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An exploration of the use of aggregated high-performance computing resources to solve large-scale engineering 
problems shows that it’s possible to build a computational federation that’s easy for users to implement, and is 
elastic, resilient, and scalable. The fusion of federated computing and real-life engineering problems is brought to 
the average user by providing relevant middleware.

T
he ever-growing complexity of scientific 
and engineering problems continues to 
pose new requirements and challenges for 
computing and data management. The 

analysis of high-dimensional parameter spaces, 
uncertainty quantification by stochastic sampling, 
or statistical significance assessment through resa-
mpling are just a few examples of a broad class of 
problems that are becoming increasingly impor-
tant in a wide range of application domains. These 
ensemble (also called many-task computing) ap-
plications consist of a set of heterogeneous, com-
putationally intensive, and independent or loosely 
coupled tasks and can easily consume millions of 
core-hours on any high-performance computing 
(HPC) resource. While many of these problems 
are conveniently parallel, their collective complex-
ity exceeds computational time and throughput 
that average users can obtain from a single compu-
tational center. For instance, the fluid flow prob-
lem considered in this article comprises more than 
10,000 message passing interface (MPI) tasks, 

and would require approximately—1.5 million 
core-hours to solve on the Stampede cluster at the 
Texas Advanced Computing Center—one of the 
most powerful machines within the Extreme Sci-
ence and Engineering Discovery Environment (see 
www.xsede.org). Although XSEDE allocations of 
that size aren’t uncommon, the heavy use of Stam-
pede and its typical queue waiting times make it 
virtually impossible to execute that number of 
tasks within an acceptable time limit. The problem 
becomes even more complex if we take into ac-
count that individual tasks are heterogeneous, and 
add in the possibility of failures that aren’t uncom-
mon in large-scale multiuser systems.

These constraints aren’t unique to one par-
ticular problem or a system. Rather, they represent 
common obstacles that limit the scale of problems 
that an ordinary researcher can consider on a single, 
but powerful, system. What’s important is that this 
trend continues and we can only expect that more 
and more users will require computational through-
put that can’t be delivered just by one resource. To 
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overcome these limitations, we need to address two 
important questions: how to empower a researcher 
with computational capability compatible to that 
currently reserved for the elite problems; and how 
to deliver this capability in a user-centered manner. 
Here, we argue that both these questions can be 
answered by implementing a software-defined fed-
eration model in which a user, without any special 
privileges, can seamlessly aggregate multiple, glob-
ally distributed, and heterogeneous HPC resources 
exploiting their intrinsic capabilities. In this vision, 
a user is presented with programmable mechanisms 
to define resources as well as policies and constraints 
that autonomously guard how resources are used, 
and how to react to changes in the federation.

Thus, in this article we explore the use of soft-
ware-defined federated computing to solve large-
scale engineering problems in a user-centered way 
(for other approaches, see the related sidebar). Our 
focus is on empowering the average user with aggre-
gated computational capabilities typically reserved 
for selected high-profile problems. To achieve this, 
we propose to aggregate heterogeneous HPC re-
sources in the spirit of how volunteer computing 
assembles desktop computers. Specifically, we de-
scribe a model of computational federation that

■■ lets users be in control of the federation process 
by specifying resources accessible to them, the 
constraints associated to those resources, and 
how they want to make use of the resources as 
part of their federations;

■■ is extremely easy to deploy and offers an intui-
tive API to meet the expectations and needs of 
the average user;

■■ encapsulates cloud-like capabilities, for ex-
ample, on-demand resource provisioning, 
elasticity, and resilience, to provide sustainable 
computational throughput;

■■ provides strong fault-tolerance guarantees 
through constant monitoring of tasks and 
resources;

■■ bridges multiple, highly heterogeneous re-
sources, for example, servers, clusters, super-
computers, and clouds, to effectively exploit 
their intrinsic capabilities; and

■■ leverages security and authentication from the 
underlying infrastructure.

To demonstrate the potential of the resulting federat-
ed infrastructure in addressing the computational re-
quirements of real-world, large-scale computational 
engineering problems, we implemented a prototype 

Other Approaches to Federated Computing

Federated computing has been explored in various contexts 

and has been demonstrated as an attractive and viable 

model for effectively harnessing the power offered by distrib-

uted resources.1-5 For example, volunteer computing systems 

(such as the Berkeley Open Infrastructure for Network Comput-

ing) enable the aggregation of user resources, provided by a 

crowd of volunteers, to obtain nontrivial computing capabilities 

for an application. While this model is easy to configure and 

use from a user perspective, it can support only a limited class 

of applications; that is, those with large numbers of small and 

independent tasks. At the other end of the spectrum, grids—

for example, Enabling Grids for E-sciencE (now supported by 

the European Grid Infrastructure; see www.egi.eu), Grid’5000 

(www.grid5000.fr), and Open Science Grid (www.openscience-

grid.org)—have targeted more computing/data-intensive ap-

plications by federating capacity and/or capabilities into secure 

and dependable virtual organizations. Grids often have user-

perceived complexity, and configuring them involves complex 

software–hardware interaction requiring significant experience 

from the end users.4 More recently, cloud federations are being 

explored as a means to extend as-a-service models to virtual-

ized data-center federations. Given the increasing importance 

of ensemble applications and their computational requirements, 

it’s becoming important to revisit user-centered federated 

computing from the perspective of this class of applications and 

their requirements.
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of the federation and used it to analyze a high-di-
mensional parameter space in the fluid flow prob-
lem. The presented case study involves a federation 
of 10 different and distributed HPC centers, con-
sumes more than 2.5 million core-hours, and pro-
vides the most comprehensive data to-date on the 
effect of pillars on flow in microchannels.

Defining a Federation Model for the Masses
Our goal is to develop a federation model that 
would be able to support large scientific workloads, 
but at the same time would be user-centered. To 
build such a model it’s imperative to understand 
two key elements. First, which specific properties 
of large-scale scientific and engineering applica-
tions must be taken into consideration to enable ef-
ficient execution in a large federated environment? 
Second, what kind of expectations must be ad-
dressed to achieve a user-centered design? Because 
it would be unrealistic to assume that all types of 
scientific applications can benefit from federated 
computing, we focus on a particular class of com-
putational workloads, in which large search-spaces 
are investigated in a coordinated manner. Here, 
classic examples are Monte Carlo methods, sto-
chastic sampling strategies (for example, sparse grid 
collocation), or soft computing approaches (such as 
simulated annealing). These techniques constitute 
a significant fraction of all scientific codes in use 
today, and hence are of great practical importance 
to the average user.

Large-Scale Scientific and  
Engineering Applications in the Target
A typical approach to investigate large search spac-
es combines two elements: a master module that 
encapsulates the problem logic, for example, to 
decide how the search-space should be navigated; 
and a science-driver that implements the actual 
computational core. Usually, both elements are 
contained within separate software components, 
and problem logic can be implemented indirectly 
in the execution environment (for example, as a 
script interacting with a queuing system). Indi-
vidual instances of a science-driver are either inde-
pendent or involve asynchronous communication. 
Naturally, complexity of both modules might vary 
drastically. However, in the vast majority of cases 
it’s the science-driver that is represented by a com-
plex parallel code, and requires HPC resources 
to execute. For instance, in the case study that 
we describe in the next section, the problem logic 
amounts to a simple enumeration of selected points 

in the search space, while the science-driver is a 
complex fluid flow simulation. Although a science-
driver is computationally challenging on its own, 
the actual complexity comes from the fact that the 
usual investigation involves a large number of tasks 
(for example, more than 12,000 in our study, and 
millions in any Monte Carlo analysis). Often a sin-
gle resource is insufficient to execute the resulting 
workload, either because of insufficient throughput 
or limited computational capability. Additionally, 
tasks might be heterogeneous and have diverse 
hardware requirements, or can be optimized for 
specific architectures. Moreover, except in simple 
scenarios, tasks are generated dynamically, based 
on partial or complete results delivered by previ-
ously completed tasks.

Shaping the Federation  
from the Scientist’s Perspective
We focus now on what type of user expectations 
must be addressed to achieve a user-centered de-
sign. Here, we have to keep in mind that our fed-
eration model must serve a regular user with a need 
for large computational capacity. Such a user most 
likely has access to several heterogeneous resources 
using a standard environment, such as a shell ac-
count. Consequently, the key feature that must be 
offered by a federation is the ability to aggregate 
heterogeneous resources, while operating com-
pletely in a user-space. After all, it’s unrealistic to 
expect that a user will have administrative privi-
leges on any HPC resource. Another important 
factor is how federated resources are exposed to a 
user. The federation should hide low-level details, 
such as geographic location or hardware archi-
tecture, while offering a familiar programming 
interface, for example, supporting common paral-
lel-programming idioms such as master/worker or 
MapReduce, which the user could access directly. 
At the same time, a user must be able to deploy 
existing applications, such as science-drivers and 
sometimes a problem logic module, within the fed-
eration and without modifications.

If we look at these characteristics, it becomes 
apparent that there are several key features for which 
our federation model must account. The federation 
must be elastic and scalable—the ability to scale 
up/down and out becomes essential to handling a 
varying number of tasks over time. What’s impor-
tant is that elasticity also makes the infrastructure 
resilient and hence improves its ability to sustain 
computational throughput. The federation must be 
able to adapt to the diverse task requirements, and 
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make optimal use of distinct features contributed 
by the heterogeneous federated resources. Conse-
quently, capability—which we define as the ability 
of a federation to take advantage of particular hard-
ware characteristics—must be the first-class citizen 
in our model. This requirement is synergistic with 
the concept of autonomic computing.

A User-Centered Approach to Federation
To deliver a federation model with properties 
highlighted in the previous section, we focused on 
usability, elasticity, and resilience as primary objec-
tives. The presented model is aimed at allowing the 
creation of software-defined federated infrastruc-
tures, where resources are exposed using elastic, 
on-demand cloud abstractions. In particular, we 
envision living federations that can dynamically 
evolve in terms of size and capabilities follow-
ing user-defined constraints and instructions. The 
underlying infrastructure is presented as a single 
elastic pool of resources regardless of their physical 
location. The design is based on four layers, where 
the lowest layer is responsible for the interaction 
with physical resources; and the highest one is the 
actual user application. The appropriate provision-
ing of resources in accordance with user-provided 
policies is realized by the cross-layer, autonomic 
manager. The schematic representation of the de-
sign is presented in Figure 1.

This design lets us separate the different func-
tionalities required by the federation. At the bot-
tom we have a federation overlay, which creates a 
uniform view on top of physical resources and the 
foundation that supports the higher-level services 
of the federation. It lets users add and remove het-
erogeneous resources dynamically, and handles 
network and resource failures. This layer also pro-
vides a routing engine to address resources using 
their attributes rather than specific addresses; and 
supports flexible, content-aware routing and com-
plex querying using partial keywords, wildcards, 
or ranges. Next, the service layer provides a range 
of services to support autonomics at the program-
ming and application level. It includes a coordina-
tion service that handles application execution, a 
discovery service to find resources based on their 
properties, and an associative object store service to 
manage tasks and data. These services are encapsu-
lated and offered to the users through the program-
ming layer, which provides the basic framework for 
application development and management. This 
layer supports several common, distributed pro-
gramming paradigms, including master/worker 
workflow and MapReduce. These programming 
abstractions ease the development of applications 
by decoupling the application from the infrastruc-
ture particularities. Moreover, they affect the way 
the application is executed in the resources. Finally, 

Figure 1. Multilayer design of the proposed federation model. Here, the autonomic manager is a cross-layer 
component that, based on user data and policies, provisions appropriate resources.
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the application layer represents the final application 
developed by a user on top of the programming 
layer. In many cases a user might employ the federa-
tion to execute third-party, perhaps closed-source, 
software. In such cases the target software can’t or 
shouldn’t be modified, for example, due to efficien-
cy considerations. To accommodate for this, the 
programming layer can still be used in the standard 
way, however, the resulting application becomes a 
mere container that acts as a facade for the target 
software. This tremendously simplifies migration 
from traditional environments to our federation 
model. We should keep in mind however, that 
in this scenario the target application must be 
deployed on the federated resources beforehand.

The key ingredient of the federation is the 
autonomic manager. The manager enables the au-
tonomic management and multiobjective optimi-
zation (including performance, energy, cost, and 
reliability criteria) of application execution through 
cross-layer application/infrastructure adaptations. 
This component offers quality of service (QoS) by 
adapting the provisioned resources to the applica-
tion’s behavior as well as system configuration, 
which can change at runtime, using the notion of 
elasticity at the application level. As a result, the 
federated infrastructure increases the opportunities 
to provision appropriate resources for a given appli-
cation based on user objectives or policies, and dif-
ferent resource classes can be mixed to achieve the 
user objectives. The manager can scale federation 
up/down/out based on the dynamic workload and 
provided user policies. For example, a user objec-
tive can be to accelerate the application execution 
within given budget constraints, to complete the 
application within an assumed deadline, or to use 
resources best matching to the application type (for 
example, computation versus data-intensive). Be-
cause application requirements and resource status 
might change, for example, due to workload surg-
es, system failures, or emergency system mainte-
nance, the manager provisions resources adaptively 
to accommodate for these changes. Note that the 
adaption ensures implicitly federation resilience.

The security and authentication are leveraged 
solutions provided by each site (for example, based 
on Secure Socket Shell, or SSH). This decision is 
motivated by the difficulties that the grid comput-
ing community found when trying to introduce a 
new authentication/authorization model, based on 
X.509 certificates, in the existing production infra-
structures. Consequently, the federation lets users 
select their preferred authentication/authorization 

mechanisms among those directly supported by 
each site.

Case Study
To demonstrate the applicability and scalability 
of our federation model in a real-life scenario, we 
focused on the problem of constructing the phase 
diagram of fluid flow in microscale devices. The 
problem is highly representative for a broad cat-
egory of parameter space interrogation techniques, 
which are essential for understanding how process 
variables affect behavior of the modeled system, 
to quantify model uncertainty when input data is 
incomplete or noisy, or to establish a ground on 
which inverse problems can be investigated. While 
these techniques are diverse, typically they involve 
a large collection of computationally intensive 
tasks, with little or no synchronization between the 
tasks.

Application Description
Our focus on the fluid flow problem is motivated 
by its great practical importance. The ability to 
control fluid streams at the microscale has signifi-
cant applications in many domains, including bio-
logical processing,1 guiding chemical reactions,2 
and creating structured materials.3 Two of the 
authors (henceforth, they’re referred to as the end 
user), are part of a team that recently discovered 
that placing pillars of different dimensions and at 
different offsets allows sculpting the fluid flow in 
microchannels.4 The design and placement of pillar 
sequences enables a phenomenal degree of flexibil-
ity to program the flow for various biomedical and 
manufacturing applications. However, to achieve 
such a control it’s necessary to understand how 
flow is affected by different input parameters.

The end user has developed a parallel, finite 
element and MPI-based Navier-Stokes equation 
solver, which can be used to simulate flows in a 
microchannel with an embedded pillar obstacle. 
Here, the microchannel with the pillar is a build-
ing block that implements a fluid transformation. 
For a given combination of microchannel height, 
pillar location, pillar diameter, and Reynolds 
number (four variables), the solver captures both 
qualitative and quantitative characteristics of flow 
(see Figure 2). To reveal how the input parameters 
interplay, and how they impact flow, the end user 
seeks to construct a phase diagram of possible 
flow behaviors. In addition, the end-user would 
like to create a library of single pillar transforma-
tions to enable analysis of sequences of pillars. This 
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amounts to interrogating the resulting 4D param-
eter space, in which a single point is equivalent to 
a parallel Navier-Stokes simulation with a specific 
configuration.

The problem is challenging for several reasons. 
The search space consists of tens of thousands of 
points, and an individual simulation might take 
hundreds of core-hours, even when executed on a 
state-of-the-art HPC cluster. For example, the spe-
cific instance we consider requires 12,400 simula-
tions. The individual tasks, although independent, 
are highly heterogeneous and their execution cost 
is difficult to estimate a priori, owing to varying 
resolution and mesh density required for differ-
ent configurations. In our case, the cost can range 
from 100 to 100,000 core-hours per task executed 
on the IBM Blue Gene/P. Consequently, sched-
uling and coordination of the execution can’t be 
performed manually, and a single system can’t 
support it. Finally, because the nonlinear solver is 
iterative, it might fail to converge for some com-
binations of input parameters, in which case fault 
tolerance mechanisms should be engaged. These 
properties make the problem impossible for the 
end user to solve using the standard computational 
resources (for example, computational allocation 
from XSEDE). At the same time, they exemplify 
the main advantages of our proposed federation 
model.

Experimental Setup
To run our computational problem on a federation 
of resources, we integrated the MPI-based solver 
with the federation framework using the master/
worker paradigm. In this scenario, the simula-
tion software serves as a computational engine, 
while the federation framework is responsible for 
orchestrating the entire execution. We implement-
ed a prototype of the described federation using 
CometCloud (see www.cometcloud.org). Here, 
CometCloud provides a basic functionality on top 
of which a federation can be achieved. For exam-
ple, it offers autonomic capabilities; fault tolerance 
mechanisms; and transparent access to cloud, grid, 
and HPC infrastructures. As a result, sites can join 
and leave the federation at any moment without 
interrupting the execution. We note that although 
the master/worker paradigm best fits our problem, 
the proposed federation model and its Comet-
Cloud implementation also support MapReduce 
and workflows.

We identified a total of 12,400 simulations 
(tasks) as essential to interrogate the parameter 

space at the precision level satisfactory to the end 
user. The estimated collective cost of these tasks is 
1.5 million core-hours if executed on the Stampede 
cluster. While this number is already challenging, 
we note that approximately 300,000 tasks would 
be required to provide a fine-grained view of the 
parameter space. As we already mentioned, tasks 
are heterogeneous in terms of hardware require-
ments and computational complexity. This is be-
cause of varying mesh density and size, as well as 
the convergence rate of the solver. For instance, 
some tasks require a minimum of 512 Gbytes 
of total RAM, while many can execute with 64 
Gbytes. To accommodate for this variability, we 
classified tasks into three groups (small, medium, 
and large) based on their estimated minimal hard-
ware requirements. Although this classification is 
necessarily error-prone due to nontrivial depen-
dencies between mesh size, and memory and time 
complexity, it serves as a good proxy based on 
which computational sites can decide which tasks 
to pull. At the same time, misclassified tasks can 
be handled by the fault tolerance mechanisms of 
CometCloud.

To execute the experiment we federated 10 dif-
ferent resources, provided by six institutions from 
three countries. Tables 1 and 2 summarize the char-
acteristics of the selected machines. As can be seen, 
used resources span different hardware architec-
tures and queuing systems, ranging from high-end 
supercomputers to small-scale servers. Depending 
on the hardware characteristics, different machines 
accepted tasks from different classes (see Table 2). 
This was achieved by providing a simple configu-
ration file to the respective CometCloud worker. 
Our initial rough estimates indicated that the first 
seven machines (Excalibur, Snake, Stampede, Lon-
estar, Hotel, India, and Sierra) would be sufficient 
to carry out the experiment, and conclude it within 
two weeks. However, during the experiment, as we 

Figure 2. Example flow in a microchannel with a pillar. Four variables 
characterize the simulation: channel height, pillar location, pillar diameter, 
and Reynolds number.
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explain later, we decided to integrate additional 
resources (Carver, Hermes, and Libra). Because 
all machines were used within limits set by the 
hosting institutions, no special arrangements were 

made with their system administrators, and both 
the end users’ software and CometCloud compo-
nents were deployed using a basic SSH account.

Experimental Results
The experiment lasted 16 days during which we 
federated 10 different HPC resources and executed 
a total of 12,845 tasks. Together, all tasks con-
sumed 2,897,390 core-hours and generated 398 
Gbytes of the output data. Figure 3 summarizes 
the experiment’s progress.

The initial federation configuration included 
only five machines (Excalibur, Snake, Stampede, 
Lonestar, and Hotel) out of seven planned. Two 
other machines, India and Sierra, joined with a 
delay caused by maintenance issues. After the first 
day of execution it became apparent that more 
computational resources were needed to finish the 
experiment within the assumed deadline. This is 
because some machines were experiencing prob-
lems, and more importantly, our XSEDE allocation 
on Stampede was being exhausted rapidly. At that 
point, the first significant feature of our solution 

Table 1. Computational resources used to execute the experiment.

Name Provider Type Cores* Memory** Network Scheduler

Excalibur Rutgers Discovery 
Informatics Institute (RDI2)

IBM Blue Gene/P 
(BG/P)

8,192 512 Mbytes BG/P LoadLeveler

Snake RDI2 Linux symmetric 
multiprocessing 
(SMP)

64 2 Gbytes N/A N/A

Stampede Extreme Science and 
Engineering Discovery 
Environment (XSEDE)

iDataPlex 1,024 4 Gbytes InfiniBand (IB) SLURM

Lonestar XSEDE iDataPlex 480 2 Gbytes IB Sun Grid Engine 
(SGE)

Hotel FutureGrid iDataPlex 256 4 Gbytes IB Torque

India FutureGrid iDataPlex 256 3 Gbytes IB Torque

Sierra FutureGrid iDataPlex 256 4 Gbytes IB Torque

Carver Dept. of Energy/ National 
Energy Research Scientific 
Computing Center (NERSC)

iDataPlex 512 4 Gbytes IB Torque

Hermes Universidad de Castilla-La 
Mancha, Spain

Beowulf 256 4 Gbytes 10 Gigabit 
Ethernet (GbE)

SGE

Libra Institute of High 
Performance Computing, 
Singapore

Beowulf 128 8 Gbytes 1 GbE N/A

* Peak number of cores available to the experiment.
** Memory per core.

Table 2. Capability of each resource.

Name Cores per task Accepted tasks

Excalibur 1,024 Small/medium/large

Snake 64 Small/medium

Stampede 128 Small/medium/large

Lonestar 120 Small/medium/large

Hotel 128 Small/medium/large

India 128 Small/medium/large

Sierra 128 Small/medium/large

Carver 256 Small/medium

Hermes 128 Small/medium/large

Libra 128 Small/medium
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came into play—thanks to the extreme flexibility 
of the CometCloud platform, temporal failures 
of individual resources didn’t interrupt the overall 
progress, and adding new resources was possible 
within a few minutes from the moment the access 
to a new resource was acquired and the simulation 
software deployed. Indeed, on the second day 
Hermes from Spain was added to the execution 
pool, and soon after the National Energy Research 
Scientific Computing Center’s (NERSC’s) Carver, 
and Singapore’s Libra were federated. Consequent-
ly, the federation was able to sustain computational 
performance. Figure 3 shows that most of the time 
there were between five and 25 simulations, despite 
multiple idle periods scattered across the majority 
of the machines. These idle periods were caused 
by common factors, such as hardware failures and 
long waiting times in system queues. The Comet-
Cloud fault tolerance mechanism handled all fail-
ures. During the experiment, 249 tasks had to be 
regenerated due to hardware errors, and 167 due to 
inability of the solver to converge. We note that 29 
additional tasks were run as a result of a speculative 
execution. All this demonstrates great framework 
robustness—depending on resource availability 
and execution rate, the federation can be scaled up 
or down accordingly.

Figure 4 outlines how the computational 
throughput, measured as the number of tasks 
completed per hour, was shaped by different 
computational resources. Here, we can make 
several interesting observations. First, no single 
resource dominated the execution. Although 
Stampede, the most powerful machine among 
all federated, provided a brief performance burst 
during the first two days, it was unable to de-
liver a sustained throughput. In fact, tasks on 
this machine were submitted to the develop-
ment queue that limits the number of processors 
used by a job, but offers relatively high turnover 
rate. Yet, even this queue got saturated after the 
first day of execution, which caused a sudden 
drop in the throughput. This pattern can be ob-
served on other systems as well (for example, see 
Lonestar and Carver), and it confirms our ear-
lier observation that no single system can offer 
a sufficient throughput. Another observation is 
related to how the throughput was distributed 
in time. The peak was achieved close to the end 
of the experiment, even though after the 12th 
day Excalibur was running at half its initial ca-
pacity (see Figure 3). This can be explained by 
the fact that the majority of tasks executing to-
wards the end were small tasks. Consequently, 

Figure 3. Summary of the experiment. (a) Use of different computational resources. Line thickness is proportional 
to the number of tasks being executed at given point of time. Gaps correspond to idle time, for example, due to 
machine maintenance. (b) The total number of running tasks at a given point of time.
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all available resources were able to participate 
in execution, and short runtimes increased the 
overall throughput.

The last important element of the experiment 
was data management. In our case, the input data 
consisted of two components: a finite element 
mesh database tightly integrated with the simula-
tion software, and hence deployed together with 
the software, and a 4-tuple describing simulation 
parameters. As a result, no special mechanisms 
were required to handle the input. The output data 
consisted of simulation results and several small 
auxiliary files. The output size varied between 
simulations ranging from 3 to 30 Mbytes when 
compressed. The data was compressed in situ and 
on the fly during the experiment, and then trans-
ferred using the Rsync protocol to the central re-
pository for a subsequent analysis.

The presented results clearly demonstrate the 
feasibility and capability of our proposed federation 
model. In our experiment a single user, with basic 
SSH access to several globally distributed and het-
erogeneous resources, was able to solve a large-scale 
computational engineering problem within just two 
weeks. Importantly, this result was achieved in a few 
simple steps executed completely in a user space. 
By providing a simple master/worker code, the user 
gained access to a unified and fault-tolerant plat-
form able to sustain computational throughput.

This experiment provided what is currently the 
most comprehensive data available on the ef-

fect of pillars on microfluid channel flow. Although 
we’re still in the process of analyzing this mas-
sive output, we already gained several interesting 
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Figure 4. Throughput and queue waiting time. (a) Dissection of throughput measured as the number of tasks 
completed per hour. Different colors represent component throughput of different machines. (b) Throughput 
contribution by different task classes. (c) Queue waiting time on selected resources.
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insights regarding fundamental features of the flow. 
Figure 5 shows how different flow modes are dis-
tributed in the parameter space. Here, each mode 
corresponds to one or two vortices generated, as 
proposed in other work.4 In the introduction to this 
section, we hinted that by arranging pillars into a 
specific sequence that it’s possible to perform basic 
flow transformations. Thanks to the library of flow 
configurations that we generated in this experi-
ment, we can now investigate the inverse problem 
and, for example, ask questions about the optimal 
pillar arrangement to achieve a desired flow output. 
The implications of such capabilities are far reach-
ing, with potential applications in medical diagnos-
tics and smart materials engineering. 
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