of-
floaded to remote computing resources on the Internet.

In order to address the research challenges associated with re-
liable mobile grid coordination and application performance un-
der uncertainty (in terms of device availability due to node mobil-
ity and susceptibility to failures), we impart our proposed resource
provisioning framework with autonomic capabilities, namely, self-

optimization and self-organization. Applications are made up of
one or more workloads, which are usually composed of multiple
tasks whose order of execution is specified by a workflow. Work-
load here refers to compute-intensive mathematical models with
different computational, storage, and deadline requirements.

In our solution, the entities of the hybrid grid may at any time
play one or more of the following three logical roles as shown in
Fig. 1(a): i) service requester, which places requests for workloads
that require additional data and/or computing resources from other
devices, ii) service provider, which can be a data provider, resource

provider, or both, and iii) arbitrator (also typically known as bro-
ker), which processes the requests from the requesters, determines
the set of service providers that will provide or process data, and
distributes the workload tasks among them. Data providers pro-
vide scalar or multimedia data while resource providers lend their
computational, storage, and communication resources for process-
ing data. The arbitrator – an additional role played by some of the
service providers – is aided by a novel energy-aware resource al-

location engine, which will distribute the workload tasks optimally
among the service providers. This way, we ensure that the data
providers do not drain valuable energy. Figure 1(a) depicts the en-
visioned framework enabling an ubiquitous healthcare application
that relies on processing collected biomedical data in-the-field for
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Figure 1: (a) Autonomic resource provisioning framework enabling ubiquitous healthcare; (b) Summary of related work.

real-time physiological monitoring. Workloads in this example sce-
nario include mathematical models for acquiring context awareness
that operate on biomedical and kinematic sensor data.

Prior research efforts, summarized in Fig. 1(b), have aimed at in-
tegrating mobile devices into the wired-grid and cloud-computing
infrastructure mainly as service requesters. In contrast, we exploit
mobile devices as service providers and address uncertainty-aware
autonomic resource management for ensuring application Quality
of Service (QoS) even in highly dynamic and unpredictable en-
vironments. Our resource allocation engine relies on long-term
statistics regarding the dynamics of the underlying resource pool
to protect application performance from the undesired effects of
uncertainties. The major contributions of this paper include, 1)
a role-based architectural framework for handling service discov-
ery and service request arrivals as well as for task distribution and
management, 2) a novel energy-aware resource allocation engine
for imparting the self-optimization capability, i.e., for allocating
the workload tasks optimally among the computing devices, 3) an
innovative mechanisms to estimate the uncertainty (in terms of dy-
namics and size) in the resource pool for imparting uncertainty-
aware self-organization, and 4) a detailed performance analysis of
our proposed autonomic resource provisioning framework through
experiments on a prototype testbed as well as simulations.

The rest of the paper is organized as follows. In Sect. 2, we
present our autonomic resource provisioning framework for mobile
grids. In Sect. 3, we describe our experimental methodology and
results. Finally, in Sect. 4, we present our conclusions and plans
for future work.

2. PROPOSED SOLUTION
Our role-based architectural framework facilitates coordination

and seamless switching among the three logical roles. The energy-

aware resource allocation engine and mechanisms for uncertainty

awareness impart the self-optimization and self-organization capa-
bilities, respectively.

2.1 Role-based Architectural Framework
Service discovery: Service discovery at the arbitrators is achieved

through voluntary service advertisements from the service providers.
Service advertisement from a service provider n includes infor-
mation about the current position, amount of computing (γcpu

n ,
in terms of normalized CPU cycles), memory (γmem

n [Bytes]),
and communication (γnet

n [bps]) resources, the start (tinn ) and end

(toutn ) times of the availability of those resources, and the avail-
able battery capacity (eadvn [Wh]). The arbitrator is aware of the
power drawn by the workload tasks of a specific application when
running on a specific class of CPU and memory (together given by
ccomp
n [W]) as well as network (cnet

n [W]) resources at each service
provider as the information about the different types of devices is
known in advance. The arbitrators use the information from service
advertisements of the N computing devices to derive the following:
S = {sn}1×N , where sn ∈ {1, 0}, which conveys whether n is a
resource provider or not, and D = {dn}1×N , where dn ∈ {1, 0},
which conveys whether n is a data provider or not.

We advocate the use of a distributed arbitrator self-election mech-
anism similar to the one in [12]. Our self-election mechanism
works as follows: each service provider will determine the poten-
tial size of its resource pool based on the number of advertisements
it has received. Then, all the service providers advertise this num-
ber and determine their rank in their neighborhood in terms of the
potential size of their resource pool. The service providers use a
pre-determined rank threshold (which varies depending on the net-
work size and density) to elect themselves as arbitrators.

Workload management: Each arbitrator is composed of two
components, namely, workload manager and scheduler/optimizer,

as shown at the top of Fig. 1(a). The workload manager (also called
master) tracks workload requests, allocates workload tasks among
service providers, and aggregates results. The optimizer identi-
fies the number of service providers (also called workers) available
for the requested duration and determines the optimal distribution
of workload tasks among them. The optimizer shares the work-
load submitted by the data providers among the available service
providers based on one of several possible policies. One policy
may aim at minimizing the battery drain while another policy may
just place emphasis on response time without considering battery
drain. Our framework applies to applications exhibiting data par-

allelism (in which data is distributed across different parallel com-
puting nodes that perform the same task) as well as to applications
exhibiting task parallelism (in which parallel computing nodes may
perform different tasks on the same or different data).

2.2 Energy-aware Resource Allocation Engine
Here, we explain our energy-aware resource allocation engine

(an optimization problem corresponding to one of the aforemen-
tioned policies) for hybrid grids in detail. In the following, we
explain the sequence of events happening at one of the arbitra-
tors while similar events happen simultaneously at the other ar-
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bitrators in the computing grid. When a service requester needs
additional data or computing resources, it submits a service re-
quest to the nearest arbitrator and also specifies δmax [h], the max-
imum duration for which it is ready to wait for a service response.
The arbitrator extracts the following information based on the ser-
vice advertisements: the devices’ (service providers’) capability,
Γ

x = {γx
n}1×N , where x = cpu,mem, net; the associated costs,

C
comp = {ccomp

n }1×N and C
net = {cnet

n }1×N ; the devices’
availability, Tin = {tinn }1×N and T

out = {toutn }1×N ; and their
battery status Eadv = {eadvn }1×N .

The variables that the optimization problem has to find are, A,
U, ∆d, and ∆

s. Matrix A = {aij}N×N conveys the associa-
tivity of data provider i with service provider j, U = {un}1×N

with un ∈ {1, 0} conveys whether a resource provider n is used
for computing or not, ∆d = {δdn}1×N [h] conveys the duration for
which the services of each service provider will be used for data
collection, and ∆

s = {δsn}1×N [h] conveys the duration for which
the resources of each service provider will be used for computation
(cpu, mem, and net) and/or for multi-hop communication (net) as
a relay node. In this formulation, the objective of the optimization
problem, given by (1) and (2), is maximization of minimal resid-

ual battery capacity at all the service providers, max minn eresn

[Wh], while ensuring that the service response is delivered within
δmax. This objective maximizes the lifetime of every single ser-
vice provider and, thus, maintains the heterogeneity of the resource
pool for longer periods. The set of service providers and the dura-
tion for which each of their capabilities are availed will be deter-
mined by considering the trade-offs among the cost edatan [Wh] (3)
for transferring the data locally from data providers to the resource
providers, the computational cost ecomp

n [Wh] (3) for availing the
computational capabilities of the resource providers for servicing
the request and for aggregating and generating the final response.

Maximize : min
n

e
res
n , (1)

where, e
res
n = e

adv
n − (edatan + e

comp
n ); (2)

e
data
n = δ

d
n · cnet

n ; e
comp
n = un · δsn · ccomp

n . (3)

In (2), edatan + ecomp
n is the amount of battery capacity drained at

each service provider n. δdn for a service provider n depends on
the amount of data it has to transmit (ω [Bytes] as a data provider)
or aggregate (ω ·

∑N

i=1
ain [Bytes] as a resource provider), and

the availed communication capability, given by δdn = f(ω, γnet
n )

when un = 0 and δdn = f(ω ·
∑N

i=1
ain) when un = 1. Here,

without any loss of generality, ω is considered to be the problem
size of a trivial task and each data provider provides the same am-
ount of data. Function f() monotonically increases as the amount
of data to be transmitted or received increases. δsn for a service
provider n depends on the amount of data it has to process and
the availed computing capabilities specified by γcpu

n and γmem
n ,

given by δsn = g(γcpu
n , γmem

n , ω ·
∑N

i=1
ain). Function g() mono-

tonically increases with the amount of data to be processed. The
constraints to the optimization problem are, ∀n = 1 . . . N ,

sn ≥ un; 0 ≤ δ
d
n, δ

s
n; (4)

δ
s
n ≤ min{toutn , t

now + δ
max} −max{tnow + δ

d
n, t

in
n }; (5)

δ
d
n · cnet

n + un · δsn · ccomp
n ≤ e

adv
n . (6)

Constraint (4) ensures that only a resource provider is chosen to
perform the computing. Constraints (5) and (6) ensure that ev-
ery service provider’s advertised availability (duration) and battery
limit are not exceeded while satisfying the consumer’s deadline for
service response.

2.3 Uncertainty Awareness
Inaccurate estimation of the availability (duration) of service

provider is a major source of uncertainty that results in a large
number of incomplete workload task migrations. The duration of
availability specified in the service advertisements is based on the
battery drain estimates and may not accurately reflect the duration
for which the service provider will be associated with the arbitrator.
One or more of the service providers may lose network connectiv-
ity to the arbitrator or go offline, i.e., run out of energy due to an
unexpected increase in battery drain because of other concurrent
compute-intensive critical operations. As the arbitrator is also one
of the service providers, this problem holds for arbitrators too.

We advocate the use of multiple arbitrators to avoid a single point
of failure. In order to ensure that the unavailability of an arbitra-
tor does not lead to the failure of the entire system, each arbitrator
shares with all of its active data and service providers a list of al-
ternate arbitrators – referred to as proxies – ranked according to
their proximity (primary key) and physical addresses (secondary
key). In case of an arbitrator failure, the service providers collab-
orate with the pre-specified proxy until all active workload tasks
end. The arbitrators also share their current state information with
their proxies to handle any unexpected failures.

In order to impart the uncertainty-aware self-organization capa-
bility to the proposed resource-allocation framework, we designed
a mechanism that helps the arbitrator extract the following long-
term statistics from the underlying resource pool: the average ar-

rival (joining) rate of service providers (W̃ ), the average service

provider availability duration (T̃ ), and the average number of ser-
vice providers associated with the arbitrator at any point in time

(Ñ ). The relationship among these three long-term statistics is

given by Little’s theorem, Ñ = W̃ · T̃ . The arbitrators update
continuously these statistics and share at least two of the three
aforementioned averages with its proxies. Knowledge of these av-
erage statistics helps the arbitrators assess the churn rate of ser-
vice providers. Churn rate is a measure of the number of service
providers moving into or out of an arbitrator’s resource pool over
a specific period of time. Note that the arbitrators need not extract
or be aware of the underlying probability distribution of service
provider arrivals or of availability durations.

Churn rate of service providers will be different in different ge-
ographic location. For example, the churn rate of service providers
at a shopping mall is far greater than the one at a coffee shop. Also,
at a particular location, the churn rate can vary over time (say, de-
pending on the time of the day). When the churn rate of service
providers is high, i.e., the average duration of service providers
availability is low, the percentage of migrated workload tasks will
be high if the resource-allocation engine does not possess uncer-
tainty awareness. A mismatch between the ground reality and the
optimization at the arbitrator occurs when the long-term average of
availability duration is not taken into account at the arbitrator and
when the durations advertised by the service providers are used as
constraints in the optimization problem (presented in the previous
subsection). However, our framework with uncertainty awareness
achieves a smooth degradation (if any) in QoS (because of the small
number of task migrations) when churn rate increases as it effec-
tively exploits the knowledge gathered over time and/or acquired
from its predecessors.

3. PERFORMANCE EVALUATION
We have implemented a small-scale prototype of the proposed

framework and performed an experimental evaluation. We have
also used simulations to show the scalability of the framework be-
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Table 1: Heterogeneity of computing devices in the testbed.

Samsung

Galaxy Tab

Motorola Atrix

2

Samsung

Galaxy S

LG Optimus HTC Desire HD Dell Netbook Dell Laptop

CPU 1GHz Dual-core
ARM

1GHz Dual-core
ARM

1GHz ARM 600 MHz ARM 1GHz ARM 1GHz Atom 2GHz Dual-core
Intel

Memory (RAM) 1GB 1GB 512MB 512MB 786MB 1GB 2GB

Network 802.11b/g/n,
Bluetooth (BT)

2/3/4G, BT,
802.11b/g/n

2/3G,
802.11b/g/n, BT

3G, 802.11b/g,
BT

2/3G,
802.11b/g/n, BT

802.11b/g/n, BT 802.11b/g, BT

Battery capacity 28Wh 6.612Wh 5.7Wh 5.7Wh 5.32Wh 49.95Wh 55.5Wh

Workload completion time 150s 300s 390s 590s 340s 100s 35s

yond ten nodes (the size of our testbed). For statistical relevance,
we performed multiple trials until we achieved a very small rela-
tive confidence interval (less than 10%). First, we present details
about our testbed and our experiment methodology. Then, we dis-
cuss specific experiment scenarios and the results that demonstrate
the autonomic capabilities of our framework.

3.1 Testbed and Experiment Methodology
Heterogeneous devices: The testbed consists of Android- and

Linux-based mobile devices with heterogeneous capabilities (sum-
marized in Table 1). In our prototype, communications among the
master and workers as well as among the optimizer and workers
happen over Comet Space [13], a scalable peer-to-peer content-
based coordination space developed at the NSF Cloud and Auto-
nomic Computing Center, Rutgers University.

The workload: The mobile application that we used for our ex-
periments is distributed object recognition. The service requester
(which is also the data provider) submits an image of any object
that needs to be recognized while also specifying a deadline. The
predominant workload in this application is matrix multiplication
and the most fundamental workload task is vector multiplication,
which is assigned to the different service providers. Distributed
object recognition is representative of a wide range of data-parallel
applications that our framework can support. Table 1 shows the
time taken by the different mobile devices to complete all the work-
load tasks of our application when operating in isolation. For near-
real-time performance, the delay needs to be in the order of tens
of seconds and the numbers clearly motivate the need to divide the
tasks among service providers in the vicinity for speed up.

Application profiling: As the objective of the optimization prob-
lem is maximization of minimal residual battery capacity, the amo-
unt of battery drain in service providers as a result of running work-
load tasks needs to be estimated and used in decision making. How-
ever, the usage of actual Watt-hour (Wh) is unfair to devices with
a higher battery capacity. Hence, in order to exploit heterogene-
ity and to ensure fairness, our prototype uses the residual battery
capacity percentage instead of actual Wh values.

In order to ascertain battery drain while running a workload task,
first, we ran all the workload tasks of our object recognition appli-
cation on the individual mobile devices and measured the current
drawn in mA (as the voltage drop remains constant) and the total
time taken for the workload completion. Then, we determined the
average time taken to complete one task. Such a straightforward
estimation is possible as object recognition is a data-parallel ap-
plication whose task (vector multiplication) completion time is not
affected by the type of input. Information about task completion
time along with the current drawn by the workload tasks and the
number of tasks allocated to a service provider helps us calculate
the resulting battery drain in Wh. Information about battery current
consumption is readily available in most Android-based devices.

3.2 Self-optimization
Competing approaches: To assess the self-optimization capa-

bility of our framework, we compare it against two competing ap-
proaches: i) Round-robin, in which the workload tasks are divided
equally among all the available service providers, and ii) Comet-

Cloud [11], a pull-based task-scheduling mechanism in which the
service providers voluntarily pull tasks from the arbitrator, work on
them, report the result, and pull the next task to work on. Round-
robin is chosen for comparison to show the gains (in terms of ap-
plication response time and battery drain) that can be achieved by
exploiting the heterogeneity in computing capabilities of service
providers. CometCloud inherently exploits the heterogeneity in
computing capabilities as it schedules tasks on a First-Come-First-
Served (FCFS) basis resulting in progressively faster devices com-
pleting a correspondingly higher number of tasks over time. It is
also robust to service provider failures or loss in connectivity as it is
purely pull-based. However, due to lack of self-optimization, there
is usually unfair battery drain at the service providers.

Setup: In order to show the superiority in performance of the
proposed energy-aware resource allocation engine over the com-
peting approaches under different operational scenarios (in terms
of number and combination of service providers), we ascertain and
compare the fairness in battery drain when each of the three task-
scheduling mechanisms are employed. We use Jain’s fairness index

ranging in [0,1] (1 being the highest and 0 being the lowest) as mea-
sure of fairness. The four scenarios in Fig. 2 represent a progressive
increase in the scale and the heterogeneity of the underlying service
provider pool as well as the problem size (while keeping the dead-
line constant at 60s). The scaling up is achieved by increasing the
resolution of the object’s image, which is the input to the object
recognition application. In order to determine the amount of bat-
tery drain while using the three task-scheduling mechanisms, we
simulated 100 consecutive runs (for significant battery drain) of the
workload. This procedure is referred to as one trial. We in turn
performed multiple trials, each with a different initial condition in
terms of available battery capacities in the service providers.

Observations: Figure 2 shows the average fairness in terms of
residual battery capacity at the service providers after each trial.
Our proposed solution achieves the best performance in terms of
fairness in the residual battery capacity as it fully exploits the het-
erogeneity of the devices in the resource pool to achieve its objec-
tive while meeting the user-specified deadline.

3.3 Uncertainty-aware Self-organization
Setup: In order to show the uncertainty-aware self-organization

capability of the proposed framework, we performed an experi-
ment to ascertain the gain in terms of reduction in number of work-
load task migrations that can be achieved by using our framework.
The evaluation was carried out under different operational scenar-
ios with different service provider churn rates. The four scenarios
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Figure 2: Performance of proposed framework (in terms of

fairness) versus CometCloud and round-robin approaches.
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Figure 3: Effectiveness of uncertainty-awareness (in terms of

% tasks migrations) when service providers’ availability dura-

tion follows (a) Normal and (b) Weibull distributions.

(different from the previous ones) in Fig. 3 represent a progressive
increase in the churn rate of the underlying resource pool (with a
corresponding decrease in average duration of association with the
arbitrator). The number (15 in total) and combination of service
providers in the mobile grid, the number of workload tasks, and the
deadlines remain the same for all the four scenarios.

We used percentage of migrated workload tasks to determine
the effectiveness of uncertainty awareness. In order to ensure that
the uncertainty awareness capability is not dictated by any par-
ticular distribution of service-provider-availability duration, it was
picked at random based on i) Normal distribution (with mean µ =
180, 150, 120, 90s; and standard deviation σ = 60s) and then on
ii) Weibull distribution (with scale λ = 200, 175, 150, 125; and
shape k = 4). Normal distribution is used for its generality while
Weibull distribution is the most popular choice amongst statisti-
cians performing reliability (or survivability) analysis.

Observations: Figures 3(a) and (b) show how the arbitrator lever-
ages its knowledge of the long-term average of service provider
availability in order to reduce the number of workload task migra-
tions. As the churn rate of service providers increases, i.e., the av-

erage duration of service providers availability decreases, the per-
centage of migrated workload tasks increases when we use our re-
source allocation engine “without” uncertainty awareness. When
the advertised durations (from service providers) are used as con-
straints in the optimization problem it leads to a mismatch between
the ground reality and the optimization at the arbitrator. How-
ever, our framework with uncertainty awareness achieves a smooth
degradation (if any) in QoS (because of the small number of task
migrations) when churn rate increases as it effectively exploits the
knowledge gathered over time. Also, another advantage of uncer-
tainty awareness is that it helps decrease churn rate, especially ser-
vice provider departures caused by device users opting out of the
application due to undesired battery drain.

4. CONCLUSIONS AND FUTURE WORK
We proposed a novel resource-provisioning framework for or-

ganizing the heterogeneous sensing, computing, and communica-
tion capabilities of static and mobile devices in the vicinity in order
to a form a mobile computing grid. We imparted the resource-
provisioning framework with autonomic capabilities, namely, self-
optimization and self-organization, in order to be energy and uncer-
tainty aware in the dynamic mobile environment. We demonstrated
the autonomic capabilities of the framework through experimental
evaluation on a prototype testbed. Currently, we are investigating
mechanisms for imparting the self-healing capability, i.e., for han-
dling uncertainty arising out of inaccurate estimation of task com-
pletion times.
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