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Abstract—A brain-computer interface (BCI) for seizure prediction provides a means of controlling epilepsy in medically refractory

patients whose site of epileptogenicity cannot be resected but yet can be defined sufficiently to be selectively influenced by strategically

implanted electrodes. Challenges remain in offering real-time solutions with such technology because of the immediacy of

electrographic ictal behavior. The nonstationary nature of electroencephalographic (EEG) and electrocorticographic (ECoG) signals

results in wide variation of both normal and ictal patterns among patients. The use of manually extracted features in a prediction task is

impractical and the large amount of data generated even among a limited set of electrode contacts will create significant processing

delays. Big data in such circumstances not only must allow for safe storage but provide high computational resources for recognition,

capture and real-time processing of the preictal period in order to execute the timely abrogation of the ictal event. By leveraging the

potential of cloud computing and deep learning, we develop and deploy BCI seizure prediction and localization from scalp EEG and

ECoG big data. First, a new method for epileptic seizure prediction and localization of the seizure focus is presented. Second, an

extended optimization approach on existing deep-learning structures, Stacked Auto-encoder and Convolutional Neural Network (CNN),

is proposed based on principle component analysis (PCA), independent component analysis (ICA), and Differential Search Algorithm

(DSA). Third, a cloud-computing solution (i.e., Internet of Things (IoT)), is developed to define the proposed structures for real-time

processing, automatic computing and storage of big data. The ECoG clinical datasets on 11 patients illustrate the superiority of the

proposed patient-specific BCI as an alternative to current methodology to offer support for patients with intractable focal epilepsy.

Index Terms—BCI, EEG big data, cloud computing, deep learning, epilepsy, seizure prediction and localization
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1 INTRODUCTION

ONE percent of the world’s population suffers from
epilepsy, a chronic disorder characterized by the

occurrence of spontaneous seizures. About 30 percent of
patients remain medically intractable and may undergo
surgical intervention; despite the latter, some may still fail to
attain a seizure-free outcome [2]. The recent introduction
of a closed loop system of localized electroencephalographic
(EEG) recording and stimulus delivery (i.e., RNS; Neuro-
pace) has provided greater opportunity to achieve control
of this entity although further solutions are required to better

actuate the system for optimal efficacy and to bring about an
improved quality of life for these patients.

Motivation. The use of computers to help physicians in
the acquisition, management, storage, and reporting of EEG
signals is well established. To this end, there are computer-
aided detection applications that use Brain Computer Inter-
face (BCI). In order for a BCI system to work effectively,
computational algorithms must reliably identify periods of
increased probability of an impending ictal occurrence in
order to abort its development. Such preictal periods may
be of variable duration and may not afford suitable latency
to provide current methodologies with sufficient time for
signal deployment to achieve control in all circumstances.
The development of an automated method that delivers on
such short notice would optimize seizure control and bring
about an improved quality of life.

Vision. Technological innovation with BCI for control of
epilepsy must acknowledge the immediacy of seizure
occurrence and the time constraints imposed upon effective
delivery. Generally, there are three main steps in an auto-
matic BCI system. These include data collection, data proc-
essing by computer and electronics to apply the desired
action. The EEG represents the brain’s spontaneous electri-
cal activity which is recorded using multiple electrodes spa-
tially distributed over the scalp [3], [4]. It is necessary to
confirm, electrographically, the presence of epileptogenicity
and thus a diagnosis of epilepsy.

The temporal dynamics of brain activity can be catego-
rized into four states. The interictal or baseline state presents

� M.P. Hosseini and D. Pompili are with the Department of Electrical and
Computer Engineering, Rutgers University, New Brunswick, NJ 08854.
E-mail: {parsa, pompili}@cac.rutgers.edu.

� K. Elisevich is with the Department of Clinical Neurosciences, Spectrum
Health, Grand Rapids, MI 49503 and with the Division of Neurosurgery,
College of Human Medicine, Michigan State University, Grand Rapids,
MI 49503. E-mail: Kost.Elisevich@spectrumhealth.org.

� H. Soltanian-Zadeh is with the Medical Image Analysis Laboratory,
Departments of Radiology and Research Administration, Henry Ford
Health System, Detroit, MI 48202 and Control and Intelligent Processing
Center of Excellence (CIPCE), School of Electrical and Computer
Engineering, College of Engineering, University of Tehran, Tehran 14399,
Iran. E-mail: hsoltan1@hfhs.org, hszadeh@ut.ac.ir.

Manuscript received 7 Mar. 2017; revised 7 Oct. 2017; accepted 17 Oct. 2017.
Date of publication 2 Nov. 2017; date of current version 7 Dec. 2017.
(Corresponding author: Mohammad-Parsa Hosseini.)
Recommended for acceptance by J. Zhu, A.-A. Liu, M. Chen, T. Tasdizen, and
H. Su.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TBDATA.2017.2769670

392 IEEE TRANSACTIONS ON BIG DATA, VOL. 3, NO. 4, OCTOBER-DECEMBER 2017

2332-7790� 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tp://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0002-0611-7520
https://orcid.org/0000-0002-0611-7520
https://orcid.org/0000-0002-0611-7520
https://orcid.org/0000-0002-0611-7520
https://orcid.org/0000-0002-0611-7520
https://orcid.org/0000-0002-2695-7500
https://orcid.org/0000-0002-2695-7500
https://orcid.org/0000-0002-2695-7500
https://orcid.org/0000-0002-2695-7500
https://orcid.org/0000-0002-2695-7500
mailto:
mailto:
mailto:


between seizures. The preictal state precedes the clinical sei-
zure or ictal activity. The ictal state identifies the interval
during which activity manifests as a seizure. Finally the pos-
tictal state occurs following the ictus. In general, the ictal or
seizure state occurs when the brain assumes a synchronized
pattern of neuronoglial activity. Clinically, these may mani-
fest in a number of ways ranging from partial seizures with
or without loss of consciousness and a local electrographic
expression to generalized seizures that have a widespread
expression within both cerebral hemispheres [5]. Seizure
predictionmethodologiesmust identify the preictal state suf-
ficiently well to differentiate it from other states and with
sufficient timing in order to launch an appropriate signal
that interrupts the evolution of the ictus.

Challenges. Several challenges exist in creating a seizure-
prediction system in real-time. The differentiation of the pre-
ictal from the interictal state of an individual is problematic
of itself in that artefactual features during interictal record-
ing may mimic preictal patterns. Second, the EEG does not
generate a stationary signal and electrographic ictal patterns
will vary across different patients. As a consequence, a stan-
dard set of manually-extracted features may not scale well in
a population of epilepsy patients. Hence, supervised feature
extraction will be insufficient for learning algorithms.
The third challenge relates to the spatio-temporal dynamics
of the electrographic pattern. The approach currently used
clinically in seizure detection involves the strategic place-
ment of a limited number of cerebrocortical surface and/or
depth electrodes in the vicinity of the epileptogenic site. The
orientation of these electrodes naturally varies from patient-
to-patient. Although high spatio-temporal resolution and
discrete electro-optical mapping of neuronoglial activity are
made possible [6], [7], large amounts of spatially oriented
data are generated over relatively brief durations leading to
a big data problem. This situation calls for safe storage of a
large archive and for high computational resources to pro-
cess the data in real-time.

Our Approach. The requirements of a practical BCI system
include methods for signal processing, machine learning,
and electrographic brain-state prediction in large data sets
collected from user populations in real-time. Accordingly,
next generation BCI systems must be connected to high-per-
formance computing servers in order to be able to adopt pre-
dictive models and execute computations in real-time for
large incoming datasets. Cloud computing suits this purpose
by providing a simple way to access databases and computa-
tional resources through the global Internet. The key benefit
of the proposed BCI centers upon the analysis and learning
allowed from large amounts of unsupervised data, making it
a practical method for developing a real-time patient-based
seizure prediction and localization system.

Our Contributions. To address the challenges of predict-
ing ictal events, a cloud-based BCI system solution for the
big data problem in epilepsy is introduced. A system model
is proposed for seizure prediction and localization of the
seizure focus from EEG. We have developed and extended
existing deep learning structures with an optimization mod-
ule based on Principal Component Analysis (PCA), an
extended-ICA model (I-ICA), and Differential Search Algo-
rithm (DSA). Specifically, these contributions include the
development of the following novel techniques:

� Developing a cloud-based BCI system as Internet of
Things (IoT) to provide high computational resour-
ces and safe storage for the big data problem gener-
ated by implanted electrodes.

� An extended Convolutional Neural Network (CNN)
structure with an optimization module for unsuper-
vised feature extraction from big data.

� An extended Stacked Auto-encoder structure with
an optimization module for unsupervised feature
extraction and classification of big data.

� A system model for epileptic seizure prediction and
seizure focus localization from big EEG data.

The proposed system has the ability for pervasive data
collection and analysis, which is useful in real-life support
for epilepsy patients. To study accuracy and performance,
the system is evaluated and compared to other methods on a
benchmark epilepsy dataset. In sum, our original contribu-
tions in this study are in four fold. First, we have developed a
cloud-based platform as an IoT framework for BCI. Second,
we performed a survey and presented state-of-the-art theo-
ries for big data analysis via deep learning structures. Third,
we extended deep leaning structures using new machine
learning techniques. Forth, a novel application scenario
related to biomedical big data analytics called epileptic
seizure prediction is developed by benchmark datasets.

Outline. The remainder of this paper is organized as
follows. In Section 2, we provide a literature review. In
Section 3, we present a cloud computing framework as IoT
for medical big data processing. In Section 4, we introduce
our solution for seizure prediction and seizure focus locali-
zation from big EEG data followed by an extended
approach for feature extraction and classification. Then, in
Section 5, we discuss the proof-of-concept prototype of the
proposed BCI seizure predictor and show the results.
Finally, in Section 6 we draw conclusions for the paper.

2 LITERATURE REVIEW

In this section, an overview of previous studies of seizure
prediction systems and big data management of epilepsy is
provided. Definition and identification of the preictal state
from continuous ECoG in dogs with a naturally occurring
epilepsy has been managed with a support vector machine
(SVM) algorithm [8]. This was further elaborated subse-
quently by Zhang et al. (2016) using spectral power ratios of
ECoG data and processing through a second-order Kalman
filter with final input to a linear SVM classifier [9]. An elimi-
nation-based feature selection method was used by Wang
et al. (2015) to improve efficacy through diminishing redun-
dancy thereby improving upon processing time [10]. The
latter was further refined through the use of artifact-free
preictal and interictal EEG epochs characterized using
global feature descriptors [11].

An integrated framework of an EEG-based BCI has been
applied for more effective upper limb motor rehabilita-
tion [12]. A faster learning algorithm for a self-organizing
fuzzy neural network (SOFNN) by Coyle et al. (2009) [13]
will expedite an EEG-based BCI system for neural-time-
series prediction processing. Chaovalitwongse et al. (2007)
has described a method for distinguishing abnormal (i.e.,
epileptogenic) EEG signals from normal brain activity
through integration of chaos theory, k-nearest neighbor and
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statistical time series analysis [14]. To discriminate multi-
class motor imagery EEG signals in a BCI system, a common
Bayesian network is proposed by He et al. (2016) [15]. Two
time-series classification techniques, to further distinguish
EEG signals and identify epileptogenicity were developed
by Chaovalitwongse et al. (2011) [16]. In general, existing
works have focused on local processing and storage without
considering multiple channels and big patient data. The cur-
rent work is built upon preliminary findings using a multit-
ier distributed computing structure based on the Mobile
Device Cloud (MDC) and cloud computing for real-time sei-
zure detection [17].

The deep-learning approach pertaining to BCI has been
considered in very few works. Lu et al. (2016) manually
extracted supervised frequency features from EEG records
to train three Restricted Boltzmann Machines (RBM) [18].
These layers were stacked with a softmax regression to
form a deep belief network (DBN) for motor imagery classi-
fication and adaptive EEG analysis. Deep Belief Networks
can be trained on each EEG channel and the results com-
bined by AdaBoost [19]. DBN is applied for EEG data corre-
lation analysis and superiority of results to those of PCA is
shown in [20]. In the current work, a deep-learning struc-
ture using cloud computing has been applied to address the
big data analysis problem in epilepsy. In contrast to existing
methods, the proposed method extracts unsupervised fea-
tures from ECoG patterns to predict ictal activity.

3 CLOUD COMPUTING FRAMEWORK

Cloud computing provides a limitless scale of computing
power that can be made available on demand and, by way
of the Internet, makes it ubiquitously available for an exten-
sive global reach [21], [22]. There are many cloud platforms
including Microsoft, Google and Amazon AWS. For the
purposes of this study and because of prior proven efficacy
with large scale processing, cloud usage was applied
through Amazon Cloud, otherwise called Amazon Web
Services (AWS). The cloud is generally broken into three
layers based on the service provided: (1) Infrastructure as a
Service (IaaS); (2) Platform as a Service (PaaS) and (3) Soft-
ware as a Service (SaaS). These three layers all lend them-
selves to the infrastructural setup of the BCI as follows.

IaaS: This provides computing power, networking, stor-
age and virtual orchestrators and operating systems. It is
available at large scale and on demand with the ability to
deliver High Performance Computing (HPC) which lends
itself well to the processing required with rapid real-time
epilepsy monitoring. An applicable BCI system dealing
with large amounts of data from distributed electrodes
requires storage capability and both rapid and timely event-
related mining to produce intelligence in the forms of
trends, predictions and recommendations. With a low cost
of entry and ease of setup, the core engine of the BCI can be
effectively deployed using the AWS HPC [23]. High Perfor-
mance Computing processors allow the BCI system to func-
tion above a teraflop capacity or 1012 floating-point
operations per second allowing for real-time results inspite
of large data entry. The Health Insurance Portability and
Accountability Act (HIPAA) and its Protected Health Infor-
mation (PHI) provision also requires service providers to
adhere to strict assurances regarding protection of personal

data. A need for encryption and use of AWS HIPAA eligi-
ble [24], [25] services are required to host the BCI system.

PaaS: This uses an open source allowing developers from
different constituencies to leverage the BCI to continue
developing modules and customized features for their local
environment in order to adapt the application to their prac-
tices and needs [26].

SaaS: This uses a cloud-based BCI application allowing a
good deal of processing power to be made available and
distributed globally with decreased reliance on local exten-
sive computer infrastructure in order to complete predic-
tions. Aside from the standard EEG recording units and
other specialized detection tools; run analysis, simulations
and other high-end processes can be initiated from rela-
tively light client applications including smartphone apps.

The proposedmethod is implemented in AWS and devel-
oped with Internet of Things (IoT). Such a closed-loop auto-
matic system can be implemented in two separate steps. The
first consists of developing a BCI to predict seizure onset and
the second concerns the application of a suitable neurostimu-
latory signal to abort the seizure [27]. In the first instance, an
accurate forecasting mechanism of seizure onset is required.
The proposed framework enables collection of EEG teleme-
try data for storage and analysis. The IoT framework is con-
nected with the Amazon cloud computing services that
include a number of elements. Simple Storage Service (S3)
provides secure, durable, and highly-scalable cloud storage.
Kinesis enables real-time processing of EEG streaming data
on a large scale. Lambda enables the running of a deep learn-
ing process on virtual servers from Elastic resizable Com-
pute Cloud (EC2) in response to events. Finally, Simple
Notification Service (SNS) contains an option to send notifi-
cations to the patient, doctors or emergency rooms.

The proposed IoT (see Fig. 1) consists of the following
components. Authentication and registry, to make the system
secure in order for its value to be realized.Message broker, for
sending and receiving messages by a publish and subscribe
service; supports MQTT and HTTPS protocols. Gateway, to
enable secure communication between devices and IoT.
Rules engine, to process EEG data and trigger the execution of
deep learning in AWS Lambda. Thing shadows, to publish the
current state of EEG analysis for use by applications.

4 PROPOSED WORK

A seizure prediction algorithm is developed for big data
analysis of EEG recordings which is fit to be implemented
as a real-time cloud-based service. The proposed solution is
presented in four steps (see Fig. 2). In Section 4.1, the pre-
processing and extracting time and frequency features are
explained. In Section 4.2, the developed deep learning struc-
tures for high level feature extraction are presented. In
Section 4.3, the proposed optimization module for deep
learning structures are presented. Finally, in Section 4.4, the
analysis step for extracted feature extraction is presented.

4.1 Preprocessing, Time & Frequency Features

For preprocessing the EEG data, a fourth-order Butterworth
bandpass filter (0.5-150 Hz) is used for cutting frequencies.
Then, to remove some unwanted frequencies, a notch filter
set at 50 Hz is applied. In the next step, the phase distortion
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is canceled by using forward and backward filtering [28].
Because of the time-varying nature of EEG signals, wavelet
transforms have been used to extract epileptic spikes and to
capture the rhythmic nature of seizures [29], [30]. In addition,
wavelet transforms are capable of capturing and localizing
EEG transient features in both time and frequency domains.
Therefore, the outputs of filtering, wavelet and ICA are used
to extract preictal features. Several time and frequency-
related features are considered including complexity, mobil-
ity, energy, entropy, correlation coefficients, Fast Fourier
Transform (FFT), variance, skewness, kurtosis, mean, fractal
dimension, frequency band power, peak amplitude, zero
crossing, average spectral power, line length, maximal and
minimal values, sum absolute value and some others. The
appropriate wavelet and level of decomposition are chosen
based on the input signal and application. Based on our eval-
uation of common wavelets, we use Daubechies 4 (db4) to
find approximation and detail for EEG data. Since ictal activ-
ity with ECoG commonly occurs in the 3-25 Hz range, the
detail coefficients have been investigated to find this fre-
quency range. First, we consider a sampling frequency of the
data (e.x. 500 Hz). By the Nyquist criteria, the maximum fre-
quency of data is determined to be 250 Hz. Finally, by coeffi-
cient representation in each scale, the frequency range of 3-
30 Hz is covered in scales of 4, 5 and 6.

4.2 Deep Learning for Feature Extraction

The extraction of meaningful features and patterns from
large-scale EEG data for optimal data querying and analysis
presents a significant challenge [31]. Deep structural learn-
ing has been recently advanced for computational methods
addressing data processing and machine learning [32].
Deep learning structures use an hierarchical multilevel
learning approach to extract meaningful abstract represen-
tations from raw data [33]. This property empowers deep
networks with the capability for big data analysis. However,
some weaknesses such as trap at local minima, lower per-
formance and high computational time can occur with
some applications such as EEG feature extraction. There-
fore, new studies must seek appropriate optimization algo-
rithms to obtain the best results from deep structures [34].
Constructing and training a new deep learning requires a
considerable amount of labeled data as, otherwise, with a
small amount of training data, the learning is ineffective.
Therefore, in this study, instead of training a new network,
fine-tuning of existing pretrained networks was undertaken
for the seizure prediction task. This procedure is known as
transfer learning which provides faster training and accept-
able results with a small amount of labeled data. Two exist-
ing deep-learning structures, Stacked auto-encoder and
CNN, for prediction of ictal onset by means of extraction of

Fig. 2. Flowchart of the proposed systemmodel for the analysis of EEG to predict the ongoing epileptic seizures and to localize the epileptogenic site.

Fig. 1. The framework of a proposed IoT for seizure prediction consisting of authentication and registry, message brokering, gateway, rules engine
and thing shadows. Such a closed-loop automatic system can be implemented in two separate steps. The first consists of developing a BCI to predict
seizure onset and the second concerns the application of an suitable actuator signal to abort the seizure.
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preictal feature patterns from unsupervised EEG data are
presented here. Then, in the next section, we propose an
optimization module to be deployed to optimize feature
extraction by these deep structures.

Algorithm 1. CNN Forward and Backward propagation

Input:M-dimensional data, x ¼ ½x1; . . . ; xM �T
Output: Classification result as preictal (1) or nonpreictal (0)

signal; output ! ð0; 1Þ
begin
for l :¼ 1 !#HiddenLayers do
for i :¼ 1 !#RowunitinLayerl do
for j :¼ 1 !#ColumnunitinLayerl do
Find the layer activations by,
ylij ¼ ’ðxl

ijÞ þ blij
Compute next layer inputs by Eq. (12).

end
end

end
Keep the final output as yl

Calculate error at the output layer.
begin
for l :¼#HiddenLayers ! 1 do
Find error partial derivation by Eq. (14).
Find error at the previous laye by Eq. 15.

end
Calculatee the gradient of the error by Eq. (13).
END

Convolutional Neural Network. The developed CNN con-
sists of a multilayer structure. The input dimensions are
defined in the first layer. The intermediate layers consist of a
series of convolutional layers which are interspersed with
rectified linear units (ReLU) and max-pooling layers. Neu-
rons are connected as rectangular grids in each convolutional
layer where they have the sameweights. In the pooling layer,
small rectangular blocks from the convolutional layer are
sub-sampled to find a single output [35], [36]. Finally, the last
layer is designed for pattern classification via fully connected
layers and the softmax layer (see Fig. 3).

The network is trained as a two-way classification prob-
lem—preictal state and nonpreictal state. Each of the layers
respond to the input EEG signal but only a few layers are
suitable for feature extraction. The first layer of CNN learn-
ing filters for basic features. Then, the primitive features are
processed by deeper layers to develop higher level features.

Features are extracted from the layer immediately before
the classification layer since deeper layers combine all
the primitive features into a more comprehensive signal
representation.

Forward and backward propagation of algorithms are
implemented in the CNN to find the output and to optimize
the error, respectively. In order to formulate these steps,
suppose a N � N square neuronal layer exists in the convo-
lutional layer. By using a n � n filter, v, the output is
obtained by forward propagation,

xl
ij ¼ c

Xn�1

a¼0

Xn�1

b¼0

vaby
l�1
ðiþaÞðjþbÞ

 !
(1)

where c is the nonlinearity weight matrix. In this case, the
size of output is (N� n + 1)� (N� n + 1). In themax-pooling
layers, the size is reduced by sparseness. Then k � k regions
are taken and the maximum in the regions is calculated to
convert a single value output. Therefore, the size of output is
reduced to N�nþ1

k � N�nþ1
k .

For weight optimization, a back-propagation algorithm is
applied to compute the derivative of the loss with respect to
network parameters. Assuming error function, E, the gradi-
ent component for each weight can be found by applying
the chain rule,

@E

@vab
¼
XN�n

i¼0

XN�n

i¼0

@E

@xl
ij

@xl
ij

@vab
¼
XN�n

i¼0

XN�n

i¼0

@E

@xl
ij

yl�1
ðiþaÞðjþbÞ (2)

by which the gradient is computed,

@E

@xl
ij

¼ @E

@ylij

@ylij

@xl
ij

¼ @E

@ylij

@

@xl
ij

ðcðxl
ijÞÞ (3)

To find the weights of the convolutional layer, the error is
back-propagated to the previous layer by the chain rule.
Therefore, @E

@yl�1
ij

is found by,

Xn�1

a¼0

Xn�1

b¼0

@E

@xl
ði�aÞðj�bÞ

@xl
ði�aÞðj�bÞ
@yl�1

ij

¼
Xn�1

a¼0

Xn�1

b¼0

@E

@xl
ði�aÞðj�bÞ

vab (4)

The pseudocode of the forward and backward propagation
is shown in Algorithm 1.

Stacked Autoencoder. This is a class of deep neural net-
works with multiencoders stacked together as hidden
layers. The main property of a stacked autoencoder is that

Fig. 3. The CNN consists of a multilayer structure. The input dimensions are defined in the first layer. The intermediate layers consist of a series of
convolutional layers which are interspersed with rectified linear units (ReLU) and max-pooling layers. The last layer is designed for pattern classifica-
tion via fully connected layers and softmax layer.

396 IEEE TRANSACTIONS ON BIG DATA, VOL. 3, NO. 4, OCTOBER-DECEMBER 2017



of feature extraction from a large amount of unlabeled data,
making it an applicable solution for the big data problem [37].
Here, this structure is developedwith two separate encoders
to capture the hierarchical grouping of the EEG input for a
seizure prediction task. The encoder maps the input to a hid-
den representation. The size of the second hidden layer is
designed with a lesser capacity than the first so the second
encoder learns a smaller representation of the input data.
Hidden layers are trained individually in an unsupervised
method. The training data without labels are used to repli-
cate the input from the output in the training step. To enforce
a constraint on the sparsity of the output from the hidden
layer, the impact of a sparsity regularizer is controlled. The
first autoencoder tends to learn first-order features in the
raw EEG input. The second-order features are extracted by
inputting the primary features to the second hidden layer. A
softmax layer is trained and the layers are joined to form a
deep network as shown in Fig. 4. Finally, the network is
trained a final time in a supervisedmanner. The pseudocode
of the classificationmethod is shown in Algorithm 2.

In the developed network,multiple nonlinear transforma-
tion layers are stacked together to represent a nonlinear func-
tion of the EEG data. A nonlinear transformation is applied
to each layer’s input and the input representation is provided
in the output. Thus, there is no need to extract EEG features
by manual engineering techniques for each patient. A gradi-
ent-log-normalizer of the categorical probability distribution
as a softmax layer is used to classify the nonlinear function of
the EEG as an interictal or preictal signal in the last layer. A
softmax layer as a gradient-log-normalizer of the categorical
probability distribution is used in the last layer. In order to
predict an ictus, the network classifies the EEG segments as
nonlinear inputs into preictal and nonpreictal. The softmax
layer works as follows:

P ðcrjxÞ ¼ P ðcrÞP ðxjcrÞPK
k¼1 P ðckÞP ðxjckÞ

¼ expðarÞPK
k¼1 expðakÞ

; (5)

where ak ¼ lnðP ðckÞP ðxjckÞÞ, P ðckÞ is the class prior proba-
bility, and P ðxjckÞ is the conditional probability of the sam-
ple given class k.

4.3 Optimization Module for Deep Learning

While deep learning offers a valuable and efficient approach
to be used for solving a multiple problems, many limitations
still exist in deep learning. The primary problem that often
occurs in deep learning is the overfitting problem and it is
always stuck at local minima. Once these problems occur, it
results in lower performance and a higher computational
time in deep learning. Therefore, the optimization algorithm

can be taken into consideration to help make up for the limi-
tations that occur in the deep learning method.

Algorithm 2. Deep Learning by Stacked Autoencoder

Input:M-dimensional data, x ¼ ½x1; . . . ; xM �T
Output: Classification result as preictal (1) or non-preictal (0)

signal; output ! ð0; 1Þ
begin
for i :¼ 1 !#HiddenLayers do
Decrease the size of the ith hidden layer, P(i)<P(i-1)
Train unsupervised the ith autoencoder
Set explicitly the random number generator seed
Control the impact of an L2 regularizer for weights
Control the impact of a sparsity regularizer
Control the output sparsity from the hidden layer
Use the ith feature set for training in the next layer

end
Train supervised a softmax layer to classify ith features
Stack the encoders from the autoencoders with softmax
Compute the results on the test set output ! ð0; 1Þ
Do fine tuning by retraining on the training data
END

To render greater efficiency and optimize the feature
extraction of a complex large scale dataset in the setting of
deep learning, optimization, using a method based on PCA,
I-ICA, andDSAwas undertaken. In this combined approach,
PCA decorrelated the EEG data and the remaining higher-
order dependencies were separated by I-ICA. Then, DSA
was used to find the optimal solution by optimizing the
search space in locating the region of global minimum.

Principal component analysis generates a diagonal covari-
ance matrix from input data. Using a transformation, each
dimension is normalized such that the covariance matrix is
equal to the identity matrix. As a result, small trailing eigen-
values are discarded and computational complexity decre-
ased byminimizing pairwise dependencies. Consider an EEG
data matrix, X, with a column-wise zero empirical mean,
where each of the n rows identifies a different time and each
of the p columns demonstrates a particular channel. The
transformation

Ynp ¼ XnpWpp; (6)

where W is a p � p matrix, maps a data matrix X to a new
space that is uncorrelated over the dataset. The columns of
W are the eigenvectors of XTX and XTX and are propor-
tional to the empirical sample covariance matrix of X. For
dimensionality reduction, it is unnecessary to retain all prin-
cipal components and the first L largest principal compo-
nents may be used. Therefore

Ynl ¼ XnpWpl; (7)

Fig. 4. The encoders from the autoencoders have been used to extract features. To form a deep network, the encoders from the autoencoders are
stacked together and followed by a softmax layer.

HOSSEINI ET AL.: OPTIMIZED DEEP LEARNING FOR EEG BIG DATA AND SEIZURE PREDICTION BCI VIA INTERNET OF THINGS 397



This truncated transform finds Y with n rows and only L
columns. As a result, PCA learns a linear transformation to
transform a set of correlated variables, X, into a set of uncor-
related L features, Y, called principal components. In the
proposed structures for CNN and stacked autoencoder, the
outputs are evaluated by t-test and Pearson Correlation
Coefficient (PCC) [38]. If the p-value is not less than 0.05
with PCC at or near 0, using the optimization ratio as a feed-
back loop, the component of L, as largest principal compo-
nent, is updated. This optimization ratio is used to find the
best number of principal components to obtain an optimum
output for deep learning with p-value less than 0.05 and
PCC around 0.

The ICA is a computational method which separates
observed data, Y, in terms of an independent hidden
source, D

Y ¼ GDþ E; (8)

where G is the mixing matrix and E represents Gaussian
noise. In the standard ICA, we assume Y and D have
the same dimensions. However, this assumption may not
be valid and requires a reversible-jump Markov chain
Monte Carlo application to determine the dimension of X.
To solve this problem and to develop a method appropriate
for dimensionality reduction of a big data input, I-ICA [39]
followed upon PCA. This increases data reduction for sys-
tems with intermittently active sources. The ICA perfor-
mance increases with preapplication of PCA. This removes
small trailing eigenvalues before whitening and minimizes
pairwise dependencies [40].

By defining a binary matrix, Z, where its elements show
activity of a kth hidden source for the ith data point, we
have

Y ¼ G½D� Z� þ E; (9)

where � denotes the element-wise multiplication. In this
case, Z has infinitely many rows with finite nonzero ele-
ments so a potentially infinite number of hidden sources is
available. For N data points and K hidden sources, the dis-
tribution of matrix Z is defined by

P ðZjp1; . . . ;pKÞ ¼
YK
k¼1

YN
i¼1

P ðzkijpkÞ; (10)

which is expanded to,

P ðZjp1; . . . ;pKÞ ¼
YK
k¼1

p
mk
k ð1� pkÞN�mk; (11)

where zki indicates activity of the kth source for the ith sam-
ple using a probability of pk andmk ¼

PN
i¼1 zki indicates the

total number of active sources. Finally, for inferring D hid-
den sources from Y observed data using the G mixing
matrix, which has Z active sources, an inference is defined.
Gibbs sampling is used to sample elements with zki ¼ 1.
This proceeds by sampling from the conditional distribution
of one parameter given all others by Bayes rule [39]. There-
fore, the result is a piecewise Gaussian distribution. For
dki > 0, we have

P ðdkijG; d�ki; yi; ziÞ ¼ N ðxki;m�; s
2Þ; (12)

and for dki < 0we have,

P ðdkijG; d�ki; yi; ziÞ ¼ N ðdki;mþ; s
2Þ; (13)

wherem� ¼ gT
k
e�
ki
�s2e

gT
k
gk

, s2 ¼ s2e
gT
k
gk
, e�ki ¼ ðekijzki ¼ 0Þ, and gk is the

kth column of G. Finally, by marginalizing over all possible

values of dkt, the P ðyijG; d�ki; z�ki; zki ¼ 1Þ is foundwith,

Z
½P ðyijG; di; z�ki; zki ¼ 1ÞP ðdkiÞ�dðdkiÞ (14)

In summary, the PCA expands EEG raw data into a set of
orthogonal components which provides maximal decorrela-
tion of the signals. This enables a separation of noise sub-
space from EEG data. The I-ICA, a scalable ICA for high
dimensional data, reduces the dimension by extraction-
independent and orthonormal methodology. The proposed
combination of PCA with I-ICA therefore provides for
dimensionality reduction in big data and generates a sparse
representation of the raw data. This sparsity allows more
efficient unsupervised feature extraction by deep-learning
structures as demonstrated in the results.

DSA is an efficient novel evolutionary algorithm which is
proposed to optimize solving of real-valued numerical
problems. This algorithm is inspired from Brownian-like
random walk movement [41]. It has been shown that DSA
shows better performance in the solution of numerical opti-
mization problems than other routine methods including
JDE, JADE, SADE, ABC, EPSDE, GSA, CMA-ES, and
PSO2011 [42]. We have used DSA to explore searching
space to obtain it with a global minimum. As a result, the
deep learning structures do not trap in the local minimums
and the performance and the computational time is
increased. The pseudocode of the proposed optimization
method is described in detail in Algorithm 3 and pseudo-
code DSA part is in Algorithm 4. Results show that the pro-
posed optimization model outperforms classic deep
learning-based approaches in terms of training efficiency
and seizure prediction accuracy.

4.4 Analysis Extracted Features

An increase in the functional connectivity of the brain during
the interictal period has been reported [43], [44]. In this paper,
we hypothesize that there are differences between the func-
tional brain connectivity in the Interictal Epileptiform Dis-
charges (IED) and non-IED periods. To find the differences, a
differential connectivity graph (DCG) is constructed. Since
the leading IED regions (sources) relate to the epileptogenic
zone relative to the propagated IED regions (sinks) [45], [46],
we estimate directed DCGs (dDCG) for different frequency
bands and characterize them by an information emittance
measure. Next, a multi-objective optimization method [47] is
applied on the emittance values of all dDCG nodes in all fre-
quency bands to identify the leading IED regions.

A nonlinear SVMwith a GRBF kernel is used for classifica-
tion of the extracted features [48], [49]. To improve the results,
theGaussian kernel parameters are optimized bymaximizing
a classical class separability criterion as the trace of the scatter
ratio. Then, a quasi-Newton algorithm is used by exploiting a
recently proposed criterion of decomposition of the objective.
Fig. 5 shows the linear SVM classification for 2 subspace of
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extracted features (power and Sum of absolute elements) and
Fig. 6 shows the result with non-linear SVMclassifier.

Algorithm 3. Optimization Based on PCA + I-ICA + DSA

Input: D-dimensional EEG raw data d ¼ ½d1; . . . ; dD�T
Output:M-dimensional signal x ¼ ½x1; . . . ; xM �T ;
� denotes the element wise multiplication
BEGIN
Compute Covariance matrix of D
Choose P largest eigenvalues
Find Y by Eq. (2)
for i :¼ 1 ! N do
½Y;X;Z;E� ¼ concatenationfyi xi zi eigNi¼1

end
for k :¼ 1 ! K do
Define zki as activity of kth source for ith sample
Definemk ¼

PN
i¼1 zki as the active sources

Calculate pðZjp1; . . . ;pKÞ by Eq. (6)
for i :¼ 1 ! N do
Define gk as the kth column ofG

Find m� by
gT
k
e�
ki
�s2e

gT
k
gk

Find s2 by
s2e

gT
k
gk

Find e�ki by ðekijzki ¼ 0Þ
Calculate pðxkijG; x�ki; yi; ziÞ by
if xki > 0 use Eq. (7)
if xki < 0 use Eq. (8)

end
end
FindX by Eq. (4)
Extract x ¼ ½x1; . . . ; xM �T fromX
Apply DSA
END

A proposed approach searches for statistically significant
connections among a large number of IED and non-IED time

intervals. It selects the connections that change significantly
between the IED and non-IED states. This approach
decreases the effect of common information between the two
states like background activity. Using a permutation-based
multiple testing method [50], we estimate the distribution of
a test statistic from different IED and non-IED time intervals
under the null hypothesis and use the result to choose statis-
tically significant connections.We start with the construction
of a DCG which requires identification of IED and non-IED
intervals and computation of a coupling measure. Identifica-
tion of IED and non-IED time intervals is initially done man-
ually by a collaborating epileptologist. Later, the manual
results are used to develop an automatic method for this
identification. An IED period may include one single IED or
a burst of IEDs. A non-IED period is a time interval without
any IED or abnormal event. For the coupling measure, we
compare linear, nonlinear and directed coupling measures,
including wavelet correlation coefficient, phase synchrony
and transfer entropy and choose the most informative mea-
sure for the project. For preprocessing and feature extraction
(i.e., to separate the signal (relevant information) from noise
and background (irrelevant information)), we use the wave-
let transform, which has been shown to be optimal for ana-
lyzing nonstationary EEG signals. A DCG for each of the
frequency bands (i.e., wavelet scales) is constructed. Multi-
ple hypothesis t-tests are applied to choose the wavelet
bands that are most relevant and thus generate discriminat-
ing DCG between the IED and non-IED states. Then, for con-
structing a dDCG, the method of Amini et al. (2009) [51] is
applied to estimate the drive-response relationship between
the signals observed at the nodes of the constructed DCG. To
identify the epileptogenic zone, we must classify the nodes
of the constructed dDCG to the source and sink groups. To
this end, we will use an index called Local Information
(LI) [52] to measure the amount of information that passes
through a node. This measure will depend on: (1) incoming

Fig. 5. Results of linear classification in one subset of features (P1, P2).
Red signs show features extracted from the ictal group, green signs
show features extracted from the interictal group, and the blue sign is a
test signal, which is originally a normal brain activity that is correctly
identified and classified as normal by the classifier.

Fig. 6. Results of non-linear classification in one subset of features (P1,
P2). Red signs show features extracted from the ictal group, green signs
show features extracted from the interictal group, and the blue sign is a
test signal, which is originally a normal brain activity that is correctly
identified and classified as normal by the classifier.
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and outgoing connections; and (2) the amount of information
carried by each connection, which will be calculated using
the lagged mutual information (MI) between the signal pairs
observed at the two ends of the connection.

Algorithm 4. DSA Algorithm

Input: Output of I-ICA
Output:Optimized problem
Do specify the DSA parameters
Do initialize the population
Out Iter=1
Evaluate superorganism & fitness
while stop criteria is not satisfy
Update stopover
Evaluate stopover fitness
if stopover-fitness > superorganism-fitness then
Replace superorganism by stopover in new population

else discard the stopover in new population
if stop criteria is satisfy then
Go to end

else Iter=Iter+1 Repeatwhile loop
END

5 RESULTS

A proof-of-concept prototype of the proposed BCI seizure
predictor was developed in the cloud and Autonomic Com-
puting Center (CAC), Rutgers University. In this testbed, a
benchmark dataset of EEG expression of epileptogenicity
was employed along with an HP laptop and Intel i5 proces-
sor, an 8 GB RAM and battery capacity of 4,400 mAh and a
super-cluster of computers hosted by AWS which offers
cloud computing services. The proposed models were
implemented in the Pytorch package with developing pre-
trained networks on an EEG dataset [53], [54].

Data. ECoG data were collected at 1,000 Hz at Spectrum
Health, Grand Rapids, MI from nine patients with focal
epilepsy using in excess of 70 intracranial electrodes
implanted over the cerebrocortical surface where each elec-
trode corresponded to an individual channel on the ECoG
recording (see Fig. 7). The data were then annotated by an

epileptologist who noted the start and stop time for each pre-
ictal period alongwith the channels that exhibited the epilep-
tic activity. A total 1,755 segments are used (585 interictal,
585 ictal, and 585 preictal). The ECoG datasets of two epi-
lepsy patients with temporal and extratemporal epilepsy,
jointly developed and released by the University of Pennsyl-
vania and the Mayo Clinic and sponsored by the American
Epilepsy Society, were used for this investigation [55], [56].
A total of 390 segments were used (130 interictal, 130 ictal
segments, and 130 preictal). The dataset was recorded by 15
intracranial electrodes. Interictal and preictal data were seg-
mented in 10 minute clips. A sampling rate of 5,000 Hz was
applied and a scalp reference electrode used for referential
recording. Preictal data segments covered a one hour dura-
tion prior to the ictus and the ictal horizon was defined as
five minutes. The preictal horizon provided some guarantee
that seizures could be forecast with sufficient warning to
allow intervention in some circumstances. In Fig. 8, patterns
of interictal and preictal segments are compared.

Outcome. The database contains a few independent cases
each with a big data problem. These algorithms should
be regulated against over-fitting. The proposed solution
extracts the features in an unsupervised manner, decreasing
the risk of over-fitting. Moreover, to evaluate the generality
of the results, a leave-one-out approach is employed as an
exhaustive cross validation technique on subjects. Using
this technique, the model is fitted to subsets of patients and

Fig. 7. Two different cases from our group at spectrum heath, grand rapids, MI that underwent wide placement of electrodes over the left hemisphere
during a phase II investigation to determine the site of epileptogenicity. We were able to identify the sites of epileptic disturbance and implant a closed
loop device with two electrode arrays placed in the locations that were found to be epileptogenic.

Fig. 8. A comparison of interictal (i.e., baseline) iEEG segment on top
and preictal (i.e., before seizure) iEEG segment on bottom. The x-axis
represents samples and the y-axis shows the signal in mV.

400 IEEE TRANSACTIONS ON BIG DATA, VOL. 3, NO. 4, OCTOBER-DECEMBER 2017



the accuracy of the Stacked Auto-encoder and CNN models
are found using the held-out sample [38].

Many EEG patterns that resemble epileptogenic abnor-
malities are not associated with epilepsy or any neurologic
conditions. Small sharp spikes, wicket spikes, phantom
waves and paroxysmal rhythmic discharges are some exam-
ples of these patterns [57]. Since such patterns have no clini-
cal significance for seizure detection and prediction, they
are termed epileptiform normal variants. These patterns are
one of the major causes of false seizure detection in auto-
matic methods Fig. 9 and their recognition is important for
avoiding over-interpretation [58]. The deep networks are
supervisor-trained to recognize them as normal patterns.

Mean square error using l2 and sparsity regularizers for
unsupervised feature extraction in the first hidden layer of
Stacked Auto-encoder is shown in Fig. 10 where the best
training performance is 0.007 at epoch 100. The confusion
matrix of the proposed method using Stacked Auto-encoder
and CNN are shown in Table 1 and 2, respectively.

To evaluate the classification ability of the proposed
unsupervised feature extraction and classification, the EEG
feature sets are extracted for classification by other classifi-
cation methods. The extracted features are based on fast

Fourier transform, general energy average and energy
STDV over time for each channel, power spectral density
correlation coefficients, partial directed coherence of coeffi-
cients, power in band, low-gamma phase sync and log of
energy in different frequency bands for each channel.
Fig. 11 demonstrates the power log feature for interictal
segments. To classify these manually extracted features,
Random Forest, Liner SVM, Non-linear SVM and MLP
Neural Network are used. Experimental results in Table 3
show that the proposed deep learning methods outperform
previous methods for the EEG seizure prediction task.

Table 4 displays the results of a standard ANOVA analy-
sis [1], while Fig. 12 shows some metrics on extracted fea-
tures for interictal and preictal periods by quartile. The large
F-statistic and small value of p in Table 1 correspond to a
large difference in the center lines of the box plots in Fig. 12.

Message Queuing Telemetry Transport (QMTT) and
RESTful Web Service protocols are used for sending data in
the cloud [60]. The proposed framework collects telemetry
EEG data from S3 after receiving a state in JSON format on
MQTT topics. After a message is published on an MQTT
topic, it is sent to MQTTmessage broker and subsequently to
all subscribed clients. This communication is protected by
X.509 certificates. To secure communication between sensors

Fig. 9. EEG segments of 32 channels showing epileptiform normal var-
iants in a few channels (top) and stacked EEG segments (bottom) in the
highlighted areas. The horizontal line is Time [s] and the vertical line is
Amplitude [mV].

Fig. 10. The mean square error of unsupervised feature extraction by the
first hidden layer with Stacked Autoencoder.

Fig. 11. The power log feature for interictal segments. The x-axis repre-
sents frequency in Hz and the y-axis shows the Power 10*log inmV2=Hz.

Fig. 12. Graphical depiction of some metrics on the extracted features for
interictal group (#1 to #9). Amplitude maximum (multiplied by scaled factor
100), variance, energy (multiplied by scaled factor 0.01), skewness, power,
sum of absolute value (multiplied by scaled factor 100), FFT, and mean
value (multiplied by scaled factor 0.01) are shown, respectively. Outliers
are plotted by plus signs. Same amount for preictal group (#10 to #18).
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and cloud, the device registry is used to store the certifications
and information about the sensors. Using Rule Engine, the
result of processing of the deep network in EC2 is extracted.
Then, usingDevice Shadow, the state information is retrieved.
An application which provides the neurostimulatory signal
controls the sensors by requesting a change in its state.

The feasibility of using cloud computing is analyzed by
the network latency offered by Amazon EC2 cloud servers.
The Round Trip Time (RTT) for servers located at different
geographical locations (i.e., Virginia, Oregon, Singapore, and
Ireland) is calculated for 64B EEG segments at 10 days using
the ping command. The shortest RTT is 15 ms for the Virginia
server and the longest RTT is 97 ms for the Oregon server.
Themean time is reported in Fig. 13 over different day times.

6 CONCLUSION AND FUTURE WORK

There is great utility in the efficient handling and processing
of big data for the management of complex medical condi-
tions that may often require immediate intervention. This is
exemplified in the context of medically intractable epilepsy
and the use of implanted electrodes strategically targeting
distinct sites of epileptogenicity within the brain. The
requirements for safe storage and high computational
resources for processing such data must also take into
account the large variety of patterns characterized by fluctu-
ations of signal amplitude and frequency that create signifi-
cant challenges for reliable feature extraction. In order to

address these issues, a novel cloud-based BCI providing
real-time seizure prediction and seizure focal localization
from EEG and ECoG data is proposed. An optimization
method, as a layer in deep learning, decreases energy and
computation time while retaining accurate classification of
the event. The developed deep-learning methods provide
unsupervised feature extraction as a suitable substitute
to manual feature-extraction techniques of classification
through a hierarchical learning process that extracts high-
level and complex abstractions for data representations. The
key benefit of the proposed method is summed up in the
rapid analysis and learning provided for large amounts of
unsupervised data. This translates into a means by which
timely interjection in the epileptogenic process may prevent
seizures from occurring bringing significant benefit to the
patient who otherwise has no opportunity for such control.

A rapid coupling of reliable preictal detection and effec-
tive execution of an inhibitory signal delivery will determine
the success of this therapeutic system. Future work will
engage an implantable system currently in use (RNS, Neuro-
pace) to apply these capabilities in a prospective manner to
determine their utility. A further understanding of how an
estimation of EEG variance can be used as feedback for
responsive neurostimulation may further inform an auto-
matic computing system is also worthy of further study. A
decision-making process may also be implemented in order
to select an appropriate preictal electrostimulatory signal in

TABLE 2
Confusion Matrix for CNN

Output interictal Output preictal Total

Target interictal 619 31 650
Target preictal 22 628 650

Total 641 659 1300

The diagonal elements show the correct decisions. The results are shown as
mean value of leave-one-patient-out.

TABLE 4
Source of Variability, Sum of Squares (SS) of Each Source,
Degrees of Freedom (DF) of a Source, Mean Square (MS) as
the Ratio SS/DF, Ratio of the Mean Squares as F-Statistic,

and p-Value Derived from the Cumulative Distribution
Function (CDF) of F Are Shown as the Standard ANOVA [59]

Group Source SS df MS F-statistic p-value

Columns 2.89e+10 8 3.62e+08 11.45 1.85e-14
Interictal Error 1.11e+10 351 3.16e+07

Total 1.40e+10 359

Columns 1.96e+10 8 2.45e+09 21.92 4.64e-27
Preictal Error 3.92e+10 351 1.11e+08

Total 5.88e+10 359

TABLE 3
Accuracy, Precision, Sensitivity, Specificity, FPR, and FNR for
Proposed Classification Compared with the Other Methods

Methods Accuracy Precision Sensitivity FPR FNR

Opt. CNN 0.96 0.97 0.97 0.05 0.03
Opt. St. Autoencoder 0.94 0.95 0.95 0.06 0.05
Classic CNN 0.93 0.94 0.94 0.07 0.06
Classic St. Autoencoder 0.92 0.93 0.93 0.08 0.07
Random Forest 0.78 0.78 0.78 0.23 0.21
Non-linear SVM 0.76 0.77 0.77 0.25 0.23
Linear SVM 0.74 0.75 0.75 0.27 0.25
MLP Neural Network 0.69 0.71 0.71 0.32 0.29.

The results are shown as mean value of leave-one-patient-out.

Fig. 13. Round Trip Time (RTT) between Amazon EC2 servers and a
local machine for EEG segments. At any time, the lowest RTT is observed
for the server located in Virginia, the closest to the study location.

TABLE 1
Confusion Matrix for Stacked Auto-Encoder

Output interictal Output preictal Total

Target interictal 610 40 650
Target preictal 32 618 650

Total 642 658 1300

The diagonal elements show the correct decisions. The results are shown as
mean value of leave-one-patient-out.
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order to abort an evolving seizure as a second stage measure
of the automatic computing system.
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