
62	 Computing in Science & Engineering	 1521-9615/14/$31.00 © 2014 IEEE	 Copublished by the IEEE CS and the AIP� July/August 2014

High-Performance Computing

Federated Computing for the Masses—
Aggregating Resources to Tackle Large-Scale
Engineering Problems

Javier Diaz-Montes | Rutgers University

Yu Xie | Iowa State University

Ivan Rodero and Jaroslaw Zola | Rutgers University

Baskar Ganapathysubramanian | Iowa State University

Manish Parashar | Rutgers University

An exploration of the use of aggregated high-performance computing resources to solve large-scale engineering
problems shows that it’s possible to build a computational federation that’s easy for users to implement, and is
elastic, resilient, and scalable. The fusion of federated computing and real-life engineering problems is brought to
the average user by providing relevant middleware.

T
he ever-growing complexity of scientific
and engineering problems continues to
pose new requirements and challenges for
computing and data management. The

analysis of high-dimensional parameter spaces,
uncertainty quantification by stochastic sampling,
or statistical significance assessment through resa-
mpling are just a few examples of a broad class of
problems that are becoming increasingly impor-
tant in a wide range of application domains. These
ensemble (also called many-task computing) ap-
plications consist of a set of heterogeneous, com-
putationally intensive, and independent or loosely
coupled tasks and can easily consume millions of
core-hours on any high-performance computing
(HPC) resource. While many of these problems
are conveniently parallel, their collective complex-
ity exceeds computational time and throughput
that average users can obtain from a single compu-
tational center. For instance, the fluid flow prob-
lem considered in this article comprises more than
10,000 message passing interface (MPI) tasks,

and would require approximately—1.5 million
core-hours to solve on the Stampede cluster at the
Texas Advanced Computing Center—one of the
most powerful machines within the Extreme Sci-
ence and Engineering Discovery Environment (see
www.xsede.org). Although XSEDE allocations of
that size aren’t uncommon, the heavy use of Stam-
pede and its typical queue waiting times make it
virtually impossible to execute that number of
tasks within an acceptable time limit. The problem
becomes even more complex if we take into ac-
count that individual tasks are heterogeneous, and
add in the possibility of failures that aren’t uncom-
mon in large-scale multiuser systems.

These constraints aren’t unique to one par-
ticular problem or a system. Rather, they represent
common obstacles that limit the scale of problems
that an ordinary researcher can consider on a single,
but powerful, system. What’s important is that this
trend continues and we can only expect that more
and more users will require computational through-
put that can’t be delivered just by one resource. To

CISE-16-04-Diaz-Montes.indd 62 28/07/14 6:54 PM

www.computer.org/cise			 	� 63

overcome these limitations, we need to address two
important questions: how to empower a researcher
with computational capability compatible to that
currently reserved for the elite problems; and how
to deliver this capability in a user-centered manner.
Here, we argue that both these questions can be
answered by implementing a software-defined fed-
eration model in which a user, without any special
privileges, can seamlessly aggregate multiple, glob-
ally distributed, and heterogeneous HPC resources
exploiting their intrinsic capabilities. In this vision,
a user is presented with programmable mechanisms
to define resources as well as policies and constraints
that autonomously guard how resources are used,
and how to react to changes in the federation.

Thus, in this article we explore the use of soft-
ware-defined federated computing to solve large-
scale engineering problems in a user-centered way
(for other approaches, see the related sidebar). Our
focus is on empowering the average user with aggre-
gated computational capabilities typically reserved
for selected high-profile problems. To achieve this,
we propose to aggregate heterogeneous HPC re-
sources in the spirit of how volunteer computing
assembles desktop computers. Specifically, we de-
scribe a model of computational federation that

■■ lets users be in control of the federation process
by specifying resources accessible to them, the
constraints associated to those resources, and
how they want to make use of the resources as
part of their federations;

■■ is extremely easy to deploy and offers an intui-
tive API to meet the expectations and needs of
the average user;

■■ encapsulates cloud-like capabilities, for ex-
ample, on-demand resource provisioning,
elasticity, and resilience, to provide sustainable
computational throughput;

■■ provides strong fault-tolerance guarantees
through constant monitoring of tasks and
resources;

■■ bridges multiple, highly heterogeneous re-
sources, for example, servers, clusters, super-
computers, and clouds, to effectively exploit
their intrinsic capabilities; and

■■ leverages security and authentication from the
underlying infrastructure.

To demonstrate the potential of the resulting federat-
ed infrastructure in addressing the computational re-
quirements of real-world, large-scale computational
engineering problems, we implemented a prototype

Other Approaches to Federated Computing

Federated computing has been explored in various contexts

and has been demonstrated as an attractive and viable

model for effectively harnessing the power offered by distrib-

uted resources.1-5 For example, volunteer computing systems

(such as the Berkeley Open Infrastructure for Network Comput-

ing) enable the aggregation of user resources, provided by a

crowd of volunteers, to obtain nontrivial computing capabilities

for an application. While this model is easy to configure and

use from a user perspective, it can support only a limited class

of applications; that is, those with large numbers of small and

independent tasks. At the other end of the spectrum, grids—

for example, Enabling Grids for E-sciencE (now supported by

the European Grid Infrastructure; see www.egi.eu), Grid’5000

(www.grid5000.fr), and Open Science Grid (www.openscience-

grid.org)—have targeted more computing/data-intensive ap-

plications by federating capacity and/or capabilities into secure

and dependable virtual organizations. Grids often have user-

perceived complexity, and configuring them involves complex

software–hardware interaction requiring significant experience

from the end users.4 More recently, cloud federations are being

explored as a means to extend as-a-service models to virtual-

ized data-center federations. Given the increasing importance

of ensemble applications and their computational requirements,

it’s becoming important to revisit user-centered federated

computing from the perspective of this class of applications and

their requirements.

References
1.	 G. Allen and D. Katz, Computational Science, Infrastructure

And Interdisciplinary Research on University Campuses: Experi-
ences and Lessons from the Center for Computation & Technol-
ogy, tech. report CCT-TR-2010-1, Center for Computation &

Technology, Louisiana State Univ., 2010.

2.	 F. Berman, G. Fox, and A. Hey, Grid Computing: Making the
Global Infrastructure a Reality, John Wiley & Sons, 2003.

3.	 G. Garzoglio et al., “Supporting Shared Resource Usage for

a Diverse User Community: The OSG Experience and Les-

sons Learned,” J. Physics: Conf. Series, vol. 396, 2012;

doi:10.1088/1742-6596/396/3/032046.

4.	 M. Parashar and C. Lee, “Special Issue on Grid Computing,”

Proc. IEEE, vol. 93, no. 3, 2005.

5.	 P. Riteau et al., “Large-Scale Cloud Computing Research:

Skycomputing on FutureGrid and Grid’5000,” ERCIM News,

2010; http://ercim-news.ercim.eu/en83/special/large-scale-

cloud-computing-research-sky-computing-on-futuregrid-and-

grid5000.

CISE-16-04-Diaz-Montes.indd 63 28/07/14 6:54 PM

High-Performance Computing

64	 � July/August 2014

of the federation and used it to analyze a high-di-
mensional parameter space in the fluid flow prob-
lem. The presented case study involves a federation
of 10 different and distributed HPC centers, con-
sumes more than 2.5 million core-hours, and pro-
vides the most comprehensive data to-date on the
effect of pillars on flow in microchannels.

Defining a Federation Model for the Masses
Our goal is to develop a federation model that
would be able to support large scientific workloads,
but at the same time would be user-centered. To
build such a model it’s imperative to understand
two key elements. First, which specific properties
of large-scale scientific and engineering applica-
tions must be taken into consideration to enable ef-
ficient execution in a large federated environment?
Second, what kind of expectations must be ad-
dressed to achieve a user-centered design? Because
it would be unrealistic to assume that all types of
scientific applications can benefit from federated
computing, we focus on a particular class of com-
putational workloads, in which large search-spaces
are investigated in a coordinated manner. Here,
classic examples are Monte Carlo methods, sto-
chastic sampling strategies (for example, sparse grid
collocation), or soft computing approaches (such as
simulated annealing). These techniques constitute
a significant fraction of all scientific codes in use
today, and hence are of great practical importance
to the average user.

Large-Scale Scientific and
Engineering Applications in the Target
A typical approach to investigate large search spac-
es combines two elements: a master module that
encapsulates the problem logic, for example, to
decide how the search-space should be navigated;
and a science-driver that implements the actual
computational core. Usually, both elements are
contained within separate software components,
and problem logic can be implemented indirectly
in the execution environment (for example, as a
script interacting with a queuing system). Indi-
vidual instances of a science-driver are either inde-
pendent or involve asynchronous communication.
Naturally, complexity of both modules might vary
drastically. However, in the vast majority of cases
it’s the science-driver that is represented by a com-
plex parallel code, and requires HPC resources
to execute. For instance, in the case study that
we describe in the next section, the problem logic
amounts to a simple enumeration of selected points

in the search space, while the science-driver is a
complex fluid flow simulation. Although a science-
driver is computationally challenging on its own,
the actual complexity comes from the fact that the
usual investigation involves a large number of tasks
(for example, more than 12,000 in our study, and
millions in any Monte Carlo analysis). Often a sin-
gle resource is insufficient to execute the resulting
workload, either because of insufficient throughput
or limited computational capability. Additionally,
tasks might be heterogeneous and have diverse
hardware requirements, or can be optimized for
specific architectures. Moreover, except in simple
scenarios, tasks are generated dynamically, based
on partial or complete results delivered by previ-
ously completed tasks.

Shaping the Federation
from the Scientist’s Perspective
We focus now on what type of user expectations
must be addressed to achieve a user-centered de-
sign. Here, we have to keep in mind that our fed-
eration model must serve a regular user with a need
for large computational capacity. Such a user most
likely has access to several heterogeneous resources
using a standard environment, such as a shell ac-
count. Consequently, the key feature that must be
offered by a federation is the ability to aggregate
heterogeneous resources, while operating com-
pletely in a user-space. After all, it’s unrealistic to
expect that a user will have administrative privi-
leges on any HPC resource. Another important
factor is how federated resources are exposed to a
user. The federation should hide low-level details,
such as geographic location or hardware archi-
tecture, while offering a familiar programming
interface, for example, supporting common paral-
lel-programming idioms such as master/worker or
MapReduce, which the user could access directly.
At the same time, a user must be able to deploy
existing applications, such as science-drivers and
sometimes a problem logic module, within the fed-
eration and without modifications.

If we look at these characteristics, it becomes
apparent that there are several key features for which
our federation model must account. The federation
must be elastic and scalable—the ability to scale
up/down and out becomes essential to handling a
varying number of tasks over time. What’s impor-
tant is that elasticity also makes the infrastructure
resilient and hence improves its ability to sustain
computational throughput. The federation must be
able to adapt to the diverse task requirements, and

CISE-16-04-Diaz-Montes.indd 64 28/07/14 6:54 PM

www.computer.org/cise			 	� 65

make optimal use of distinct features contributed
by the heterogeneous federated resources. Conse-
quently, capability—which we define as the ability
of a federation to take advantage of particular hard-
ware characteristics—must be the first-class citizen
in our model. This requirement is synergistic with
the concept of autonomic computing.

A User-Centered Approach to Federation
To deliver a federation model with properties
highlighted in the previous section, we focused on
usability, elasticity, and resilience as primary objec-
tives. The presented model is aimed at allowing the
creation of software-defined federated infrastruc-
tures, where resources are exposed using elastic,
on-demand cloud abstractions. In particular, we
envision living federations that can dynamically
evolve in terms of size and capabilities follow-
ing user-defined constraints and instructions. The
underlying infrastructure is presented as a single
elastic pool of resources regardless of their physical
location. The design is based on four layers, where
the lowest layer is responsible for the interaction
with physical resources; and the highest one is the
actual user application. The appropriate provision-
ing of resources in accordance with user-provided
policies is realized by the cross-layer, autonomic
manager. The schematic representation of the de-
sign is presented in Figure 1.

This design lets us separate the different func-
tionalities required by the federation. At the bot-
tom we have a federation overlay, which creates a
uniform view on top of physical resources and the
foundation that supports the higher-level services
of the federation. It lets users add and remove het-
erogeneous resources dynamically, and handles
network and resource failures. This layer also pro-
vides a routing engine to address resources using
their attributes rather than specific addresses; and
supports flexible, content-aware routing and com-
plex querying using partial keywords, wildcards,
or ranges. Next, the service layer provides a range
of services to support autonomics at the program-
ming and application level. It includes a coordina-
tion service that handles application execution, a
discovery service to find resources based on their
properties, and an associative object store service to
manage tasks and data. These services are encapsu-
lated and offered to the users through the program-
ming layer, which provides the basic framework for
application development and management. This
layer supports several common, distributed pro-
gramming paradigms, including master/worker
workflow and MapReduce. These programming
abstractions ease the development of applications
by decoupling the application from the infrastruc-
ture particularities. Moreover, they affect the way
the application is executed in the resources. Finally,

Figure 1. Multilayer design of the proposed federation model. Here, the autonomic manager is a cross-layer
component that, based on user data and policies, provisions appropriate resources.

User application

User data
Objectives &

policies

Autonomic
manager

Programming abstraction

Service layer

Federation overlay

CISE-16-04-Diaz-Montes.indd 65 28/07/14 6:54 PM

High-Performance Computing

66	 � July/August 2014

the application layer represents the final application
developed by a user on top of the programming
layer. In many cases a user might employ the federa-
tion to execute third-party, perhaps closed-source,
software. In such cases the target software can’t or
shouldn’t be modified, for example, due to efficien-
cy considerations. To accommodate for this, the
programming layer can still be used in the standard
way, however, the resulting application becomes a
mere container that acts as a facade for the target
software. This tremendously simplifies migration
from traditional environments to our federation
model. We should keep in mind however, that
in this scenario the target application must be
deployed on the federated resources beforehand.

The key ingredient of the federation is the
autonomic manager. The manager enables the au-
tonomic management and multiobjective optimi-
zation (including performance, energy, cost, and
reliability criteria) of application execution through
cross-layer application/infrastructure adaptations.
This component offers quality of service (QoS) by
adapting the provisioned resources to the applica-
tion’s behavior as well as system configuration,
which can change at runtime, using the notion of
elasticity at the application level. As a result, the
federated infrastructure increases the opportunities
to provision appropriate resources for a given appli-
cation based on user objectives or policies, and dif-
ferent resource classes can be mixed to achieve the
user objectives. The manager can scale federation
up/down/out based on the dynamic workload and
provided user policies. For example, a user objec-
tive can be to accelerate the application execution
within given budget constraints, to complete the
application within an assumed deadline, or to use
resources best matching to the application type (for
example, computation versus data-intensive). Be-
cause application requirements and resource status
might change, for example, due to workload surg-
es, system failures, or emergency system mainte-
nance, the manager provisions resources adaptively
to accommodate for these changes. Note that the
adaption ensures implicitly federation resilience.

The security and authentication are leveraged
solutions provided by each site (for example, based
on Secure Socket Shell, or SSH). This decision is
motivated by the difficulties that the grid comput-
ing community found when trying to introduce a
new authentication/authorization model, based on
X.509 certificates, in the existing production infra-
structures. Consequently, the federation lets users
select their preferred authentication/authorization

mechanisms among those directly supported by
each site.

Case Study
To demonstrate the applicability and scalability
of our federation model in a real-life scenario, we
focused on the problem of constructing the phase
diagram of fluid flow in microscale devices. The
problem is highly representative for a broad cat-
egory of parameter space interrogation techniques,
which are essential for understanding how process
variables affect behavior of the modeled system,
to quantify model uncertainty when input data is
incomplete or noisy, or to establish a ground on
which inverse problems can be investigated. While
these techniques are diverse, typically they involve
a large collection of computationally intensive
tasks, with little or no synchronization between the
tasks.

Application Description
Our focus on the fluid flow problem is motivated
by its great practical importance. The ability to
control fluid streams at the microscale has signifi-
cant applications in many domains, including bio-
logical processing,1 guiding chemical reactions,2
and creating structured materials.3 Two of the
authors (henceforth, they’re referred to as the end
user), are part of a team that recently discovered
that placing pillars of different dimensions and at
different offsets allows sculpting the fluid flow in
microchannels.4 The design and placement of pillar
sequences enables a phenomenal degree of flexibil-
ity to program the flow for various biomedical and
manufacturing applications. However, to achieve
such a control it’s necessary to understand how
flow is affected by different input parameters.

The end user has developed a parallel, finite
element and MPI-based Navier-Stokes equation
solver, which can be used to simulate flows in a
microchannel with an embedded pillar obstacle.
Here, the microchannel with the pillar is a build-
ing block that implements a fluid transformation.
For a given combination of microchannel height,
pillar location, pillar diameter, and Reynolds
number (four variables), the solver captures both
qualitative and quantitative characteristics of flow
(see Figure 2). To reveal how the input parameters
interplay, and how they impact flow, the end user
seeks to construct a phase diagram of possible
flow behaviors. In addition, the end-user would
like to create a library of single pillar transforma-
tions to enable analysis of sequences of pillars. This

CISE-16-04-Diaz-Montes.indd 66 28/07/14 6:54 PM

www.computer.org/cise			 	� 67

amounts to interrogating the resulting 4D param-
eter space, in which a single point is equivalent to
a parallel Navier-Stokes simulation with a specific
configuration.

The problem is challenging for several reasons.
The search space consists of tens of thousands of
points, and an individual simulation might take
hundreds of core-hours, even when executed on a
state-of-the-art HPC cluster. For example, the spe-
cific instance we consider requires 12,400 simula-
tions. The individual tasks, although independent,
are highly heterogeneous and their execution cost
is difficult to estimate a priori, owing to varying
resolution and mesh density required for differ-
ent configurations. In our case, the cost can range
from 100 to 100,000 core-hours per task executed
on the IBM Blue Gene/P. Consequently, sched-
uling and coordination of the execution can’t be
performed manually, and a single system can’t
support it. Finally, because the nonlinear solver is
iterative, it might fail to converge for some com-
binations of input parameters, in which case fault
tolerance mechanisms should be engaged. These
properties make the problem impossible for the
end user to solve using the standard computational
resources (for example, computational allocation
from XSEDE). At the same time, they exemplify
the main advantages of our proposed federation
model.

Experimental Setup
To run our computational problem on a federation
of resources, we integrated the MPI-based solver
with the federation framework using the master/
worker paradigm. In this scenario, the simula-
tion software serves as a computational engine,
while the federation framework is responsible for
orchestrating the entire execution. We implement-
ed a prototype of the described federation using
CometCloud (see www.cometcloud.org). Here,
CometCloud provides a basic functionality on top
of which a federation can be achieved. For exam-
ple, it offers autonomic capabilities; fault tolerance
mechanisms; and transparent access to cloud, grid,
and HPC infrastructures. As a result, sites can join
and leave the federation at any moment without
interrupting the execution. We note that although
the master/worker paradigm best fits our problem,
the proposed federation model and its Comet-
Cloud implementation also support MapReduce
and workflows.

We identified a total of 12,400 simulations
(tasks) as essential to interrogate the parameter

space at the precision level satisfactory to the end
user. The estimated collective cost of these tasks is
1.5 million core-hours if executed on the Stampede
cluster. While this number is already challenging,
we note that approximately 300,000 tasks would
be required to provide a fine-grained view of the
parameter space. As we already mentioned, tasks
are heterogeneous in terms of hardware require-
ments and computational complexity. This is be-
cause of varying mesh density and size, as well as
the convergence rate of the solver. For instance,
some tasks require a minimum of 512 Gbytes
of total RAM, while many can execute with 64
Gbytes. To accommodate for this variability, we
classified tasks into three groups (small, medium,
and large) based on their estimated minimal hard-
ware requirements. Although this classification is
necessarily error-prone due to nontrivial depen-
dencies between mesh size, and memory and time
complexity, it serves as a good proxy based on
which computational sites can decide which tasks
to pull. At the same time, misclassified tasks can
be handled by the fault tolerance mechanisms of
CometCloud.

To execute the experiment we federated 10 dif-
ferent resources, provided by six institutions from
three countries. Tables 1 and 2 summarize the char-
acteristics of the selected machines. As can be seen,
used resources span different hardware architec-
tures and queuing systems, ranging from high-end
supercomputers to small-scale servers. Depending
on the hardware characteristics, different machines
accepted tasks from different classes (see Table 2).
This was achieved by providing a simple configu-
ration file to the respective CometCloud worker.
Our initial rough estimates indicated that the first
seven machines (Excalibur, Snake, Stampede, Lon-
estar, Hotel, India, and Sierra) would be sufficient
to carry out the experiment, and conclude it within
two weeks. However, during the experiment, as we

Figure 2. Example flow in a microchannel with a pillar. Four variables
characterize the simulation: channel height, pillar location, pillar diameter,
and Reynolds number.

CISE-16-04-Diaz-Montes.indd 67 28/07/14 6:54 PM

High-Performance Computing

68	 � July/August 2014

explain later, we decided to integrate additional
resources (Carver, Hermes, and Libra). Because
all machines were used within limits set by the
hosting institutions, no special arrangements were

made with their system administrators, and both
the end users’ software and CometCloud compo-
nents were deployed using a basic SSH account.

Experimental Results
The experiment lasted 16 days during which we
federated 10 different HPC resources and executed
a total of 12,845 tasks. Together, all tasks con-
sumed 2,897,390 core-hours and generated 398
Gbytes of the output data. Figure 3 summarizes
the experiment’s progress.

The initial federation configuration included
only five machines (Excalibur, Snake, Stampede,
Lonestar, and Hotel) out of seven planned. Two
other machines, India and Sierra, joined with a
delay caused by maintenance issues. After the first
day of execution it became apparent that more
computational resources were needed to finish the
experiment within the assumed deadline. This is
because some machines were experiencing prob-
lems, and more importantly, our XSEDE allocation
on Stampede was being exhausted rapidly. At that
point, the first significant feature of our solution

Table 1. Computational resources used to execute the experiment.

Name Provider Type Cores* Memory** Network Scheduler

Excalibur Rutgers Discovery
Informatics Institute (RDI2)

IBM Blue Gene/P
(BG/P)

8,192 512 Mbytes BG/P LoadLeveler

Snake RDI2 Linux symmetric
multiprocessing
(SMP)

64 2 Gbytes N/A N/A

Stampede Extreme Science and
Engineering Discovery
Environment (XSEDE)

iDataPlex 1,024 4 Gbytes InfiniBand (IB) SLURM

Lonestar XSEDE iDataPlex 480 2 Gbytes IB Sun Grid Engine
(SGE)

Hotel FutureGrid iDataPlex 256 4 Gbytes IB Torque

India FutureGrid iDataPlex 256 3 Gbytes IB Torque

Sierra FutureGrid iDataPlex 256 4 Gbytes IB Torque

Carver Dept. of Energy/ National
Energy Research Scientific
Computing Center (NERSC)

iDataPlex 512 4 Gbytes IB Torque

Hermes Universidad de Castilla-La
Mancha, Spain

Beowulf 256 4 Gbytes 10 Gigabit
Ethernet (GbE)

SGE

Libra Institute of High
Performance Computing,
Singapore

Beowulf 128 8 Gbytes 1 GbE N/A

* Peak number of cores available to the experiment.
** Memory per core.

Table 2. Capability of each resource.

Name Cores per task Accepted tasks

Excalibur 1,024 Small/medium/large

Snake 64 Small/medium

Stampede 128 Small/medium/large

Lonestar 120 Small/medium/large

Hotel 128 Small/medium/large

India 128 Small/medium/large

Sierra 128 Small/medium/large

Carver 256 Small/medium

Hermes 128 Small/medium/large

Libra 128 Small/medium

CISE-16-04-Diaz-Montes.indd 68 28/07/14 6:54 PM

www.computer.org/cise			 	� 69

came into play—thanks to the extreme flexibility
of the CometCloud platform, temporal failures
of individual resources didn’t interrupt the overall
progress, and adding new resources was possible
within a few minutes from the moment the access
to a new resource was acquired and the simulation
software deployed. Indeed, on the second day
Hermes from Spain was added to the execution
pool, and soon after the National Energy Research
Scientific Computing Center’s (NERSC’s) Carver,
and Singapore’s Libra were federated. Consequent-
ly, the federation was able to sustain computational
performance. Figure 3 shows that most of the time
there were between five and 25 simulations, despite
multiple idle periods scattered across the majority
of the machines. These idle periods were caused
by common factors, such as hardware failures and
long waiting times in system queues. The Comet-
Cloud fault tolerance mechanism handled all fail-
ures. During the experiment, 249 tasks had to be
regenerated due to hardware errors, and 167 due to
inability of the solver to converge. We note that 29
additional tasks were run as a result of a speculative
execution. All this demonstrates great framework
robustness—depending on resource availability
and execution rate, the federation can be scaled up
or down accordingly.

Figure 4 outlines how the computational
throughput, measured as the number of tasks
completed per hour, was shaped by different
computational resources. Here, we can make
several interesting observations. First, no single
resource dominated the execution. Although
Stampede, the most powerful machine among
all federated, provided a brief performance burst
during the first two days, it was unable to de-
liver a sustained throughput. In fact, tasks on
this machine were submitted to the develop-
ment queue that limits the number of processors
used by a job, but offers relatively high turnover
rate. Yet, even this queue got saturated after the
first day of execution, which caused a sudden
drop in the throughput. This pattern can be ob-
served on other systems as well (for example, see
Lonestar and Carver), and it confirms our ear-
lier observation that no single system can offer
a sufficient throughput. Another observation is
related to how the throughput was distributed
in time. The peak was achieved close to the end
of the experiment, even though after the 12th
day Excalibur was running at half its initial ca-
pacity (see Figure 3). This can be explained by
the fact that the majority of tasks executing to-
wards the end were small tasks. Consequently,

Figure 3. Summary of the experiment. (a) Use of different computational resources. Line thickness is proportional
to the number of tasks being executed at given point of time. Gaps correspond to idle time, for example, due to
machine maintenance. (b) The total number of running tasks at a given point of time.

Excalibur
Snake

Stampede
Lonester

Hotel
India

Sierra
Carver

Hermes
Libra

25

20

15

10

R
un

ni
ng

 t
as

ks

5

0

Day 1 Day 3 Day 5 Day 7 Day 9 Day 11 Day 13 Day 15

Day 1 Day 3 Day 5 Day 7 Day 9 Day 11 Day 13 Day 15

(a)

(b)

CISE-16-04-Diaz-Montes.indd 69 28/07/14 6:54 PM

High-Performance Computing

70	 � July/August 2014

all available resources were able to participate
in execution, and short runtimes increased the
overall throughput.

The last important element of the experiment
was data management. In our case, the input data
consisted of two components: a finite element
mesh database tightly integrated with the simula-
tion software, and hence deployed together with
the software, and a 4-tuple describing simulation
parameters. As a result, no special mechanisms
were required to handle the input. The output data
consisted of simulation results and several small
auxiliary files. The output size varied between
simulations ranging from 3 to 30 Mbytes when
compressed. The data was compressed in situ and
on the fly during the experiment, and then trans-
ferred using the Rsync protocol to the central re-
pository for a subsequent analysis.

The presented results clearly demonstrate the
feasibility and capability of our proposed federation
model. In our experiment a single user, with basic
SSH access to several globally distributed and het-
erogeneous resources, was able to solve a large-scale
computational engineering problem within just two
weeks. Importantly, this result was achieved in a few
simple steps executed completely in a user space.
By providing a simple master/worker code, the user
gained access to a unified and fault-tolerant plat-
form able to sustain computational throughput.

This experiment provided what is currently the
most comprehensive data available on the ef-

fect of pillars on microfluid channel flow. Although
we’re still in the process of analyzing this mas-
sive output, we already gained several interesting

80
Excalibur

Snake
Stampede

Lonestar
Hotel
India

Sierra
Carver

Hermes
Libra

Large
Medium

Small

Stampede

Lonestar

Carver

60

40

20

Th
ro

ug
hp

ut
 [

ta
sk

/h
ou

r]
Th

ro
ug

hp
ut

 [
ta

sk
/h

ou
r]

Q
ue

ue
 t

im
e

[m
in

]

0
Day 1 Day 3 Day 5 Day 7 Day 9 Day 11 Day 13 Day 15

80

60

40

20

0
Day 1 Day 3 Day 5 Day 7 Day 9 Day 11 Day 13 Day 15

160

120

80

40

0
Day 1 Day 3 Day 5 Day 7 Day 9 Day 11 Day 13 Day 15

(a)

(b)

(c)

Figure 4. Throughput and queue waiting time. (a) Dissection of throughput measured as the number of tasks
completed per hour. Different colors represent component throughput of different machines. (b) Throughput
contribution by different task classes. (c) Queue waiting time on selected resources.

CISE-16-04-Diaz-Montes.indd 70 28/07/14 6:54 PM

www.computer.org/cise			 	� 71

insights regarding fundamental features of the flow.
Figure 5 shows how different flow modes are dis-
tributed in the parameter space. Here, each mode
corresponds to one or two vortices generated, as
proposed in other work.4 In the introduction to this
section, we hinted that by arranging pillars into a
specific sequence that it’s possible to perform basic
flow transformations. Thanks to the library of flow
configurations that we generated in this experi-
ment, we can now investigate the inverse problem
and, for example, ask questions about the optimal
pillar arrangement to achieve a desired flow output.
The implications of such capabilities are far reach-
ing, with potential applications in medical diagnos-
tics and smart materials engineering.

Acknowledgments
This work is supported in part by the US National Sci-
ence Foundation (NSF) under grants ACI 1339036,
IIP-0758566, DMS-0835436, CAREER-1149365,
PHY-0941576, CBET-1307743, CBET-1306866, and
by IBM via Open Collaboration Research and Faculty
awards. This project used resources provided by XSEDE
supported by NSF OCI-1053575, FutureGrid supported
in part by NSF OCI-0910812, and NERSC supported
by DoE DE-AC02-05CH11231. We thank the SciCom
group at the Universidad de Castilla-la Mancha, Spain,

for providing access to Hermes; and the Distributed
Computing research group at the Institute of High-Per-
formance Computing, Singapore, for providing access to
Libra. We acknowledge the Consorzio Interuniversitario
del Nord est Italiano Per il Calcolo Automatico (CINE-
CA), Italy; LRZ, Germany; Centro de Supercomputación
de Galicia (CESGA), Spain; and National Institute for
Computational Sciences (NICS) for sharing their com-
putational resources. We thank Olga Wodo for discussion
and help with development of the simulation software,
Dino DiCarlo for discussions about the problem defini-
tion, and Moustafa Abdelbaky for helpful comments on
an early version of this article. We’re grateful to all the ad-
ministrators of systems used in this experiment, especially
to Prentice Bisbal from RDI2 and Koji Tanaka from Fu-
tureGrid, for their efforts to minimize downtime of com-
putational resources and for general support.

References
1.	 J. Wang et al., “Vortex-Assisted DNA Delivery,” Lab

on a Chip, vol. 10, 2010, pp. 2057–2061.
2.	 Y. Gambin et al., Visualizing a One-Way Protein

Encounter Complex by Ultrafast Single-Molecule
Mixing, Nature Methods, vol. 8, 2011, pp. 239–241.

3.	 H. Lee et al., “Colour-Barcoded Magnetic Mic-
roparticles for Multiplexed Bioassays,” Nature Ma-
terials, vol. 9, 2010, pp. 745–749.

mode 1
mode 2
mode 3
mode 4

2

1.8

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2
0.8

0.6
0.4

0.2 10 20 30 40 50
Re

D/w

h/w

60 70 80 90 100

Figure 5. The phase diagram showing how different flow modes are distributed in the parameter space. Here, pillar
offset is 0, D is a pillar diameter, h is a channel height, w is channel width, and Re is the Reynolds number.

CISE-16-04-Diaz-Montes.indd 71 28/07/14 6:54 PM

HigH-PerformAnce comPuting

72 July/August 2014

4. H. Amini et al., “Engineering Fluid Flow Using
Sequenced Microstructures, Nature Comm., 2013;
doi:10.1038/ncomms2841.

Javier Diaz-Montes is an assistant research professor at
Rutgers University and a member of the Rutgers Dis-
covery Informatics Institute (RDI2) and the US NSF
Cloud and Autonomic Computing Center. His research
interests include parallel and distributed computing, au-
tonomic computing, grid computing, cloud computing,
virtualization, and scheduling. Diaz-Montes has a PhD
in computer science from the Universidad de Castilla-La
Mancha, Spain. He’s a member of IEEE and the ACM.
Contact him at javier.diazmontes@gmail.com.

Yu Xie is working toward a PhD in the Department of
Mechanical Engineering at Iowa State University. His
research interests include HPC, uncertainty quantifi ca-
tion of complex systems, and fi nite element method for
multiphase fl ow simulation. Xie has a BS in mechanical
engineering from Peking University, Beijing. Contact
him at yuxie@iastate.edu.

Ivan Rodero is an assistant research professor at Rut-
gers University and a member of the RDI2 and the NSF
Cloud and Autonomic Computing Center. His research
interests include parallel and distributed computing,
high-performance computing, energy effi ciency, auto-
nomic computing, grid computing, cloud computing,
and data analytics at extreme scales. Rodero has a PhD
in computer science and engineering from the Techni-
cal University of Catalonia. He’s a member of IEEE, the
ACM, and the American Association for the Advance-
ment of Science (AAAS). Contact him at irodero@cac.
rutgers.edu.

Jaroslaw Zola is an associate research professor at Rut-
gers University and a member of the RDI2. His research

interests include data-driven, large-scale computing in
life sciences and engineering. Zola has a PhD in com-
puter science from Grenoble Institute of Technology,
France. He’s a senior member of IEEE, and a member
of ACM, the International Society for Computational
Biology (ISCB), and AAAS. Contact him at jaroslaw.
zola@rutgers.edu.

Baskar Ganapathysubramanian is an associate profes-
sor of mechanical engineering at Iowa State University.
His research interests include stochastic analysis, mul-
tiscale modeling, and design of materials and processes
using computational techniques. Ganapathysubrama-
nian has a PhD in mechanical and aerospace engineer-
ing from Cornell University. Contact him at baskarg@
iastate.edu.

Manish Parashar is a professor in the Department of
Computer Science at Rutgers University, he’s the di-
rector of the Rutgers Discovery Informatics Institute
(RDI2) and the US National Science Foundation (NSF)
Cloud and Autonomic Computing Center (CAC) at
Rutgers, and he’s the associate director of the Rutgers
Center for Information Assurance. His research interests
focus on applied parallel and distributed computing and
computational and data-intensive science and engineer-
ing. Parashar has a PhD in computer engineering from
Syracuse University. He received the IBM F aculty award
twice, as well as a US NSF Career award, and he is an
American Association for the Advancement of Science
(AAAS) and IEEE Fellow. Contact him at parashar@
rutgers.edu.

Selected articles and columns from IEEE Computer
Society publications are also available for free at

http://ComputingNow.computer.org.

Subscribe today for the latest in computational science and engineering research, news and analysis,
CSE in education, and emerging technologies in the hard sciences.

www.computer.org/cise

CISE-16-04-Diaz-Montes.indd 72 28/07/14 6:54 PM

