
Cluster Comput (2015) 18:29–40
DOI 10.1007/s10586-014-0396-6

In-situ feature-based objects tracking for data-intensive scientific
and enterprise analytics workflows

Solomon Lasluisa · Fan Zhang · Tong Jin ·
Ivan Rodero · Hoang Bui · Manish Parashar

Received: 23 January 2013 / Revised: 29 September 2013 / Accepted: 17 July 2014 / Published online: 22 August 2014
© Springer Science+Business Media New York 2014

Abstract Emerging scientific simulations on leadership
class systems are generating huge amounts of data and
processing this data in an efficient and timely manner is
critical for generating insights from the simulations. How-
ever, the increasing gap between computation and disk I/O
speeds makes traditional data analytics pipelines based on
post-processing cost prohibitive and often infeasible. In this
paper, we investigate an alternate approach that aims to bring
the analytics closer to the data using in-situ execution of
data analysis operations. Specifically, we present the design,
implementation and evaluation of a framework that can sup-
port in-situ feature-based objects tracking on distributed sci-
entific datasets. Central to this framework is a scalable decen-
tralized and online clustering, a cluster tracking algorithm,
which executes in-situ (on different cores) in parallel with
the simulation processes, and retrieves data from the sim-
ulations directly via on-chip shared memory. The results
from our experimental evaluation demonstrate that the in-situ
approach significantly reduces the cost of data movement,
that the presented framework can support scalable feature-

S. lasluisa · F. Zhang · T. Jin · I. Rodero (B) · H. Bui · M. Parashar
Rutgers Discovery Informatics Institute, NSF Cloud and Autonomic
Computing Center, Rutgers University, Piscataway, NJ, USA
e-mail: irodero@cac.rutgers.edu

S. Lasluisa
e-mail: lasluisa@cac.rutgers.edu

F. Zhang
e-mail: zhangfan@cac.rutgers.edu

T. Jin
e-mail: tjin@cac.rutgers.edu

H. Bui
e-mail: hbui@cac.rutgers.edu

M. Parashar
e-mail: parashar@cac.rutgers.edu

based objects tracking, and that it can be effectively used for
in-situ analytics in large scale simulations.

Keywords Simulations workflows · Scientific data
analysis · Scalable in-situ data analytics · Feature-based
objects tracking

1 Introduction

Extreme scale systems enable scientists as well as enter-
prises to run large application workflows that produce and/or
process large amounts of data. For example, scientists and
engineers are able to conduct simulation studies of natural
and engineering phenomenon with unprecedented accuracy
using detailed models and exploring large parameter spaces.
Similarly, enterprises are able to explore networks of human
and system interconnectivity and interactions and use the
resulting insights to identify trends and inform business strat-
egy. The ability to analyze and visualize data in a timely and
scalable manner is critical to these applications.

However, growing system and application scales are also
resulting in unprecedented data volumes and data rates, and
the complexity and costs (both, latency and energy) associ-
ated with managing, transporting and processing (e.g., ana-
lyzing, visualizing, archiving, etc.) this data have become
significant challenges. unprecedented amount of data. To
enable scientific discovery, the high amount of simulation
data has to be analyzed and understood by domain scientists.
However, The increasing gap between computation and disk
I/O speeds is making traditional data management and data
analytics pipelines based on post-processing cost prohibitive
and often infeasible [1]. For example, moving entire datasets
from a large scale system running a simulation to remote
storage and analytics servers is becoming prohibitively

123



30 Cluster Comput (2015) 18:29–40

expensive in terms of the the time required as well as its
energy costs [2]. Similarly, the efficiency and scalability of
subsequent analysis operations are also hindered by the costs
of disk-based I/O. These challenges are quickly limiting the
ability to effectively transform data into insights, and require
rethinking traditional data analytics pipelines to reduce data
movement. Recently, in-situ and in-transit data processing
pipelines have emerged as a promising approach [3] to effec-
tively reduce overheads [4] and energy costs [5] due to data
movement by placing data processing operations closer to
where the data is being produced.

In this paper, we use this approach to enable scalable in-
situ feature-based object tracking for large scale scientific
simulations. In order to extract insightful information from
large datasets produced by simulations over thousands of
time steps, scientists often need to follow data objects of
interest (i.e., features) across the different time steps. For
example, meteorologists track storm formation and move-
ment in climate modeling simulation while physicists iden-
tify burning regions in combustion simulations. As a result,
feature extraction and tracking is an important technique for
analyzing and visualizing scientific datasets. However, most
feature extraction and tracking techniques operate offline by
post-processing data written into files by the simulation runs.
Being able to perform such feature-based analytics in-situ,
i.e., concurrently with a simulation itself, can significantly
improve the utility of these techniques at large scale. It can
also lead to better utilization of expensive high-end resources
as well as the overall productivity of the simulations

However, performing in-situ feature tracking presents sev-
eral research challenges. First, it requires a distributed fea-
ture extraction and tracking algorithm that operates on dis-
tributed data. Second, it requires a programming and run-
time system that enables the mapping and execution of the
simulation and the data analysis operations on co-located
processor cores, and supports asynchronously data sharing
at runtime. Most existing in-situ data analysis implementa-
tions employ an inline approach, i.e., the data analysis oper-
ations are embedded within the execution path of the main
simulation process, usually as function calls. A major draw-
back of this approach is that the simulation has to block and
wait for the completion of the in-situ analytics routine, which
impacts the execution and performance of the main simula-
tions. This approach also requires significant modification of
the simulation code, which is undesirable.

In this paper, we present the design and implementation
of a framework that can support in-situ feature-based objects
tracking for large-scale parallel simulations. Central to this
framework is the scalable decentralized and online clustering
(DOC) [6,7] and cluster tracking algorithm, which executes
in-situ, i.e., on different cores, and in parallel with the sim-
ulation processes, and accesses simulation data directly and
asynchronously (to the extent possible) via on-chip shared

memory. The framework also provides programming support
for composing in-situ “simulation plus analytics” workflows.
Results from an experimental evaluation of the framework on
the Lonestar system at Texas Advanced Computing Center
(TACC) are also presented and demonstrate that the in-situ
approach significantly reduces the cost of data movement,
that the presented framework can support scalable feature-
based cluster tracking, and that it can be effectively used for
in-situ analytics for large scale simulations.

The rest of the paper is structured as follows. Section
2 provides background on data-intensive analytics work-
flows. Section 3 presents the motivating use cases. Section
4 describes the overall system architecture and the imple-
mentation of the feature-based tracking algorithm. Section 5
presents the experimental evaluation of the prototype system
using s 3D time-varying CFD dataset. Section 6 discusses
related work. Section 7 concludes the paper and outlines
directions for future work.

2 Background

2.1 Data-intensive analytics workflows

This research targets data-intensive analytics workflows that
are becoming increasingly important for both large scale sci-
entific and enterprise data analysis, and specifically focuses
on scientific simulation workflows.

Traditionally, large scale data analysis are performed
offline as a post-processing step. For example, scientific sim-
ulations write data to the file system, which is then read by the
analysis or visualization codes. However, given the increas-
ing scale of the applications and the costs associated with I/O,
end-to-end data-intensive analytics workflows that integrate
applications with online analysis operations are more attrac-
tive. These workflows are composed of component appli-
cations that frequently share or exchange large volumes of
data at runtime. Figure 1 shows the data analytics workflow
for a turbulent combustion simulation S3D [8], where three
types of analytics operations, i.e., descriptive statistics, visu-
alization and topological analysis are being performed on the
simulation data on the fly.

The couplings,interactions and coordination associated
with data-intensive scientific workflows can be expressed
using three canonical workflow patterns [9,10] as below:

• Tight coupling: In this class of workflows, the coupled
component applications run concurrently and exchange
data frequently, as in the case of online feature-based
objects tracking. Due to the large volume of data, data
movement costs can quickly dominate the execution
times in these workflows.

123



Cluster Comput (2015) 18:29–40 31

Fig. 1 Data analytics workflow
for the S3D combustion
simulation [4]

• Loose coupling: In this class of workflows, coupling and
data exchanges are less frequent, often asynchronous and
possibly opportunistic. The coupled component applica-
tions in this case may run concurrently or sequentially.

• Dataflow coupling: This class represents more typ-
ical workflows often expressed as a dataflow-based
directed acyclic graph (DAG) where data produced by
one application flows through one or more data process-
ing pipelines. The S3D combustion pipeline is an exam-
ple of this pattern.

This paper focuses on the tight coupling pattern exhibited by
the online feature-based objects tracking analysis workflow.

2.2 In-situ execution of data analytics workflows

It is clear from the discussion above that reducing the
overheads of data movement during the interactions in a
tightly coupled component application workflow can sig-
nificantly improve performance and scalability. However,
existing frameworks typically run different applications of
a tightly-coupled data-intensive workflow on separate sets of
compute nodes, which can result in a large amount of network
data movement.

One attractive approach for reducing data movement is to
perform runtime data analytics in-situ, directly on the com-
pute node where data is generated, so as to maximize intra-
node data sharing. This is illustrated in the example in Fig. 2
where the simulation and analysis components of the end-to-
end workflow run concurrently on the same compute node,
but on different processor cores. In that case, intra-node data
transfers between the coupled applications can be performed
using shared memory.

3 Motivating use cases

3.1 Scientific scenario

To extract scientific insights from data generated by time-
varying simulation, scientists need to study the evolution of

Fig. 2 In-situ execution of a data analytics workflow.

different physical phenomena by tracking objects of interest
over time. For example, in 3D computational fluid dynam-
ics simulations that contain evolving amorphous regions,
connected voxel regions of interest—features—needs to
be identified at each time step and tracked over multiple
time steps in order to visualize the time-varying datasets.
Moreover, the traditional centralized and post-processing
approach becomes infeasible due to overheads and cost asso-
ciated with extracting, transporting and storing the large vol-
ume of data from compute nodes to storage servers. As a
result, a distributed and online object tracking approach is
critical to support data analysis and visualization for data-
intensive scientific simulations.

In this paper, we focus on analyzing the time-varying 3D
dataset generated by simulation of coherent turbulent vortex
structures. More specifically, we focus on tracking objects
as thresholded connected voxel regions that evolve both in
location and shape over time with in-situ execution of the
“simulation plus analytics” workflow.

3.2 Enterprise scenario

Microblogging has become a very popular social media ser-
vice that generates a huge number of messages daily in plat-
forms such as Twitter. Twitter as a social microblogging

123



32 Cluster Comput (2015) 18:29–40

platform allows users to post tweets (i.e., messages of 140 or
less characters) that are made publicly available in realtime.

As Twitter gains popularity, its user-base grows and gener-
ates unprecedented amounts of data. As of September 2013,
Twitter has over 200 million active users with a total of 400
million tweets sent per day. Microblogging social media, in
general, becomes a valuable source of people’s opinions and
sentiments [11]. User-generated data can be effectively used
for business, social and political studies. However, the huge
data volume poses great challenges, such as:

• Large scale: millions of users worldwide;
• Rich content: high variety (or types) of data generated by

users;
• Complex interaction: constant interactions between users

and content; and
• Dynamic nature: content is constantly being updated and

evolves over time.

Our approach can be applied to social media data analy-
sis at a large scale. More specifically, it can be used to detect
patterns, to mine trends and to analyze sentiments from tweet
streams. Real-life scenarios include predicting election out-
come, tracking storm movement and detecting flu outbreak.
We could answer these questions by mining tweet streams at
a large scale. Some of the associated tasks are:

• Define an event, such as healthy, disease, election.
• Sentiment learning, such as negative, neutral, or positive.
• Identify how an event spreads and evolves.
• Model event spread such as information propagation.
• Visualization.

4 Design and implementation

4.1 Overview of the system framework

The system architecture of the proposed distributed data
analysis framework consists of three main components: exe-
cution clients, in-situ data staging daemons and a manage-
ment server. Each execution client abstracts and represents a
basic computation element such as a physical processor core.
The management server acts as the rendezvous point to boot-
strap execution clients, and manages the execution of various
applications within the in-situ data analysis workflow.

Figure 3 shows co-located execution of DOC workers
with the simulation program, where the physical proces-
sor cores on the multi-core compute nodes are function-
ally partitioned. As shown in the figure, on-node compu-
tation resource is mostly used by the scientific simulation
program, and two processor cores are used to execute in-

Fig. 3 Architecture of the in-situ feature extraction and tracking sys-
tem

situ data staging daemon and DOC worker. The in-situ data
staging daemons across the distributed cluster nodes build a
Co-located DataSpaces (CoDS) [12], which provides a vir-
tual shared-space abstraction to support asynchronous and
decoupled coordination and data sharing between simulation
processes and the DOC worker. The capability of functional
partitioning of node-level processor cores, and the program-
ming model and runtime to support asynchronous commu-
nication between the intra-node cores, is critical to exploit
the ever-increasing hardware parallelism on emerging super-
computers.

Our framework employs the data-centric scheduling
approach to map processes from different applications onto
physical processor cores so that a large portion of the inter-
application data transfers can be performed using the on-
node shared memory. More specifically, two mapping meth-
ods - both centralized server side and decentralized execu-
tion client side - are designed in the framework. The server
side mapping is applied to a “bundle” of concurrently cou-
pled component applications that are launched simultane-
ously, have regular inter-application communication patterns
and do not need dynamic re-mapping after launch, which
matches with the “simulation plus DOC” scenario described
in this paper. The execution client side approach schedules
the newly launched workflow application that have depen-
dency on the distributed data generated by preceding appli-
cation. More details about the data-centric mapping is dis-
cussed in [12].

Each component application of our in-situ feature-based
objects tracking system is assigned an unique id. Every exe-
cution client is associated with one specific component appli-
cation (simulation or DOC) when the data-centric mapping
is completed. Then each execution client is colored with the
value of the assigned id, and execution clients with the same
color would form a processes group and collectively launch
the associated application.

Because scientific simulation and the DOC worker run
as separate programs on different physical cores, data

123



Cluster Comput (2015) 18:29–40 33

structures cannot be directly shared under single process
address space as of the inline approach. As a result, effi-
cient intra-node data communication is crucial to the perfor-
mance. Our framework utilizes the intra-node shared mem-
ory for passing data between simulation processes and DOC
workers. To avoid the overhead of user-space double-copy,
the framework implements both single copy and zero copy
schemes. In the single copy optimization, simulation data is
copied from user space to the shared memory allocated by in-
situ data staging daemon, and then delivered to the receiver,
e.g., DOC worker, without copying. In the zero copy opti-
mization, simulation processes can pre-allocate buffer from
the shared memory by sending allocation request to in-situ
data staging daemon, then writes data directly into the shared
memory buffer without copying.

4.2 Feature-based objects tracking using DOC

4.2.1 Decentralized online clustering (DOC)

DOC, introduced by Quiroz et al. [6,13], was created to pro-
vide online and decentralized data analysis, using the collec-
tive computing resources in distributed systems. DOC is an
online algorithm, thereby allowing short-term system behav-
ior to be captured, as opposed to an offline approach that can-
not capture short-term behavior. DOC has also been tested
for its accuracy of identifying clusters within a given dataset
and shown to perform as accurate as its offline counterparts
such as k-means.

The approach of DOC is to divide the data space into
regions and to assign a region to each processing node.
DOC’s underlying message substrate takes care of routing
data points to the nodes responsible for their regions, with
bounded costs in terms of the number of messages and the
number of nodes involved [14]. Each node can then detect
the number of points within each region. If the total number
of points in the information space is known, then a baseline
density for a uniform distribution of points can be calculated
and used to estimate an expected number of points per region.
Clusters are recognized within a region if the region has a
relatively larger point count than this expected value. Con-
versely, if the point count is smaller than expected, then these
points are potential outliers. However, clusters may cross
region boundaries, and this must be taken into account when

verifying potential outliers. The process described effectively
determines the similarity between data points by the density
of points within regions of the information space.

4.2.2 Features extraction

A method for identifying objects in scientific simulations is
through data point clustering. Clusters can represent regions
of interest in a dataset, for example a flame or region of chem-
ical reaction in a combustion simulation. The distributed
nature of data generation in scientific applications, as well
as other applications, requires specialized clustering algo-
rithms such as DOC. DOC’s decentralized programming can
reduce overall data transfer cost by its novel clustering work-
flow, where individual nodes are assigned a specified region
of space to analyze. DOC workers run on each computa-
tional node and identify local clusters. These workers then
communicate with neighboring workers and merge clusters
iteratively. DOC can maintain data locality in certain config-
uration and thereby remove the need to aggregate data.

In order to identify clusters across time, we define the con-
cept of cluster features. For any given cluster found within
a dataset at some point in time, clusters features are a num-
ber of derived metrics and/or metadata that can be extracted
from them. Examples of cluster features are location, density,
bounds, size, and cluster metadata (e.g., points’ origin).

The key to cluster identification is to determine the sim-
ilarity between a set of cluster features. If two or more sets
of cluster features are sufficiently similar over time, then
they can be considered to correspond to the same cluster.
Meta-clustering is applied to identify similarity by clustering
the features extracted from the data. Just as with the origi-
nal points, we take advantage of clustering technique for its
ability to identify similarity without necessarily having to
determine an absolute threshold beforehand.

Figure 4 shows an example of how a cluster feature can
be used to track a cluster’s movement. In this figure, three
clusters found at different points in time are shown with their
corresponding centroids. As can be seen, the three centroids
form a cluster when seen as points in the same space. Based
on this information, we can say that it is likely that the three
clusters represent the same element or behavior pattern over
time, and that, consequently, can likely be identified as the
same cluster.

Fig. 4 Example of how cluster
centroids (a cluster feature) can
be used to track a cluster’s
movement [13]

123



34 Cluster Comput (2015) 18:29–40

Fig. 5 Sliding window
technique example

4.2.3 Cluster tracking with a sliding time window

Despite the possibility of observing stable sets of features
over time, some features will necessarily keep changing
because of the dynamics of the system. The purpose of cluster
tracking is to be able to characterize and predict the behavior
of the changing features whenever possible, along with the
features that are static.

One possible approach to this is tracking static and
dynamic features separately. However, determining which
features to track in either way is not trivial. If only static fea-
tures cluster over time, then using a single feature space for
clustering will simply not work in either case. Our approach
is then to define a sliding window for clustering that allows
a fine-grained view of the features that change. More impor-
tantly, because changes are gradual, all features for a single
identifiable cluster (not just those that are static) will form a
cluster over some continuous time interval.

The sliding window technique captures incoming infor-
mation from the data stream, saves a portion of previously
captured information while discarding the oldest, and allows
new information to replace the discarded information, as
illustrated in Fig. 5. As can be seen in the figure, windowi con-
tains new requests from new time intervals, as well as some
remaining requests from intervals contained in the previous
window (windowi−1), but dropped the oldest time intervals
that were contained in that window. The same rule is applied
for subsequent windows.

Depending on the size of the time intervals, on the size of
the step of the analysis window, and on the size of the analysis
window itself, we can ensure that the changes in clusters are
gradual from one analysis window to the next. Since the size
as well as the step for each window can be changed, the rate of
change between analysis windows can always be controlled.
For our approach the default setting is to replace 10 % of the
data points at each step. We arrived at this value empirically
after finding that this level of accuracy was relatively high
(when compared to other windows sizes ranging from 5 to
50 %) and maintained a low total computation cost.

Despite the gradual changes afforded by the sliding win-
dow technique, eventually the dynamics of the underlying
data set will cause large changes in cluster features when
compared across many analysis windows, as well as new
clusters to appear, and other clusters to disappear. All of these
cases reflect changes in system state caused by bothgradual

Fig. 6 Workflow for data cluster tracking

and transitory events and conditions. Our feature tracking
approach keeps track of the trajectories (paths) defined by
feature sets across analysis windows, and is thus able to iden-
tify all of these changes. As a result, if patterns are identifiable
in the paths, they can be used for prediction.

4.2.4 Cluster tracking algorithm

The following workflow, illustrated in Fig. 6, summarizes the
six steps in the application of our algorithm.

(1) A data stream is read and, chronologically, an analysis
window moves along the data, creating snapshots (win-
dows) to analyze. The union of all windows makes the
original data stream up to a point in time, but consecu-
tive windows are not mutually exclusive (they overlap)
as shown in Fig. 5.

(2) Each window is clustered to identify the relationships
between data points within that specific window. Each
of these first level clusters is a snapshot in time of a
single cluster.

(3) For every window, each individual cluster has its features
extracted. These cluster features will later be used to
compare first level clusters from different windows to
one another for cluster identification.

123



Cluster Comput (2015) 18:29–40 35

(4) Extracted cluster features are clustered with features
from previous windows to identify how closely related
they are to one another.

(5) The resulting meta-clusters can now be used to identify
these related clusters as a single cluster to be tracked.

(6) The trajectory for each temporal cluster is updated by
storing features in sorted order according to the analysis
window in which they were found.

4.3 Composing in-situ data analysis workflows

One important idea of the proposed framework is to support
building in-situ data analysis as a tightly-coupled workflow.
Two problems need to be solved regarding the programma-
bility: first, how to specify the control flow; second, how to
program the coordination and data communication between
the interacting workflow applications.

The tightly-coupled application workflow is expressed as
a DAG, where each vertex in the DAG represents a parallel
program. Our DAG representation extends traditional DAG
representation such as DAGMan used in the workflow engine
Pegasus, with the concept of a “bundle”, which represents a
group of parallel programs that need to be launched simul-
taneously, for example, the simulation and DOC programs
of our in-situ feature extraction and tracking scenario. The
edges of the DAG represent the control flow. The DAG as
well as the bundles are explicitly defined by users. Figure 7
presents the DAG representation for our simulation and DOC
application workflow, and the user-generated DAG descrip-
tion file which is then parsed by the management server.
Note that each parallel program in the DAG is identified by
a unique application id in the description file.

The components of the application workflow coordinate
and communicate with each other through the abstraction of
a shared data space-CoDS. In our in-situ feature extraction
and tracking scenario, the DOC workers (data consumer)
need to continuously access scientific data computed by the
simulation (data producer). To implement this, each process
of the simulation program specifies a descriptor as the key
for its data, and inserts the data into CoDS using collec-
tive put() interface. Each DOC worker generates the query

Fig. 7 Example of workflow DAG representation and description file.

Fig. 8 Simulation and DOC workers share data through data space
abstraction.

key, and uses the get() interface to retrieve data of interest.
More specifically, DOC workers use the interface get_local()
to only retrieve simulation data produced on local machine.
One assumption for our framework is that the interacting
workflow applications share the knowledge about the data,
such as type of key, data name and format. Figure 8 shows a
logical view of data interaction through shared data space.

5 Experimental evaluation

The prototype implementation of our framework was evalu-
ated on the Lonestar linux cluster at Texas Advanced Com-
puting Center (TACC). The Lonestar has 1,888 compute
nodes, and each compute node contains two hex-core Intel
Xeon processors, 24 GB of memory and a QDR InfiniBand
switch fabric that interconnects the nodes through a fat-tree
topology. The system also supports a 1 PB Lustre parallel
file system.

Our evaluation consists of two parts. The first part evalu-
ates the end-to-end data transfer performance of our in-situ
data analysis framework, and also compares it with the tra-
ditional disk I/O approach. The second part evaluates the
effectiveness and accuracy of our DOC-based feature track-
ing algorithm, using a time-varying dataset generated by sim-
ulation of coherent turbulent vortex structures.

5.1 Performance of data transfer

This section evaluates the end-to-end data transfer perfor-
mance, and more specifically the time used to transfer data
from simulation processes to DOC workers, for both our
in-situ memory-to-memory and the disk I/O approaches. In
this case, we use a testing MPI program as the parallel data
producing simulation, which runs on a set of m processor
cores. The parallel DOC workers runs on a separate set of
n processor cores where the ratio of m:n is 8. In our in-
situ data analysis approach, each DOC worker runs on a
processor core co-located with 8 simulation cores of the same

123



36 Cluster Comput (2015) 18:29–40

Fig. 9 End-to-end data transfer time in millisecond. The size of data
produced per simulation process at each timestep is 32 MB

compute node, and retrieves data generated by the 10 intra-
node simulation processes through CoDS get_local() inter-
face. In our framework, the m:n ratio can be configured by
users. From our experience, the simulation part of the exper-
iment is usually more compute intensive, thus it makes sense
to allocate a large amount of cores to simulation tasks. On
the other hand, the data analysis part (DOC in this case)
is often data intensive hence requires a smaller number of
cores. Our in-situ approach requires simulation and analy-
sis tasks that exchange data to be scheduled in the same
node in order to minimize data transfer and to reduce the
overhead on the simulation itself. In the disk I/O approach,
simulation processes dump data to disk with the one file per
process method using binary POSIX I/O operations. Data
files are then read by parallel DOC workers. For this evalu-
ation, the number of simulation processes m is varied from
256 to 4,096, and the total data size produced by simulation
at each timestep is varied from 8 to 128 GB. The testing pro-
gram is configured to run for 100 timesteps at each data output
size.

Figure 9 and 10 compare the performance of the two
evaluated end-to-end data transfer approaches. As shown
in Fig. 9, our in-situ memory-to-memory method is much
faster than the disk I/O approach, with average speedup of
transfer performance as about 10. Also, the in-situ memory-
to-memory method is scalable, and shows no performance
degradation when the number of MPI processes in data pro-
ducing program increases from 256 to 4096. The reason for
this significant performance gain is that all data movement is
intra-node, and performed through the on-node fast I/O path-
shared memory. But for the disk I/O approach, both data pro-
ducer and DOC worker processes have to use the off-node
slow path-disk. Figure 10 illustrates the performance gain
from another dimension - aggregate data transfer throughput.
The fast intra-node shared memory approach enables much

Fig. 10 Aggregate data transfer throughput. The size of data produced
per simulation process at each timestep is 32 MB

higher aggregate bandwidth for the data movement between
simulation and DOC.

5.2 Effectiveness of the feature-based cluster tracking
algorithm

This section evaluates the effectiveness and accuracy of our
proposed feature tracking algorithm, using a time-varying
3D dataset. The dataset is generated by simulation of coher-
ent turbulent vortex structures with 1283 resolution (vorticity
magnitude) and 100 time steps. In this case, the data clus-
ter or object of interest is defined as thresholded connected
voxel regions. These regions evolve both in location and
shape during the simulation. Although different time steps of
the dataset can be visualized offline using visualization tools
such as Visit, it is difficult to visually observe and accurately
follow regions of interest. The tracking information from our
algorithm is used to determine how the regions evolve, e.g.,
size, location, density, over the time steps.

In this experiment, we define the regions of interest as the
data points with vorticity values in the range of 9 to maxi-
mum. Since the tracked objects in our experiment vary fast
and last only around 10 time steps, we snapshot three time
steps of the visualized dataset for the duration of the tracked
object, as shown in Fig. 11. Also, it demonstrates the effec-
tive tracking of the evolving volume region (or object as in
DOC) pointed by black arrows. We define tracking accuracy
as the ratio of data points encompassed by the tracked objects
to total number of points in the experiment. This ensures
that high accuracy in object tracking can only be achieved
by identifying paths from which the object pass through. In
each experiment 50 frames were used to identify the paths
of the objects within these 50 frames. The tracking accuracy
across 47 tests was 92.28 % on average, meaning only 7.72
% of all vortex points were not associated to any trackable

123



Cluster Comput (2015) 18:29–40 37

Fig. 11 A visualized view of the evolving volume regions (objects) tracked by our feature-based tracking algorithm.

Fig. 12 Illustration of tracked path for object evolves over multiple
time steps.

object in our experiments. In Fig. 12 we present the tracking
of a object (the same one as in visualized Fig. 11), as seen by
DOC, at three different time steps. As shown in the figure,
this object moves from left to right and shrinks in size.

6 Related work

6.1 In-situ scientific data processing

The increasing performance gap between computing and I/O,
and the cost of moving large volume of data to/from disks,
motivates computation scientists to employ the in-situ data
processing approach to perform analysis, visualization [15],
indexing building [16], compression etc. The key idea is to
move operations to data where the simulation is running.
However, the existing inline approach [17], [18] tightly inte-
grate analysis or visualization libraries into simulation code.
Our techniques provide a more generic framework to com-

pose and execute in-situ data operations in a flexible and
customizable way.

6.2 Staging area based in-transit data analysis and I/O

The data staging area is a set of additional compute nodes
allocated by users when launching the parallel simula-
tions. The application of staging area has been investi-
gated to add values to simulation’s I/O pipeline in projects
such as DataStager [19], PreData [20], JITStaging [21],
ActiveSpace [22] and Glean [23]. Our techniques focus
on scheduling and running analysis code in-situ to exploit
increasing hardware parallelism and intra-node locality, and
can be integrated with these in-transit approaches to perform
hybrid data staging and analysis. Recent research [4] has also
explored the benefits of combining both in-situ and in-transit
approaches on high-end systems, and demonstrated the ben-
efits of such hybrid approaches.

6.3 Tuple space model for coordination and communication

Our system framework provides the abstraction of a virtual
shared data space in which application components of the in-
situ data analysis workflow can put and get data. This concept
of abstraction derives from the Tuple space model. Several
academic and industrial projects are based on this model,
like Linda [24], IBM Tspace , JavaSpace. Seine [25,26]
builds a virtual shared space similar to our work, which is
exclusively used for code coupling. DataSpaces [27] builds
on Tuple space model a more general programming frame-
work for data exchange and supports flexible asynchronous
interaction patterns (e.g., publisher/subscriber/notification).
In addition to support of shared data space abstraction, our
techniques add the programming interface to compose in-
situ data analysis workflow, and implement the runtime sys-
tem with data-centric task mapping and more efficient shared
memory based intra-node communication.

123



38 Cluster Comput (2015) 18:29–40

6.4 Clustering techniques

Guha et al. [28] provides a study on K-median clustering in
order to model data streams. Providing a through explanation
on the upper and lower bound of the algorithm is provided
when a single pass is used on the data. The study thereby
determines the total runtime and memory usage required
for this algorithm to process a given data stream. This work
serves as a base to understand the inherent problems faced by
data analytics algorithms in order to process data in a contin-
uous manner. Charikar et al. [29] enables k-means to cluster
data streams efficiently by employing a divide and conquer
method, which has a portion of the information processed
offline and another as the data is created. Aggarwal et al. [30]
address the problem of the poor quality of clusters when data
evolves considerably over time. The approach performs both
an online and offline analysis of the information. The online
component periodically stores detailed summary statistics
of the data being processed and the offline component is
utilized to provide an understanding of the overall clusters
in the data stream. Using these two methods together pro-
vides a framework where clusters are of a better quality than
those taken at any one point in time. O’Callaghan et al. [31]
provide a novel clustering algorithm that splits into two dif-
ferent algorithms STREAM and LOCALSEARCH, where
the STREAM algorithm determines the amount of data to
be processed and LOCALSEARCH is applied. Csernel et
al. [32] use a sampling method as a means to reduce the
total information needed to analyze data streams over time.
They keep a portion of the cluster information so that they
can view the data across time. They show that their sampling
method does not affect accuracy and in most cases provide
speedup.

6.5 Cluster tracking

Abrantes and Marques [33] studied the stochastic informa-
tion within a data cluster over time in order to track the
movement of cluster in the context of computer vision. Their
approach proposes a noise model that can increase the robust-
ness of the motion model with respect to outliers affecting
the quality of motion detection. They show its effectiveness
by evaluating car traffic sequences and ultrasounds. Abrantes
and Marques also explored the idea of tracking clusters based
on specific internal features of a cluster and demonstrated
how cluster features can be used to identify distinct clusters
at different time frames. We use this concept outside the area
from which this method was created, computer vision.

6.6 Features tracking of time-varying simulation datasets

Many techniques have been developed by computer vision
community to extract, identify and track features. Silver et al.

[34] presented a semi-automatic volume tracking algorithm
to improve visualization of 3D time-varying CFD datasets.
Chen et al. [35] developed a parallel algorithm to analyze
and visualize the evolving features extracted from time-
varying simulation datasets in realtime. Our technique repre-
sents features as clustered data points in a multi-dimensional
information space, and identifies and tracks the data clus-
ters of interest in a distributed and timely manner using
DOC.

7 Conclusion and future work

This paper explores the in-situ execution of feature-based
objects tracking of time-varying scientific simulation data.
Specifically, we present a feature-based cluster tracking algo-
rithm which is built on DOC to process data in a distributed
and timely manner. We also present Co-located DataSpaces,
a framework and its programming interface, to compose and
run tightly coupled workflow applications in-situ. We evalu-
ated the proposed approach on the Lonestar cluster at TACC
through different experiments. The experiments measured
the end-to-end data transfer performance as well as the effec-
tiveness and accuracy of our cluster tracking algorithm. The
results show our in-situ memory-to-memory approach per-
forms 10 times faster compare to traditional disk I/O. More-
over, our tracking algorithm achieves the tracking accuracy
of 92.28 % on average.

Our direction for future work includes extending the
decentralized in-situ cluster tracking system for other appli-
cation areas such as online monitoring of resource uti-
lization and anomaly detection in large scale data centers.
We will also explore the use of on-node NVRAM/SSD
storage to support energy-efficient in-situ staging of large
data sets which could not be stored in current on-node
memory.

Acknowledgments The research presented in this work is supported
in part by US National Science Foundation (NSF) via Grants num-
bers OCI 1310283, DMS 1228203, IIP 0758566, OCI 1339036 and
CNS 1305375, by the Director, Office of Advanced Scientific Com-
puting Research, Office of Science, of the U.S. Department of Energy
through the Scientific Discovery through Advanced Computing (Sci-
DAC) Institute of Scalable Data Management, Analysis and Visualiza-
tion (SDAV) under ward number DE-SC0007455, the Advanced Sci-
entific Computing Research and Fusion Energy Sciences Partnership
for Edge Physics Simulations (EPSI) under award number DE-FG02-
06ER54857, the ExaCT Combustion Co-Design Center via subcontract
number 4000110839 from UT Battelle, and by an IBM Faculty Award.
This work used the Extreme Science and Engineering Discovery Envi-
ronment (XSEDE) under project number TG-CCR110035, which is
supported by NSF grant number OCI 1053575. The research was con-
ducted as part of the NSF Cloud and Autonomic Computing (CAC)
Center at Rutgers University and the Rutgers Discovery Informatics
Institute (RDI2). We thank Dr. Deborah Silver and Sedat Ozer for use-
ful discussions on data visualization and providing the scientific dataset
for our experimental evaluation.

123



Cluster Comput (2015) 18:29–40 39

References

1. Childs, H.: Architectural challenges and solutions for petascale
postprocessing. J. Phys. 78(1), 12 (2007)

2. Gamell, M., Rodero, I., Parashar, M., Poole, S.: “Exploring energy
and performance behaviors of data-intensive scientific workflows
on systems with deep memory hierarchies”. In: Proceedings of the
20th International Conference on High Performance Computing
(HiPC), pp. 1–10. (2013)

3. Zhang, F., Docan, C., Parashar, M., Klasky, S.: “Dads: a dynamic
and adaptive data space for interacting parallel applications”. In:
Proceedings of the IASTED International Conference on Parallel
and Distributed Computing and Systems (PDCS 2010), Marina Del
Rey (2010)

4. Bennett, J.C., Abbasi, H., Bremer, P.-T., Grout, R., Gyulassy, A.,
Jin, T., Klasky, S., Kolla, H., Parashar, M., Pascucci, V., Pebay, P.,
Thompson, D., Yu, H., Zhang, F., Chen, J.: “Combining in-situ and
in-transit processing to enable extreme-scale scientific analysis”.
In: Proceedings of the International Conference on High Perfor-
mance Computing, Networking, Storage and Analysis, ser. SC ’12,
2012, pp. 49:1–49:9

5. Gamell, M., Rodero, I., Parashar, M., Bennett, J., et al.: “Exploring
power behaviors and tradeoffs of in-situ data analytics”. In: Interna-
tional Conferencce on High Performance Computing Networking,
Storage and Analysis (SC), pp. 1–12. Denver, Nov 2013

6. Quiroz, A., Parashar, M., Gnanasambandam, N., Sharma, N.:
“Design and evaluation of decentralized online clustering”. ACM
Trans. Auton. Adapt. Syst. 7(3), 34:1–34:31 (2012). doi:10.1145/
2348832.2348837

7. Quiroz, A., Gnanasambandam, N., Parashar, M., Sharma,
N.: Robust clustering analysis for the management of self-
monitoring distributed systems. Clust. Comput. 12(1), 73–85 (Mar.
2009)

8. Chen, J.H., Choudhary, A., de Supinski, B., DeVries, M., Hawkes,
E.R., Klasky, S., Liao, W.K., Ma, K.L., Mellor-Crummey, J., Pod-
horski, N., Sankaran, R., Shende, S., Yoo, C.S.: Terascale direct
numerical simulations of turbulent combustion using s3d. Com-
put. Sci. Discov. 2, 1–31 (2009)

9. Docan, C., Parashar, M., Klasky, S.: “Dataspaces: an interaction and
coordination framework for-coupled simulation workflows”. Clust.
Comput. 15(2), 163–181 (2012). doi:10.1007/s10586-011-0162-y

10. Podhorszki, N., Klasky, S., Liu, Q., Docan, C., Parashar, M.,
Abbasi, H., Lofstead, J., Schwan, K., Wolf, M., Zheng, F., Cum-
mings, J.: “Plasma fusion code coupling using scalable i/o services
and scientific workflows”. In: Proceedings of the 4th Workshop
on Workflows in Support of Large-Scale Science, ser. WORKS
’09, pp. 8:1–8:9. ACM, New York, (2009) doi:10.1145/1645164.
1645172

11. Pak, A., Paroubek, P.: “Twitter as a corpus for sentiment analysis
and opinion mining”. In: LREC, Baton Rouge (2010)

12. Zhang, F., Docan, C., Parashar, M., Klasky, S., Podhorszki, N.,
Abbasi, H.: “Enabling in-situ execution of coupled scientific work-
flow on multi-core platform”. In: Proceedings of 26th IEEE Interna-
tional Parallel and Distributed Processing Symposium (IPDPS’12),
(2012)

13. Quiroz, A.: Decentralized online clustering for supporting auto-
nomic management of distributed systems. Ph.D in Electrical and
Computer Engineering, Rutgers University, (2010)

14. Schmidt, C., Parashar, M.: “Flexible information discovery in
decentralized distributed systems”. In: Proceedings of the 12th
High Performance Distributed Computing (HPDC), pp. 226–235.
(2003)

15. Yu, H., Wang, C., Grout, R., Chen, J., Ma, K.-L.: In situ visualiza-
tion for large-scale combustion simulations. IEEE Comput. Graph.
Appl. 30(3), 45–57 (2010)

16. Kim, J., Abbasi, H., Chacon, L., Docan, C., Klasky, S., Liu, Q.,
Podhorszki, N., Shoshani, A., Wu, K.: “Parallel in situ indexing for
data-intensive computing”. In: Proceedings of IEEE Symposium
on Large Data Analysis and Visualization (LDAV’11), Oct (2011)

17. Whitlock, B., Favre, J.M., Meredith, J.S.: “Parallel in situ coupling
of simulation with a fully featured visualization system”. In: Pro-
ceedings of 11th Eurographics Symposium on Parallel Graphics
and Visualization (EGPGV’11), Apr (2011)

18. Fabian, N., Moreland, K., Thompson, D., Bauer, A., Marion, P.,
Gevecik, B., Rasquin, M., Jansen, K.: “The paraview coprocessing
library: a scalable, general purpose in situ visualization library”.
In Proceedings of IEEE Symposium on Large Data Analysis and
Visualization (LDAV’11), Oct (2011)

19. Abbasi, H., Wolf, M., Eisenhauer, G., Klasky, S., Schwan, K.,
Zheng, F.: “Datastager: scalable data staging services for petascale
applications”. In: Proceedings of 18th International Symposium on
High Performance Distributed Computing (HPDC’09), (2009)

20. Zheng, F., Abbasi, H., Docan, C., Lofstead, J., Klasky, S., Liu, Q.,
Parashar, M., Podhorszki, N., Schwan, K., Wolf, M.: “PreDatA
- preparatory data analytics on peta-scale machines”. In: Proceed-
ings of 24th IEEE International Parallel and Distributed Processing
Symposium (IPDPS’10), Apr (2010)

21. Abbasi, H., Eisenhauer, G., Wolf, M., Schwan, K., Klasky, S.: “Just
in time: adding value to the IO pipelines of high performance appli-
cations with JIT staging”. In: Proceedings 20th International Sym-
posium on High Performance Distributed Computing (HPDC’11),
June (2011)

22. Docan, C., Parashar, M., Cummings, J., Klasky, S.: “Moving the
code to the data - dynamic code deployment using active spaces”.
In: Proceedings of 25th IEEE International Parallel and Distributed
Processing Symposium (IPDPS’11), May (2011)

23. Vishwanath, V., Hereld, M., Papka, M.: “Toward simulation-time
data analysis and i/o acceleration on leadership-class systems”.
In: Proceedings of IEEE Symposium on Large Data Analysis and
Visualization (LDAV’11), Oct 2011

24. Gelernter, D.: Generative communication in Linda. ACM Trans.
Programm. Lang. Syst. 7(1), 80–112 (1985)

25. Zhang, L., Parashar, M.: “A dynamic geometry-based shared space
interaction framework for parallel scientific applications”. In: Pro-
ceedings of the 11th International Conference on High Performance
Computing (HiPC’04), 2004

26. “Enabling efficient and flexible coupling of parallel scientific appli-
cations”. In: Proceedings of the 20th IEEE International Parallel
and Distributed Processing Symposium (IPDPS’06), 2006

27. Docan, C., Parashar, M., Klasky, S.: “DataSpaces: an interaction
and coordination framework for coupled simulation workflows”.
In: Proceedings of 19th International Symposium on High Perfor-
mance and Distributed Computing (HPDC’10), June 2010

28. Guha, S., Meyerson, A., Mishra, N., Motwani, R., O’Callaghan, L.:
Clustering data streams: theory and practice. IEEE Trans. Knowl.
Data Eng. 15(3), 515–528 (2003)

29. Charikar, M., O’Callaghan, L., Panigrahy, R.: “Better streaming
algorithms for clustering problems”. In: Proceedings of the Thirty-
fifth Annual ACM Symposium on Theory of Computing, pp. 30–
39. (2003)

30. Aggarwal, C.C., Watson, T.J., Ctr, R., Han, J., Wang, J., Yu, P.S.:
“A framework for clustering evolving data streams”. In: VLDB,
pp. 81–92. (2003)

31. O’Callaghan, L., Mishra, N., Meyerson, A., Guha, S., Motwani, R.:
“Streaming-data algorithms for high-quality clustering”. In: 2013
IEEE 29th International Conference on Data Engineering (ICDE)
pp. 0685-0685. IEEE Computer Society (2013)

32. Csernel, B., Clerot, F., Hbrail, G.: “Streamsamp: datastream clus-
tering over tilted windows through sampling”. In: ECML PKDD
2006 Workshop on Knowledge Discovery from Data Streams,
(2006)

123

http://dx.doi.org/10.1145/2348832.2348837
http://dx.doi.org/10.1145/2348832.2348837
http://dx.doi.org/10.1007/s10586-011-0162-y
http://dx.doi.org/10.1145/1645164.1645172
http://dx.doi.org/10.1145/1645164.1645172


40 Cluster Comput (2015) 18:29–40

33. Abrantes, A.J.,Marques, J.S.: “A method for dynamic clustering of
data”. In: British Machine Vision Conference, (1998)

34. Silver, D., Wang, X.: Tracking and visualizing turbulent 3d features.
IEEE Trans. Visual. Comput. Graph. 3(2), 129–141 (1997)

35. Chen, J., Silver, D., Parashar, M.: “Real-time feature extraction and
tracking in a computational steering environment”. In: Proceedings
of Advanced Simulations Technologies Conference (ASTC’03),
(2003)

Solomon Lasluisa is a PhD stu-
dent at Rutgers University. He
received his BS and MS degrees
in Electrical and Computer Engi-
neering at Rutgers University.
His research interests include
data analytics, cloud comput-
ing, and wireless networks. His
research activities include auto-
nomic error detection for data
centers to prevent instability due
to hardware errors in scientific
simulations.

Fan Zhang received the BS
and MS degrees in Computer
Science from Huazhong Uni-
versity of Science and Tech-
nology, China. He is currently
working towards the PhD degree
at the Department of Electri-
cal and Computer Engineer-
ing at Rutgers University. His
research interests include par-
allel and distributed comput-
ing, high-performance comput-
ing and scientific data man-
agement. Contact him at
zhangfan@cac.rutgers.edu.

Tong Jin is a Ph.D can-
didate and research assistant
in the Department of Electri-
cal and Computer Engineer-
ing and the US National Sci-
ence Foundation (NSF) Cloud
and Autonomic Computing Cen-
ter (CAC) at Rutgers Univer-
sity. His research interests are
broadly in big data management,
distributed and parallel com-
puting, high performance com-
puting, cloud computing, and
distributed wireless networked
systems. He got his MS degree

majoring in Computer Engineering at Rutgers University. He is a stu-
dent member of IEEE and ACM. Contact him at tjin@rutgers.edu.

Ivan Rodero is an Assistant
Research Professor at the Rut-
gers Discovery Informatics Insti-
tute (RDI2) and the US National
Science Foundation (NSF) Cloud
and Autonomic Computing Cen-
ter (CAC) at Rutgers. His res-
earch interests include parallel
and distributed computing, high-
performance computing, energy
efficiency, autonomic comput-
ing, grid computing, cloud com-
puting, and big data. He has a
PhD in computer science and
engineering from the Technical

University of Catalonia, Spain. Ivan Rodero is recipient of the 2014
IEEE TCSC Award for Excellence for Early Career Researchers. He is
a senior member of IEEE, and a member of ACM, and the American
Association for the Advancement of Science (AAAS). Contact him at
irodero@rutgers.edu.

Hoang Bui received the B.S.
and M.S. in Computer Science
in 2004 and 2007 from Midwest-
ern State University and PhD in
Computer Science and Engineer-
ing in 2012 from the University
of Notre Dame. He is currently a
Postdoctoral Associate of RDI2
at Rutgers University, where his
research focuses on optimizing
data management for scientific
applications running on high-end
computing platforms.

Manish Parashar is Profes-
sor of Computer Science at Rut-
gers University. He is also the
founding Director of the Rutgers
Discovery Informatics Institute
(RDI2) and site Co-Director of
the NSF Cloud and Autonomic
Computing Center (CAC). His
research interests are in the broad
areas of Parallel and Distributed
Computing and Computational
and Data-Enabled Science and
Engineering. Manish serves on
the editorial boards and organiz-
ing committees of a large num-

ber of journals and international conferences and workshops, and has
deployed several software systems that are widely used. He has also
received a number of awards and is Fellow of AAAS, Fellow of
IEEE/IEEE Computer Society and Senior Member of ACM. For more
information please visit http://parashar.rutgers.edu/.

123

http://parashar.rutgers.edu/

	In-situ feature-based objects tracking for data-intensive scientific and enterprise analytics workflows
	Abstract 
	1 Introduction
	2 Background
	2.1 Data-intensive analytics workflows
	2.2 In-situ execution of data analytics workflows

	3 Motivating use cases
	3.1 Scientific scenario
	3.2 Enterprise scenario

	4 Design and implementation
	4.1 Overview of the system framework
	4.2 Feature-based objects tracking using DOC
	4.2.1 Decentralized online clustering (DOC)
	4.2.2 Features extraction
	4.2.3 Cluster tracking with a sliding time window
	4.2.4 Cluster tracking algorithm

	4.3 Composing in-situ data analysis workflows

	5 Experimental evaluation
	5.1 Performance of data transfer
	5.2 Effectiveness of the feature-based cluster tracking algorithm

	6 Related work
	6.1 In-situ scientific data processing
	6.2 Staging area based in-transit data analysis and I/O
	6.3 Tuple space model for coordination and communication
	6.4 Clustering techniques
	6.5 Cluster tracking
	6.6 Features tracking of time-varying simulation datasets

	7 Conclusion and future work
	Acknowledgments
	References


