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Abstract—Advancements in oceanic research have resulted in
a plethora of activities such as undersea oil/gas exploration, en-
vironmental monitoring, sonar-based coastal surveillance, which
have each increased the acoustic noise levels in the ocean and have
raised concerns in the scientific community about the effect of
human-generated sounds on marine life. Knowledge of the statis-
tical characteristics of noise sources and their spatial distribution
is paramount for understanding the impact on marine life as well
as for regulating and policing such activities. Furthermore, studies
have shown that assuming the underwater noise probability density
function to be Gaussian, exponential, or Weibull is often not valid;
therefore, statistically profiling the sources of the ambient noise is
also essential to improve the performance of acoustic communica-
tion systems in the harsh underwater environment. In this paper,
a novel solution based on the blind source separation method is
proposed to enable separation of underwater acoustic noise point
sources in the presence of channel propagation multipath. The
proposed Underwater Noise Inspection, Separation, and Classifi-
cation (UNISeC) system performs several pre- and postprocessing
steps forming a novel gray-box model. Assuming there is no prior
information on the noise sources, UNISeC estimates the number of
such sources as well as characterizes and classifies them via a recur-
sive pilot-aided probing method while minimizing the environmen-
tal acoustic contamination. A correlation-based characterization as
well as power spectral density based classification approaches are
investigated to verify the proposed method. Several scenarios are
also presented and evaluated in detail via simulations.

Index Terms—Blind source separation (BSS), point sources, sys-
tem modeling, underwater acoustic noise, underwater acoustic
channel propagation.

I. INTRODUCTION

OVER the past few years, underwater acoustic communi-
cations and networks comprising static sensors as well

as mobile vehicles have attracted the attention of both re-
searchers and engineers because they enable a wide variety
of applications. There is an increasing interest in applications
such as undersea oil/gas exploration, environmental monitor-
ing, and coastal surveillance [2], [3]. All these activities con-
tribute significantly to the underwater acoustic noise, as depicted
in Fig. 1: e.g., shipping noise is generated from cargo vessel
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Fig. 1. Example of underwater dominant man-made and natural acoustic noise
sources such as ships, undersea exploration and construction, and their effects
on marine life.

engines; drilling/extraction noise is produced by airgun arrays,
which are used to detect oil/natural gas beneath the seafloor;
sonar noise is generated from oceanic acoustic tomography,
prospection, and military systems to detect submarines.

Recently, deep-sea audio recording by researchers in the Na-
tional Oceanic and Atmospheric Administration and their part-
ners has revealed that the ocean is not quiet. Instead of finding
silence, even the deepest part of the world’s ocean, at the bot-
tom of the Mariana Trench1 with a depth of more than 36 000 ft,
is an incredibly noisy place [4]. Shallow water and coastal re-
gions are also not noise free and are occupied with several noise
sources such as impulsive colored noise created by large popu-
laces of snapping shrimp inhabiting these regions [5]. Generally,
two main categories of noise sources can be recognized: natural
and anthropogenic sources. Natural noise is a phenomenon al-
ready present in the environment and marine animals are almost
adapted to it; however, its effect on marine mammals can be
investigated. Sources such as seismic [6], wave, and rain are
often high power and occupy the same frequency band as those
used by marine animals, as reported in Figs. 2 and 6. Therefore,
they sometimes cause trouble for animals to communicate and
estimate distances. On the other hand, human-generated noise
sources, such as shipping, drilling and explosions, sonar sys-
tems, etc., threaten the animals living in the ocean where it is
difficult to distinguish them from natural sounds leading to ac-
cidental collisions and mass beachings. Other impacts include
causing animals to alter their behavior, preventing them from

1The Mariana Trench is located in the western Pacific Ocean, to the east of
the Mariana Islands.
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Fig. 2. PSD of acoustic noise sources—as reported in [8, pp. 132–137], [9]—
and levels of shipping noise (L1–L7) based on shipping traffic/activities and on
the sea states (SS).

hearing important sounds (masking), causing hearing loss (ei-
ther temporary or permanent), or damaging tissue. In at least a
few well-documented cases, a relationship was shown between
the use of midfrequency sonar and the stranding of cetaceans,
particularly beaked whales [7]. As a result, there are raising
concerns in the scientific community about the effect of human-
generated and natural sounds on marine life, which has become
a topic of increasing controversy, especially regarding marine
mammals.

Knowledge of the statistical characteristics of these noise
sources and their spatial distribution is important for better un-
derstanding the impact on marine life as well as for regulat-
ing and policing shipping and undersea activities—both civil-
ian and military. Furthermore, profiling (e.g., via separation,
classification, and statistical analysis) of the dominant sources
forming the ambient noise is also essential to increase the per-
formance of acoustic communication systems in the harsh un-
derwater environment. Typically, in the presence of noise and
interference, signal-detection performance of communication
systems degrades [10], and the problem becomes more severe
and complex to compensate for when the noise distribution is
not known. Data-driven studies have shown that the assump-
tion of noise to be additive Gaussian is often invalid in ocean
environments [11], [12]. In this unfavorable condition, the re-
ceived signal is mixed with the ambient noise with an unknown
distribution, leading to poor performance when traditional
reception techniques assuming additive Gaussian noise are
adopted.

In Fig. 3, we provide probability plots of the noise data
set obtained from in situ measurements [8] that are used to
evaluate whether such noise data follow regular distributions.
This data set is plotted against theoretical normal, exponen-
tial, and Weibull distributions such that the output is a straight
line and well placed on the reference line if it fits those dis-
tributions. In this method, the ith-ordered sample value of a
sequence with n samples is sketched against the empirical

cumulative density function on the y-axis, which corresponds
to (i− 0.5)/n of the ith-ordered sample value. This mid-
point probability plotting position method follows the Hazen
formula [13]; note that by subtracting 0.5 from the sample,
it is ensured that it is exactly in the middle of the interval
[(i− 1)/n, i/n]. As shown, a deviation from the considered
distributions is obvious given the apparent departure from the
straight reference line. This confirms empirically that the three
noise sources considered (i.e., shipping, wave, and rain noise)
cannot be modeled using simplistic known distributions because
their statistical deviations (in the center or in the tails) are not
negligible.

In this paper, to catch “on the fly” unknown noise sources
in the presence of multipath in a three-dimensional (3-D) sce-
nario, we utilize blind source separation (BSS). The proposed
system, called Underwater Noise Inspection, Separation, and
Classification (UNISeC), is based on BSS and performs pre-
and postprocessing analyses that are specifically designed for
the underwater multipath environment. We present a least con-
taminant pilot-aided probing method to identify the number
of dominant sources in each frequency subband, a separa-
tion method, and afterward the characterization of the sources
based on their magnitude squared coherence estimate (MSCE)
and maximum cross correlation (MCC). Finally, we classify
them via the coherence of their estimated power spectral den-
sity (PSD) and the PSD of known noise sources. Further-
more, regarding unknown distributions of noise sources, sev-
eral scenarios are considered to evaluate the performance of
the proposed system. Simulations show the effectiveness of
the proposed solution under various levels of multipath in the
ocean.

The remainder of the paper is organized as follows. In
Section II, we provide the necessary background and discuss
the related work. In Section III, we focus on the problem defini-
tion and describe our solution in the context of a system named
UNISeC. In Section IV, we present performance evaluations and
discuss the obtained results. Finally, in Section V, we conclude
this paper.

II. BACKGROUND AND RELATED WORK

A. Underwater Noise Pollution and Marine
Mammal Protection

The emerging trend of underwater noise level due to marine
industry leads to more noise pollution and increasingly threat-
ens the marine life. Many countries and oceanic regions have
recognized the need to establish rules for policing the spectrum
underwater. Several experiments confirm that man-made noise
such as sonar is harmful to marine mammals, especially for blue
and beaked whales [14]. In [15], the propagation of underwater
noise, especially from ships, is modeled and the received levels
by species-specific audiograms are analyzed. In situ measure-
ments of underwater noise are critical for the assessment of risk
to marine life. In [16], guidance is provided for in situ measure-
ment of underwater sound using several metrics. Real-world
data can be used in passive acoustic tomography [17], which
leads to a promising way to reduce acoustic emissions in the
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Fig. 3. Statistical deviation of noise sources from (a) normal, (b) exponential, and (c) Weibull distributions. Reference lines compare the distribution of the data
against these three known distributions. Noise data were obtained from [8, pp. 132–137].

oceans. Acoustic tomography has been considered for several
studies in shallow- and deep-water research [18]; however, more
serious actions are required before this problem turns into an
environmental crisis.

B. Spectrum Sensing, Ocean Monitoring/Policing

Spectrum sensing is the first step for using the acoustic spec-
trum more efficiently. This procedure is performed by listening
and obtaining knowledge on the spectrum usage as well as on the
presence or absence of primary users in predefined frequency
subbands. It is the most important part of a cognitive radio
structure in terrestrial scenarios. In [19], its concepts, method-
ologies, and challenges have been discussed. Energy-detection
sensing, matched filtering, and cyclostationary feature detec-
tion are three common techniques used to improve the spectrum
sensing process [20]. Baldo et al. [21] applied cognitive radio
and a dynamic spectrum access method to the underwater en-
vironment. In [22], an underwater acoustic recording has been
implemented as a solution for monitoring disturbance reactions
of marine mammals. To our knowledge, there is no comprehen-
sive and systematic research on how to effectively monitor and
police the ocean noise in the literature. The proposed work plan
intends to cover this gap.

C. Blind Signal Separation

BSS solves the problem of source recovering from the obser-
vation of their mixtures at the receivers without any knowledge
about the mixing coefficients. It has been widely considered
by the researchers in various applications such as speech and
sound detection [23]. Considering the problem of separating a
single source out of several mixture of sounds, separation of
simultaneous and independent sources in indoor scenarios was
done in [24]. In [25], the second-order statistics was introduced
based on a joint diagonalization of a set of covariance matri-
ces. Regarding the fourth-order statistics, a joint approximate
diagonalization of eigenmatrices (JADE) algorithm was intro-
duced by Cardoso and Souloumiac [26], which is one of the
most well-known and widely used methods in BSS based on
independent component analysis (ICA). It has been shown that
linear mixtures can be formulated as generalized eigenvalue de-
composition considering the statistical characteristic of sources,

such as being non-Gaussian, nonstationary or nonwhite [23].
However, JADE is not optimal in separating heavy-tailed sig-
nals such as α-stable processes since such processes usually
have no finite second or higher order moments and JADE is
based on higher order statistics. Shrimp species create impul-
sive type noise, which can be modeled through alpha-stable
processes [5].

There are studies on more complex mixtures than instanta-
neous linear ones such as convolutive audio mixtures that con-
sider multipath and delay. In [27], a dynamic frequency-domain
algorithm has been proposed for separating audio signals from
convolutive sound mixtures. Gur and Niezrecki [28] propose a
method to improve the performance of their system regarding
BSS. In this method, a known source signal is polluted with am-
bient noise, but the signal is dominant in comparison with the
ambient noise. Godin et al. [29] try to measure the noise level re-
garding sound-speed measurements with travel time averaging
of the signals. Besides these works above, in medical research,
finance, and telecommunications, BSS is also applied to ana-
lyze the data. A method based on principal component analysis
and infinite ICA is developed for feature extraction in [30].
A BSS-based cellular communication solution is proposed in
[31] for cloud radio access networks, called Cloud-BSS, which
leverages the interbase stations cooperation.

It is worth noting that one of the main challenges in the clas-
sification of noise sources is the presence of varying degrees of
multipath [32] in the time-varying underwater acoustic chan-
nel whose formation is caused by two effects: reflection at the
surface, bottom, and by any object and refraction in the water.
The latter is caused by the sound-speed variation due to salinity,
temperature, and depth, which is mostly evident in deep-water
channels. Unknown noise source separation and detection is a
challenging problem in this dynamic underwater environment
and this is the first study on underwater noise analysis based
on BSS.

III. PROBLEM DEFINITION AND PROPOSED SOLUTION

In this section, we consider the problem in detail and orga-
nize the proposed solution in the following sections. First, in
Section III-A, we address a practical deployment strategy for
sensor nodes to form a grid of sensors in the area of study. It
is important to structure a defined area in which the proposed
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Fig. 4. (a) Proposed deployment of buoys in a multipath underwater environment. Hydrophones are installed on a bar, but buoys are connected to each other
via a terrestrial network. (b) Proposed system for UNISeC utilizes the pre- and postprocessing analyses and applies a BSS algorithm in a multipath underwater
channel.

method works. We introduce a 3-D ocean environment and a
2-D terrestrial deployment to implement the proposed system.
Section III-B explains how our method, called UNISeC, sepa-
rates and classifies the underwater noise sources. Specifically,
our method includes:

1) UNISeC, which controls the whole process by estimating
unknown parameters of a “gray-box” model;

2) underwater noise analysis using BSS.
3) a practical instantaneous BSS resulting from a convolutive

problem;
4) a recursive and least contaminant pilot-aided preprocess-

ing for calculating the number of dominant sources in
each frequency subband;

5) reliable postprocessing for characterization of the signals
using a path-combining technique;

6) a pilot-identification procedure and also a classification
method to classify the noise sources.

Fig. 4(b) illustrates the block diagram of our proposed
method. Finally, in Section III-C, a centralized network structure
and some practical aspects are considered.

A. Grid Symmetric Planned Static Deployment

This proposal assumes an architecture in which the hy-
drophones are anchored to the bottom of the ocean and are
connected to the buoys on the surface. The deployment should
guarantee a reliable connection between all the network nodes;
however, many challenges should be addressed to enable reli-
able monitoring since:

1) hydrophones should actively collaborate in sound captur-
ing to achieve a 3-D coverage of the whole area of interest
in the ocean, given their respective sensing ranges;

2) hydrophones should be able to relay information to their
buoys;

3) buoys should be able to connect to the sink station in a
wireless 2-D communication.

Considering the cocktail-party problem [24], [31], i.e.,
separating a single source from a mixture of sounds, different
network topologies may lead to different system performance

results. However, in our stated problem, no prior knowledge is
available on the power and location of unknown noise sources,
which could be used to predict and locate them. Therefore,
the best assumption for hydrophone placement would be a
uniform distribution, which is appropriate for equiprobable
transmitted signals. We call this deployment a symmetric
planned arrangement. This refers to the fact that the number
of active hydrophones is a measure of noise sources in the
environment. Because we consider the case of equal number of
mixtures and sources, if one of the hydrophones, for example,
is far from one of the sources, the mixtures cannot be separated
via the proposed algorithm.

Assume a setB = {B1 , ..., Bo} of bottom anchored and fixed
buoys with horizontal spacing db , with radio transmitters on top,
are floating on the surface of the water. Each buoy hasmh omni-
directional hydrophones with a wide frequency range installed
on a vertical bar with length hr + (mh − 1)dh , as depicted in
Fig. 4(a), where hr is the depth of top hydrophone and dh is the
spacing between the other (mh − 1) hydrophones. Therefore,
there are in total M = Bomh hydrophones in an underwater
3-D deployment architecture in addition to the terrestrial 2-D
wireless radio network formed by the buoys on the sea surface.
Note that surface-level radio channels are assumed to be benign
in this paper and we leave the consideration of unreliable radio
channels for future work. We consider the following assump-
tions:

1) internal noise of hydrophones is less than dominant am-
bient noise level in the environment, such as depicted in
Fig. 2;

2) hydrophones should be robust against the pressure when
depth increases;

3) thermal noise due to cable connections to the water surface
and the buoy is negligible.

1) Terrestrial 2-D Grid: Since BSS analysis needs all the
data to be collected simultaneously in one node, we assume
one of the buoys plays the role of sink to gather the informa-
tion from Bo − 1 remaining buoys in a terrestrial network after
it records its own sounds captured by its hydrophones in the
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Fig. 5. (a) Transmission loss calculated by Bellhop for a sample source near surface. Source depth is 15 m. (b) When the source is far from surface, for example,
source depth is 150 m. (c) and (d) Near-field influence of a sample noise source for different depths, i.e., 15 and 150 m, respectively.

underwater scenario. Clearly, the sink buoy should be powerful
enough and should have enough resources to perform the sig-
nal separation duties after collecting the recorded data and also
to communicate with the buoys to issue appropriate commands
and synchronization signals. Furthermore, the distance between
the adjacent buoys, i.e., db , should provide communication cov-
erage over the area of interest. We will discuss the detail later in
Section III-C.

2) Underwater 3-D Deployment: The received signals at
hydrophones are influenced by many factors such as channel
transmission loss, background noise, multipath effect, Doppler
spread, and high and variable propagation delay [2]. Consid-
ering temperature, salinity, and pressure of the body of water
traversed, sound speed varies between 1450 and 1540 m/s and so
small changes in speed lead to significant changes in the sound
propagation in the ocean [33]. Furthermore, sound reflection
from the surface and bottom and other objects in the ocean and
also other minor effects such as sound refraction form a multi-
path effect propagation, which is the result of spatial variability
of sound speed regarding depth and location [34]. The multipath
geometry relates to the channel configuration. Vertical channels
are specified by little time dispersion, whereas horizontal chan-
nels may have extremely long multipath spreads, regarding the
water depth [2].

In this paper, we consider the path loss model defined in [35]
and [36], i.e.,

A(�, f) = A0�
ka(f)� (1)

where A(�, f) is the experienced path loss (attenuation) on a
single path, A0 is a normalizing constant, � [m] is the distance,
f [Hz] is a tone of frequency, k is the spreading factor whose
value is normally 2, and a(f) is the absorption coefficient [33,
pp. 10–12], as 10 log a(f) = a′(f) = 0.11f 2/(1 + f 2) +
44f 2/(4100 + f 2) + 2.75× 10−4f 2 + 0.003 [35], [36]. In this
empirical formula, f is in kilohertz and 10 log a(f) is obtained
in decibel per kilometer. a(f) (in per meter) is obtained as
a(f) = 10a

′(f /1000)/10000 , where f is in hertz. Note that this
definition of path loss does not consider the total power. When
considering multiple propagation paths, in which the signal at
the receiver is the outcome of several delayed signals of the
original signal, the channel transfer function (CTF) of each
path p is Hp(f) = Γp/

√A(�p , f), where Γp is the cumula-
tive reflection coefficient containing surface and bottom reflec-
tions of each path. The overall CTF with multipath is calcu-
lated asH(f) =

∑
p Hp(f)ejθp (f ) , in which θp(f) is the phase

response characteristic for the path p. Delay characteristic can
be defined as τp = −1/(2π) dθp(f)/df and it represents the
propagation delay associated with the path p. This delay can
be modeled as τp = �p/c− �0/c, where c, �0 , and �p stand for
the sound speed, the first path distance, and the pth path dis-
tance, respectively. Fig. 5, using Bellhop acoustic beam tracing
model [37], illustrates the effect of transmission loss in the un-
derwater channel for a sample source in different depths as a
function of distance. The farther we go from the source, the
more we observe a power level decrease. Transmission loss be-
tween a standard reference range, i.e., 1 [m], and the distance
in which the signal is received is shown in Fig. 5. The trans-
mission loss shown in this figure is calculated over the total
paths considering the details of the channel geometry. While
this knowledge on the channel is hard to obtain in a real setting,
we provided another method for path loss per path in (1). Since
we might have more than one source in the area and the loca-
tions of noise sources are unknown, UNISeC, discussed in the
following section, tries to find the appropriate number of sen-
sors for activation. Hydrophone activation means that they are
turned on to collect data. We assume that all the noise sources
are in the same region of interest as hydrophones. If �d is the
longest diagonal in the area of interest defined in Fig. 4(a) and

we define it as �d =
√(

(Bo/2− 1)db
)2 + db

2 + dz
2 , where dz

is the water depth and dz > hr + (mh − 1)dh , then the delay
associated with this path is defined as the largest line of sight
(LOS) propagation delay, τ0max ≈ �d/c. Therefore, if we have
several sources in this area, their LOS delays are less than τ0max ,
i.e., τn0 � τ0max , where τn0 ∀n = 0, ..., N denotes the prop-
agation delay for the nth source. Similar calculations can be
done for the path p in a multipath channel.

Let us assume that the received signal-to-noise ratio (SNR)
per path, as a function of frequency, distance, and the en-
vironmental conditions, is mainly affected by path loss per
path defined in (1). For the longest diagonal distance, we have
A(�d , f) = A0(�d)

ka(f)�d and the received SNR can be writ-
ten as [34] γr = S�d (f)/(A(�d , f)N(f)), where S�d is the PSD
of the transmitted signal, and N(f) is the nondominant back-
ground noise PSD. Therefore, �d should guarantee γr > γth , in
which γth stands for the lowest detectable SNR (we considered
the SNR per path) in the hydrophone, i.e.,

S�d (f)
A0ck τka(f)cτ N(f)

> γth . (2)



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE JOURNAL OF OCEANIC ENGINEERING

The maximum acceptable delay can be calculated via

τka(f)cτ <
S�d (f)

A0ckN(f)γth
(3)

k ln(τ) + τc ln a(f) < ln
( γ�d
A0ckγth

)
. (4)

In (4), γ�d corresponds to a certain source power at distance
�d over the power of background noise in the environment.

cτ ln a(f) + k ln
(
c ln a(f)

k
τ

)
< ln

(
γ�d

A0ckγth

)

+ k ln
(
c ln a(f)

k

)
(5)

c ln a(f)
k

τ exp
(
c ln a(f)

k
τ

)
<
c ln a(f)

k
exp

(
ln

( γ� d
A0 ck γt h

)

k

)

.

(6)

Lambert W() function can be used to find a closed-form ex-
pression for the above inequality as follows:

c ln a(f)
k

τ <W
(
c ln a(f)

k
exp

(
ln

( γ� d
A0 ck γt h

)

k

))

(7)

τ <
k

c ln a(f)
W

(
c ln a(f)

k

( γ�d
A0ckγth

)1/k
)
. (8)

Let us assume that τpmax converts the above inequality to
equality and represents the maximum tolerable delay of the
system for receiving the reflected signals. Therefore, for all the
delays τnp of path p and source n

τnp < τpmax ∀p = 0, ..., P and ∀n = 0, ..., N. (9)

As a result, (3) and (9) ensure that the path with the longer
length has a longer propagation delay and so it will be ignored
if it is slower than τpmax . We interpret this method as a tem-
poral filtering that cleans up the undesirable delayed paths in a
multipath channel. On the other hand, since there is no informa-
tion on the noise sources, their transmitted power, i.e., S�d (f),
is completely unknown and we have to approximate (3) for a
known pilot signal Π as τp ≈ τΠ . Later, this information is ap-
plied to the Gray-box model to find an appropriate solution for
the required parameters.

B. UNISeC: Underwater Noise Inspection, Separation, and
Classification System

This section provides information on modeling the proposed
system, UNISeC, for separation and classification of any number
of underwater noise sources. Let us consider the block diagram
in Fig. 4(b) and study every single block in detail as follows:
BSS, filtering, pilot-aided preprocessing, gray-box modeling
and the algorithm, postprocessing that covers characterization,
pilot identification, and classification blocks.

1) Blind Source Separation: In blind identification tech-
niques, all sources, signals, and mixing coefficients are unknown
except the observed mixtures. If S(t) represents the matrix of
N signals and X(t) is the observation matrix, formed by M

mixtures, a simple mixing model isX(t) = AS(t), in which the
observation is a linear combination of input signals andA stands
for the mixing matrix. This model is known as instantaneous
mixture. Under the assumption that ICA is used for separation,
input signals should be independent, i.e., E

{
S(t)S(t)H

}
is

diagonal, and H denotes the Hermitian transpose. This assump-
tion, e.g., independence of the sources, is realistic and illustrated
by means of examples in Fig. 2 since independent sources emit
statistically independent signals. Fig. 3 presents various exam-
ples confirming non-Gaussianity of noise sources that makes
this problem appropriate for ICA-based BSS.

Our goal is to form a separating matrix Â to apply to the
mixtures so the matrix of sources’ signals can be estimated as
Y (t) = ÂX(t). However, in many physical applications, the
mixtures correspond to the sum of the multiple weighted and
delayed signals. This kind of mixing model is known as con-
volutive mixture. In this section, we deal with converting the
convolutive problem to an instantaneous BSS since its com-
plexity is less and its accuracy is higher than the convolutive
problem. The received signal at each hydrophone is a mixture
of all noise signals coming from a multipath channel. We aim at
separating the signals via BSS [38], characterizing main signals,
and classifying them into known underwater noise categories.
If sn (t) represents a dominant noise source n, n = 1, . . ., N
which is generally non-Gaussian, colored, and statistically in-
dependent of the other sources, then xm (t) is the received signal
at hydrophone m, m = 1, . . .,M and can be formulated as a
convolutive mixture at time t as follows:

xm (t) =
N∑

n=1

P∑

p=1

amnp(t)sn (t− τnp) + zm (t) (10)

where amnp(t) is the mixing coefficient of the pth path between
the nth source and the mth sensor as the receiver with corre-
sponding delay τnp and zm (t) stands for the nondominant back-
ground noise which can be assumed as additive white Gaussian
noise. Note that in this approach, we cannot employ absolute
path delays. However, in practice, we do not require to calculate
the absolute values since our method measures the similarity
between the separated outputs in postprocessing computation
for characterization, pilot identification, and classification.

In this approach, the assumption of independent paths is valid
if the paths are well separated. We define the paths to be sep-
arated when the signals received from different paths are not
overlapped in all domains. If the paths are not well separated,
the output of the BSS would be the mixture of the nonsepa-
rated paths. In practical situations, if there is any correlation
between the paths, a mixed output is observed which looks like
some fading has occurred. On the other hand, since we perform
postprocessing to characterize the main path among the sepa-
rated outputs, it is not really a problem. Moreover, it is shown
in [38] that if the delay between the correlated paths is greater
than the symbol duration (which is the case in underwater),
JADE can still separate these correlated paths. In other words,
an underwater channel response is said to be a sparse and a
convolutive problem that can be seen as an instantaneous one as
follows.
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We define s̃np(t) = sn (t− τnp), ãmn = [amn1 a
m
n2 . . . a

m
np ],

and also s̃n = [ s̃n1 s̃n2 . . . s̃np ] in which we eliminated “t” for
simplicity. We rewrite (10) as

xm (t) =
[
ãm1 ãm2 ... ãmN

] [
s̃T1 s̃T2 ... s̃TN

]T + zm (t) (11)

where T denotes the transpose.
Let us now define

Ã(t) =

⎡

⎢
⎣

ã1
1 ã1

2 . . . ã1
N

...
...

...
...

ãM1 ãM2 ... ãMN

⎤

⎥
⎦ (12)

and S̃(t) = [ s̃T1 s̃T2 . . . s̃TN ]T , X(t) is the M × 1 vector con-
taining all the mixtures at t, which can be written as

X(t) = Ã(t)S̃(t) + Z(t). (13)

The equation now contains instantaneous mixtures and can
be solved via an instantaneous BSS algorithm. Note that for
applying BSS, the number of sources and paths in the channel
should be determined, and the number of hydrophones should
be equal to or greater than the product of sources and paths, i.e.,
M ≥ NP . The number of sources are limited in practice and
we can assume that they are less than hydrophones; therefore,
we consider the case of well-determined BSS in this section.
It is worth noting that since BSS generally addresses the sta-
tistical independence using higher order statistics, and due to
the situation we face in the underwater environment, i.e., gen-
erally non-Gaussian sources, we use algorithms based on the
fourth-order statistics in our calculations.

First, let us start with the concept of source mutual in-
dependence and second-order statistics, i.e., covariance ma-
trix, as R̂s̃ = E{S̃(t)S̃H (t)} which is diagonal and so R̂x =
E{X(t)XH (t)}, where R̂x is the covariance matrix of the
mixtures and R̂s̃ stands for the covariance matrix of indepen-
dent noise sources. Considering a robust algorithm such as
JADE [26], which is an ICA-based blind beamformer for es-
timating the unknown parameters, we can calculate a whitening
matrix Ŵ . Let μ1 , . . ., μN P be the NP largest eigenvalues and
h1 , . . ., hN P be the corresponding eigenvectors of R̂x ; hence,
whitener matrix can be achieved by eigendecomposition of R̂x

via Ŵ = [(μ1 − σ̂)−
1
2 h1 , . . ., (μNP − σ̂)−

1
2 hNP ]

H
where σ̂ is

the variance of nondominant background noise Z, which can
assumed to be white. The most important issue in this step is
how to estimate NP . UNISeC will try to address this problem
in the following section.

Second, we form the fourth-order cumulants of the whitened
process B̂(t). This process is the result of multiplying the
whitening matrix by mixture matrix as B̂(t) = ŴX(t) =
Ŵ (Ã(t)S̃(t) + Z(t)) exploited to find NP most significant
eigenpairs {λ̂r , M̂r | 1 � r � NP}, where λ̂r s are real eigen-
values and M̂r s are eigenmatrices obtained from the fourth-
order cumulants of our complex random vector. Fourth-order
cumulants are defined as ΓB̂ = Cum(b̂i , b̂∗j , b̂k , b̂

∗
l ) where 1 �

i, j, k, l � NP and so ΓB̂ = E(b̂i b̂∗j b̂k b̂
∗
l )− E(b̂i b̂∗j )E(b̂k b̂∗l )−

E(b̂i b̂k )E(b̂∗j b̂
∗
l )− E(b̂i b̂∗l )E(b̂k b̂∗j ), whereas b̂i s are arbitrary

columns of matrix B̂. Cumulant matrices were introduced by
Cardoso and Souloumiac [26] and denoted by QB̂ (M̂r ) with
any NP ×NP matrix M̂r and a Hermitian matrix Q = (qij )
and are defined as qij =

∑
k,l=1,...,N P Cum(b̂i , b̂∗j , b̂k , b̂

∗
l )mlk ,

where 1 � i, j � NP and mlk s are the entries of matrix M̂r .
Based on the proposition presented by Cardoso and Souloumiac
[26], for any NP -dimensional complex random vector v with
fourth-order cumulants, there exist (NP )2 real eigenvalues
λ1 , . . ., λ(NP )2 and (NP )2 eigen matrices M1 , ...,M(NP )2

satisfyingQv (Mr ) = λrMr , 1 � r � (NP )2 . However, the re-
duced set of NP matrices, instead of (NP )2 , contains the rel-
evant fourth-order information.

In the third step, the cumulant matrix is diagonalized by
a unitary matrix Û formed by QB (M̂r ) = ÛΛM̂r

ÛH [26].

Hence, we jointly diagonalize the set {λ̂r M̂r | 1 � r � NP}
by Û . Joint diagonalization can be implemented via standard
Jacobi algorithm [39]. Finally, after determining Û , we can
estimate Ã as Â = Ŵ# Û and use this value to extract the
sources out of the mixtures in BSS block in the algorithm.
Ŵ# is the pseudoinverse of Ŵ and can be computed easily

via Ŵ# = [(μ1 − σ̂)
1
2 h1 , . . ., (μNP − σ̂)

1
2 hNP ]. Considering

Fig. 4(b), other components of UNISeC are as follows.
2) Filtering and Pilot-Aided Preprocessing: In this section,

preprocessing, filtering, dominant noise definition, and features
of pilot will be discussed.

a) Tunable and band-limited filter with variable central
frequency: As previously explained, our goal is to investigate
the dominant noise sources in desired subbands. The analysis,
based on the common octave band and one-third octave band
filters [9], implies that the filter bandwidth is proportional to its
central frequency. This ratio is 70.7% and 23% of the center fre-
quency in a 1-octave band and a 1/3-octave filter, respectively.
Thus, for center frequency fc , a 1-octave band is from (2−

1
2 )fc to

(2
1
2 )fc or from 0.707fc to 1.414fc . Similarly, it is from (2−

1
6 )fc

to (2
1
6 )fc or from 0.891fc to 1.122fc for a 1/3-octave band.

Since in humans and some animals, the effective filter bandwidth
of the hearing system is 1/3-octave, in practice, 1/3-octave band
is more frequently used to present the behavioral thresholds [9].
Behavioral thresholds of sound are levels in which animals react
with some psychological/behavioral responses. Inspired by this
fact, we first divide the frequency bands into nonoverlapping
subbands via a series of narrow bandpass filters. Subsequently,
we perform UNISeC on each subband separately. Bandwidth of
filters are variable and calculated regarding the available infor-
mation on spectral characteristics of underwater noise signals
as reported in [8] and [9]. Moreover, it is desirable to perform
the filtering such that limited number of dominant sources are
available in each subband and the leakage from other subbands
is prevented, so the transition width of the filter should be small.
Passband and stopband ripples do not play any critical role in
our problem and so the minimum order finite-impulse response
design is applicable since it is stable inherently and it can be
considered as a linear-phase filter.

b) Dominant noise definition: Spectral analysis of com-
mon noise sources reveals that acoustic noise generated from
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Fig. 6. Behavioral audiogram for several marine species versus frequency.
Any sound is detectable only if the received level of the sound exceeds a certain
detection threshold. In this figure, marine mammal nominal reaction/response
level is depicted versus frequency to figure out their abilities to detect and
respond to man-made sounds. Data were obtained from [9].

seismic, shipping, drilling, and sonar activities spans over a wide
range of frequencies and varies with location, depth, season, and
time of the day; however, each of these sources is dominant in
a specific band in the area of interest. By dominant we mean
a signal which is stronger than the regular background noise
and so it might be audible by the mammals. This threshold also
varies with the environment and depends on the hearing abilities
of mammals. As an example of dominant noise, seismic noise is
dominant in the extremely low frequency band, i.e., below 1 Hz,
while ocean turbulence is dominant in the very low frequency
band, i.e., from 1 to 10 Hz. Vessels are the main contributors of
the noise and several types of them dominate from 10 to mid-
hundreds hertz. Ships are significant in deep ocean and starting
from 10 Hz, while fishing boats are dominant in coastal regions
and start from 200 Hz. Above 300 Hz, shipping noise may or
may not be significant depending on the level of wave and wind
noise [9]. Wave and wind noise are dominant from midhun-
dreds hertz to 50 kHz [8]; also, thermal noise is dominant after
50 kHz; and the sound by marine mammals such as whales is
dominant from 30 Hz to 10 kHz [9].

c) Required features for least contaminant pilot-aided
probing: According to UNISeC algorithm, the pilot sequence
is propagated and received along with the other noise signals.
This signal should be weaker than the response threshold level
of marine mammals to prevent any behavioral reactions. On the
other hand, it should be stronger than the regular background
noise, so the background noise does not affect the detection
of the pilot signal by regular sensitivity hydrophones installed
in different locations. γΠ equals pilot power in subband Δ to
background noise power in the same subband, and satisfies the
following inequality:

(γth)Δ [dB] < 10 log10

(∫ f2

f1
SΠ(f)df

∫ f2

f1
Gz (f)df

)

< ρΔ[dB] (14)

whereas (γth)Δ stands for the lowest detectable input SNR in the
hydrophone or in other words its sensitivity, f1 and f2 are lower

and upper frequencies of each subband Δ, SΠ(f) and Gz (f)
are pilot signal and background noise PSD, respectively, and
ρΔ shows the nominal response threshold level of mammals in
each subband. Regarding data provided in [9], behavioral reac-
tions and sensitivities of marine mammals to sound are different
and are shown by audiograms in Fig. 6 for some species. All
the mentioned species can hear the sound within a wide range
of frequencies; however, the results vary from one species to
another. These data [9] were gathered by electrophysiological
tests on trained captive or beached animals. According to stud-
ies in [9], the behavioral method presents pure tones at various
levels and frequencies to a trained animal. The audiogram data
can be used to set the pilot signal level thresholds.

3) Gray-Box Model, Iterative Algorithm for UNISeC: The
described algorithm uses MCC to extract the pilot signal and
other main signals. The similarity between the estimated pilot
and the original one is calculated via MSCE metric Ψ to find
the value of NP. To initialize Algorithm 1, let us assume a min-
imum value for number of paths as P0 , as a priori knowledge,
and a minimum value for the number of dominant sources asN0
and M

′
0 = N0P0 . M

′
0 would be remembered as the minimum

required number of active sensors. To select these initialization
values, we consider the theoretical channel model of the envi-
ronment of the study and the minimum number of the dominant
noise sources in the desired subband for the available physi-
cal information as of Fig. 2. As explained in the first line of
Algorithm 1, initialization is performed; then in line 2, the de-
sired subband is chosen. For a specific bandwidth Δ, the initial
location of pilot is determined and the iteration index κ is ini-
tiated. In phase I, started from line 5, pilot is circulated in all
the buoys, BSS-JADE is called, and the pilot signal among all
the other separated outputs is characterized and identified (lines
7 and 8). If the corresponding similarity threshold is satisfied
(lines 9 and 10), the value of binary fitting index � is assigned
to 1 (line 11). � allows us to understand the correctness of
Gray-box model proposed in (17c). Phase II, started from line
16, makes the final decision based on total �, i.e., �T . This
value collects local � s, weights them regarding the similarity
values, and compares them with the similarity threshold ThΨ
defined as follows:

�T =
1
Bo

Bo∑

b=1

Ψb�b (15a)

ThΨ = ξ(1− ThErr). (15b)

This metric fulfills the model fitting with confidence degree
of ξ%. Let ξ be 50%, which means at least half of fitting indices
pass the fitting test. When the fitting conditions are not satisfied,
the number of mixtures has been underestimated. Thus, we
increase the iteration κ in step 21. The algorithm runs with a
larger number of active sensors, which is calculated stepwise as
follows, for the κth iteration:

M
′
κ = M

′
0 + κmin(P0 , N0). (16)

Note that min(P0 , N0) can be assumed 1 when there is no
information on the channel or can be more than 1, due to the
channel model knowledge, to accelerate the convergence of the
algorithm. If the number of current active sensors is greater
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Algorithm 1: Set of rules for the UNISeC.

Input: X(t), M , Bo , N0P0 ,
Output: [M

′
κ ]Δ = NP and [SCL (t)]Δ ;

1: Start: Initialize [M
′
0 ]0←N0P0 �activate initial sensors

2: for all subbands Δ = 0 : BW , do {� narrow the band}
3: repeat
4: κ←0, b← random selection([1, Bo ]) � initialization
5: Phase I: Separation and Pilot location

circulation
6: for b; 1 : Bo , do
7: Calculate [M

′
κ ]Δ as (16); Call

BSS-JADE
(
[M

′
κ ]Δ

)

8: Call MCC for
(
Ŝ(t)

)
; Call MSCE for

(
Ŝ�(t),Π

)

9: Find the similarity Ψb and ΨbE rr for Π
10: if ΨbE rr < ThErr AND ΨbD > ThD then
11: �b ← 1� binary fitting index (�) after

(17d), (17e)
12: else
13: �b ← 0
14: end if
15: end for
16: Phase II: Fitting decision
17: Find �T as in (15a) � Total fitting index
18: if �T >ThΨ then {� ThΨ is similarity threshold}
19: Goto Phase III � when passes fitting decision
20: else
21: κ← κ+ 1; Update [M

′
κ ]Δ as (16)

22: if M
′
κ > M then

23: Reduce Δ to cut the number of dominant
sources; goto step 4

24: else
25: Activate a new sensor and goto Phase I
26: � Estimator model Ḡ is unfit in (17b) and (17c)
27: end if
28: end if
29: until [M

′
κ ]Δ is fit

30: return [M
′
κ ]Δ = NP

31: Phase III: classification, call MSCE function
32: return [SCL (t)]Δ �Classified signal
33: end for
34: while ΨErr < ThErr do
35: Turn off pilot
36: Redo steps 7–9 for [M

′
κ−1 ]Δ=0:BW � separation w/o

pilot
37: end while
38: Goto step 1

than the total available ones, UNISeC reduces the bandwidth
to cut the number of dominant sources and starts the procedure
over from step 4. Otherwise, new sensors are activated and
algorithm goes back to phase I for pilot circulation with the
updated number of sensors, reflected in steps 22–27. Scaling
and permutation ambiguity [38] that might happen in BSS will
be alleviated when we repeat the similar test from different
buoys. Phase III classifies the separated signals. Lines 34–37
stand for steady-state period of UNISeC in which the separation

proceeds without involving pilot signal until a significant change
is observed in similar values. Transient and steady-state periods
will be discussed in Section III-C.

As shown in Fig. 4(b), the main part of the proposed model is
defined as a Gray-box block. To explain the motivation behind
this definition, we should notice that although the mathemati-
cal model for BSS is reliable, some validations and knowledge
are needed to complete the theoretical model and estimate the
unknown parameters. Inspired by the concept of Gray-box mod-
eling [40], we define a novel model that contains BSS and its
subsequent processing as a class of parametric model which
needs to be fit with some parameter tuning according to some
experiments. The parameter estimation includes finding the fil-
ter bandwidth, number of required sensors, and the acceptable
amount of similarity for the pilot. This Gray-box model tries
to optimize the process by minimizing the deviation between
measured data and the response of the model and distinguishes
it from conventional black- or white-box modeling. We call it
the Gray-box model to emphasize on its hybrid nature, which is
neither a black-box nor a white-box approach. Let us define the
Gray-box model G and its estimator Ḡ as

Model : G
{
X(t),Ψ,M

}→ {
S(t)|M}

(17a)

Estimator : Ḡ
{
X̃(t),ΨΠ , [M

′
κ , T, fs , B

Π]Δ
}

(17b)

→
{
Ŝ(t), Ŝ�(t)

∣∣[M
′
κ , T, fs , B

Π]Δ
}

Fitting : minκL̄
{

ΨD ,ΨErr

(
Π,

{
Ŝ(t), Ŝ�(t)

∣∣

[M
′
κ , T, fs , B

Π]Δ
})}

(17c)

Error Test : ΨErr < ThErr (17d)

Reliability Test : ΨD > ThD (17e)

whereX(t) and X̃(t) reflect the mixtures as the input sequence
in the model G and the practical estimator Ḡ in subband Δ; M
and M

′
κ are defined by (16) and determine the variable parame-

ters for the minimum required number of active sensors; Π and
BΠ are used for pilot signal and its current location on buoy B;
T stands for the recording interval; fs is the sampling frequency;
S(t) represents the original output of separation in the model;
and Ŝ(t) and Ŝ�(t) denote the output of separation and iden-
tification process in the estimator, respectively. Regarding the
parameter M or M

′
κ , the model or estimator aims to minimize

the given average loss function L̄ subject to the parameter set-
ting to keep ΨErr under a specific threshold, i.e., ThErr , defined
in (22), by changing the parameters to fit the pilot with the main
separated output. ΨD is defined as the relative distance and will
be quantified in (22b). This metric is a measure of reliability
compared with a threshold ThD .

The main difference between the model and the estimator
originates from different facts; the estimator uses both prior
knowledge and new parameters as the response from experi-
ments on the pilot. Prior knowledge must be able to convert the
primary model G into the algorithm simply so that simulation
can be performed, the derivation of the estimator Ḡ is practical,
and finally fitting the parameters can be satisfied. Output of the
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fitting test determines if the procedure should continue or it is
the appropriate time to stop. The process will be repeated until
convergence satisfies. This is the technique we use to solve the
minimization procedure in the proposed model in (17), since we
aim to find the value of the parameters, i.e., number of unknown
sources. Note that the proposed model will be stable if the valida-
tion procedure leads to an MSCE which satisfies the fitting test.

4) Postprocessing: It contains the following components.
a) Characterization and pilot identification: Outputs of

BSS block are associated with NP paths; each group of P
signals belongs to one of the N sources. Among these signals,
we just require the N main ones; thus, we propose a selection
combining approach to characterize them amongNP separated
outputs. MCC is exploited for selection combining among every
P outputs to provide an estimate of the correlation between the
sampled sequences Ŝi(t) and Ŝj (t) for i, j = 1, 2, . . . , NP as

Rij [m] = E
{
Ŝi [n+m]Ŝ∗j [n]

}
(18)

wherem and n stand for discrete time index, asterisk represents
complex conjugation, and E{.} denotes the expectation opera-
tor. Regarding the theory behind (18),E requires the probability
distribution function of the noise (which is unknown), while for
−∞ < n <∞ this computation is not practical. In practice,
since only a finite segment of length NS is available, we have
to use an estimation of correlation as

R̂ij (m) =

{∑NS −m−1
n=0 Ŝi [n+m]Ŝ∗j [n], m ≥ 0

R̂∗j i(−m) m < 0.
(19)

We perform normalization to produce a comparable estimate
for correlation. By definition, the normalized cross correlation
||R̂ij (m)|| relates to R̂ij (m) via

||R̂ij (m)|| = R̂ij (m)
√
R̂ii(0)R̂jj (0)

. (20)

Instead of clustering the outputs to extract the main signals,
MCC expedites this process and characterizes the main signals
as its output, in one step, so it is definitely much faster than al-
ternative methods. Following the output of characterization, we
perform pilot identification, to identify the pilot signal amongN
main signals. We exploit MSCE metric Ψ, which estimates the
coherence of PSD of two output signals. Coherence is computed
via MSCE using the Welch’s averaged modified periodogram
method [41]. MSCE is a function of frequency with values rang-
ing in [0,1] and indicates the similarity of two signals when one
of the two signals is known. Output signal having the largest
MSCE with the pilot would be labeled as pilot. Coherence is
associated with PSD of its inputs as well as of the cross PSD of
the two

Cij (f) =
|Pij (f)|2

|Pii(f)| |Pjj (f)| (21)

in which Pij (f) is the cross PSD of Ŝi(t) and Ŝj (t) and 0 �
Cij (f) � 1 for all frequencies. We averaged over frequency to
determine the similarity between the two signals.

We use relative distance reliability metric ΨD as the differ-
ence between the two greatest MSCE values. Considering the

Fig. 7. Proposed centralized structure for UNISeC.

fact that BSS exploits estimation to separate the signals and
because many unseen factors in underwater environment might
affect it, reliability test checks whether the maximum MSCE is
far superior to the second largest one. These metrics are calcu-
lated as follows:

Ψsrt = {ψi | ψi ∈ Ψ, ψi > ψi+1 , i = 1, . . ., N} (22a)

ΨD =
ψ1 − ψ2

ψ1
; ψ1 , ψ2 ∈ Ψsrt (22b)

ΨErr = 1− ψ1 ; ψ1 ,∈ Ψsrt (22c)

where Ψsrt is the sorted vector of MSCE in the descending
order and ΨErr was introduced in the loss function L̄ in (17c).

b) Classification: This step is the final goal of this re-
search and allocates signals to the predefined libraries of un-
derwater noise. For this purpose, we exclude the pilot signal
among the others after pilot identification and classify the re-
maining N − 1 outputs into the dominant underwater known
noise sources, by calculating MSCE between their PSDs. As
previously mentioned, MSCE is an appropriate measure of sim-
ilarity when one of the two signals is given.

Studies on the social behavior of underwater creatures such
as dolphins reveal that they live and travel in groups ranging
from two to tens of dolphins. They move close to each other
as Bottlenose dolphins show some gentle contacts while swim-
ming [42]. In this case and when they are far from the recording
hydrophones, they can be approximated as a point source, and
it is possible to define a class of sounds under each group to in-
clude a school of similar sound sources. Otherwise, when they
are not in the same geographic region or they are not close to
each other compared to the distance of measurement, they are
excluded from our analysis.

C. Centralized Network Structure—Some Practical Aspects

Considering practical implementation, we introduce and en-
vision a centralized structure to study the behavior of UNISeC
and its layers interaction. Various events and their corresponding
commands are depicted in Fig. 7. The centralized assumption is
derived from this fact that UNISeC, along with BSS, manages
the whole processing in one node as an onshore and/or a sur-
face sink, since before aggregation of all the recorded signals,
separation and processing are not possible. This central node
is the one that gives the permission to initiate/terminate the
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communication, logs the errors, generates the report, and sends
the data to the administrator via a reliable terrestrial connection,
as discussed in Section III-A. Report logging is an important
task since date of the experiment and the seasonal variations
might affect the output of UNISeC. We divide the process into
two parts: initialization and transient period, and steady-state
period. In initialization and transient period, after buoys are ar-
ranged as in Section III-A, preprocessing is implemented for de-
termining the number of dominant noise sources. The recursive
process in Algorithm 1 and the Gray-box model are responsible
for the quality of outputs as explained in Section III-B. Dif-
ferent types of signals are exchanged between the buoys and
the central point, as depicted in Fig. 7. Data signals are the
recorded sounds by hydrophones. Control signals include pilot
activation/deactivation, sensor activation/deactivation, and other
commands. Pilot activation determines the node which should
transmit the pilot signal and should consider circulation of pilot
location. We circulate the location of pilot sequentially until we
get the desired result, as discussed in Algorithm 1. We use rela-
tive distance metric ΨD , which is a measure of reliability of the
pilot circulation under specific distributions of noise sources.
Hydrophone activation/deactivation command tries new num-
ber of hydrophones on each buoy regarding (16) until fitting
test (17c) is satisfied. Other commands such as synchronization
is necessary for simultaneous sound capturing. Recording pe-
riod will be started after the command determines the location
of the pilot and active sensors.

It is essential to recognize the following three different time
variables.

1) Continuous time t, which shows the physical time. This
is the time used in the system equations and simulation
results, except the last one (see Fig. 18).

2) Continuous time T that determines the recording interval
and will be discussed in Fig. 18. This parameter can be
modified by the user. Longer recording interval means
more sampled data which, as a result, can increase the
probability of similarity in the fitting test. Furthermore, the
startup time of each recording interval is also an important
issue since synchronization is a mandatory requirement
for BSS.

3) Discrete time T̄ which sums up the whole execution time
including several recording intervals, pilot circulation, and
transmission and processing periods in different subbands
of bandwidth BW, i.e.,

T̄ ≈
BW∑

Δ

[∑

ζ
(T + t̆ζ )

︸ ︷︷ ︸
transient time

+ (TCL + T + t̆)
︸ ︷︷ ︸
steady state time

+(Tε)
]

Δ

(23)
where ζ is a function of κ and pilot circulation BΠ and is
defined as the number of iterations that the system com-
pletes to reach the number of required sensors. The com-
putation might slow down when the number of sources
increases, obviously. t̆ is the processing time, which is a
function of the sensor activation/pilot relocation process,
and TCL illustrates the required time for the classification
process. It is worth noting that t̆ depends on the num-
ber of floating point operations (flops) per clock cycle

TABLE I
SIMULATION ASSUMPTIONS: �0b [km] IS THE DISTANCE FROM SOURCE TO

BUOY Bb , (Π) IS THE PILOT SIGNAL, AND LOC SHOWS THE CURRENT

LOCATION OF THE PILOT TRANSMITTER

Source Scenario
A

Scenario
B

Scenario
C Loc. I

Scenario
C Loc. II

Scenario
C Loc. III

Scenario
C Loc. IV

�01 , �02
�03 , �04

�01 , �02
�03 , �04

�01 , �02
�03 , �04

�01 , �02
�03 , �04

�01 , �02
�03 , �04

�01 , �02
�03 , �04

1 02, 11 02, 11 02, 11 02, 11 02, 11 2, 11
05,− 05,− 15, 10 15, 10 15, 10 15, 10

2 12, 03 12, 03 12, 03 12, 03 12, 03 12, 03
12,− 12,− 12, 09 12, 09 12, 09 12, 09

3 −,− −,− 15, 12 15, 12 15, 12 15, 12
−,− −,− 02, 11 02, 11 02, 11 02, 11

(Π) 06, 06 06, 06 06, 06 12, 12 .01, 12 12, .01
06,− 06,− 06, 06 12, 12 12, .01 12, 12

handled by the microprocessor. Tε represents the time due
to system delays.

In the steady-state period, a collision avoidance method is
required for coordination among the buoys. Moreover, since
we define UNISeC in a well-determined situation,sleep mode
is defined as the default mode of buoys until the activation
command is received from the central point. While the system
is working under the determined constraints, explained in the
initialization period, the pilot signal is switched off and the out-
put of postprocessing unit is monitored continuously so that
whenever system inputs change, UNISeC is prepared to up-
date the values for new constraints, as explained in Algorithm 1
(lines 34–36). We evaluate the computational complexity of the
system to make sure that it can work under different circum-
stances. Inspired by Naik and Wang [43], we compute it in
terms of number of real-valued floating point operations (NFP)
as

N̄F P =8M 5 +2ḋ(N 2P 2 +M 2) + I(2M 4 + 10M 3 + 30M 2)
(24)

where ḋ is the number of data samples, M is the number of
active sensors, NP is the number of signals to be separated,
and I is the iterations for convergence in BSS algorithm in the
steady-state period.

IV. PERFORMANCE EVALUATION AND SOUND ANALYSIS

In this section, we discuss the performance results of the
presented approach in Section III. The data were extracted from
in situ measurements of [8, pp. 132–137] and [9]. The channel
path loss model defined in [35] and [36] was applied to them
to create the input mixtures. Spreading factor in (1) is assumed
k = 2 and the channel is considered uncorrelated and stationary
since it is constant during the processing period. The channel is
assumed to be naturally sparse and the number of noise sources
in the area of study is limited. We suppose that noise sources
are randomly deployed in the environment. Initial sampling rate
is 21 kHz and the maximum depth of the water is assumed
to be 1000 m. Hydrophones are placed near surface on a bar
connected to the buoy with the maximum depth of 20 m and the
distance between any two adjacent hydrophones on the same bar
is 4 m. Direct distances to the hydrophones are chosen according
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Fig. 8. Output of separation for three signals in a two-path environment in
Scenario A.

Fig. 9. (a) Output of characterization, normalized MCC between every pair
of separated outputs in Scenario A. Signals 1, 2, and 3 are associated with the
main paths. (b) Output of pilot identification, i.e., MSCE between pilot signal
and main outputs in Scenario A.

Fig. 10. PSD of the outputs in Scenario A. Filtered spectrum of different
classes of noise sources such as wave, shipping, rain, turbulence, and whale
noise are shown in this figure.

to Table I. UNISeC is evaluated and simulated under several
scenarios. Scenario A checks its validity in the basic mode, i.e., it
assumes there are two dominant noise sources located randomly
in a two-path environment. Scenario B investigates the effect of
multipath by assuming two dominant noise sources in a three-
path environment. In Scenario C, we consider the effect of noise
traffic and distribution with three noise sources in a three-path
channel. Different distributions of noise sources are investigated
for all scenarios. Moreover, computational complexity of the
algorithm is calculated in several system settings.

A. Scenario A: Basic Mode

In this scenario, we assume two dominant sources in
addition to pilot exist in a two-path channel. Fig. 8 shows the
output of BSS when six active hydrophones record the mixtures.

Fig. 11. Classification, i.e., coherency between outputs’ PSDs and noise
classes in Scenario A. Wave noise and shipping noise are the present sources of
noise in the environment.

Fig. 12. (a)–(c) Outputs of separation for three sources, in a three-path channel
in Scenario B; (d) pilot identification for Scenario B.

Fig. 13. Output characterization for Scenario B which shows that signals 1,
2, 3 are associated with the main paths.

We address our MCC-based selection combining approach to
characterize the main source signals. In Fig. 9(a), the normalized
MCC between every pair of the separated outputs is plotted.
Normalized MCC is independent of the magnitude of its input
signals. This feature makes normalized MCC suitable for
characterization of BSS output signals. This figure confirms
that MCC values of signals 1, 2, and 3 are maximum among
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Fig. 14. (a) Output characterization for Scenario C when pilot is in location I. This figure represents signals 2, 3, 4, 5 as the main paths. (b) Characterization for
Scenario C when pilot is transmitted from location II. The main signals are determined by signals 3, 4, 6, and 7.

Fig. 15. (a) Output characterization for Scenario C considering pilot is emitted from location III. Signals 3, 4, 6, and 7 are associated with the main paths. (b)
Characterization for Scenario C under the assumption that pilot is sent out from location IV. Signals 2, 3, 4, and 5 are determined as the main paths.

Fig. 16. Pilot identification for four different locations of pilot in Scenario C.

the others. We conclude that these signals are associated with
the main paths coming from three sources. The MCC values
of other signals are very low in comparison with the main
signals by order of 10−5 . Pilot identification is executed via
MSCE between these signals and the pilot. Fig. 9(b) confirms
that the output number 3 with the maximum MSCE value is
the separated pilot signal, since it passes both the error and
reliability tests, mentioned in (17d) and (17e). Therefore, the
fitting condition in (17c) is satisfied.

After distinguishing the pilot signal among the main separated
signals, we wish to classify the other main outputs to one of the
underwater noise class libraries. Note that according to what
we defined in (10), the separated signals are s̃np(t) = sn (t−
τnp). However, as discussed in Section III, we perform MSCE
as (18), which calculates the coherency between PSD of the
outputs. Therefore, the value of delays τnp do not affect the
classification. Fig. 10 shows PSD of the outputs in scenario A.
We also provide PSD of five underwater noise sources and
the pilot signal. Comparison shows that the outputs’ PSDs are
mostly similar to wave and shipping noise PSDs. In Fig. 11, we
show and plot the coherency between outputs’ PSDs and noise
classes. It is depicted that output signals 1 and 2 can be classified
as wave and shipping noise sources, respectively.

B. Scenario B: Multipath Effect

In this scenario, we investigate the effect of mulipath on the
performance of our proposed system. We consider the same
number of sources as in scenario A; however, we examine
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Fig. 17. (a) Relative distance ΨD for different distributions of sources in three
defined scenarios. Distribution 1 stands for a uniform and sparse distribution,
distribution 2 represents an integrated and unbalanced distribution, distribution 3
is also a sparse one while the sources are far from buoys; (b) ΨD for different
pilot locations in Scenario C, distribution 2.

UNISeC in a three-path channel with nine active hydrophone.
BSS outputs are nine signals plotted in Fig. 12(a)–(c). Fig. 13
shows MCC between every pair of separated outputs and ver-
ifies that the output signals 1, 2, and 3 are associated with the
main paths. To identify the pilot signal, the algorithm calculates
MSCE between pilot and three separated outputs, and the re-
sult is shown in Fig. 12(d). It is concluded that UNISeC is able
to separate the signals and to characterize them in a multipath
channel with larger number of paths, since signal 1 satisfies both
error and reliability tests.

C. Scenario C: Traffic and Distribution Effects

Let us assume that there are three dominant noise sources in a
three-path channel. We investigate execution of the algorithm in
which the pilot signal is transmitted from four different locations
as listed in Table I. In location I, which is the initial location in
the experiment, pilot is transmitted from the sink buoy placed
at the center of grid. In locations II and III, pilot is transmitted
from the buoy which is close to one of the sources, and the
last location considers the case that the pilot is transmitted from
a buoy far from all sources. The results of characterization of
main sources are shown in Figs. 14 and 15. Pilot identification
is presented in Fig. 16, where error and reliability tests were
satisfied. All locations have fitting index � = 1 and total fitting
index equals �T = 0.9484. It is apparent that UNISeC is able
to separate, characterize, and identify the signals in all pilot
locations.

We investigate how distribution of the sources affects the
performance of UNISeC. Fig. 17(a) compares the results of the
relative distance for three distributions of noise sources, for all
the defined scenarios. Distribution 1 stands for a uniform and
sparse distribution, distribution 2 represents an integrated and
unbalanced distribution of sources, and distribution 3 is also a
sparse one but noise sources are far from buoys. As shown in this
figure, UNISeC passes the reliability test in all the distributions,
except in Scenario C, distribution 2. However, pilot circulation
can find at least one location in which UNISeC is reliable. This
result is shown in Fig. 17(b). Note that in reality we deal with
unknown number of sources with unknown distribution in the

Fig. 18. Computational complexity of the proposed system in different sce-
narios in the steady-state phase.

ocean, so we proposed pilot circulation in UNISeC to overcome
the issues such as what occurred in this simulation.

Fig. 18 compares NFP for different time periods and sampling
rates in three discussed scenarios. It shows that the computa-
tional complexity increases in heavier traffic; however, UNISeC
algorithm converges with different time periods and sampling
rates, even under a heavy traffic and in a multipath channel.

V. CONCLUSION

Human-generated acoustic noise has increased significantly
over the past decade with the increase in the use of underwa-
ter communications and the marine industry. In this work, we
studied the problem of separation and classification of human-
generated or natural underwater acoustic-noise sources in a com-
prehensive system called UNISeC. We presented a Gray-box
model and an algorithm, based on BSS, to separate the domi-
nant sources. We also characterized and classified the separated
signals. Several scenarios were considered under varying de-
grees of multipath, a pilot-aided probing method was exploited,
and a correlation-based characterization as well as a PSD-based
classification were studied.
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