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Abstract

Background: The development of digital imaging technology is creating extraordinary levels of accuracy that
provide support for improved reliability in different aspects of the image analysis, such as content-based image
retrieval, image segmentation, and classification. This has dramatically increased the volume and rate at which data
are generated. Together these facts make querying and sharing non-trivial and render centralized solutions
unfeasible. Moreover, in many cases this data is often distributed and must be shared across multiple institutions
requiring decentralized solutions. In this context, a new generation of data/information driven applications must be
developed to take advantage of the national advanced cyber-infrastructure (ACI) which enable investigators to
seamlessly and securely interact with information/data which is distributed across geographically disparate resources.
This paper presents the development and evaluation of a novel content-based image retrieval (CBIR) framework. The
methods were tested extensively using both peripheral blood smears and renal glomeruli specimens. The datasets
and performance were evaluated by two pathologists to determine the concordance.

Results: The CBIR algorithms that were developed can reliably retrieve the candidate image patches exhibiting
intensity and morphological characteristics that are most similar to a given query image. The methods described in
this paper are able to reliably discriminate among subtle staining differences and spatial pattern distributions. By
integrating a newly developed dual-similarity relevance feedback module into the CBIR framework, the CBIR results
were improved substantially. By aggregating the computational power of high performance computing (HPC) and
cloud resources, we demonstrated that the method can be successfully executed in minutes on the Cloud compared
to weeks using standard computers.

Conclusions: In this paper, we present a set of newly developed CBIR algorithms and validate them using two
different pathology applications, which are regularly evaluated in the practice of pathology. Comparative
experimental results demonstrate excellent performance throughout the course of a set of systematic studies.
Additionally, we present and evaluate a framework to enable the execution of these algorithms across distributed
resources. We show how parallel searching of content-wise similar images in the dataset significantly reduces the
overall computational time to ensure the practical utility of the proposed CBIR algorithms.
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Background
A growing number of leading institutions now routinely
utilize digital imaging technologies to support investiga-
tive research and routine diagnostic procedures. The
exponential rate at which images and videos are being
generated has resulted in a significant need for efficient
content-based image retrieval (CBIR) methods, which
allow one to quickly characterize and locate images in
large collections based upon the features of a given query
image. CBIR has been one of the most active research
areas in a wide spectrum of imaging informatics fields
over the past few decades [1-13]. Several domains stand
to benefit from the use of CBIR including cinematogra-
phy, education, investigative basic and clinical research,
and the practice of medicine. CBIR has been successfully
utilized in applications spanning radiology [4,11,14,15],
pathology [9,16-18], dermatology [19,20], and cytology
[21-23].

There have been several successful CBIR systems that
have been developed for medical applications since the
1980’s. Several approaches utilize simple features such as
color histograms [24], shape [4,22], texture [6,25], or fuzzy
features [7] to characterize the content of images while
allowing higher level diagnostic abstractions based on sys-
tematic queries [4,25-27]. The recent adoption and pop-
ularity of case-based reasoning [28] and evidence-based
medicine [29] has created a compelling need for more
reliable image retrieval strategies to support diagnos-
tic decisions. In fact, a number of state-of-the-art CBIR
systems [4,9,11-13,15,16,25,30-32] have been designed
to support the processing of queries across imaging
modalities.

With the advent of whole-slide imaging technology, the
size and scale of image-based data has grown tremen-
dously, making it impractical to perform matching oper-
ations across an entire image dataset using traditional
methods. To meet this challenge, a new family of strategies
are being developed, which enable investigators to per-
form sub-region searching to automatically identify image
patches that exhibit patterns that are consistent with a
given query patch. In practice, this approach makes it
possible to select a region or object of interest within a
digitized specimen as a query while the algorithm system-
atically identifies regions exhibiting similar characteristics
in either the same specimen or across disparate speci-
mens. The results can then be used to draw comparisons
among patient samples in order to make informed deci-
sions regarding likely prognoses and most appropriate
treatment regimens.

To perform a region-of-interest (ROI) query, Vu et al.
[33] presented a Sam Match framework-based similar-
ity model. The use of a part-based approach was later
reported in [34] to solve the CBIR problem by syn-
thesizing a DoG detector, and a local hashing table

search algorithm. The primary limitation of this approach,
however, was the time cost of the large number of
features that need to be computed. Intra-expansion
and inter-expansion strategies were later developed to
boost the hash-based search quality based on a bag-
of-features model which could more accurately repre-
sent the images. Recently, a structured visual search
method was developed to perform CBIR in medical image
datasets [35]. The primary advantage of this framework
is that it is flexible and can be quickly extended to other
modalities.

Most CBIR algorithms rely on content localization, fea-
ture extraction, and user feedback steps [5-7,25,27,36-40].
The retrieved results are then ranked by some criteria,
such as appearance similarity or diagnostic relevance,
which can also serve as a measure of the practical usabil-
ity of the algorithm. Typically the retrieved images only
include those cases with the most similar appearance
to a given query image whereas introducing relevance
feedback [41-47] to CBIR provides a practical means for
addressing the semantic gap between visual and semantic
similarity.

Large-scale image retrieval applications are generally
computationally expensive. In this paper, we present the
use of the CometCloud [48,49] to execute CBIR in a
parallel fashion on multiple high performance comput-
ing (HPC) and cloud resources as a means for reduc-
ing computational time significantly. CometCloud is an
autonomic cloud framework that allows dynamic, on-
demand federation of distributed infrastructures. It also
provides an effective programming platform that supports
MapReduce, Workflow, and Master-Worker/BOT mod-
els making it possible for investigators to quickly develop
applications that can run across the federated resources
[49-53]. The algorithm that our team developed exploits
the parallelism of CBIR by combining the HPC assets at
Rutgers University with external cloud resources. More-
over, our solution uses cloud abstractions to federate
resources elastically to achieve acceleration, while hid-
ing infrastructure and deployment details. In this way,
the CBIR algorithm can be made available as accessible
services to end users.

The contributions of this paper are: 1) a novel CBIR
algorithm based on a newly developed coarse-to-fine
searching criteria which is coupled with a novel feature
called hierarchical annular histogram (HAH); 2) a CBIR
refinement schema based on dual-similarity relevance
feedback; and 3) a reliable parallel implementation of the
CBIR algorithm based on Cloud computing.

Methods
Research design
After discussing the needs and requirements of patholo-
gists from their perspective, the CBIR study is designed
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to quickly and accurately find images exhibiting sim-
ilar morphologic and staining characteristics through-
out a single or collection of imaged specimens. Our
team specifically choose to use Giemsa stained peripheral
blood smear and hematoxylin and eosin (H&E) stained
renal glomeruli datasets to systematically test the algo-
rithms since these are two routine use case scenarios
that our clinical colleagues indicated might benefit from
the proposed technology. Leukocytes are often differen-
tiated based on traditional morphological characteristics,
however the subtle visible differences exhibited by some
lymphomas and leukemias result in a significant num-
ber of false negative during routine screenings. In many
cases, the diagnosis is only rendered after conducting
immunophenotyping and a range of other molecular or
cytogenetic studies. The additional studies are expensive,
time consuming, and usually require fresh tissues that may
not be readily available [54]. Pre-transplantation biopsies
of kidney grafts have become a routine means for select-
ing organs which are suitable for transplantation from
marginal donors. The main histopathology characteristics
that are routinely evaluated by pathologists are percentage
of glomerulosclerosis, interstitial fibrosis, and degree of
vascular pathology [55]. The central incentive for develop-
ing the CBIR algorithms is to determine a reliable means
for assisting pathologists when they are called upon to
render diagnostic decisions based on whole-slide scanned
specimens.

In this paper, we present a novel content-based image
retrieval (CBIR) algorithm that is systematically tested on
both imaged Giemsa stained peripheral blood smears and
digitized H&E stained renal glomeruli specimens. Because
of the intense computational requirements of the algo-
rithms, our team systematically investigate the use of high
performance computing solutions based on CometCloud
to distribute the tasks of performing CBIR to signifi-
cantly reduce the overall running time. The details of
datasets, the relevant CBIR algorithms, and the Comet-
Cloud implementation of the methods are explained in
detail in the following sections.

In the case of Giemsa stained peripheral blood smear
datasets, the algorithms operate on a given query patch
to quickly and reliably detect other leukocytes of the
same class throughout the imaged specimen in support
of diagnostic decisions. These hematopathology datasets
were acquired using a 20× objective to provide a gross
overview of the specimen while also supplying sufficient
resolution to distinguish among different classes of leuko-
cytes. The dataset consisted of 925 imaged blood smears
(1000 × 1000 pixels). In the case of the H&E stained renal
glomeruli datasets, the algorithms are used to process any
given query patch to discriminate necrotic glomeruli and
normal glomeruli throughout imaged kidney tissue speci-
mens. In these experiments, our team cropped 32 images

(5024 × 3504 pixels) from within eight whole-slide renal
specimens using a 20× objective.

Quality control of all datasets was conducted by an
experienced pathologist (Dr. Zhong) whereas query image
patches and ground-truth classification were determined
by two pathologists (Dr. Zhong and Dr. Goodell). The
retrieved results were evaluated by both pathologists
through a completely independent and blinded process.
During the peripheral blood smear experiments, patholo-
gists were asked to assign each leukocyte retrieved using
the CBIR algorithm to either the relevant or non-relevant
class as a means for judging the appropriateness of each
returned patch. In all, there were five different classes of
leukocytes used in the studies. During the renal glomeruli
studies, either a relevant or non-relevant assignment was
made to judge the performance of the algorithms in
distinguishing between necrotic glomeruli and normal
glomeruli.

The CBIR algorithms consist of four major steps: 1)
regions of interest (ROIs) localization, 2) hierarchical
three-stage searching, 3) retrieval refinement based on
dual-similarity relevance feedback, and 4) high perfor-
mance computing using CometCloud [48]. Figure 1 illus-
trates the actual workflow of the process.

Step 1: regions of interest localization
The first step is to locate the regions of interest (ROIs)
throughout the imaged specimens by excluding the back-
ground regions from the candidate objects. Using color-
decomposition and morphology [56] based preprocessing,
the algorithm identifies application-specific ROIs. These
regions serve as candidate searching regions in the sub-
sequent stages of hierarchical searching. Candidate image
patches are generated using a sliding window approach
with an overlapping ratio within the range of [50%, 90%].

Step 2: hierarchical three-stage searching
The hierarchical three-stage searching method includes:
coarse searching, fine searching, and mean-shift clustering.

Coarse searching: Let Q represents a query image patch
and P serves the candidate image patches. Each patch
is divided into consecutive concentric rectangular bin
regions (termed as rings) as shown in Figure 2(a-b). As the
number of rings, r, increases, more detailed image char-
acteristics are captured and while the computational time
increases accordingly. r is determined based on cross-
validation. Figure 2(b) illustrates the process of coarse
searching. Given a query image patch, the algorithm com-
putes local features from the innermost ring. Based on a
similarity measure between candidate image patches, P,
and the query image, Q, retrieved image patches, P, are
ranked from high to low, and only the top 50% ranked
candidates are reserved at each step. This procedure
continues until the outermost ring is reached. This
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Figure 1 Workflow of the proposed CBIR algorithm.

cascade structure significantly reduces the computational
time, as 50% of the image patches are eliminated in the
very first stage of processing by simply evaluating features
in the innermost ring.

Fine searching: After the coarse searching stage has been
completed, each rectangular annular ring from both the
query and candidate patches are equally subdivided into
eight segments, and local features are calculated in each
segment. The final candidates are chosen based on a
similarity measure of a concatenated feature vector cor-
responding to the eight segments. Figure 2(c) illustrates
the process of the fine searching. This stage is designed
to capture the spatial configuration of the local features.
Due to the limited number of candidates passing through
the coarse searching stage, the computational time for
completing this stage is dramatically reduced.

Mean-shift clustering: In order to assemble the final
retrieval results, mean-shift (MS) clustering [57] is applied
to the top ranked candidate patches, which have survived
both the coarse and fine searching stages. The band-
width b for the mean-shift clustering is calculated as b =√

( w
2 )2+( h

2 )2

2 , where w is the width of the query image and h
is the height of the query image. In this way, the final CBIR
results are obtained.

HAH Feature and feature comparison
HAH feature: To implement the hierarchical searching
framework, we develop a hierarchical annular histogram
(HAH). The intensity color histograms of consecutive
concentric rectangular rings are calculated and concate-
nated together to form a coarse searching feature vector,
Hc = (h1, h2, . . . , hr), where hi is the intensity color his-
togram of the ith ring, i ∈ [1, r] and r is the number
of rings selected for the HAH feature. For fine search-
ing, each rectangular annular ring is equally divided into
eight segments, and the color histogram is calculated
from each segment sequentially and then concatenated
together to form the fine searching feature vector, Hf =
(h1,1, . . . , h1,8, h2,1, . . . , h2,8, . . . , hr,1, . . . , hr,8), where hi,j is
the intensity color histogram of the ith ring within the jth
segment, j ∈ [1, 8]. Here superscript c represents coarse
searching and f represents fine searching. Throughout
the CBIR study, we use Euclidean distance as the similar-
ity measure. The distance Di, between the ith candidate
patch vi and the query patch q in coarse searching and fine
searching are defined as Dc

i and Df
i , respectively:

Ds
i = ds

i (H
s(qs), Hs(vs

i)), s ∈ c, f ,

where ds
i (Hs(qs), Hs(vs

i)) = √
(Hs(qs) − Hs(vs

i))
2. Here

Hc(qc), Hf (qf ) are the feature vector of query image

Figure 2 An illustration of the hierarchical searching framework: (a) region of interest, (b) coarse searching step, and (c) fine searching
step.
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during coarse searching and fine searching stages,
respectively, and Hc(vc

i ), Hf (vf
i ) are the feature vector of

the ith candidate patch in the coarse searching and fine
searching stages, respectively.

Figure 3(a) and (b) illustrate the calculation of the HAH
from the innermost rectangle and the fourth ring from
the center. Figure 3(c) and (d) show an example of two
image patches with similar traditional color histogram (d),
but completely different HAH (c). This demonstrates the
capacity of the HAH to differentiate among image patches
exhibiting similar total color distributions, but different
spatial configurations.

In order to compare the performance of the HAH
feature in CBIR, the Gabor wavelet feature [58] and co-
occurrence texture feature [59,60] were compared with
the HAH feature with respect to both speed and accu-
racy using both imaged peripheral blood smear and renal
glomeruli datasets. For the purpose of the studies, pre-
cision and recall were used to measure the performance
of the CBIR algorithm. Precision is defined as the ratio
between the number of retrieved relevant images and the
total number of retrieved images. Recall is defined as the
ratio between the number of retrieved relevant images and
the total number of relevant images in the datasets.

The Gabor wavelet feature: The Gabor wavelet feature
is used to describe the image patterns at a range of dif-
ferent directions and scales. Throughout the experiments,
we utilize a Gabor filter with 8 directions and 5 scales,
(M = 5, N = 8), and the mean value and standard devi-
ation of each filtered image are concatenated to form a
feature vector: f = (μ1,1, σ1,1, μ1,2, σ1,2, . . . , μ5,8, σ5,8), in
which μm,n and σm,n represent the mean value and stan-
dard deviation of the filtered image using Gabor filter at
the mth scale and nth direction, m ∈ [1, M] , n ∈ [1, N].

The distance Di between the ith candidate patch vi, and
the query patch q, is defined as

Di =
∑

m

∑
n

dm,n,i(q, vi),

where dm,n,i =
√

(μ
q
m,n − μ

vi
m,n)2 + (σ

q
m,n − σ

vi
m,n)2.

COOC texture feature: Co-occurrence (COOC) matri-
ces, also called spatial gray-level dependence matrices,
were first proposed by Haralick et al. [59,60]. COOC
matrices are calculated from an estimation of the second-
order joint conditional probability of the image intensity
with various distances and four specific orientations (00,
450, 900, 1350). COOC texture feature using the COOC
matrices quantifies the distribution of gray-level values
within an image. For the feature comparison experiment,
COOC texture feature including contrast, correlation,
energy, and homogeneity [60], is calculated from the
COOC matrices within the candidate ROIs and the query
image. The distance, Di, between the ith candidate patch
vi, and the query patch q, is defined as

Di =
∑

f
df ,i(q, vi),

where df ,i =
√

(Fq
f ,i − Fvi

f ,i)
2, and F = {contrast, correlation,

energy, homogeneity}.

Stage 3: CBIR retrieval refinement using a dual-similarity
relevance feedback
Relevance feedback is an interactive procedure which is
used to refine the initial retrieval results. Upon comple-
tion of the initial retrieval, top ranked retrieval images
were reviewed by two pathologists with consensus to label
them as relevant or non-relevant as previously described.

Figure 3 An illustration of HAH calculation. (a) Color histogram of the central ring. (b) Color histogram of the fourth ring from the center. An
example of two patches with (c) different HAH, but (d) similar color histogram of the entire image.
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These responses are used as users’ feedback to re-rank the
retrieval results accordingly.

Two types of similarities are used in the above retrieval
and feedback procedure: similarity in visual appearance
as measured by image feature distance and similarity
in semantic category as measured as relevant or non-
relevant. Current relevance feedback algorithms typically
only consider the second similarity. In our algorithm,
we develop a dual-similarity schema that combines both
types of similarity measures. This is achieved by rebuild-
ing the initial distributions of training samples in an
on-line manner.

For each top ranked retrieved image, a 256×3×r dimen-
sion feature vector is constructed, where r is the number
of rings defined in the hierarchical searching process.
Dimension reduction using principal component analy-

sis (PCA) is applied to the original HAH feature space,
and the top principal components accounting for 90% of
the total variance are used as inputs for the following
relevance feedback procedure.

Adaboost [61] is utilized to train an ensemble classi-
fier composed of a set of weak learners. Given a train-
ing dataset, a strong classifier is built as a weighted
sum of weak learners by minimizing the misclassification
errors. Define weight Wi, to be measured by a normalized
Euclidean distance Di, representing the image appear-
ance similarity between a pair of retrieved image and
the original query. The initial distribution of the training
samples is recalculated to update the classifier to place
more weights on the visually similar cases following the
relevance feedback step. The algorithm is summarized as
follows.

Algorithm 1: Dual-similarity relevance feedback
Input: Labeled image dataset S with s images, S = {(X1, y1), (X2, y2), . . . , (Xs, ys)}, where yi = −1, 1 with i ∈
[1, s] representing relevant (positive) and non-relevant (negative) image samples. The Euclidean distance bet-
ween retrieved images and query image is denoted as D = {d1, d2, . . . , ds}. S can be further divided into a sub-set of
p positive samples: Sp = {(X1, y1), (X2, y2), . . . , (Xp, yp)|yi = 1, i ∈[1, p] }, and a sub-set of l negative samples: Sn =
{(X1, y1), (X2, y2), . . . , (Xl, yl)|yi = −1, i ∈[1, l] }, p + l = s.
Output: Re-ranked retrieved image dataset R = {(X1, y1), (X2, y2), . . . , (Xr , yr)}.
Recalculate the distribution:

• Calculate the weight W (i) for each sample image Xi based on its Euclidean distance to the query image D(i),
W (i) = 1 − D(i)−min(D)

max(D)−min(D)
.

• Calculate the feature vector vi ∈ R
F for the i-th sample image. For each dimension f ∈[1, F] of the feature vector vi,

the values from the positive and negative images are fitted with normal Gaussian distributions Ppos
f and Pneg

f . The
distributions are then recalculated such that the probabilities of feature values are proportional to their weights
W (i). Denote the k-th dimension of the feature vector as v(k), for positive sample images Xm, Xn, ∀m, n ∈[1, p],
there is P̄pos

k (v|v=vm(k)

P̄pos
k (v|v=vn(k)

= W (m)
W (n)

, and for negative sample images Xs, Xt , ∀s, t ∈[ 1, l], there is P̄neg
k (v|v=vs(k)

P̄neg
k (v|v=vt(k)

= W (s)
W (t) .

Adaboost Initialization:
• Initialize the training weights of the adaboost classifier for all sample images as W1,i = 1

s , where s represents the
total number of images in S .

Adaboost:
for t = 1, . . . T do

• For each dimension f of the feature vector vi, train a binary classifier hf by rebuilding sample set distribution P̄pos
f

and P̄neg
f . The misclassification error of the generated classifier is defined as the weighted sum of misclassification

from all sample images, εf = ∑s
i=1 Wt,i.I(yi �= hf (vi)), here I(.) is the indicator function.

• Choose ht = hf such that ∀j ∈[1, F] , j �= f , εf < εj and let εt = εf .
• If εt < α, then stop, where α is a chosen error threshold.
• Update weights W (i).

for i = 1, . . . , M + 1 do
Wt+1,i = Wt,i.exp(αt I(yi �=ht(vi)))∑

i(Wt,i.exp(αt I(yi �=ht(vi))))
, where αt = ln( 1−εt

εt
)

end for
end for

• Assemble the final classifier: H(x) = sign(
∑T

t=1 αtht(v)).
• Re-rank the top retrieved images using the final strong classifier.

Re-rank the relevant top retrieved images based on the content-wise similarities.
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Step 4: accelerating CBIR using CometCloud
Due to the data-independence property of the CBIR
algorithm, we can formulate our problem as a set of
heterogeneous and independent or loosely couple tasks.
In this way, we can parallelize and solve our problem
using the aggregated computational power of distributed
resources. Our team has designed and developed a frame-
work that enables the execution of CBIR across dis-
tributed, federated resources. Our framework uses cloud
abstractions to present the underlying infrastructure as
a single elastic pool of resources regardless of their
physical location or specific particularities. In this way,
computational resources are dynamically provisioned on-
demand to meet the application’s requirements. These
resources can be high performance computing grids,
clouds, or supercomputers. In the current application, the
framework is built on top of CometCloud [48]. Comet-
Cloud is purposely chosen for this application since it
enables dynamic and on-demand federation of advanced
cyber-infrastructures (ACIs). It also provides a flexible
application programming interface (API), for developing
applications that can take advantage of federated ACIs.
Furthermore, it provides fault-tolerance in the resulting
infrastructure.

The framework used to run the CBIR algorithm
across federated resources is implemented using the mas-
ter/worker paradigm. In this scenario, the CBIR software
serves as a computational engine, while CometCloud

orchestrates the entire execution. The master/worker
model is suitable for problems with a large pool of inde-
pendent tasks, where both the tasks and the resources
are heterogeneous. Using this approach, the master
component generates tasks, collects results, and veri-
fies that tasks are properly executed. Each task con-
tains the description of the images to be processed.
All tasks are automatically placed in the CometCloud-
managed distributed task space for execution. Work-
ers are dedicated to carry out tasks pulled from the
CometCloud task space and send results back to the
master.

The implementation that we have presented has several
important and highly desirable properties. From the user’s
perspective, the framework creates a cloud abstraction on
top of the resources that hides infrastructure details and
offers the CBIR software as a readily accessible service. In
this way, one can query the database using different algo-
rithms via a simple interface without consideration of how
and where queries are executed. On the other hand, from
the developer’s perspective, the integration of the existing
CBIR software with the CometCloud framework does not
require any adjustments on the application side. Addition-
ally, the resulting framework completely operates within
the limits of the end-user space. This means that it is pos-
sible to aggregate computational resources without special
privileges, which is very important when using external
resources.

Figure 4 An illustration of results of the three-stage CBIR searching using one neutrophil as a query image from peripheral blood smears
acquired at 20× objective, in which green box labeled regions represent the candidate patches.
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Figure 5 CBIR results using different classes of leukocytes as query images, including basophil, eosinophil, lymphocyte, monocyte, and
neutrophil, respectively. Here green box labeled regions represent the candidate patches that are similar to the query image patch. Each box has
a number to indicate the ranking order of every candidate patch in the dataset. The original sizes of the images were adjusted to fit in the figure.

Figure 6 An example of top 10% CBIR results for a necrotic glomerulus query image. Red box labeled regions indicate the query image. Blue
box labeled regions represent the healthy glomeruli for comparison. Green box labeled regions denote the top 10% ranked retrieved patches,
which include multiple scaled regions at 1/2, 1, 2, 3, and 4 times of the original size of the query image. The original sizes of the images were
adjusted to fit in the figure.
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Figure 7 Local feature comparison using HAH, Gabor wavelet and COOC texture features. (a) Precision-recall curves of CBIR results using
HAH, Gabor wavelet, and COOC texture features on peripheral blood smears. (b) Average of feature calculation times per image patch using HAH,
Gabor wavelet, and COOC texture features on peripheral blood smears. (c) Precision-recall curves of CBIR results using HAH, Gabor wavelet, and
COOC texture features on renal glomeruli images. (d) Average of feature calculation times per image patch using HAH, Gabor wavelet, and COOC
texture features on renal glomeruli images.

Results and discussion
CBIR results and feature comparison
A dual-processor system based on Intel Xeon E5530@2.4
GHz with 24 GB RAM and 64-bit operating system was
used for the CBIR study. Initial CBIR results using two

Table 1 Numbers of relevant/non-relevant images within
top 100 initially retrieved images for peripheral blood
smear and renal glomeruli datasets, which were labeled by
two pathologists with an agreement

Dataset # of relevant images # of non-relevant images

Neutrophil 41 59

Monocyte 53 47

Lymphocyte 42 58

Eosinophil 9 91

Basophil 1 99

Renal tissue 59 41

pathology image datasets and different feature compari-
son are presented below. Figure 4 shows an example of
the CBIR three-stage hierarchical searching results using
one neutrophil as a query image in a peripheral blood
smear dataset acquired using 20× magnification objec-
tive. Green box labeled regions represent the candidate
patches that are similar to the query image patch. Figure 5
shows CBIR results using different classes of leukocytes

Table 2 Percentage of various leukocytes in adults
approximately

Various leukocytes From % To %

Neutrophil 60 70

Monocyte 3 8

Lymphocyte 20 25

Eosinophil 2 4

Basophil 0.5 1
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Figure 8 Top ranked patches before and after relevance feedback of three classes of leukocytes ((a) neutrophil, (b) monocyte, and (c)
lymphocyte). Patches with red rectangles represent the incorrect results (negative examples), and blue rectangles denote the correct results
(positive examples), which were re-assigned to higher rankings through the relevance feedback process. The original sizes of the images were
adjusted to fit in the figure.

as query images, including basophil, eosinophil, lympho-
cyte, monocyte, and neutrophil, respectively. Green box
labeled regions represent the candidate patches that are
similar to the query image patch. Each box has a number
to indicate the ranking order of every candidate patch in

the dataset. Figure 6 shows an example of CBIR results
for a necrotic glomeruli query image using a testing
dataset containing multi-scale regions at 1/2, 1, 2, 3, and
4 times of the original size of the query image. Red box
labeled regions indicate the query image. Blue box labeled

Figure 9 Top ranked patches before and after relevance feedback of the renal glomeruli dataset. Patches with red rectangles represent the
incorrect results (negative examples), and blue rectangles represent the correct results (positive examples), which were re-assigned to higher
rankings through the relevance feedback process.
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regions represent the healthy glomeruli for comparison.
Green box labeled regions represent the top-ranked 10%
of retrieval patches of the 32 randomly selected regions
(5024 × 3504 pixels) cropped from whole-slide scanned
images.

By varying the number of rings ∈ [2, 3, 5, 10, 15] in the
hierarchical searching, the performance of CBIR is sum-
marized as follows. For imaged peripheral blood smears,
all five classes of leukocytes were correctly retrieved using
three inner rings of the HAH. For imaged renal glomeruli,
as the number of rings increased to 10, all necrotic
glomeruli were correctly retrieved. With an increase of
the number of the rings, the computational time also
increased. The number of rings was shown to be depen-
dent upon the complexity of the dataset.

For local feature comparison, image retrieval was per-
formed on the same datasets with the same query images
using HAH, Gabor wavelet, and COOC texture features.
Figure 7(a) and (b) show precision-recall curves and aver-
age of feature calculation times using peripheral blood
smear images, respectively. Figure 7(c) and (d) show
precision-recall curves and average of feature calculation
times using renal glomeruli images, respectively. The area
under a curve (AUC) value of each feature for peripheral
blood smear images and renal glomeruli images are shown
in Figure 7(a) and (c), respectively. The average of feature
computation times are shown in Figure 7(b) and (d). Based
on these experiments, it is clear that HAH feature out-
performs Gabor wavelet and COOC texture features with
respect to both speed and accuracy.

Validation of relevance feedback
To evaluate the performance of the dual-similarity rele-
vance feedback algorithm, both peripheral blood smear
and multi-scale renal datasets were used. Table 1 summa-
rizes the numbers of relevant/non-relevant images within
initial top retrieved 100 images for peripheral blood smear
and renal glomeruli datasets, which were labeled by two
pathologists with consensus. In general, the percentages
of basophils and eosinophils in a given specimen are quite
small (e. g., less than 1% and 4% in our dataset as shown
in Table 2). In addition, they can be accurately retrieved as
we show in Table 1. Due to this reason, only neutrophils,
monocytes, and lymphocytes were utilized for relevance
feedback analysis. In those experiments, we applied rel-
evance feedback on the first 100 initial retrieved image
patches because this number was sufficient to retrieve all
similar cases in the datasets.

The original query images, initial top retrieval results,
and re-ranked results after relevance feedback are showed
in Figures 8 and 9 for blood smear and renal datasets. In
both figures, image patches with red rectangles represent
the incorrect results (negative examples), and the blue
ones represent the correct results (positive examples),

which were re-assigned to higher ranking after rele-
vance feedback. For the retrieval results of leukocyte
image datasets, the ranking of many correct patches
were increased from their initial ranking after relevance
feedback. Relevance feedback corrected for 5/6 of the
incorrect retrieval patches and increased the ranking for
7 patches from the lower ranking (with initial ranking
between 41 and 100) in the neutrophil dataset. This proce-
dure also amended all 10 incorrect patches, and increased
ranking for 23 patches in the monocyte dataset. This pro-
cedure eliminated all 4 incorrect patches, and increased
ranking for 35 patches in the lymphocyte dataset. For the
renal dataset, the relevance feedback procedure success-
fully increased the ranking for all of the 9 correct patches
of multi-scale renal dataset shown in Figure 9.

Ten-fold cross-validation was applied to evaluate the
performance of the proposed dual-similarity relevance
feedback with receiver operating characteristic (ROC)
curves for both peripheral blood smear and renal datasets.
The ROC curves after applying relevance feedback on the
peripheral blood smear and multi-scale renal datasets are
shown in Figure 10.

Another measures of performance for the proposed rel-
evance feedback are the recall rate and processing speed.
The relevance feedback (RF) calculation time includes
feature vector dimension reduction and Adaboost clas-
sifier training. The numbers of training samples were
20, 50, and 90, and the training samples were randomly
selected from the datasets. Based on Figure 11, the val-
ues of area under recall curves increased as the number
of training samples increased for three leukocytes ((a)
neutrophil, (b) monocyte, and (c) lymphocyte), and (d)
renal glomeruli. The recall rate after RF for neutrophils

Figure 10 The ROC curves of the dual-similarity relevance
feedback using the peripheral blood smear image dataset
(neutrophil, monocyte, and lymphocyte), and the renal
glomeruli dataset.
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Figure 11 The recall curves after relevance feedback (RF) and their calculation times using the peripheral blood smear image dataset ((a)
neutrophil, (b) monocyte, and (c) lymphocyte)), and (d) the renal glomeruli dataset. The numbers of training samples were 20, 50 and 90.

(a) using 20 training samples was no better than the result
before RF. This was because the original retrieval process
already provided a good performance. As the value of area
under recall curve before RF was already 76.902, which
was much higher than the rest of cases ((b) monocyte, (c)
lymphocyte, and (d) renal glomeruli). In this specific case,
there was no significant improvement using RF in a small
training set (e.g., 20 training samples). However, RF signif-
icantly improved the recall rate in larger training sets (e.
g., 50 and 90 training samples). In general, the values of
area under recall curves were significantly increased after
RF with the number of training samples increased.

Acceleration of CBIR using CometCloud
We conducted experiments to test the performance of
CBIR using CometCloud. For HAH, we evaluated two

leukocytes query images against a dataset of 925 periph-
eral blood smear images. In the case of CBIR using multi-
scale image candidate patches, we evaluated two different
renal glomeruli query images against a dataset of 32 renal
images. All the experiments were repeated three times to
obtain average results.

During the experiments, the input data were initially
located on a single site, the required files were trans-
ferred as needed. However, once a file was transferred
to a remote site, it was locally staged to minimize the
amount of data transferred across sites, especially when
multiple tasks require the same input data. To address this
issue, a pull model was used where workers request tasks
when they become idle. In this way, the workload was uni-
formly distributed across all workers to address the load
imbalance.
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Figure 12 The execution time of hierarchical searching process using (a) peripheral blood smear dataset, and (b) renal glomeruli dataset,
with different combinations of number of the HAH rings and the percentage of overlapping.

To accommodate the CBIR algorithms, we federated
various resources including HPC clusters and clouds. In
particular, we federated a HPC cluster at Rutgers (a Dell
Power Edge system with 256 cores in 8-core nodes -
“Dell” hereafter), a SMP machine at Rutgers (64 cores -
“Snake” hereafter), and 40 large instances from OpenStack
[62] (“FutureGrid”, hereafter), which is a cloud similar
to Amazon EC2. Currently we are exploiting the inher-
ent task parallelism of the problem, which means that
we can divide the algorithm into smaller sub-modules
and execute each module independently. This provides
a linear scalability as long as we have more tasks than
computational cores.

Figure 12 presents a summary of the execution time of
the proposed hierarchical searching algorithm using two
representative peripheral blood smears and a multi-scale
renal glomeruli dataset while varying the parameters,
respectively. The results illustrate average values, includ-
ing error bars showing their associated variabilities. Please
note that the Y -axes in the sub-figures represent different
scales. The figure also demonstrates the execution time of
each stage and the time required to transfer the images
for processing. Since the image transfer time represents a
small fraction of the total execution time (i.e., from a few

Figure 13 The execution time of sequential and federated
infrastructure using peripheral blood smear dataset and renal
glomeruli dataset with different combinations of number of the
rings and the percentage of overlapping. Here the Y-axis is in a
logarithmic scale.

seconds to a 2–3 minutes depending on the configura-
tion), in our current implementation we copy the images
sequentially from a central repository. The execution time
varies depending on the algorithm we used, the query and
dataset images, and the configuration (e.g., 90% overlap-
ping takes longer than 50% overlapping). The fraction of
time spent on each stage of the hierarchical searching is
shown in Figure 12.

Figure 13 compares the execution time of different
configurations using a single system and federated cyber-
infrastructure. We observe an average acceleration of
70-fold with a maximum of 96-fold. This is achieved by
elastically using multiple resources as discussed below.
Figure 14 shows the contribution of the FutureGrid cloud
to the execution of the multi-scale algorithm. Cloud
resources significantly accelerate the execution of the
algorithm. During stages with lower parallelism (e.g., last
minutes of the execution), computation can be performed
using local HPC resources and cloud resources can be
released to reduce operational costs.

The variability of the execution time of different tasks
is shown in Figures 15 and 16. Figure 15 shows the aver-
age task execution time and variability using different
configurations. The variability of task execution time is
heterogeneous and depends on the configurations and the

Figure 14 The number of completed tasks over time when
testing the CBIR algorithm using the renal glomeruli dataset.
The area under “FutureGrid” represents the contribution from the
cloud resources.
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Figure 15 The average task execution time per platform using
the peripheral blood smear and renal glomeruli datasets with
different combinations of number of the rings and the
percentage of overlapping. Here “FutureGrid” is abbreviated as “fg”.

machine. In general, the longer the execution takes, the
larger the variability. Figure 16 shows that the execution
time of individual task is relatively heterogeneous. It also
demonstrates that the distribution of tasks among differ-
ent federated resources depends on the number of cores
available in each platform (e.g., one of the cores, snake,
runs only a few tasks). The results show that the par-
allelization of CBIR at the image level can dramatically
reduce the overall computational time.

Conclusion
In this paper, we present a set of newly developed CBIR
algorithms and demonstrate its application on two differ-
ent pathology applications, which are regularly evaluated
in the practice of pathology. The experimental results
suggest that the proposed CBIR algorithm using sequen-
tial HAH searching follows a progression which parallels
to the same logical steps as ever invoked when physi-
cians review digital pathology images. During the review
process, the pathologist typically begins by first iden-
tifying gross locations of potential regions of interest

Figure 16 The execution time per task using (a) the peripheral blood smear dataset and (b) the renal glomeruli dataset.
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(coarse searching in the proposed algorithm) before exe-
cuting the more refined stages (fine searching in the pro-
posed algorithm) to examine the detailed morphometric
characteristics.

For the peripheral blood smear study, we tested perfor-
mance using a range of different leukocytes and exper-
imentally showed the reliable performance of the CBIR
algorithm. The success of the proposed CBIR algo-
rithm in identifying neutrophils suggests further explo-
ration of the HAH feature in detecting abnormal or
hypersegmented neutrophils, which are indicators of
megaloblastic anemia and potential risk of gastric can-
cer. Similarly, a pathologist’s assessment of normal vs.
diseased glomeruli in renal biopsies is often used as an
indicator of overall kidney health, such as, the determi-
nation of graft function from pre-transplantation biop-
sies [55]. Assisted by the proposed CBIR algorithm,
physicians and researchers can quickly review a digital
biopsy to evaluate the proportion of ischemic or necrotic
glomeruli within a given field to quickly assess whether
an incoming specimen is suitable for transplantation or
not. This type of review can have multiple applications,
such as, determining whether a rejection of the organ
might occur by identifying areas of focal and segmental
glomerulosclerosis [63]. Currently, our algorithm requires
some external feedback to optimize the search. We are
exploring different ways of automatizing this process by
applying machine learning techniques. On the other hand,
although the proposed hierarchical searching has signifi-
cantly improved the retrieval speed, it is still a computa-
tional demanding procedure. Therefore, we are exploring
new ways of exploiting parallelism to speed-up this
process.

We present a generalizable cloud-enabled CBIR algo-
rithm that can be extended to a wide variety of appli-
cations. Because of the computational requirements
needed for retrieving whole-slide scanned images, we
explore the use of federated high performance computing
(HPC) cyber-infrastructures and clouds using Comet-
Cloud. Comparative results of HPC versus standard com-
putation time demonstrate that the CBIR process can be
dramatically accelerated, from weeks to minutes, making
real-time clinical practice feasible. Moreover, the pro-
posed framework hides infrastructure and deployment
details and offers end-users the CBIR functionality in a
readily accessible manner. We are currently working on
improving the utilization of resources by exploit the par-
ticular capabilities and capacities of each heterogeneous
resource, e.g., switching between the usage of the origi-
nal CBIR implementation in MATLAB (The MathWorks,
Natick, MA) when licenses are available or a parallel
implementation using graphic processing unit (GPU) and
many-core architectures in cases where resources with
accelerators are available.
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