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Abstract—One of the key benefits of Cloud systems is their
ability to provide elastic, on-demand (seemingly infinite) comput-
ing capability and performance for supporting service delivery.
With the resource availability in single data centres proving
to be limited, the option of obtaining extra-resources from a
collection of Cloud providers has appeared as an efficacious
solution. The ability to utilize resources from multiple Cloud
providers is also often mentioned as a means to: (i) prevent vendor
lock in, (ii) to enable in house capacity to be combined with
an external Cloud provider; (iii) combine specialist capability
from multiple Cloud vendors (especially when one vendor does
not offer such capability or where such capability may come at
a higher price). Such federation of Cloud systems can therefore
overcome a limit in capacity and enable providers to dynamically
increase the availability of resources to serve requests. We
describe and evaluate the establishment of such a federation using
a CometCloud based implementation by considering a a number
of federation scenarios to determine the impact of outsourcing on
the overall status of our system. CometCloud provides an overlay
that enables multiple types of Cloud systems (both public and
private) to be federated through the use of specialist gateways.
We describe how two physical sites, in the UK and the US, can
be federated in a seamless way using this system.

Keywords—Cloud Computing, Cloud Federation, CometCloud,
Tuple-Space, Task Outsourcing.

I. INTRODUCTION

With the emergence of federation in cloud systems it has
become possible to connect local infrastructure providers to a
global marketplace where participants can transact (buy and
sell) capacity on demand. The mechanism of cloud federation
can bring substantial benefits for service providers by offering
facilities for accessing global services instead of increasing
costs associated with building new infrastructure. More im-
portantly, organisations with spare capacity in the data centre
are now provided with a simple way to monetize that capacity
by submitting it to the marketplace for other providers to
buy, creating an additional source of revenue [1]. Federation
in cloud systems has led to a real democratisation of cloud
markets – enabling businesses to make use of a variety of
different cloud providers in different geographic areas. The
federated cloud can also provide to end users the ability to
host applications with their cloud provider of choice. Similarly,
users can choose a local host with the exact pricing, expertise
and support packages while still receiving instant access to
local or global IT resources.

In federated clouds, providers aspire to accept as many new
requests as possible with the main objective of maximising

profit; nevertheless, they must guarantee Quality of Service
(QoS) based on the agreed Service Level Agreement (SLA)
with customers. Establishing an SLA between two parties
(client & service provider) implies that the service provider has
agreed to provide a particular capability to the client subject
to some QoS constraints. In return, the client must provide a
monetary payment (most often) or credit to the provider once
the service has been delivered (subject to a penalty, often also
monetary, in case the quality of service terms have not been
adhered to). In a federation context there are several parameters
that need to be considered in order to determine the overall
federation workflow. When two or more sites come together,
it is important to identify not only the incoming workload of
each site but also the cost of outsourcing additional resources,
the revenue obtained from outsourcing tasks or the cost of
maintaining a reasonable level of utilisation. Identifying a set
of such parameters is a challenging task due to the variability
in the parameters of a federated environment (such as number
of resources allocated to local vs. remote jobs, how many jobs
to outsource to another site, the time interval over which access
to remote jobs should be allowed, etc) and the fluctuation of
resource demand. Depending on their value, a site manager
must decide whether to outsource resources, compute tasks
locally or reject remote task requests [2].

However, when dealing with a federated system, there are
several parameters that need to be optimised and associated
policies to be applied in order to increase the utility of
providers contributing resources in such a system. In this
paper, we propose a CometCloud based federated system by
having as an objective the reduction of delay in task processing
and maximisation of profit within each site. We develop two
different federation models (i) CometCloud Federation and (ii)
aggregated CometCloud Federation enabling a process where
tasks can be processed exclusively “in house” – using local
capabilities or they can be outsourced to remote federated
locations. Moreover, we include a third scenario that represents
a market. In this case, we show how the profit is affected by
the chosen benefit per task and the reputation of the involved
site.

The reminder of this paper is organised as follows: Sec-
tion I, section II and section IV present the problem of
federated clouds, providing a key motivation of our research
and analysing several related approaches in the area of
cloud federation. Section V presents the model explaining the
methodological details of the CometCloud and the aggregated
CometCloud federation. The evaluation of our implemented



system is presented in section VII. We conclude and identify
future work in sections VIII and IX respectively.

II. RELATED WORK

In the area of cloud federation several recent solutions
have been proposed, such as [3], [4], [5]. Although these
solutions enable participants to increase capacity and extend
an existing market place, these efforts still leave undetermined
when a participant should outsource a local request (compared
to execute it locally) and the types of policies that may be used
to govern such a federation model.

The Reservoir model [3] proposes an open service-based
environment in which resources and services are transparently
provisioned and managed across clouds. In the Reservoir
model, the providers of the services and the infrastructure
providers are two separated entities, where the service that a
service providers commits to provide is actually outsourced to
an infrastructure provider. Reservoir resides on the principle
that federation and interoperability can enable infrastructure
providers to take advantage of their aggregated capabilities
to provide a seemingly infinite service computing utility.
Therefore a provider federates with other providers (i.e., other
Reservoir sites) based on its own local preferences within
a fully autonomous environment and governed by business
policies. For optimising the process of federation in Reservoir,
a service may be moved to other sites based on economic,
performance, or availability considerations.

Provider revenue in federated systems represents an im-
portant aspect especially in the context of outsourcing. Goiri
et al. [6] explore federation from the perspective of a profit-
driven policy for outsourcing by minimising the utilisation and
the price of resources of providers. The approach makes use of
a global Scheduler on each provider for deciding the placement
and the allocated resources for that provider. This Scheduler
is in charge of deciding where a service will be executed and
managing its location during the execution (e.g. migrations,
cancellations, etc.). Using a set of monitored parameters, such
as the providers incoming workload, the cost of outsourcing
additional resources, the ratio of outsourced resources, the
ratio of unused resources to be sold, the system can make
decisions about the placement of services on the nodes of the
provider, and the number of resources that must be allocated
to each node in order to guarantee that they meet an agreed
performance and to maximise “utility”.

More work on the topic of outsourcing policies has been
undertaken by Toosi et al [2]. This work focuses on specifying
reliable policies to enable providers to decide which incoming
request to select and prioritise, thereby demonstrating that
policies can provide a significant impact on the providers’
performance. When optimising parameters such as the ratio of
spot Virtual Machines (VMs) to the total workload, percentage
of persistent spot VMs, number of providers in the federation
and providers workload, providers are able to maximise profit
and to reject less requests, while they keep utilisation at an
acceptable level. It has also been identified that running on-
demand requests locally is more profitable if the provider has
high ratio of spot VMs. Conversely, outsourcing proves to be
more profitable when spot VMs are scarce and termination of
them may result in discontinuation of using such services by
customers.

The possibility of creating federated markets has been ex-
tensively explored by researchers [7], [8]. Federation markets
provide the mechanisms to mostly promote fairness and ensure
mutual benefits for parties involved in the federation. Reli-
able resource sharing techniques can motivate both resource
providers and resource consumers to join and stay in the
market. Gomes et al. [7] explore the application of federation
mechanisms based on the General Equilibrium Theory to
coordinate the sharing of resources between providers in a
federated cloud – with an objective of optimising costs and
coping with variations in demand. By proposing a design and
implementation of a federated cloud, the approach evaluates
a series of trading strategies for individual providers to be
applied and considered within the market. Experimental results
show a significant gain in revenue and the improvement of
resource usage.

Celesti et. al [15] propose a solution based on the Cross-
Cloud Federation Manager allowing a cloud to establish the
federation with other clouds according to a three-phase model:
discovery, match-making and authentication. With a multi-
phase federation mechanism the model aims to setup a new
enhanced cloud environment in which operators can easily
apply their business models. The federation model is based on
a Cross-Cloud Federation Manager which represents the core
element of the federation model. The manager is composed
by three different subcomponent agents such as: discovery
agent, match-making agent and authentication agent each
responsible to accomplish the aforementioned three phases.
Such federation system allow entities to can cooperate together
accomplishing trust contexts and providing new business op-
portunities such as cost-effective assets optimization, power
saving, and on-demand resources provisioning.

In this work we approach the problem of federation by
implementing a real federation Cloud system based on Comet-
Cloud facilitating task processing by an ”aggregated tuple-
space mechanism”. The use of a Linda-based distributed tuple
space enables us to create a virtual overlay that can extend
across multiple distributed Cloud providers and sites. Comet-
Cloud has been demonstrated to integrate both public clouds
(based on Amazon EC2/S3) and specialist high performance
computing environments (such as TeraGrid) [14].

III. COMETCLOUD

Our federation models are built on top of CometCloud
[9] and the concepts that CometCloud is based on. Comet-
Cloud is an autonomic computing engine based on the Comet
[10] decentralized coordination substrate, and supports highly
heterogeneous and dynamic cloud/grid/HPC infrastructures,
enabling the integration of public/private clouds and auto-
nomic cloudbursts, i.e., dynamic scale-out to clouds to address
extreme requirements such as heterogeneous and dynamics
workloads, and spikes in demands.

Conceptually, CometCloud is composed of a programming
layer, service layer, and infrastructure layer. The infrastructure
layer uses the Chord self-organizing overlay [11], and the
Squid [12] information discovery and content-based routing
substrate build on top of Chord. The routing engine supports
flexible content-based routing and complex querying using par-
tial keywords, wildcards, or ranges. It also guarantees that all



peer nodes with data elements that match a query/message will
be located. The service layer provides a range of services to
support autonomics at the programming and application level.
This layer supports a Linda-like [13] tuple space coordination
model, and provides a virtual shared-space abstraction as
well as associative access primitives. Dynamically constructed
transient spaces are also supported to allow applications to
explicitly exploit context locality to improve system perfor-
mance. Asynchronous (publish/subscribe) messaging and event
services are also provided by this layer. The programming
layer provides the basic fr for application development and
management. It supports a range of paradigms including
the master/worker/BOT. Masters generate tasks and workers
consume them. Masters and workers can communicate via
virtual shared space or using a direct connection. Scheduling
and monitoring of tasks are supported by the application
framework. The task consistency service handles lost/failed
tasks.

IV. APPROACH

Several scenarios and associated policies in the context of
cloud federation are outlined in this section. We consider the
following two objectives:

• Evaluate the use of CometCloud in a federated con-
text, between two sites connected over a public net-
work – primarily Rutgers & Cardiff. The scenarios
are meant to validate the correct functioning of the
capability between the two sites. Although we report
on two sites, the approach outlined in this work can
scale to multiple sites based on the use of the Comet
overlay.

• Demonstrate the development of a market model for
resource sharing, based on the use of the CometCloud
system between these sites.

In such an environment, the process of outsourcing tasks
is the result of a series of decisions that must be made at
each site. It is therefore important for each site to decide at
what point it is appropriate to offload tasks, how many tasks
it should offload in one go and how to distribute the tasks
between other sites it is connected to.

Given a number of tasks to be processed, one site should
also decide to outsource tasks based on:

• Time constraints associated with task processing.
Tasks will be outsourced to external sites only if the
time for completing the tasks cannot be accomplished
within the local site.

• Existing computing capability within the site. Tasks
will be outsourced to external sites only if the site does
not have the required capabilities (software libraries
or computing resources) for computing the requested
tasks.

• Budget aspects – tasks will be outsourced because the
costs predicted by the site for computing the tasks
(i.e. new infrastructure deployment) are higher than
the costs of off-loading the tasks to other sites.

Fig. 1: Federation model

V. SYSTEM MODEL

We work with a number of N = {t1, t2, t3, ..., tn} tasks
in the tuple-space, where each task ti can be defined as a
set ti → [t, T, P ] where t is the time per task, T represents
the corresponding type of computation of task ti and P
represents the price of the task ti. Withing the set of tasks
N we consider two subsets L identifying local tasks and R
identifying remote tasks, such as L = {t1, t2, t3, ..., tm} and
R = {t1, t2, t3, ..., tp}, L ⊂ N,R ⊂ N , m < n, p < n.

A. CometCloud Federation Setup

For the CometCloud federation we consider that a site
tuple-space has a number of available workers and a master
that receives requests: (i)locally – identifying tasks received
from users at the same site; (ii) remotely – requests from
remote users at the other site – via the use of a request handler.

As illustrated in Figure 1, the Master must decide how
many tasks to accept based on a number of policies. We assume
that there is one worker per compute/data access node. All
workers are assumed to be the same – i.e. they can execute
tasks on resources that are identical. The only differentiating
factor, therefore, is the number of workers allocated to local vs.
external/remote requests. When one site has a high workload
and it is unable to process tasks from its local users within
their deadlines it negotiate for the outsourcing of tasks to
other remote sites. This could range from two cloud systems
sharing workload (as in Figure 1) to a cloud outsourcing some
of its workload to multiple other cloud systems. Conversely
this ability allows systems with a lower workload to utilise
spare capacity by accepting outsourced tasks from other cloud
systems. Practically, this process of task exchange is under-
taken by the master nodes of the two clouds negotiating how
many tasks to be exchanged. Once this has been completed
the master node on the receiving cloud informs its workers
(using CometSpace) about the number of tasks it is taking
from a remote site, and the connection details of the request
handler from where the task is to be fetched. Subsequently,
when a worker comes to execute a task from an external cloud
system, it then connects to the request handler of the remote
cloud to collect the task and any associated data. Within such
a federation model, for each type of task, we use an associated
cost such as:

• Cost for local jobs cl – this is set to a low value
– i.e. the worker/resource owner does not gain any



substantial financial benefit for processing a local
request.

• Cost for remote jobs cr – this can be varied over
a range – but set to be higher than costs for local
jobs. In this instance, the worker benefits financially
by processing requests for remote jobs.

B. Aggregated CometCloud Federation Setup

The aggregated CometCloud federation model is designed
to be dynamically updated as it is created in a collaborative
way, where each site communicates with others to identify
itself, negotiate the terms of interaction, discover available
resources, and advertise their own resources and capabilities. In
this way, a federated management space is created at runtime
and sites can join and leave at any point. This federation model
does not have any centralized component and users can access
the federation from any site, which increases the fault tolerance
of the overall federation, see Figure 2. Another key benefit of
this model is that since each site can differentiate themselves
based on the availability of specialist capability, it is possible
to schedule tasks to take advantage of these capabilities.

Fig. 2: Aggregated Federation model. Here (M) denotes a
master, (W) is a worker, (IW) an isolated worker, (P) a proxy,
and (R) is a request handler.

The federation model is based on the Comet [10] coordina-
tion “spaces” (primarily an abstraction that enables users and
providers of resources to share information with each other).
In particular, we have decided to use two kinds of spaces in the
federation. First, we have a single federated management space
used to create the actual federation and orchestrate the different
resources. This space is used to exchange any operational
messages for discovering resources, announcing changes at
a site, routing users’ request to the appropriate site(s), or
initiating negotiations to create ad-hoc execution spaces. On
the other hand, we can have multiple shared execution spaces
that are created on demand to satisfy computing needs of the
users. Execution spaces can be created in the context of a single
site to provision local resources or to support a cloudburst to
public clouds or external HPC systems. Moreover, they can
be used to create a private sub-federation across several sites.

This case can be useful when several sites have some common
interest and they decide to jointly target certain types of tasks
as a specialized community.

As shown in Figure 2, each shared execution space is
controlled by an agent that creates such space and coordinates
the resources for the execution of a particular set of tasks.
Agents can act as master of the execution or delegate this duty
to a dedicated master (M) when some specific functionality is
required. Moreover, agents deploy workers to actually compute
the tasks. These workers can be in a trusted network and be
part of the shared execution space, or they can be part of
external resources such as a public cloud and therefore in
a non-trusted network. The first type of workers are called
secure workers (W) and can pull tasks directly from the space.
Meanwhile, the second type of workers are called isolated
workers (IW) and cannot interact directly with the shared
space. Instead, they have to interact with a proxy (P) and a
request handler (R) to be able to pull tasks from the space.

VI. PROPOSED POLICIES

In our system we consider a job as a homogeneous group-
ing of tasks, defined as: j = [N,T, t, p, pen] where N is the
number of tasks, T is the types of task, t is the desired time
at which the job should be complete, p is the price of the job,
and pen is a penalty that should be applied if the deadline is
missed. Tasks represent one unit of work mapped as a tuple
within CometCloud.

A key policy is that each site must attempt to make
maximum revenue from remote tasks without excessively
compromising the local tasks running on the system. For
developing our policies we use a number of tuning parameters
such as: d representing the maximum possible time by which
a deadline can be missed for a local task, c representing the
cost per second per node and t the average execution time per
task.

General Policy: When a new job is submitted into the tuple-
space, the following action is taken depending on the type of
tasks. For each task within a job, we calculate the time to
complete locally such as ttc = ttc(t) + ttc(j), where ttc(t)
is the time-to-complete for all jobs (the time until the job can
start) in the tuple-space and ttc(j) is the time-to-complete the
submitted job.

Policy for Local Tasks: When evaluating a local task the policy
is to always accept local tasks, thus local task have a non-
rejection policy, according to which tasks submitted from local
users will never be rejected but queued.

Policy for Remote Tasks: When evaluating a remote task the
policy is to accept as many remote tasks as long as ttc < t
with an associated price of p = ttc(j)∗c. Remote tasks have a
rejection policy attached according to which remote tasks can
be rejected when the site cannot meet the deadline and when
accepting remote tasks can affect local tasks processing. When
outsourcing tasks, one site should request a price quotation
from all connected systems and send as many tasks to the
cheapest of these. This policy will be repeated until all tasks
have been outsourced.

Market Policy: In this policy both local and remote tasks go
to a common market for offers from every site interested in



executing them. As in the previous cases, tasks are discrimi-
nated based on their origin to decide the offered price as well
as the resources. Sites only place offers if ttc < t.

VII. EVALUATION

Based on the policies identified in the previous section we
develop an experimental infrastructure based on CometCloud.
This infrastructure includes all the mechanisms needed for the
coordination across computational resources which are used
by our experiments. Thus, the only simulated part of our
experiment is the execution of tasks to evaluate the different
policies more accurately. First, we describe simulation settings
and performance metrics and then the experimental results we
obtained.

A. CometCloud Federation

In this federation case, we consider two different experi-
mental setups: (i) non-federated setup – where jobs are being
executed exclusively “in house” within the local CometCloud
infrastructure and (ii) federation aware outsourcing setup –
where jobs are split between the federation sites.

1) Simulation metrics: For both of the setups, we use a
number of metrics such as:

• Average Delay:AD = 1
n

n∑
i=1

(Delay) identifying the

average delay associated with the number of n jobs be-
ing executed. Delay = ttc(e)− ttc(a) is measured as
the difference between the expected time-to-complete
ttc(e) and the actual time-to-complete ttc(a).

• Profit – identifying the profit of each site obtained
after executing jobs, Pr = AR ∗ NT ∗ c, where
AR is the average runtime per task, NT represents
the number of tasks that one site processes and c
represents the cost per core per second (in £) derived
from Amazon EC2 cost, c = 0.0000117697;

• Average Utilisation:AU = 1
m

m∑
i=1

(Utilisation) iden-

tifies the percentage utilisation within each of the m
workers. Utilisation is the resulted utilisation of each
worker giving a predefined uniform load distribution
for each site.

Tasks processed within the system can have different types
such as TP = {T1, T2, T3, ...Tr} where each type of task
Ti has an associated number of attributes such as Ti =
{[RT (min : max)], [AR(min + max/2)], [Cost(AR ∗ c)]},
where Runtime(min : max) represents an interval defining
the time affected with the execution of task type Ti, AR
represents the average runtime of task type Ti and Cost
is a combination of the average runtime of task type Ti

and the price corresponding to a task of type Ti. We use
an objective function specifying that each site is trying to
minimise the delay in execution and maximise the profit:
f(obj) : [min(delay),max(profit)]

In our experiments we consider that each site within the
federation experiences a different level of existing workload
(i.e. the number of jobs that are currently running at each site).

We simulate a varying workload in the context of a varying
number and types of tasks and evaluate how delay, profit and
utilisation are impacted. As the workload is variable there are
three different options that can be applied for each new inserted
job according the federation case to evaluate: (i) schedule for
later processing locally, (ii) reject due to high workload or (iii)
outsource to remote site according to policies.

2) Experiments: We use two different cloud systems –
Cloud A and Cloud B in two different contexts: (a) single
cloud context (illustrated as Cloud A and Cloud B) where
all the tasks have to be processed locally and (b) federation
cloud context (illustrated as Fed. Cloud A and Fed. Cloud B)
where the sites have the option of outsourcing tasks to remote
sites. When each site deals with an existing high workload,
the submission of new tasks from users triggers the process of
outsourcing in order to minimise delays and reduce rejection,
whereas when each site has a lower workload, there is spare
capacity at each site which can be allocated for dealing with
new submitted tasks. In our experiments, each site has a total
of five workers assigned to process a number of jobs/tasks (10
in our experiment) submitted based on a uniform distribution.
In these experiments we consider that Cloud A is the cloud
with an existing high workload whereas Cloud B is the cloud
with an existing lower workload.

Experiment 1: Utilisation Per Worker:In this experiment we
evaluate the level of utilisation per worker giving an existing
load. The experiment illustrated in Figure 3a is presenting a
comparison between the case of single cloud(Cloud A and
Cloud B) and a federation case(Cloud A and Cloud B federated
together) when experimenting various levels of load. It can be
identified that in the case of single clouds the utilisation is
lower than in the case where the two sites are deployed in
a federation process. In the context of federation the process
of outsourcing is enabled therefore clouds with an increasing
load such as Cloud A can decide to offload a percentage of
their tasks to remote sites in order to reduce the delays.

Experiment 2: Expected Time-To-Complete(TTC) and Delay:
Given a predefined uniform load for each of the sites we
investigate what is the impact of this load on the performance
of the sites by measuring the delays for each job. From
Figure 3b and Figure I can be observed that the jobs with
an increasing delay correspond to the sites dealing with high
load. Explicitly the site with higher load, Cloud A, imposes
the highest delay of the processed tasks. When enabling the
federation between the sites(Fed. Cloud A and Fed. Cloud B)
is observed that the delay corresponding to jobs processed on
Cloud A is diminishing. This happens because in the context
of federation Cloud A outsources part of its tasks to Cloud B
thus improving the overall delay of jobs.

Experiment 3: Average Delay and Average Utilisation: In this
experiment we evaluate the performance of the sites form the
perspective of average delay and average utilisation. Evaluating
the two configurations where sites can either be involved in a
federation context or can be single clouds we observe from
Figure 3c that the average utilisation and average delay are
depending on the level of load existing within each site. Cloud
A identifying an increased level of load has a high level of
utilisation and delay, in contrast with Cloud B where the load
is lower thus lower are the utilisation and the delay. When
moving to a federation context we observe that the average



(a) Utilisation per worker (b) Job delays

(c) Average delay and average utilisation (d) Av. Delay/Av. Profit/Av. Utilisation

Fig. 3: Summary of experimental results of CometCloud federation

utilisation of site A remains high whereas the average delay
significantly decreases. This reduction in average of delay is
caused be the fact that due to an existing high load Cloud A
has to outsource part of its tasks to Cloud B determining a
reduction of delay of tasks and an increase in the averaged
utilisation of Cloud B.

Experiment 4: Averaged Delay, Profit and Averaged Utilisa-
tion: In previous experiments we analysed the system from the
perspective of performance metrics such as delay, utilisation
and load. In this experiment we add profit as a metric to
measure how the system behaves in different federation cases
from a more economic perspective. Considering that tasks
processed from local users have no price and thus no profit, we
look at the profit exclusively when the sites are involved in a
federation process. From Figure 3d is observed that Cloud A,
having a higher level of load, identifies a cost in the context
of federation. On the other hand, Cloud B, having assigned
a lower load, and thus a spare capacity allowing to process
remote tasks identifies a profit. The oscillation of profit and
cost between the two sites is caused by the difference in the
level of load. As Cloud A has an existing high load, when new
tasks are submitted is forced to outsource part of these tasks
to Cloud B, paying a corresponding price for each of the tasks
but equally significantly increasing the profit of Cloud B.

B. Aggregated CometCloud Federation

In this experiment, we consider three federated sites using
the market policy and study how the profit and reputation of
each site varies over time when executing tasks.

1) Simulation metrics: We use the following metrics in this
experiment:

• Profit: The computation of a task involves a cost, but
also provides a benefit. Therefore, the total profit of
a site Pr is calculated using the benefit b obtained
from each task and the cost c of computing it, Pr =∑n

i=1(b− c). For simplicity we consider that all sites
have the same infrastructure cost and therefore we do
not include it in the equation.

• Reputation: The reputation R of a site is calculated
using the scores obtained from the execution of tasks,

R = 1
n

n∑
i=1

(Score), where score is a value between

0 and 1. A site obtains a score of 1 if the task is
completed within the deadline (ttc <= deadline)and
0 if the deadline is missed (ttc > deadline).

Tasks executed in the system can be of three types and
each one has a different cost, completion time and deadline.



TABLE I: Time-to-Complete(TTC) and delays for jobs

Clouds/Metric Job1(TTC-Delay) Job2 Job3 Job4 Job5 Job6 Job7 Job8 Job9 Job10
Cloud A 60-1.087 80-2.6 50-29.36 150-52.18 10-1.708 90-86.86 80-97.19 50-114.904 180-141.568 10-10.76
Cloud B 210-1.859 80-6.304 20-4.05 70-9.745 60-8.639 180-5.484 80-15.471 300-14.748 100-27.525 40-9.724

Fed. Cloud A 45-2.823 80-4.371 100-1.968 90-5.307 150-26.49 40-16.905 300-59.454 30-18.393 80-116.704 20-4.994
Fed. Cloud B 5-0.648 40-22.486 20-0.942 40-0.53 40-4.846 20-0.97 210-4.006 100-6.434 90-3.542 60-5.827

The values of these properties are fix for all sites as shown in
Table II.

TABLE II: Tasks types properties for all the sites.

Task/Metric Cost Completion Time Deadline
Red 10 9 12

Black 8 7 10
Blue 6 5 8

2) Experiments: In this scenario, the task assignment is
done using a blind auction, i.e. a task is put in the federation
space and each site places an offer. The client that puts the
task into the space decides which site has the best offer and
therefore executes the task. Each site has a limited number
of resources, which in this case is two workers dedicated
to compute local tasks and another two workers for external
tasks. Hence, a site only places an offer if the deadline can
be met. However, it can happen that one site places multiple
offers at the same time before knowing if it won an auction,
which could lead to missing deadlines if the site wins many of
those tasks. During the experiments each site will submit tasks
into the federation using a different Poisson process, where
the occurrence of a task is every 4 seconds in average. The
distribution of tasks is illustrated in Figure 4.
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In these experiments we are going to focus in the effect
that the benefit per task and the auction winning criteria have
over the profit and reputation of each site:

Benefit per task: This is the benefit that each site wants to
obtain from each task. Here it is a percentage of the cost of a
task. We will use three different situations:

1) All sites get the same benefit per task, which has been
fixed to 5% for local tasks and 10% for external tasks
(5%/10% abbreviated).

2) One site has an aggressive price policy where it gets
only 5%/10% and two sites have very conservative
policies where they get 50%/60%.

3) One site has an aggressive price policy where it gets
only 5%/10% and two sites have less conservative
policies where they get 20%/30%.

Auction winning criteria: it is the criteria to select the best
offer of an auction. Here we consider two different criteria:

1) We only consider the price that the user has to pay
to compute the task and chooses the minimum price
among all the offers, f(obj) = min(p).

2) We consider the price and the reputation of the site
that has to compute the task, f(obj) = min(p/R).
Thus, the best offer is the one that has lower
price/reputation ratio.

Experiment 1: Auction criteria based on price only - In these
experiments we have considered only the price as criteria to
select the auction winner and we have modified the benefit
policy of each site to see how both parameters affect the overall
profit and reputation of the site. Figures 5a and 5d shows how
the reputation and profit evolve when all sites have the same
benefit policy. Here, each compute computes a similar number
of tasks (A=58,B=63,C=79), which is close to the total number
of tasks generated from that site. The reason is that each site
has the lower price for its own tasks and they will win local
tasks until the resources assigned to those tasks are full. Then
they will stop bidding for their own tasks and others sites will
have the change to execute those tasks. This can represent a
scenario where local tasks are outsourced to external resources
when the load of the site is high.

Figures 5b to 5f collect the results of the seconds and third
benefit situations, where site B has an aggressive price policy
and the rest has more conservative ones. We can observe that
Site B does not always obtain the highest profit, although it
is by far the one that executes more tasks. In both cases case
B executes around 130 tasks while the other two sites execute
around 35 tasks each. This is due to the limited number of
resources and shows that when different sites have similar
resources, a very aggressive price policy may not be profitable.
We can also observe that the reputation of B changes abruptly
because it places many auctions offers before it knows the
results of those actions and it end up winning too many tasks
for its limited resources.

Experiment 2: Auction criteria based on price and reputation -
We have repeated the same experiments changing the auction
criteria to consider not only the price of the task but also
the reputation of the site that places the offer. Figures 6a
and 6d show that site B looses a lot of reputation at the
beginning of the experiment, which has an important effect
in the overall profit of this site. Figures 6b and 6e show an
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Fig. 5: Summary of experimental results where the criteria to win the auction is the minimum price. There are three set of
experiments where each site has a different benefit policy, i.e. B:5,10;AC:20,30 means that site B gets a 5% and 10% of benefit
of each local and remote tasks respectively, while sites A and C get 20% and 30%.
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Fig. 6: Summary of experimental results where the criteria to win the auction is the minimum price/reputation ratio. There are
three set of experiments where each site has a different benefit policy, i.e. B:5,10;AC:20,30 means that site B gets a 5% and
10% of benefit of each local and remote tasks respectively, while sites A and C get 20% and 30%.

interesting situation. Here, site C looses a lot of reputation
at the beginning of the experiment, which combined with its
high prices turn out in executing only nine tasks. This clearly
benefit site A that executes 54 tasks and gets high profit at the
end. Finally, Figures 6c and 6f show how site B can deal with

a bad reputation thanks to its low price policy. As opposed to
Site C in the previous case, here B keep computing tasks and
it can even improve its reputation.



VIII. CONCLUSIONS

Federated Cloud systems provide the means for individual,
possibly competing, Clouds to cooperate so as to optimize
costs and cope with variations of demand. In a community
of Cloud providers federation can also enable the process of
trading resources, thereby greatly encouraging the emergence
of federated markets. In this paper, we have investigated the
problem of cloud federation by devising a real federation
framework based on CometCloud. The framework provides
the advantage of an aggregated tuple-space and enables mech-
anisms to allocate resources based on a number of different
policies. In our CometCloud based federated Cloud system,
providers can optimise a number of performance parameters
such as delay, utilisation, cost and reputation by using the
mechanism of outsourcing tasks.

We have presented the design and implementation of the
proposed approach and experimentally evaluated a number of
scenarios for individual Clouds and federated Clouds. The
experimental results have shown a number of benefits that
federation provide with regards to resource utilisation, exe-
cution delay, cost, benefit and reputation. When evaluating the
utilisation and delays in a CometCloud federation context we
observed that the existing workload of each site determines
the level of utilisation for each worker. Utilisation, on the
other hand can be the cause of high delay especially in a non-
federation context. Within a federation aware process, sites can
balance between delay and profit by using the mechanism of
outsourcing.

The main advantage of aggregated CometCloud federation
is the use of a centralized mechanism which enables users to
access any site involved in the federation. By undertaking the
process of task assignment as a blind auction mechanism, a
market process is enabled where each task is put in the fed-
eration space and each site places an offer. By using different
auction criteria and price strategies we demonstrate that when
sites are playing aggressive price strategies, the completion of
jobs is strongly affected and consequently also the associated
benefit and reputation of sites. As the auction strategies and
price policies are strongly related to the number (and type) of
resources within each site, it has been demonstrated that when
different sites have similar resources, a very aggressive price
policy may not be profitable.

IX. ONGOING WORK

In the aggregated federation model each site can select
the type of tasks they are interested in. Although in the
experiments we carry out, all sites where accepting all types of
tasks, an extension would be to enable sites to have a dynamic
subscription based on task properties. This means that sites can
evolve over time to select the type of tasks that give them the
most profit, reputation, etc. Moreover, sites could also change
dynamically their price policies to increase benefit or recover
reputation as needed.

On the other hand, policies can be specified using a
variety of different representations. One possible solution is to
adapt policies of the federation into functional Service Level
Agreements (SLAs) and control the SLA between sites based
on a penalty mechanism. When dealing with functional SLAs
the advantages of open-markets can appear, thereby leading to

an increase in the overall utilisation of resources and therefore
maximise revenue.
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