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Abstract—A novel dynamic radio-cooperation strategy is pro-
posed for Cloud Radio Access Networks (C-RANs) consisting of
multiple Remote Radio Heads (RRHs) connected to a central
Virtual Base Station (VBS) pool. In particular, the key capa-
bilities of C-RANs in computing-resource sharing and real-time
communication among the VBSs are leveraged to design a joint
dynamic radio clustering and cooperative beamforming scheme
that maximizes the downlink weighted sum-rate system utility
(WSRSU). Due to the combinatorial nature of the radio clustering
process and the non-convexity of the cooperative beamforming
design, the underlying optimization problem is NP-hard, and is
extremely difficult to solve for a large network. Our approach
aims for a suboptimal solution by transforming the original
problem into a Mixed-Integer Second-Order Cone Program
(MI-SOCP), which can be solved efficiently using a proposed
iterative algorithm. Numerical simulation results show that our
low-complexity algorithm provides close-to-optimal performance
in terms of WSRSU while significantly outperforming conven-
tional radio clustering and beamforming schemes. Additionally,
the results also demonstrate the significant improvement in
computing-resource utilization of C-RANs over traditional RANs
with distributed computing resources.

Index Terms—Cloud radio access networks; dynamic cluster-
ing; joint beamforming; computing resource sharing.

I. INTRODUCTION

Overview: The proliferation of personal mobile-computing

devices along with a plethora of data-intensive mobile appli-

cations has resulted in a tremendous increase in demand for

ubiquitous and high-data-rate wireless communications over

the last few years. To cope with this challenge, the current

trend in cellular networks is to increase the densification of

small cells and to leverage the cooperation among multiple

antennae and base stations (BSs). In this way, higher system

throughput and reduced interference can be achieved via

Coordinated Multi-Point (CoMP) transmission and reception

techniques [1], which have been adopted in 3GPP Long-Term

Evolution (LTE)-Advanced. In CoMP, a set of neighboring

cells are grouped into clusters, each consisting of connected

BSs that share Channel State Information (CSI) and user

signals. This scheme allows for joint processing among BSs

that can effectively mitigate the Inter-Cell Interference (ICI)

and thus improve the spectral efficiency. However, in current

cellular-network architectures, physical links only exist be-

tween BSs and their corresponding access network gateway

and thus, the control signaling between BSs needed to realize

CoMP has to travel through costly backhaul links, and often
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Fig. 1. Cloud Radio Access Network (C-RAN) Architecture.

over a one-level higher layer in the aggregation hierarchy.

Consequently, the latency and scarce interconnection capacity

among BSs have resulted in limited deployments of CoMP in

practice and, in turn, in modest BS cooperation.

Recently, Cloud Radio Access Network (C-RAN) [2]–[4]

architecture has been introduced as a new paradigm for

broadband wireless access that allows for dynamic reconfigu-

ration of computing resources and provides a higher degree

of cooperation as well as communication among the BSs.

The fundamental characteristics of C-RAN can be summa-

rized as i) centralized management of computing resources,

ii) reconfigurability of spectrum resources, iii) collaborative

communications, and iv) real-time cloud computing on generic

platforms. A typical C-RAN, as shown in Fig. 1, is composed

of three main parts: 1) Remote Radio Heads (RRHs) plus

antennae, which are located at the cell sites and are controlled

remotely by Virtual Base Stations (VBSs) housed in a cen-

tralized VBS pool, 2) the Base Band Unit (BBU) (VBS pool)

composed of high-speed programmable processors and real-

time virtualization technology to carry out digital processing

tasks, 3) low-latency, high-bandwidth Common Public Radio

Interface (CPRI), which connects the RRHs to the VBS pool.

In this paper, we aim to realize the benefits offered by

C-RANs to improve the cellular network performance via

dynamic adaptation of radio clusters and computing resources.

Firstly, the co-location model of the VBSs allows for their

real-time intercommunication, thus fully enabling a coordi-

nated joint transmission of RRHs that is currently practically

constrained. In particular, control signals to realize CoMP



between the BSs that traditionally travel via back-haul links

can now be exchanged through the InfiniBand interconnection

among the VBSs. A C-RAN-based radio-cooperation scheme

would be fully dynamic and user specific, in the sense that

we can form a virtual cluster of RRHs to coordinate their

downlink transmissions to each of the scheduled users. In

this strategy, each scheduled user is always the central of a

RRH cluster, making it different from the traditional CoMP

techniques where the RRHs are grouped into fixed and non-

overlapping clusters.

Related Works: Pioneering works on realizing the benefit

of C-RANs have focused on the overall system architecture

with emphasis on system issues, feasibility of virtual software

base station stacks, performance requirements and analysis

of optical links between RRHs and their VBSs [2], [5],

[6]. On the other hand, considerable attention has also been

paid on cooperative communications techniques for C-RAN

under various different objectives. For example, in [7] the

authors propose a blind source separation strategy to mitigate

interference in uplink C-RAN; in [8], [9] the authors consider a

network power minimization problem. In addition, the optimal

tradeoff design between transmit power and backhaul capacity

is studied in [10], while the tradeoff between transmit power

and delay performance is investigated in [11] via a cross-layer

based approach.

In this paper, we study a dynamic radio cooperation

technique and consider Weighted Sum-Rate System Utility

(WSRSU) as the performance metric under a practical con-

straint on computing resources at the VBS pool. Note that

the BS cooperation for WSRSU maximization problem has

been studied in traditional CoMP systems. However, due the

scarce interconnection among the BSs and the lack of global

CSI available at each BS, existing clustering and coopera-

tive beamforming techniques are mostly heuristic-based (i.e.,

the clustering decision is made based on the relative signal

strength and locations of the users, and the beamforming

design is not adaptive to inter-cluster interference) [12]–[14].

Our Contributions: In this paper, we propose a novel

dynamic radio cooperation strategy for C-RANs that takes ad-

vantage of real-time communication and computing-resource

sharing among the VBSs. Unlike existing methods, our ap-

proach makes the joint clustering and beamforming decision

based on global CSI available at the VBS pool, thus being able

to mitigate both the intra-cluster and inter-cluster interference

in order to significantly improve the system’s performance.

Our proposed solution dynamically groups the RRHs into

user-specific (potentially overlapping) clusters and designs the

downlink beamformers at each RRH in order to maximize

the WSRSU function. In particular, within each scheduling

interval, i.e., a time-frequency resource block, a group of

RRHs is identified to serve each scheduled user. To realize the

proposed Dynamic Radio Cooperation (Dynamic-RC) strategy,

we formulate the associated optimization problem, which

we also refer to as the Dynamic-RC problem, that aims to

maximize the WSRSU under the transmit power constraints

at the RRHs and the total computing-resource constraint at

the VBS pool. Due to the combinatorial nature of the radio

clustering process and the non-convexity of the cooperative

beamforming design, the Dynamic-RC problem is extremely

difficult to solve optimally in practical (polynomial) time for a

system with a large number of users and RRHs. To overcome

this drawback and solve the problem efficiently, our approach

aims for a suboptimal solution with reasonable complexity.

In particular, we exploit conic programming techniques [15]

and the l1-norm reweighting approximation methods from

Compressive Sensing which were originally proposed for

sparse signal recovery [16], in order to quickly identify the

optimal clustering decision and beamforming design.

We propose an iterative algorithm to solve the Dynamic-

RC problem. In each iteration, the clustering decision is

temporarily fixed and a Cooperative Beamforming Design

(CBD) problem is solved using Second-Order Cone Program-

ming (SOCP) technique. The optimal beamforming solution

obtained from the CBD problem is used to adjust the clustering

decision via l1-norm reweighting technique. As such, the joint

clustering and beamforming design is quickly identified and

is adaptive to the global network condition.

Numerical simulations are carried out extensively in various

user distribution scenarios and demonstrate that our proposed

low-complexity Dynamic-RC strategy significantly improves

the WSRSU performance over conventional radio clustering

and beamforming schemes. Furthermore, the results also show

the great potential gains of C-RANs using our Dynamic-RC

strategy over distributed RANs in terms of computing resource

and transmit power utilization.

Paper Organization: The remainder of this paper is or-

ganized as follows: in Sect. II, we present the considered

system model and formulate the problem under study; in

Sect. III, we discuss the analysis and solution to the coop-

erative beamforming design problem with a fixed clustering

decision; in Sect. IV, the Dynamic-RC strategy via dynamic

radio clustering and beamforming design is solved via our

proposed iterative algorithm; simulation results are illustrated

in Sect. V and, finally, Sect. VI concludes the paper and points

to future work.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we firstly introduce the system model

of the considered downlink C-RAN system and discuss the

computing-resource constraint. The proposed dynamic radio

cooperation strategy is then formulated as a joint clustering

and beamforming design problem.

A. System Model

We consider a multi-user, multi-cell C-RAN downlink

system, where each cell has one RRH that connects to a

common VBS pool via high-capacity backhaul links. Let

R = {1, 2, ..., R} be the set of RRHs and U = {1, 2, ..., U}
be the set of active users in the system. We assume that each

RRH r has Nr antennae while, realistically, all the users are

equipped with only a single antenna. Note that the solutions

proposed can be trivially extended to the multi-antenna-user



case. The RRHs cooperate with each other to form virtual user-

specific clusters, i.e., each RRH cluster is formed for a sched-

uled user, while each RRH can be part of multiple clusters.

Hence, the number of virtual clusters is equal to the number

of scheduled users in the system, which may be smaller than

the number of total active users. Let S = {sru |u ∈ U , r ∈ R}
be the clustering decision, in which sru is a binary variable

equal to 1 if RRH r is selected to serve user u, and 0
otherwise. Consequently, let Vu = {r ∈ R |sru = 1} denote

the serving cluster of user u. We consider the system in a

single time-frequency resource block, which is considered to

be spatially reused across all the users. As such, each RRH can

simultaneously serve at most Nr users; otherwise, the users

will suffer from intra-cluster interference.

We assume that each user has a single traffic flow that is

independent of all other users’ flows. Baseband signals for user

u and the corresponding downlink beamforming information

after being processed at the VBS pool will be transported to

all the RRHs in the serving cluster Vu. In each scheduling

slot, all the RRHs in Vu will jointly transmit the normalized

symbol xu ∈ C of unit power to user u. It is assumed that

the signals for different users are independent from each other

and from the receiver noise. Now, let w
r
u ∈ C

Nr×1 be the

linear downlink beamforming vector at RRH r corresponding

to user u and W = {wr
u |∀u ∈ U , r ∈ R} denote the network

beamforming design. Note that W also implies the scheduling

decision, i.e., user u is not scheduled for the current time-

frequency slot if w
r
u = 0, ∀r ∈ R. In the current scheduling

slot, the received signal yu ∈ C at user u is,

yu =
∑

r∈Vu

h
r
uw

r
uxu

︸ ︷︷ ︸

desiredsignal

+
∑

u′∈U ,u′ 6=u

∑

r′∈Vu′

h
r′

u w
r′

u′xu′

︸ ︷︷ ︸

interference

+zu, (1)

where h
r
u ∈ C

1×Nr is the channel coefficient vector from

RRH r to user u, zu is the zero-mean circularly symmetric

Gaussian noise denoted as CN (0, σ2). For simplicity, let

Ψu,u′ =
∑

r′∈Vu′

h
r′

u w
r′

u′ and Ψu = Ψu,u =
∑

r∈Vu

h
r
uw

r
u. With

this position, the received Signal-to-Interference-plus-Noise

Ratio (SINR) at user u is,

γu =
|Ψu|2

∑

u′∈U,u′ 6=u

|Ψu,u′ |2 + σ2
. (2)

Thus, under the clustering decision S and the beamforming

design W, the Shannon transmission rate of user u can

be calculated as Ru (S,W) = ηBlog2 (1 + µγu), in which

B [Hz] is the channel bandwidth and η, µ ∈ [0, 1] account for

the spectral and the coding efficiencies, respectively. Unless

otherwise stated, for notation simplicity in the subsequent

analysis we will assume B = η = µ = 1 and consider the

normalized rate (bits/s/Hz). Hence, the rate Ru simplifies to,

Ru (S,W) = log2 (1 + γu) . (3)

Computing resource constraint: The VBS pool consists of

a set of interconnected VBSs hosted in the physical-server

infrastructure of a datacenter. Each VBS performs baseband

processing for a certain set of users, and by leveraging virtual-

ization technology, these VBSs can flexibly share the common

computing resource of the physical server pool. Recently,

the implementation of software VBSs on General-Purpose

Platform (GPP) has been realized (see, for example, [5],

[6]). Profiling results on these systems have revealed that

the utilized computing resource at a VBS is an increasing

function of the accumulated data rates processed by that VBS.

Therefore, it is reasonable to argue that the total computing-

resource capacity of the VBS pool places a cap on the

total data rates of the users in the network. In general, the

computing-resource capacity of the VBS pool can be modeled

as a multi-dimentional vector representing the capacities of the

CPUs, memory, and network interfaces. However, for the ease

of analysis, we only consider scalar computing capacity in this

paper. In particular, let C denote the total computing capacity

in the VBS pool that can be flexibly shared among all the

VBSs. The computing-resource constraint on the accumulated

data rate of all the users in the system can be expressed as

Γ

(
∑

u∈U

Ru

)

≤ C, (4)

where Ru is the data rate of user u given in (3) and Γ(.) is

an increasing function specifying the relationship between the

utilized computing resource and the accumulated user data

rate1. It should be noted that for a traditional system with

distributed computing resource at the RRHs, the accumulated

data rate processed at each RRH r will be subject to the per-

RRH computing-resource constraint Cr < C, i.e.,

Γ

(
∑

u∈U

sruRu

)

≤ Cr, ∀r ∈ R. (5)

B. Joint Clustering and Beamforming Problem Formulation

Our objective is to maximize the WSRSU under the transmit

power constraint at each RRH and the total computing-

resource constraint at the VBS pool. It is assumed that the

capacity of the front-haul links connecting RRHs to the VBS

pool is sufficiently provisioned to accommodate peak-capacity

demand. Our proposed dynamic radio cooperation strategy

involves finding the optimal clustering decision S∗ and the

optimal beamforming design W
∗, and can be formulated as,

(S∗,W∗) = argmax
{sru,w

r
u}

r∈R,u∈U

∑

u∈U

quRu (S,W) (6a)

s.t.
∑

u∈U

‖wr
u‖22 ≤ Pr, ∀r ∈ R, (6b)

‖wr
u‖22 ≤ sruPr, (6c)

∑

u∈U

Ru (S,W) ≤ Ω, (6d)

∑

u∈U

sru ≤ Nr, s
r
u ∈ {0, 1} , (6e)

1The realization of Γ(.) can be obtained by carefully profiling the VBSs
at different level of offered load in a practical C-RAN implementation.



where qu, u ∈ U , is the utility marginal function corresponding

to user u, which can represent the user-specific Quality of

Service (QoS) or priority in the system, Pr [W] is the per-

RRH transmission power constraint and Ω = arg Γ(C).
Constraint (6c) indicates the coupling between the assignment

variable sru and the beamforming vector w
r
u, i.e., w

r
u = 0

when sru = 0. We refer to (6) as the dynamic radio cooperation

(Dynamic-RC) problem. In fact, this is a Mixed-Integer Non-

Linear Program (MINLP), which is intractable in practical

time. Specifically, even when the binary variables sru are fixed,

solving for wr
u is still NP-hard.

Given a large number of variables that scales linearly with

the number of users and RRHs in the system, finding a low-

complexity, suboptimal solution is highly desirable. To this

end, we firstly solve the Cooperative Beamforming Design

(CBD) problem with given clustering decision S , and propose

a low-complexity iterative algorithm to solve the Dynamic-

RC problem to a local optimum. Specifically, in Sect. III,

we will transform the CBD problem into a SOCP with a

fixed clustering decision, and will take advantage of the

existing efficient SOCP algorithms. The Dynamic-RC problem

will then be solved in Sect. IV using the iterative l1-norm

reweighting technique, which solves the CBD problem and

updates the clustering decision in each iteration.

III. COOPERATIVE BEAMFORMING WITH FIXED

CLUSTERING DECISION

In this section, we consider the problem of Cooperative

Beamforming Design (CBD) for a given radio clustering deci-

sion S . In particular, for given {sru} satisfying constraints (6e),

we need to find the optimal downlink beamformers {wr
u} by

solving the CBD problem below,

max
w

r
u,r∈R,u∈U

∑

u∈U

quRu (S,W) (7a)

s.t.
∑

u∈U

‖wr
u‖22 ≤ Pr, ∀r ∈ R, (7b)

∑

u∈U

Ru (S,W) ≤ Ω. (7c)

Observe that the rate functions Ru’s appear in both the

constraint and objective of (7), making the problem diffi-

cult to deal with. To decouple this problem with respect to

(w.r.t.) Ru’s, we remove the constraint (7c) and consider the

relaxed-CBD problem with constraint (7b) only. The solution

{w̃r
u} of the relaxed-CBD problem will be verified against

constraint (7c) so to finally obtain the solution of the original

CBD problem by solving an additional feasibility problem. In

the following subsections, the relaxed-CBD first and then the

feasibility problem will be addressed sequentially.

A. Relaxed-CBD Problem

The relaxed-CBD problem is rewritten from (7) without the

computing-capacity constraint (7c), and is cast as follows,

max
w

r
u,r∈R,u∈U

∑

u∈U

quRu (S,W) (8a)

s.t.
∑

u∈U

‖wr
u‖22 ≤ Pr, ∀r ∈ R. (8b)

This is in fact a weighed sum-rate maximization problem,

which is widely known to be NP-hard. Our approach aims for

a local solution using a low-complexity algorithm designed

by effectively exploiting the techniques of SOCP.2 In order

to use the efficient algorithms developed for SOCP, one

must reformulate the problem into the standard form that the

algorithms (e.g., those proposed in [17]) are capable of dealing

with. Firstly, from (3), objective function (8a) is rewritten as,
∑

u∈U

quRu (S,W) =
∑

u∈U

log2(1 + γu)
qu . (9)

Now, by introducing the variables tu’s, u ∈ U , we can recast

the relaxed-CBD problem in (8) as,

max
w

r
u,r∈R,u∈U

∏

u∈U

tu (10a)

s.t. γu ≥ t1/quu − 1, ∀u ∈ U , (10b)
∑

u∈U

‖wr
u‖22 ≤ Pr, ∀r ∈ R, (10c)

which stems from the fact that constraints (10b) are active at

the optimum. We now have the following Lemma.

Lemma 1. Let w̃r
u = w

r
ue

jφr
u , where φr

u is the phase rotation

such that the imaginary part of hr
uw̃

r
u equals to zero, ∀u ∈

U , r ∈ R. If wr
u is optimal to (10), then w̃

r
u is also optimal.

Proof. We can represent hr
uw

r
u as h

r
uw

r
u = |hr

uw
r
u| ejθ

r
u . By

choosing φr
u = −θru, we have h

r
uw̃

r
u = h

r
uw

r
ue

jφr
u = |hr

uw
r
u|.

Recall γu given in (2), it is straightforward to verify that

substituting w
r
u by w̃

r
u, ∀u ∈ U , r ∈ R, into (10) will result

in the same objective function and constraints. Thus, if wr
u is

optimal then w̃
r
u is also optimal.

Using Lemma 1, we can restrict ourselves to the beamform-

ers in which h
r
uw

r
u ≥ 0, ∀u ∈ U , r ∈ Vu, where each product

has a non-negative real part and a zero imaginary part. Notice

that constraint (10b) is equivalent to

|Ψu|2
∑

u′∈U ,u′ 6=u

|Ψu,u′ |2 + σ2
≥ t1/quu − 1, ∀u ∈ U , (11)

which can be recast as,

Ψu ≥ βu

√

t
1/qu
u − 1, ∀u ∈ U , (12)

and

√
∑

u′∈U ,u′ 6=u

|Ψu,u′ |2 + σ2 ≤ βu, ∀u ∈ U , (13)

2Second-Order Cone Problems (SOCP) are convex-optimization problems
in which a linear function is minimized over the intersection of an affine set
and the product of second-order (quadratic) cones.



by introducing the slack variables βu’s and due to the fact

that both constraints (12) and (13) are active at the optimum

of problem (10). It can be verified that (10c) and (13)

follow the Linear Programming (LP) constraint expression

with generalized equalities/inequalities, which can be directly

written as Second-Order Constraints (SOCs)3 [15]. To deal

with the non-convex constraint (12), we further exploit the

sequential parametric convex-approximation approach in [18]

to approximate (12) as convex as presented in the following.

Firstly, (12) can be rewritten as,

Ψu ≥ βu

√

ξu, ∀u ∈ U , (14)

ξu + 1 ≥ t1/quu , ∀u ∈ U . (15)

Observe that, for a given φu, we have

βu

√

ξu ≤ φu

2
β2
u +

ξu
2φu

, (16)

which follows the inequality of arithmetic and geometric

means of φuβ
2
u and ξuφ

−1
u . The equality in (16) is achieved

when φu =
√
ξu/βu, and we get the equivalent form of

constraint (14) as,

Ψu − ξu
2φu

≥ φu

2
β2
u, ∀u ∈ U . (17)

Furthermore, without loss of generality, we scale qu’s in (7a)

such that qu > 1, ∀u ∈ U to make t
1/qu
u become concave.

Thanks to the concavity of tu’s, we can adopt the results

in [18] to replace the right side of (15) by its iterative first-

order approximation as,

t1/quu ≤ t(∗)
1/qu

u +
1

qu
t(∗)

(1/qu)−1

u

(

tu − t(∗)u

)

, (18)

where t
(∗)
u denotes the value of tu in the previous iteration.

From (13), (17), and (18), the relaxed-CBD optimization

problem in (8) can be finally recast as,

max
w

r
u,r∈R,u∈U

∏

u∈U

tu (19a)

s.t.
∑

u∈U

‖wr
u‖22 ≤ Pr, ∀r ∈ R, (19b)

(13), (17), (18). (19c)

Notice that the objective function and all the constraints

in (19) admit SOC representation (see [15], [17]). Conse-

quently, the resulting problem in (19) is a SOCP, which can

be solved efficiently and very fast using standard solvers such

as CPLEX [19] or MOSEK [20].

B. CBD Feasibility Problem

Here, the solution of the relaxed-CBD problem (8) which

was obtained via solving the equivalent SOCP problem in (19),

will be verified against the computing-capacity constraint

in (7c) to obtain finally the beamforming solution of the

original CBD problem cast in (7).

3In a SOC representation, the hyperbolic constraint ab ≥ c2, with a, b ≥ 0,
is equivalent to ||[(a− b) 2c]T ||2 ≤ a+ b.

Suppose that W̃ is the beamforming solution of prob-

lems (8). If W̃ satisfies the computing-resource constraint

(7c), i.e.,
∑

u∈U

Ru

(

S,W̃
)

≤ Ω, then W̃ is also the optimal

solution of (7). In this case, the WSRSU is limited by

the per-RRH power budget only, and not by the computing-

resource capacity of the VBS pool. On the other hand, when

the computing-resource constraint is violated, we need to

selectively drop the rates of some users. This can be done

via a greedy algorithm that keeps dropping the users that

have the smallest marginal utility function qu from the current

scheduling interval until the total data rate of all the scheduled

users satisfies the computing-resource constraint. Since the

optimal bearmformer design W is jointly calculated for all

users, dropping the rates of some users requires recalculating

the beamformers of all the RRHs.

Let {R∗
u ≥ 0, u ∈ U} be the user rates obtained after the

greedy-user-rate-dropping process is applied; the beamformer

design W that achieves these rates can be obtained via solving

the feasibility problem given below,

find {wr
u} , u ∈ U , r ∈ Vu (20a)

s.t.
∑

u∈U

‖wr
u‖22 ≤ Pr, ∀r ∈ R, (20b)

|Ψu|2
∑

u′∈U ,u′ 6=u

|Ψu,u′ |2 + σ2
≥ γ∗

u, ∀u ∈ U , (20c)

where γ∗
u = 2R

∗

u − 1.

The feasibility problem in (20) is not convex; however, by

exploiting its special structure, we can transform this problem

into a SOCP form, which can be solved efficiently. The trans-

formation is presented as follows. Firstly, let wr be the long

column vector such that w
r =

[

(wr
1)

T
, (wr

2)
T
, ...(wr

U )
T
]T

,

∀r ∈ R. Constraint (20b) can be rewritten in a SOC form as

‖wr‖2 ≤
√

Pr, ∀r ∈ R. (21)

Furthermore, (20c) is equivalent to
(

1 +
1

γ∗
u

)

|Ψu|2 ≥
∑

u′∈U

|Ψu,u′ |2 + σ2, ∀r ∈ R. (22)

Since h
r
uw

r
u ≥ 0, as we considered previously, we can take

the square root of both sides in (22), which yields,

Ψu

√

1 +
1

γ∗
u

≥
√
∑

u′∈U

|Ψu,u′ |2 + σ2 = ‖[Ψu,1, ...Ψu,U , σ]‖2.

(23)

It can be seen that (23) follows the SOC form; hence,

using (21) and (23), we are now ready to recast the feasibility

problem in (20) in the standard SOCP form as follows,

find {wr
u} , u ∈ U , r ∈ Vu (24a)

s.t. ‖wr‖2 ≤
√

Pr, ∀r ∈ R, (24b)

‖[Ψu,1, ...Ψu,U , σ]‖2 ≤ Ψu

√

1 +
1

γ∗
u

, (24c)



The solution W
∗ for (24) can be obtained using standard

SOCP techniques such as the interior-point methods [21] or

the SOCP solvers (e.g., CPLEX, MOSEK). In summary, the

optimal beamformer design of the CBD problem in (7) for

a given radio clustering decision S can be obtained by the

procedures described in Algorithm 1.

Algorithm 1 Cooperative Beamformer Design (CBD).

(1) Solve the SOCP problem in (19) to find W̃

(2) Verify constraint (7c)

• If
∑

u∈U

Ru

(

S,W̃
)

≤ Ω, return W
∗=W̃.

• Otherwise: Drop users’ rates using the greedy algorithm

– Repeat: Update Ru′

(

S,W̃
)

= Ru′

(

S,W̃
)

− τ ,

where τ is small decreasing step and

qu′=min {qu : qu > 0, u ∈ U}. Go to the next

user when Ru′

(

S,W̃
)

= 0.

– Until:
∑

u∈U

Ru

(

S,W̃
)

≤ Ω

– Solve feasibility problem (20), get W∗. Return

IV. JOINT DYNAMIC RADIO CLUSTERING AND

BEAMFORMING DESIGN

In the previous section, the CBD problem has been trans-

formed into an equivalent SOCP form. As a result, our con-

sidered Dynamic-RC problem in (6) can also be transformed

into a Mixed-Integer SOCP (MI-SOCP) problem with binary

variables sru’s. In a network with U users and R RRHs, there

are 2UR possible clustering patterns. The optimal solution to

the clustering decision can be found via exhaustive search

or using standard global optimization solvers. However, these

approaches usually have a complexity growing exponentially

with the problem size, which is not a practical approach.

Hence, in this section, we present a method to solve the

Dynamic-RC problem given in (6) by iteratively solving the

CBD problem using Algorithm 1. In particular, we take

advantage of the l1-norm reweighting technique to adjust the

approximation of the clustering variables after each iteration.

Firstly, given the relationship of sru and w
r
u, we can repre-

sent sru by l0-norm expression of wr
u as follows,

sru =
∥
∥
∥‖wr

u‖22
∥
∥
∥
0
. (25)

The above expression allows us to leverage the l1-norm

reweighting technique, which has been effectively applied in

the literature to approximate the l0-norm [16], i.e., ‖χ‖0 ≈
∑

k

ρkχk, where χ ∈ R
n and ρ1, ρ2, ..., ρn are positive weights.

With n = 1, by choosing χk = ‖wr
u‖22, we get sru ≈

ρru ‖wr
u‖22, in which the weight ρru is adjusted iteratively as

ρru =
1

‖ŵr
u‖22 + ǫ

, ∀u ∈ U , r ∈ R, (26)

with ‖ŵr

u
‖22 obtained from the previous iteration. In (26), the

parameter ǫ is a very small positive number introduced to

provide stability and to ensure that in case ‖wr
u‖22 = 0, it does

not strictly prohibit a non-zero estimate in the next iteration.

The Dynamic-RC problem in (6) – given now ρru’s – can

be rewritten as,

max
w

r
u,r∈R,u∈U

∑

u∈U

quRu (S,W) (27a)

s.t.
∑

u∈U

‖wr
u‖22 ≤ Pr, ∀r ∈ R, (27b)

∑

u∈U

Ru (S,W) ≤ Ω, (27c)

∑

u∈U

ρru ‖wr
u‖22 ≤ Nr. (27d)

Note that constraint (27d) can be written in SOC form as,
∥
∥
∥

[

w
r
1

√

ρr1, ...,w
r
U

√
ρrU

]∥
∥
∥
2
≤
√

Nr, ∀r ∈ R. (28)

Thus, the problem in (27) is similar to the CBD problem

in (7) with the additional SOC constraint (28), which can be

solved efficiently using Algorithm 1. To clarify the idea, we

present the iterative method to solve the Dynamic-RC problem

in Algorithm 2 below.

Algorithm 2 Dynamic Radio Cooperation via Iterative SOCP

(1) Initialization: set ρru = 0, ∀u ∈ U , r ∈ R
(2) Iteration:

a) Solve problem (27) with the current value of ρru using

Algorithm 1. In particular, Step (1) in Algorithm 1 will

solve problem (19) with the additional constraint (28).

b) Update the weights ρru’s using the solution ŵ
r
u’s ob-

tained in the previous step as,

ρru =
(

‖ŵr
u‖22 + ǫ

)−1

, ∀u ∈ U , r ∈ R. (29)

(3) Check convergence: Repeat Step (2) until convergence

or the max number of iterations is reached.

Note that RRH r is included in the serving cluster of user

u, i.e., r ∈ Vu, if the beamformer from RRH r to user

u, w
r
u, is nonzero. Since ρru = 0 in the first iteration in

Algorithm 2, the constraint (28) is automatically satisfied.

Thus, initially each RRH can be selected into more than Nr

clusters. After that, the weights {ρru} are updated inversely

proportional to the beamforming power as in (29). Therefore,

among the beamformers from all the RRHs to a target user,

those with highest powers are most likely to be identified

as nonzero in the next iteration. This allows for successive

better estimation of the clustering decision, i.e., identifying

the nonzero beamformers from RRHs to users. As will be

shown later in our simulation results, the beamforming powers

quickly converge within a few iterations.

Complexity analysis: The computational complexity of Al-

gorithm 2 mainly lies in Step (2a) where a SOCP problem

is solved. Assuming the same number of antennae Nr on the

RRHs, the total number of variables in this SOCP problem

is URNr, where U and R are the numbers of users and



RRHs. Thus, the computational complexity of the interior-

point method to solve such a SOCP problem is approximately

O
(

(URNr)
3.5
)

[21]. This is significantly advantageous for

a large network compared to the optimal design using ex-

isting solvers, which are characterized by a prohibitively

exponential-time complexity.

Furthermore, in practical networks, a RRH r should not be

included in the serving cluster of user u if r is very far away

from u. Assuming a network of hexagonal cells, we can pre-

select only the 7 RRHs having strongest channel coefficients to

user u to be the candidate serving cluster of user u, denoted as

Cu. After the pre-selection process, Algorithm 2 will identify

the optimal serving cluster Vu within the subsets of Cu. This

can significantly reduce the complexity of Algorithm 2 to

O
(

(7UNr)
3.5
)

. We adopt the pre-selection of serving cluster

candidates in the simulation and numerical results show that

this approach performs very close to the optimal solution.

V. PERFORMANCE EVALUATION

In this section, simulation results are presented to evaluate

the performance of our proposed Dynamic-RC algorithm. We

consider a network of hexagonal cells with a RRH in the

center of each cell. The neighboring RRHs are separated

1 Km apart from each other. We assume that all the wireless

channels in the system experience block fading such that

the channel coefficients stay constant during each scheduling

interval but can vary from interval to interval, i.e., the channel

coherence time is not shorter than the scheduling interval. We

assume that all the RRHs have the same number of transmit

antennae Nr and transmit power budget Pr. The channel

coefficients are calculated following the path-loss model, given

as L [dB] = 148.1 + 37.6 log10 d[km], and the log-normal

shadowing variance set to 8 dB. In addition, it is assumed

that the channel bandwidth B is 10 MHz, is reused across all

the users, and the noise spectral density is −100 dBm/Hz.

WSRSU performance: Firstly, we consider a system with-

out the computing-resource constraint and evaluate the perfor-

mance of the four radio cooperation algorithms below.

• Optimal: The WSRSU of the optimal scheme is obtained

by using the solver MOSEK to solve the equivalent MI-

SOCP presentation of problem (6).

• Dynamic-RC: Our proposed dynamic radio cooperation,

where the solutions are obtained from our iterative, low-

complexity Algorithm 2.

• CVSINR: A downlink cooperation scheme proposed in

[12] where the cluster for each user is formed heuris-

tically based on the relative signal strength and the

clustered virtual SINR (CVSINR) algorithm is used to

design the beamforming vectors.

• Greedy: A greedy clustering algorithm proposed in [14],

which solves an equivalent set covering problem to

select the set of non-overlapping base station clusters.

This scheme uses zero-forcing as the criterion to design

beamformers and a greedy algorithm is used for user

scheduling.

     
Fig. 3. Different user distribution scenarios: Scenario 1 (uniform) with all
medium (loaded) cells; Scenario 2 (uneven), light and heavy (loaded) cells are
intermixed together; Scenario 3 (extremely uneven), heavy cells are grouped
together, and the heavy cell group is surrounded by light cells.

We evaluate the four schemes above in a network of 16

cells with three different user distribution scenarios as shown

in Fig. 3. In particular, Scenario 1 consists of all medium

(loaded) cells where users are distributed uniformly over all

the cells; Scenarios 2 and Scenarios 3 consist of light and

heavy (loaded) cells, however the heavy cells are intermixed

with light cells in Scenarios 2 to represent micro-tidal effect

while they are grouped together in Scenarios 3 to represent the

macro-tidal effect. In our simulation, we perform 500 drops,

in each drop 32 users are placed randomly in the network with

1 user in a light cell, 2 users in a medium cell and 3 users

in a heavy cell. The utility marginal functions qu’s are chosen

randomly such that 0 < qu ≤ 1, ∀u ∈ U .

Fig. 2-(a), (b), (c) plot the WSRSU performance of the

four considered radio cooperation schemes in Scenario- 1, 2,

3, respectively. It can be seen that our proposed Dynamic-

RC scheme and the Optimal scheme significantly outperform

the CVSINR and Greedy schemes in all three scenarios. This

is because the heuristic clustering of the RRHs in the later

two schemes is suboptimal, plus their beamforming design

algorithms only aim to minimize the intra-cluster interference

but not the inter-cluster interference. On the other hand, our

proposed Dynamic-RC scheme takes into account the global

network condition that is available at the VBS pool, which

provides better clustering decision and beamforming design.

Compared to the optimal scheme, our proposed Dynamic-

RC strategy via Algorithm 2 shows a small loss in WSRSU

performance but has a significant advantage in reducing the

execution time. In fact, in our simulation for the considered

system configuration (U=32, R=16), MOSEK solver takes

more than 100 s to obtain the optimal solution of the MI-

SOCP problem, while each iteration in Algorithm 2 takes less

than a second and the algorithm overall converges within 15
iterations.

Impact of Maximum Cluster Size: Fig. 4-(a), (b) plot the

CDF of average user rate (w.r.t. 32 users) achieved by

Dynamic-RC scheme with different choices of the maximum

cluster size, Vmax. In each case, only Vmax RRHs having

the strongest channel coefficients to a user are chosen to

be the candidates of that user’s serving cluster. This pre-

selection is done before running Algorithm 2 to finally find

the best serving cluster for each user. When Vmax = 1, there
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Fig. 2. Weighted Sum-Rate System Utility (WSRSU) of a C-RAN downlink system using different radio cooperation schemes, evaluating on three different
user distribution scenarios. (a)-Scenario 1, (b)-Scenario 2, (c)-Scenario 3.

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

(a) Average User Rate (bits/s/Hz) − Scenario 2

C
D

F

Vmax = 1 cell

Vmax = 3 cells

Vmax = 5 cells

Vmax = 7 cells

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

(b) Average User Rate (bits/s/Hz) − Scenario 3

C
D

F Vmax = 1 cell

Vmax = 3 cells

Vmax = 5 cells

Vmax = 7 cells

Fig. 4. CDF of Average User Rate obtained by Dynamic-RC scheme with
different numbers of the maximum cluster size. (Pr = 10 dBm)

is no cooperation among the RRHs. The results in Fig. 4-

(a), (b) are obtained by performing 500 drops on Scenario

2 and Scenario 3, respectively, with Pr =10dBm. The utility

marginal functions are updated in each drop according to the

proportional fairness criterion, i.e., qu = 1/R̄u where R̄u

is the long term average data rate for user u ∈ U . It can

be seen that the improvement in average user rate due to

larger cluster size in Scenario 3 (macro-tidal effect) is greater

than that of Scenario 2 (micro-tidal effect). For example, the

dynamic cooperation scheme with Vmax = 3, 5, 7 provides

130%, 137%, and 138.6% gain, respectively, for the 60th-

percentile average user rate over the non-cooperation scheme

(Vmax = 1), in Scenario 2; while the corresponding gains in

Scenario 3 are 145%, 159%, and 162%, respectively. Although

not included here due to space limitation, we observe that

when Vmax exceeds 7 cells, the additional gain is negligible.

Benefits of Computing Resource Sharing: To evaluate the

impact of the computing-resource constraint on the system

performance, Fig. 5 compares the WSRSU performance of our

considered system with the centralized computing-resource

constraint, as expressed in (4), versus a conventional system

with a distributed computing-resource constraint, as expressed

in (5). In particular, we consider a network of 4 cells with 2

users in each cells in random locations and qu’s are chosen

randomly. For a fair comparison, we set arg Γ(C) to 400 Mbps
and arg Γ(Cr) to 100 Mbps, and ran the Dynamic-RC scheme

in Algorithm 2 on both systems. Note that, in this setting,

each of the 4 RRHs in the distributed system is provisioned to

process maximum 100 Mbps of user baseband traffic at a time,

while in the centralized system the VBS pool is provisioned

to process maximum 400 Mbps baseband traffic at a time. We

say that the computing resource is saturated in each system

when the achieved sum-rate (SR) of all the users reaches the

maximum provisioned processing traffic rate. As the transmit

power increases, observe in Fig. 5 that the computing capacity

of the VBS pool in the centralized system saturates earlier

than the total computing capacity of the distributed system

does (when the computing capacity is saturated at all the

RRHs). In fact, the WSRSU and SR of the distributed system

saturate almost at the same time while the WSRSU of the

centralized system continues to increase after the saturation

point (of the SR), and is significantly higher (up to 250%
gain) than that of the distributed system. This demonstrates

the great potential gains of C-RANs using our Dynamic-RC

scheme over the conventional distributed RANs in terms of

WSRSU, computing resource and transmit power utilization.

Convergence Behavior of Algorithm 2: Fig. 6 illustrates

the convergence behavior of Algorithm 2 in identifying the

RRH cluster for a user. We choose randomly a user u∗ and

monitor the beamforming powers from the 7 candidate RRHs

for it’s serving cluster. The evolution of the beamforming

powers in dBm/Hz from these RRHs to user u∗, calculated

as ‖wr
u∗‖22, r = 1, ..., 7, is shown in Fig. 6. Observe that

after the 4-th iteration, only the beamformers from RRH 1

and RRH 4 maintain a non-trivial power, while the rest are

forced to almost zero. In this case, the optimal serving cluster

of user u∗ is identified to be Vu∗ = {RRH 1,RRH 4} within

only a few iterations, which demonstrates the efficiency of

our proposed Dynamic-RC algorithm in quickly making the

clustering decision and beamforming design.
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VI. CONCLUSIONS AND FUTURE WORK

We proposed a novel dynamic radio cooperation strategy

for Cloud Radio Access Networks (C-RANs) that takes ad-

vantage of real-time communication and computing-resource

sharing among Virtual Base Stations (VBSs). The underlying

optimization problem was formulated as a mixed-integer non-

linear program, which is NP-hard. Our approach transforms

the original problem into a Mixed-Integer Second-Order Cone

Program (MI-SOCP) that is efficiently solved using a novel

low-complexity, iterative algorithm. Simulation results showed

that our low-complexity algorithm provides close-to-optimal

performance in terms of weighted sum-rate system utility

while significantly outperforming conventional radio cluster-

ing and beamforming schemes.

Future Work: The goal of our future work is to address

the system-related issues and evaluate the feasibility and

performance of the proposed strategy in a practical system.

In fact, we are implementing a C-RAN testbed which consists

of an open-source LTE platform OpenAirInterface running on

a general-purpose desktop server to realize the VBS pool, and

a number of USRP B210/X310 boards to realize the RRHs.
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