
Energy-Aware Application-Centric VM Allocation
for HPC Workloads

H. Viswanathan, E.K. Lee, I. Rodero, D. Pompili, M. Parashar
NSF Center for Autonomic Computing
Rutgers University, New Brunswick, NJ

{hari viswanathan, eunkyung lee, irodero, pompili, parashar}@cac.rutgers.edu

M. Gamell
Open University of Catalonia

Barcelona, Spain
marcgamell@uoc.edu

Abstract—Virtualized datacenters and clouds are being in-
creasingly considered for traditional High-Performance Com-
puting (HPC) workloads that have typically targeted Grids and
conventional HPC platforms. However, maximizing energy effi-
ciency, cost-effectiveness, and utilization of datacenter resources
while ensuring performance and other Quality of Service (QoS)
guarantees for HPC applications requires careful consideration
of important and extremely challenging tradeoffs.

An innovative application-centric energy-aware strategy for
Virtual Machine (VM) allocation is presented. The proposed
strategy ensures high resource utilization and energy efficiency
through VM consolidation while satisfying application QoS.
While existing VM allocation solutions are aimed at satisfying
only the resource utilization requirements of applications along
only one dimension (CPU utilization), the proposed approach
is more generic as it employs knowledge obtained through
application profiling along multiple dimensions. The results of
our evaluation show that the proposed VM allocation strategy
enables significant reduction either in energy consumption or in
execution time, depending on the optimization goals.

I. INTRODUCTION

Virtualized datacenters and clouds provide the abstraction
of nearly-unlimited computing resources through the elastic
use of consolidated resource pools. These platforms are be-
ing increasingly considered for traditional High-Performance
Computing (HPC) workloads that have typically targeted Grids
and conventional HPC platforms. The scale and overall com-
plexity of modern datacenters are growing at an alarming rate
(current datacenters contain tens to hundreds of thousands of
computing and storage devices running complex applications)
and, hence, energy consumption, heat generation, and cooling
requirements have become critical concerns both in terms of
the growing operating costs as well as their environmental and
societal impacts [1]. Addressing these concerns while balanc-
ing multiple requirements, including performance, Quality of
Service (QoS), and reliability, is thus an important task as
it can help service providers increase profitability by reducing
operational costs and environmental impact without increasing
the number of Service Level Agreement (SLA) violations.

However, maximizing energy efficiency, cost effectiveness,
and utilization of datacenter resources while ensuring perfor-
mance and other QoS guarantees for HPC applications requires
careful consideration of important and extremely challenging
tradeoffs. These include, for example, the tradeoff between the
need to proactively provision and allocate Virtual Machines

(VMs) on datacenter resources (requiring prior knowledge
of resource requirements) and the need to accommodate the
heterogeneous and dynamic resource demands and runtimes of
these applications. In virtualized HPC datacenters, one or more
VMs are created for every workload or job request and each
VM is provisioned with resources that sufficiently satisfy the
workload QoS requirements, which are based on SLAs. Once
VMs are provisioned, they have to be allocated to servers.

The problem of VM allocation arises in the following two
situations: initial mapping of VMs to physical servers and
migration of VMs from one physical server to another either
in anticipation of (proactive) [2] or in response to (reac-
tive) undesired thermal behavior (e.g., equipment overheating)
and/or SLA violations. In our previous work [3], we studied
different reactive thermal management techniques (including
VM migration) for virtualized datacenters from the energy
perspective. We concluded that an application-centric energy-
aware allocation model for VMs can help reduce the number
of SLA violations, avoid undesired thermal behavior, and
minimize the energy costs by improving resource utilization
and by avoiding costly VM migrations. In this paper, we
present an innovative application-centric energy-aware strategy
for VM allocation that ensures high resource utilization and
energy efficiency through VM consolidation while satisfying
application QoS. Minimizing the number of servers that are
in operation (by increasing the utilization of active computing
resources) through VM consolidation will help reduce the
energy consumption for computation and, hence, the total
energy consumption of a datacenter.

Along with the growing operational costs associated to
energy consumption for computing as well as cooling, over-
provisioning of VM resources based on peak application
demand is another major issue for cloud service providers
as it makes VM consolidation more difficult and reduces
efficiency of resource utilization [4]. Static VM allocation
techniques based on bin-packing heuristics [5] as well as
dynamic techniques (for handling variations in VM’s utiliza-
tion requirements) based on live VM migrations [6], [7], [8],
[2], [3] (both proactive and reactive) and dynamic server
resource provisioning [9], [10], are aimed at satisfying only the
resource utilization requirement of an application along only
one dimension (CPU utilization). In contrast, our approach to
VM consolidation is application centric as in [11], [12], [13]

and, in addition, considers the application’s resource utilization
requirements along multiple dimensions, i.e., CPU, memory,
disk I/O, and network subsystems. Application awareness,
which in our solution is acquired through HPC benchmarks
profiling, enables the VM allocation algorithm to co-locate
compatible VMs on servers during consolidation, thus mini-
mizing the usual adverse effects of resource contention and
virtualization overhead on application performance while re-
taining the benefits of server consolidation.

Our application-centric proactive VM allocation based on
an empirical model can significantly contribute to energy
efficiency (average 12% reduction in energy consumption
compared to the traditional first-fit approach with and without
VM multiplexing) and/or optimization of the system perfor-
mance (18% shorter execution times compared to the tradi-
tional first-fit approach due to fewer contentions for resources)
depending on the optimization goals. The optimization goal
can be minimization of energy consumption, minimization of
the execution time, or a weighted combination of both. The
results we obtained encourage us to extend our work in future
i) to consider thermal efficiency in VM allocation, and ii) to
support heterogeneous server hardware.

The main contributions of this paper are summarized as
follows: we (i) create a VM allocation model empirically from
data obtained by running HPC workloads extensively on a
system with a general-purpose rack server configuration, (ii)
develop a proactive application-centric VM allocation algo-
rithm that uses this empirical model, (iii) validate our approach
through extensive simulations and quantify performance gains
in terms of execution time and energy consumption.

The rest of the paper is organized as follows. In Sect. II,
we discuss background and related work. In Sect. III, we
describe our empirical VM allocation model and present our
VM allocation algorithm that uses this model. In Sect. IV,
we discuss our evaluation methodology as well as the results
we obtained. Finally, in Sect. V, we conclude the paper and
outline directions for future work.

II. RELATED WORK

Typically, VM consolidation techniques involve filling up
physical servers with VMs (using heuristics like first fit,
best fit, etc.) until high server subsystem (CPU, memory,
disk storage, network interface) utilization is achieved while
still ensuring that the individual VM’s subsystem utilization
requirements are met. Apparao et al. [14] present a study on
the impact of consolidating several applications on a single
server running Xen. Server resource provisioning or VM
allocation can be static or dynamic. It is static when a VM
is being allocated physical resources for the first time and the
problem of VM allocation reduces to a deterministic or sta-
tistical bin/vector-packing problem [5] depending on how the
VM utilization requirement is characterized. In the dynamic
case, VMs are first consolidated using any simple bin-packing
heuristic and the variations in VM’s utilization requirements
are handled through live VM migrations [6], [15], [7], [8],

[2] or through dynamic server resource provisioning [9], [10]
whenever necessary.

As mentioned earlier, VM migrations are performed either
reactively [3] or proactively [2] in such a way as to avoid
equipment overheating and/or SLA violations. Kochut et al.
[16] provide an estimate of the expected improvement in re-
sponse time due to a migration decision and determines which
VMs are best candidates to be placed together. In [8], the au-
thors determine the order in which the VM migrations should
occur in addition to which VMs to migrate so to minimize
the impact on application performance in terms of execution
time. Stoess et al. [6] developed a multi-tiered infrastructure
that enables intra-node virtual CPU (vCPU) migration and
inter-node live VM migration for workload consolidation and
thermal balancing. To enable power-aware VM migration,
Verma et al. [15], [7] investigated job allocation for HPC
with the focus on CPU and memory subsystems. Voorsluys
et al. [17] present a performance evaluation on the effects
of live migration of virtual machines on the performance of
applications running inside Xen VMs.

On-demand server resource provisioning techniques monitor
the workloads on a set of VMs and adjust the instantaneous
resources availed by VMs. Song et al. [18] propose an adaptive
and dynamic scheme for adjusting resources (specifically, CPU
and memory) among virtual machines on a single server to
share the physical resources efficiently. Menasce et al. [9] pro-
posed an autonomic controller and showed how it can be used
to dynamically allocate CPUs in virtualized environments with
varying workload levels by optimizing a global utility function.
Nathuji et al. [10] consider the heterogeneity of the underlying
platforms to efficiently map the workloads to the best fitting
platforms. In particular, they consider different combinations
of processor architecture and memory subsystem. Recently,
Meng et al. [19] exploited statistical multiplexing of VMs
to enable joint VM provisioning and consolidation based on
aggregated capacity needs. However, all the aforementioned
VM allocation techniques are aimed at satisfying the resource
utilization level guarantees and do not consider the application-
level performance (execution time). In contrast, as mentioned
earlier, we follow an application-centric and energy-aware
approach to VM allocation.

Recently, researchers have started to focus on
application/workload-aware VM consolidation that not
only achieves all the objectives as its traditional resource-
utilization- and energy-aware counterparts but also ensures
minimum degradation to application performance due to
resource multiplexing and virtualization overhead [11], [12],
[13]. In other words, application-centric VM allocation is not
only aimed at energy-efficient VM consolidation but also at
co-locating VMs that are “compatible” so that further gains
can be achieved in terms of energy savings and overhead
for virtualization. An application running on a VM and,
hence, a VM itself can be labeled CPU-, memory-, storage-,
or network/communication-intensive or a combination of
those. For example, when only CPU-intensive VMs that do
not utilize the disk storage and network interface much are

consolidated on a server, additional energy savings can be
obtained by shutting down or operating the under-utilized
subsystems in low power states as we have shown in [20].
In [11], [12], the authors propose to consolidate VMs with
similar memory content on the same hosts for higher memory
sharing and Govindan et al. [13] propose to consolidate based
on inter-process communication patterns.

In contrast, we follow a generic approach to smart co-
location by considering the compatibility among all types
of applications or VMs (CPU-, memory-, disk I/O-, and/or
network-intensive). We achieve this by running HPC bench-
mark workloads exhaustively (all possible allocations based
on number and type of VMs) on a system with a general-
purpose rack server configuration and deriving an empirical
model from the raw data for average application performance
(execution time), energy consumption, and their tradeoffs. We
store the model in a database and exploit it for proactive
application-aware VM consolidation. In the following sections,
we explain our VM allocation model and discuss the results
of our experiments.

III. VM ALLOCATION MODEL AND IMPLEMENTATION

As discussed in the previous section, in this paper, we study
how to increase the resource utilization (and, hence, the energy
efficiency), i.e., how to maximize the system throughput by
allocating the maximum possible number of VMs per node,
without penalizing the applications’ performance. In other
words, the objective of this work is to find out the trade-
off between the applications’ performance and the overall
datacenter energy consumption when different number and
combinations of a variety of VMs are allocated to a physical
server. The performance of an application is measured in
terms of its average execution time, which is defined as the
ratio of the maximum application execution time when a
number of VMs are running simultaneously to the number of
VMs. This metric gives an insight into the gains obtained by
multiplexing VMs (i.e., running them in parallel) over running
them sequentially one after the other. It is important to note
that by considering the average execution time of VMs we do
not focus on minimizing the execution time of each application
individually but we strive to improve the QoS by minimizing
the number of SLA violations.

As the best number of VMs per node may be different for
different application types (based on their usage of different
subsystems), we consider the applications’ profiles. Specifi-
cally, we focus on finding the best partition and allocation
of VMs when the different VMs run applications of different
types. In this paper, we assume that the applications’ profiles
are known in advance (e.g., specified by the user in the job
definition). To find the allocation for a set of VMs that best
matches energy efficiency/performance goals while ensuring
QoS guarantees, we rely on a model based on empirical
data from experiments. We have developed a methodology
composed of the following steps:

1) Profile a comprehensive set of applications (standard
HPC benchmark workloads);

2) Run benchmarks exhaustively (all possible allocations
based on number of VMs and application type) and
collect data;

3) Create a model (database) with all the data collected
during the benchmarking process, including execution
time and energy consumed;

4) Implement an algorithm that, given the i) model, ii) an
optimization goal (either minimize energy consumption
or minimize execution time), iii) a set of servers with
their current allocations, and iv) a set of VMs along
with their characteristics, returns a set of partitions and
allocations of the VMs in the servers.

A. Application profiling

The methodology involves profiling an application’s behav-
ior as I/O-intensive, memory-intensive, and/or CPU-intensive
based on its usage of different subsystems. Most of the
standard profiling utilities are designed for comparing com-
putation efficiency of the applications on systems on which
they are running and, therefore, their outputs are not very
useful from the subsystem usage point of view. We profiled
standard HPC benchmarks with respect to their behaviors
and subsystem usage on individual servers. To collect run-
time OS-level metrics for CPU utilization, hard disk I/O, and
network I/O we used different mechanisms such as “mpstat”,
“iostat”, “netstat” or “PowerTOP” from Intel. We also patched
the Linux kernel 2.6.18 with “perfctr” so that we can read
hardware performance counters on-line with relatively small
overhead. We instrumented the applications with PAPI and, as
the server architecture does not support total memory LD/ST
counter, we counted the number of L2 cache misses, which
indicates (approximately) the activity of memory.

We chose a comprehensive set of HPC benchmark work-
loads. Each workload stresses one or more of the following
subsystems - CPU, memory, disk (storage), and network
interface. They can be classified as:

∙ CPU intensive, e.g., HPL Linpack, which solves a
(random) dense linear system in double precision arith-
metic, and FFTW, which computes the discrete Fourier
transform.

∙ Memory intensive, e.g., sysbench, which is a multi-
threaded benchmark developed originally to evaluate sys-
tems running a database under intensive load.

∙ I/O intensive, e.g., b_eff_io, which is a MPI-I/O
application, and bonnie++, which focuses on hard-drive
and file-system performance.

An application usually demands the services of a given
subsystem in discrete time windows. However, if the average
demand for a subsystem X is significant, we consider the
application to be X-intensive. Figure 1(left) shows different
subsystem utilizations of a CPU-intensive workload. Note
that an application can also be deemed to be intensive along
multiple dimensions if the demand for resources from multiple
subsystems are significant. Figure 1(right) shows different
subsystem utilizations of a network- and CPU- intensive work-
load. The utilization of a particular subsystem by two different

0

20

40

60

80

100

0 200 400 600 800 1000 1200

Time (s)

C
P
U

 U
ti

liz
a
ti

o
n
 (

%
)

0

20

40

60

80

100

0 200 400 600 800 1000 1200

Time (s)

N
e
tw

o
rk

 U
ti

liz
a
ti

o
n
 (

%
)

0

20

40

60

80

100

0 200 400 600 800 1000 1200
Time (s)

C
P
U

 U
ti

liz
a
ti

o
n
 (

%
)

0

20

40

60

80

100

0 200 400 600 800 1000 1200
Time (s)

N
e
tw

o
rk

 U
ti

liz
a
ti

o
n
 (

%
)

Fig. 1: Sub-system utilization over time for a CPU-intensive
workload (left) and a CPU- cum network-intensive workload
(right)

VMs running applications may either overlap (resulting in
contention) or not overlap (be contention free).

B. Benchmarking

The benchmarking was conducted using Dell servers, each
with a Intel quad-core Xeon X3220 processors, 4GB of
memory, two hard disks, and two 1Gb Ethernet interfaces.
This is intended to represent a general-purpose rack server
configuration, widely used in virtualized datacenters. The
servers run CentOS operating system based on a patched
Linux kernel (2.6.18) running Xen hypervisor version 3.1. To
empirically measure the instantaneous power consumption of
the servers we used a Watts Up? .NET power meter. This
power meter has an accuracy of 1.5% of the measured power
with sampling rate of 1Hz. The meter was mounted between
the wall power outlet and the server. We estimate the consumed
energy by integrating the actual power measures over time. In
addition to using a single server type, we made some additional
assumptions, such as a single process per VM, to reduce the
complexity. To run multiple processes (e.g., MPI applications)
multiple VMs are required.

In order to acquire sufficient data to create a VM allocation
model, firstly, we conducted a set of base tests that consolidate
different VM instances running applications of the same type
in a single server. This allowed us to find out, on the one
hand, the optimal scenarios to either maximize performance
or minimize energy consumption and, on the other hand, the
maximum number of VMs that can be consolidated in a single
server without adversely impacting energy consumption and
the applications’ performance. We ran the base experiments
with different number of VMs (up to 16) running the same
application type for each of the application’s profiles.

For example, Figure 2 shows the average execution time of
the FFTW benchmark (single thread, with long initialization
phase) when the number of VMs in a single physical server
is increased. In this case, the shortest average execution time
(the optimal scenario) is obtained with 9 VMs running on a
single server. With more than 11 VMs the average execution

0 2 4 6 8 10 12
50

100

150

200

250

300

E
xe

cu
tio

n
tim

e
/ N

um
be

r
V

M
s

(s
)

Number VMs

Fig. 2: Execution times of the FFTW benchmark

time increases significantly. This means that when more than
11 VMs running this FFTW benchmark are co-located in
a physical server, the average execution time of a VM is
comparable to the average execution time of a VM when a set
of benchmarks are executed sequentially one after the other.

From the base tests, we obtained a set of optimal scenarios
(OS), i.e., optimal number of VMs for the shortest average
execution times (OSP) and for minimum energy consumption
(OSE). Table I summarizes the parameters that will be most
useful for the experiments combining different workload types.
For example, OSPC denotes the optimal number of CPU-
intensive VMs that can be run simultaneously on a single
physical server so that the average execution time of VMs is
the shortest. TC, TM and TI are the execution times for a single
CPU-, memory, and I/O-intensive workload, respectively.

TABLE I: Summary of parameters obtained in base tests

Test
CPU Memory I/O

#VMs that optimize performance OSPC OSPM OSPI
#VMs that optimize energy OSEC OSEM OSEI
Run time of single test on 1 VM TC TM TI

In order to reduce the number of combinations, we de-
fine the following parameters based on the number of VMs
used in the optimal scenarios: OSC=max(OSPC, OSEC),
OSM=max(OSPM, OSEM) and OSI=max(OSPI, OSEI).

The second part of the benchmarking consists of running
all the possible combinations of workload types with different
number of VMs. Considering the limitations introduced previ-
ously, the following number of experiments were required:
(OSC+1)⋅(OSM+1)⋅(OSI+1)-(1+OSC+OSM+OSI). The
combinations excluded are those that do not require any VM
of each workload type and the base tests. The experiments
took several days to be completed and they were conducted
using a platform that we developed to automatically run the
benchmarks and process the data.

C. Database

In order to make our model available for proactive VM
consolidation, the information collected from the benchmark-
ing (base and combined tests) was stored in a database. As
the amount of information was manageable using text files,
we used a plain-text file with comma-separated values (CSV)
instead of an actual database management system. Table II
summarizes the information contained in the database.

TABLE II: Summary of the information stored in the database

Field Description
Ncpu #VMs running a CPU-intensive benchmark
Nmem #VMs running a Memory-intensive benchmark
Nio #VMs running an I/O-intensive benchmark
Time Total execution time of the outcome (seconds)
avgTimeVM Average execution time for each VM
(for each VM) (avgTimeVM = Time / (Ncpu+Nmem+Nio))
Energy Energy consumed to run the outcome (Joules)
MaxPower Maximum power dissipation measured (Watts)
EDP Energy Delay Product (Joules×seconds)

In addition to the information listed in Table II, we store
other relevant information from the base experiments such as
the number of VMs of optimal scenarios (e.g., OSC, OSM,
OSI) and reference execution times (e.g., TC, TM, TI), in
an auxiliary file. We do not include any information from
the system because in this work we are focused on a single
platform. However, if multiple server configurations are used,
we should include system characteristics such as number of
CPUs, amount of memory, reference performance index, etc.
As the registers of the database are accessed using binary
search, the searching cost is $(!"#($%& '()'))). Therefore,
we sorted (in the ascending order) the registers of the database
by a searching key, which is composed of the parameters that
indicate the number of VMs of each workload type (Ncpu,
Nmem, Nio).

D. VM allocation algorithm

Our VM allocation algorithm takes advantage of the model
(in the form of a database) that is described above. It has
two main objectives, (i) minimize energy consumption and (ii)
maximize the performance (i.e., minimize workload execution
time). As these are two conflicting objectives, we use a
parameter * to adjust the possible trade-off between energy
efficiency and performance; * is defined as follows: * ∈
ℛ∩* ∈ (0, . . . , 1) and emphasizes the energy efficiency goal
while 1-* emphasizes performance. For example, if *=0.7 the
algorithm will try to minimize the energy consumption first
(70% of preference) and then the performance but with less
intensity (30% of preference).

The allocation algorithm focuses on the objectives discussed
above and does not consider specific policies such as those
based on priorities. The input parameters of the algorithm are:
(i) the database with the allocation model, (ii) values from the
base experiments such as OSC/OSM/OSI (can be extracted
from the auxiliary file), (iii) a set of VMs and the application’s
profile and maximum execution time (QoS guarantees) for

each of them, and (iv) the optimization goal (*). The algorithm
returns the allocation of VMs that best matches the input
optimization goal while satisfying the QoS constraints. The
algorithm can be relaxed by disregarding the QoS guarantees
but it might be not acceptable for production system.

To find the best partitions of the input set of VMs for
allocation in individual servers, we used a brute-force search
algorithm over the servers with their current VM allocations.
Specifically, it computes the estimated execution time and
energy consumption for each partition of the initial set using
the allocation algorithm described above. As the number of
partitions of a set might be large, we used the search algorithm
discussed in [21], which is efficient in terms of complexity.
If two partitions have the same rank in different servers, we
select the first server of the list. Figure 3 shows the main
components and control flow of our VM allocation algorithm.

read
model database

order
loaded registers

read
auxiliary file

load
internal values

parsing
optimization goals

PLANNING PHASE

BRUTE-FORCE PHASE

FINAL PHASE
select optimal

analyze execution
time and energy

create partition
from VM set

optimal
so far?

partitions
left?

optimal=current

yes no

yes
no

Fig. 3: VM allocation algorithm

IV. EVALUATION

In this section, we evaluate the possible energy savings and
performance tradeoffs that can be achieved at the datacen-
ter level using our proactive VM allocation. We conducted
simulations with traces of parallel workloads along with the
algorithm described in the previous section.

A B C

35% 15% 50%

t

VM1 - CPU

VM2 - CPU

VM3 - CPU

VM4 - MEM

Exec Time (s) 1,200 1,800 1,000

Energy (KJ) 15 20 12

A B C

Fig. 4: Possible VM allocation outcome over time

A. Methodology

We used workload traces from real HPC production systems
to evaluate the performance and energy efficiency of the
proposed approach. As not all of the required information
cannot be obtained from these traces, some data manipulation
was needed as explained in the following subsection. The
simulations are based on the empirical data obtained from
real experiments to create the model described in the previous
section. Therefore, in our simulations we used a system model
composed of several servers with the same characteristics of
our real testbed. To compute the estimated execution times and
energy consumption we used the information of our allocation
model. Given a specific partition with a subset of VMs running
their associated applications types, we lookup in our model
database and use the matching values proportionally. As VM
allocations may vary over time, we compute the estimated
execution time and energy consumption with the weighted
average of the values associated to each interval of time. We
also assume a fixed power dissipation of 125 W when a server
is idle.

Figure 4 illustrates a possible VM allocation outcome
over time for a server. The application type associated with
each VM is also shown. Different time intervals (A, B, C)
have different VM allocations and, therefore, the estimated
execution time of the applications and energy consumption
for each interval will be different. For example, the execution
time of VM1 will be computed considering the relative weight
of each allocation (70% of allocation A and 30% of allocation
B) as follows: !"#$% &'#! "1 = 0.7⋅1200)+0.3⋅1800) = 1380)

and the energy consumption for the whole outcome will be:
!*#+,- = 0.35 ⋅ 15./ + 0.15 ⋅ 20./ + 0.5 ⋅ 12./ = 14.25./ .
As we focus on studying the impact of VM allocation on
the performance/energy efficiency we do not consider the
overhead for scheduling and resource provisioning.

B. Workloads

As mentioned earlier, we used production workload traces
from the Grid Observatory [22], which collects, publishes, and
analyzes logs on the behavior of the EGEE Grid [23]. As
the traces are in different formats and include data that are
not useful for our purpose, they were pre-processed before
being input to the simulations. First, we converted the input
traces to the Standard Workload Format (SWF) [24]. As they
are usually composed of multiple files we combined them

into a single file. Then, we cleaned the trace, now in SWF
format, in order to eliminate failed jobs, cancelled jobs and
anomalies. As the traces found from different systems did not
provide all the information needed for our analysis, we needed
to complete them using a model based on the benchmarking
of HPC applications (see Sect. III). We randomly assigned
one of the possible benchmark profiles to each request in the
input trace, following a uniform distribution by bursts. The
bursts of job requests were sized (randomly) from 1 to 5 job
requests. These traces are intended to illustrate the submission
of scientific HPC workflows, which are composed of sets of
jobs with the same resource requirements.

As the EGEE Grid is a large-scale heterogeneous distributed
system composed of a large number of nodes, we scaled and
adapted the job requests to the characteristics of our system
model and evaluation methodology. Specifically, we assigned 1
to 4 VMs per job request rather than the original CPU demand
and we defined the QoS requirements (maximum in response
time) per application type and not for each specific request.

C. Metrics

We evaluate the impact of our approach in terms of the
following metrics: makespan (workload execution time in
seconds, which is the difference between the earliest time of
submission of any of the workload tasks, and the latest time
of completion of any of its tasks), energy consumption (in
Joules), and percentage of SLA violations. The number of SLA
violations were calculated by summing the number of missed
deadlines of all applications. The deadline here refers to the
maximum response time as specified by the QoS requirements.

D. Strategies

We have conducted our simulations using different alloca-
tion strategies that have different goals. Specifically, we have
evaluated the following allocation strategies:

∙ FIRST-FIT (FF), in which job requests are allocated
following the first-fit policy based on CPU slots. It means
that an incoming job request is allocated to the first avail-
able server until the number of allocated VMs is equal
to the number of CPUs (VM multiplexing on CPUs is
not allowed). FIRST-FIT-2 (FF-2) and FIRST-FIT-3 (FF-
3) are two variants of FIRST-FIT that allow multiplexing
up to 2 and 3 VMs on each CPU, respectively.

∙ PROACTIVE, in which job requests are allocated to
servers following the algorithm described in Sect. III. We
consider the following variations:

– *=1 (PA-1): the goal is minimizing the energy con-
sumed;

– *=0 (PA-0): the goal is minimizing the execution
time;

– *=0.5 (PA-0.5): the goal is finding the best tradeoff
between execution time and energy consumption.

E. Results

Figures 5, 6 and 7 show the results obtained using the
VM allocation strategies and workloads traces described pre-
viously. Furthermore, in order to control the pressure of the

FF FF−2 FF−3 PA−0 PA−1 PA−0.5
1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3
x 10

4

Strategy

M
ak

es
pa

n
(s

)

LARGER
SMALLER

Fig. 5: Makespan (s)

FF FF−2 FF−3 PA−0 PA−1 PA−0.5
2.5

3

3.5

4
x 10

8

Strategy

E
ne

rg
y

C
on

su
m

pt
io

n
(J

)

LARGER
SMALLER

Fig. 6: Energy consumption (J)

system load, we modeled two different Clouds of different
sizes rather than using different input traces with different
arrival rates. The SMALLER Cloud system is the reference
one and the LARGER Cloud system is over-dimensioned (15%
approximately), which means that the former one is expected
to be more loaded than the latter. The input trace used in the
simulations requests a total of 10,000 VMs.

As we can observe in Figure 5, the PROACTIVE strategy
can provide up to 18% shorter execution times. This is
explained due to the fact that the application awareness results
in fewer contentions for resources as only the most compatible
VMs are consolidated. With the FIRST-FIT strategy the exe-
cution times are longer due to resource contention, especially
when multiplexing 3 VMs on the same CPU. Furthermore,
Figure 5 shows that the PROACTIVE strategy with the perfor-
mance optimization goal reduces the execution times by more
than 3% in comparison to the same strategy with the energy
optimization goal. We can also appreciate that the execution
times in the SMALLER system are higher than the execution
times in the LARGER system due to higher load pressure. This
is specially relevant with the FIRST-FIT strategy (multiplexing
3 VMs) due to possible additional resource contention.

Figure 6 shows that the PROACTIVE strategy saves around
12% of energy consumption on average with respect to first-fit

FF FF−2 FF−3 PA−0 PA−1 PA−0.5
0

5

10

15

20

25

30

35

Strategy

%
 o

f S
LA

 V
io

la
tio

ns

LARGER
SMALLER

Fig. 7: Percentage of SLA violations

(with and without VM multiplexing). In fact, makespan and
energy consumption follow a similar pattern in the LARGER
system. Furthermore, Figure 6 shows that the PROACTIVE
strategy with the energy optimization goal saves almost 3%
more energy than the same strategy with the performance
optimization goal, and with the goal of finding the best
tradeoff it provides intermediate results (but the variations are
not very significant, i.e., <2%). Although the makespan in
the SMALLER system is higher than the makespan in the
LARGER system, the energy consumption in the SMALLER
system is lower than the energy consumption in the LARGER
system as in the SMALLER system there are fewer servers
consuming energy and there are more opportunities for con-
solidation. However, with the FIRST-FIT strategy the resource
contention penalizes the energy efficiency significantly when
multiplexing of 2 or 3 VMs is allowed on the same CPU.

Figure 7 shows that the percentage of SLA violations with
the PROACTIVE strategies are also less compared to the tra-
ditional schemes. It means that the PROACTIVE strategy can
maintain or even provide better QoS guarantees. Furthermore,
we can observe in Figure 7 a correlation between execution
time and SLA violations, the higher the makespan higher
the percentage of SLA violations. We also can appreciate
that the strategies evaluated present similar behaviors under
higher load conditions. We do not show in this paper the
results obtained with other possible configurations of the
PROACTIVE strategy (e.g., *=0.75) since the variation in the
results was not significant enough.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we presented and evaluated a novel
application-centric energy-aware strategy for VM allocation
that aims at maximizing the resource utilization and energy
efficiency through VM consolidation while satisfying QoS
guarantees. To do this, we developed an empirical model for
the average energy consumption and execution time based
on measurements from extensive execution of standard HPC
workload benchmarks (all possible allocations based on num-
ber and type of VMs), and designed an algorithm to determine

the best VM allocation that achieves an optimization goal
such as minimization of energy consumption and/or execu-
tion time. The results obtained from simulations using real
production HPC workload traces show that proactive VM
allocation can significantly contribute to energy efficiency
and/or optimization of the application performance depending
on optimization goals. Specifically, the experimental results
showed that our proactive VM allocation algorithm can save
up to 12% in energy consumption and/or up to 18% in
execution time compared to the traditional first-fit approach.
However, the impact of the algorithm’s optimization goals on
the performance and energy consumption is moderate. We
conclude that profiling and modeling HPC applications is an
effective strategy to efficiently manage cloud data centers.

We chose to use a brute-force search algorithm for selecting
the best possible VM allocation and a traditional first-fit
approach for comparison in order to demonstrate and study the
potential of application-centric proactive VM allocation. Our
current research efforts are geared towards i) using machine
learning techniques to extract on-the-fly a model out of the
sub-system utilization data collected from offline experiments
using benchmarks as well as from real applications running
on VMs and ii) compare our proposed solution against some
of the state of the art discussed in Sect. II by implementing
them. Our planned future research efforts include, i) extending
the solution to be aware of and support heterogeneous server
hardware, which is required for evaluation on a real testbed
and ii) integrating the proposed solution with schemes for
autonomic thermal management in instrumented datacenters.

ACKNOWLEDGMENTS

This research was conducted within the National Science
Foundation (NSF) Center for Autonomic Computing and is
supported in part by The Extreme Scale Systems Center
at ORNL, by the Department of Defense, and by an IBM
Faculty Award. This material was based on work supported
by the NSF, while co-author M. Parashar was working at
the Foundation. Any opinion, finding, and conclusions or
recommendations expressed in this material are those of the
author and do not necessarily reflect the views of the NSF.
The authors would like to thank the Grid Observatory, which
is part of the EGEE-III EU project INFSO-RI-222667

REFERENCES

[1] “Report to congress on server and data center energy efficiency,” U.S.
Environmental Protection Agency, Tech. Rep., August 2007.

[2] N. Bobroff, A. Kochut, and K. Beaty, “Dynamic Placement of Virtual
Machines for Managing SLA Violations,” in Proc. of IFIP/IEEE Symp.
on Integrated Network Management, Munich, Germany, May 2007, pp.
119–128.

[3] I. Rodero, E. K. Lee, D. Pompili, M. Parashar, M. Gamell, and
R. J. Figueiredo, “Exploiting VM Technologies for Reactive Thermal
Management in Instrumented Datacenters,” in Workshop on Energy
Efficient Grids, Clouds, and Clusters in conjunction with IEEE Grid,
Brussels, Belguim, Oct. 2010, pp. 321–328.

[4] A. Turner, A. Sangpetch, and H. S. Kim, “How to Tame Your VMs: An
Automated Control System for Virtualized Services,” in Proc. of Large
Installation System Administration Conf., San Jose, CA, Nov. 2010, pp.
179–188.

[5] Y. Ajiro and A. Tanaka, “Improving Packing Algorithms for Server
Consolidation,” in Proc. of Computer Measurement Group Conf., San
Diego, CA, Dec. 2007, pp. 399–406.

[6] J. Stoess, C. Lang, and F. Bellosa, “Energy Management for Hypervisor-
based Virtual Machines,” in Proc. of USENIX Annual Technical Conf.,
Santa Clara, CA, Jun. 2007, pp. 1–14.

[7] A. Verma, P. Ahuja, and A. Neogi, “Power-aware Dynamic Placement
of HPC Applications,” in Proc. of Intl. Conf. on Supercomputing, Island
of Kos, Greece, Jun. 2008, pp. 175–184.

[8] F. Hermenier, X. Lorca, J.-M. Menaud, G. Muller, and J. Lawall,
“Entropy: A Consolidation Manager for Clusters,” in Proc. of the ACM
SIGPLAN/SIGOPS Conf. on Virtual Execution Environments, Washing-
ton, DC, Mar. 2009, pp. 41–50.

[9] D. A. Menasce and M. N. Bennani, “Autonomic Virtualized Environ-
ments,” in Proc. of Intl. Conf. on Autonomic and Autonomous Systems,
Silicon Valley, CA, Jul. 2006, p. 28.

[10] R. Nathuji, C. Isci, and E. Gorbatov, “Exploiting Platform Heterogeneity
for Power Efficient Data Centers,” in Proc. of Intl. Conf. on Autonomic
Computing, Jacksonville, FL, Jun. 2007, p. 5.

[11] T. Wood, G. Tarasuk-Levin, P. Shenoy, P. Desnoyers, E. Cecchet, and
M. D. Corner, “Memory Buddies: Exploiting Page Sharing for Smart
Colocation in Virtualized Data Centers,” in Proc. of the ACM SIG-
PLAN/SIGOPS Conf. on Virtual Execution Environments, Washington,
DC, Mar. 2009, pp. 31–40.

[12] D. Gupta, S. Lee, M. Vrable, S. Savage, A. C. Snoeren, G. Varghese,
G. M. Voelker, and A. Vahdat, “Difference Engine: Harnessing Memory
Redundancy in Virtual Machines,” Communications of the ACM, vol. 53,
pp. 85–93, Oct. 2010.

[13] S. Govindan, A. R. Nath, A. Das, B. Urgaonkar, and A. Sivasub-
ramaniam, “Xen and co.: Communication-aware CPU Scheduling for
Consolidated Xen-based Hosting Platforms,” in Proc. of the Intl. Conf.
on Virtual Execution Environments, San Diego, CA, Jun. 2007, pp. 126–
136.

[14] P. Apparao, R. Iyer, X. Zhang, D. Newell, and T. Adelmeyer, “Charac-
terization & Analysis of a Server Consolidation Benchmark,” in Proc.
of ACM SIGPLAN/SIGOPS Conf. on Virtual Execution Environments,
Seattle, WA, Mar. 2008, pp. 21–30.

[15] A. Verma, P. Ahuja, and A. Neogi, “pMapper: Power and Migration
Cost Aware Application Placement in Virtualized Systems,” in Proc. of
ACM/IFIP/USENIX Intl. Conf. on Middleware, Leuven, Belgium, Dec.
2008, pp. 243–264.

[16] A. Kochut and K. Beaty, “On Strategies for Dynamic Resource Man-
agement in Virtualized Server Environments,” in Proc. of the Intl. Symp.
on Modeling, Analysis, and Simulation of Computer and Telecommuni-
cation Systems, Istanbul, Turkey, Oct. 2007, pp. 193–200.

[17] W. Voorsluys, J. Broberg, S. Venugopal, and R. Buyya, “Cost of Virtual
Machine Live Migration in Clouds: A Performance Evaluation,” in Proc.
of Intl. Conf. on Cloud Computing, Beijing, China, Dec. 2009, pp. 254–
265.

[18] Y. Song, Y. Sun, H. Wang, and X. Song, “An Adaptive Resource Flowing
Scheme amongst VMs in a VM-Based Utility Computing,” in Proc. of
IEEE Intl. Conf. on Computer and Information Technology, Fukushima,
Japan, Oct. 2007, pp. 1053–1058.

[19] X. Meng, C. Isci, J. Kephart, L. Zhang, E. Bouillet, and D. Pendarakis,
“Efficient Resource Provisioning in Compute Clouds via VM Multiplex-
ing,” in Proc. of Intl. Conf. on Autonomic Computing, Washington, DC,
Jun. 2010, pp. 11–20.

[20] I. Rodero, S. Chandra, M. Parashar, R. Muralidhar, H. Seshadri, and
S. Poole, “Investigating the Potential of Application-Centric Aggressive
Power Management for HPC Workloads,” in Proc. of the IEEE Intl.
Conf. on High Performance Computing (HiPC), Goa, India, Dec. 2010,
pp. 1–10.

[21] M. Orlov, “Efficient Generation of Set Partitions,” Engineering and
Computer Sciences, University of Ulm, Tech. Rep., 2002.

[22] “Grid Observatory,” 2010. [Online]. Available: http://www.grid-
observatory.org/

[23] “Enabling Grid for E-sciencE,” 2010. [Online]. Available:
http://www.eu-egee.org/

[24] D. Feitelson, “Parallel Workload Archive,” 2010. [Online]. Available:
http://www.cs.huji.ac.il/labs/parallel/workload/

