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SUMMARY

Managing the large volumes of data produced by emerging scientific and engineering simulations running on
leadership-class resources has become a critical challenge. The data have to be extracted off the computing
nodes and transported to consumer nodes so that it can be processed, analyzed, visualized, archived, and so
on. Several recent research efforts have addressed data-related challenges at different levels. One attractive
approach is to offload expensive input/output operations to a smaller set of dedicated computing nodes
known as a staging area. However, even using this approach, the data still have to be moved from the staging
area to consumer nodes for processing, which continues to be a bottleneck. In this paper, we investigate
an alternate approach, namely moving the data-processing code to the staging area instead of moving the
data to the data-processing code. Specifically, we describe the ActiveSpaces framework, which provides (1)
programming support for defining the data-processing routines to be downloaded to the staging area and
(2) runtime mechanisms for transporting codes associated with these routines to the staging area, executing
the routines on the nodes that are part of the staging area, and returning the results. We also present an
experimental performance evaluation of ActiveSpaces using applications running on the Cray XT5 at Oak
Ridge National Laboratory. Finally, we use a coupled fusion application workflow to explore the trade-offs
between transporting data and transporting the code required for data processing during coupling, and we
characterize sweet spots for each option. Copyright © 2014 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Emerging scientific and engineering simulations running at scale on leadership-class resources have
the potential for enabling simulations with unprecedented levels of accuracy and providing dra-
matic insights into complex phenomena. At the same time, these simulations present new challenges
because of their scales and overall complexities. A critical challenge is due to the rate and volume
of data generated by these simulations, and the overheads associated with extracting this data from
the computing nodes and transporting it to consumers so that it can be processed (e.g., transformed,
analyzed, visualized, archived, etc.) and/or coupled as part of end-to-end application workflows.
For example, the coupled kinetic-MHD [1] plasma simulation consists of parallel codes that
simulate neoclassical particle dynamics and fluid instabilities in the edge region of a tokamak
fusion reactor, run concurrently on thousands of computing nodes, and are coupled through an
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integrated, predictive plasma modeling workflow. These codes generate large volumes of data that
must be exchanged during coupling, as well as transported to other support services required to
ensure simulation progress and the correctness of results, such as data visualization and analysis
or execution/completion monitoring. These processes often run independently, on demand, and on
distinct and distributed resources resulting in interaction and coupling patterns that are complex,
data-intensive, and highly dynamic.

The data transport and processing costs associated with these interactions and couplings are
increasingly dominating the overall application execution costs and are becoming a growing con-
cern [2]. As a result, several research efforts have explored techniques for high-throughput data
transfers with low application overheads. These include, for example, buffering [3, 4], multiple
input/output (I/O) phases [5], asynchronous I/O [6], overlapping communications with computa-
tions for latency hiding [7], and active messages [8]. One attractive approach for reducing the I/0
overhead on the applications is to offload expensive I/O operations from the computing nodes to a
smaller set of dedicated nodes known as the staging area. In our research on DataSpaces [9, 10], we
have used this approach to asynchronously move data from the computing nodes to the staging area,
where it can be queried by consumer nodes for coupling, analysis, visualization, archiving, and so
on. However, the costs associated with moving the data off the staging area, coupled with limited
resources at these staging nodes, make this only a partial solution.

In data-intensive application workflows, data typically have to be transformed and often reduced
before it can be processed by consumer applications or services. For example, application coupling
may only require subsets of data that are sorted and processed to match the data representation at
the consumer. Similarly, visualization and monitoring applications may only require discrete values,
such as the maximum, minimum, or average value of a variable over a region of interest. Processing
the data before transporting it can be advantageous in these scenarios. For example, in our research,
we have explored embedding predefined data transformation operations in the staging area [11] so
that CPU resources at the staging area can be utilized to transform the data before it is shipped to the
consumer. This approach requires a priori knowledge of the processing, as well as the data structures
and data representation. However, the dynamic nature of the overall workflow, especially in terms
of the amount of data and the processing requirements of the monitoring, analytics and visualization
consumers, warrants a more general approach, where application developers can programmatically
define data-processing routines, which are dynamically deployed and executed in the staging area
at runtime.

In this paper, we present ActiveSpaces, a data-management framework that explores this alternate
paradigm, namely moving the processing code to the data rather than the data to the processing code.
ActiveSpaces builds on the concept of a staging area, and specifically on the DataSpaces [9, 10]
framework, which overlays the abstraction of an associative, virtual shared space over the staging
area. Applications, which may run on remote and heterogeneous systems, can insert and retrieve data
objects at runtime using semantically meaningful descriptors (e.g., geometric regions in a discretized
application domain).

The key contributions of the ActiveSpaces framework include (1) programming support for defin-
ing the data-processing routines, called data kernels, to be executed on data objects in the staging
area and (2) runtime mechanisms for transporting the user-defined data kernels to the staging area
and executing them in parallel on the staging nodes that host the specified data objects. The program-
ming abstractions provided allow the user to define and implement data kernels using all constructs
of the native programming language (e.g., C), or using the Lua scripting language. The runtime
mechanisms enable code offloading and remote execution at the data source for HPC applications.
To the best of out knowledge, this is the first attempt at supporting live code migration that addresses
applications from the scientific community. Existing related approaches, from both enterprise and
academia, either (1) preload the data transformation codes at the data source ahead of time and exe-
cute them at runtime, (2) transfer the source code and compile it on the spot at the data source, or
(3) transfer the binary code (e.g., Graphics processing unit (GPU) and the CellBE) but execute it on
dedicated hardware platforms.

The ActiveSpaces approach presents several advantages. It can reduce the amount of data that
needs to be transferred over the network for data-processing operations. It can also reduce an
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application’s computation time by offloading computations, such as interpolation, redistribution,
reformatting, and so on, which can be asynchronously executed in parallel at the staging nodes. The
ActiveSpaces approach can also be beneficial in more constrained cases where execution of the data
kernels is synchronous, and an application has to wait for data to be processed before it can con-
tinue. In addition to reducing the amount of data transported (as mentioned earlier), the data kernels
can also better exploit data locality within the staging nodes, because the number of nodes hosting
the staging area is much smaller than the number of nodes running the application. ActiveSpaces
does not require any data marshalling/unmarshalling—the applications defining the kernels already
know the structure, representation, and layout of the data, and the code running in the staging area
can access and process the data directly.

We have developed and deployed the ActiveSpaces framework on multiple platforms and are
using it to support fusion simulation workflows developed as part of the Center for Plasma Edge
Simulation, a US Department of Energy prototype Fusion Simulation Project. In this paper, we
describe the design, implementation, and operation of ActiveSpaces, and present an experimental
performance evaluation using application coupling scenarios. In addition, we present a coupled
fusion simulation workflow using ActiveSpaces, explore trade-offs between transporting data and
transporting code for data transformations required by these simulations, and characterize sweet
spots for each option.

The rest of the paper is structured as follows. Section 2 presents a motivating application workflow
scenario and an overview of DataSpaces. Section 3 presents the architecture of ActiveSpaces and
describes its design. Section 4 presents the ActiveSpaces programming interface. Section 5 describes
the implementation of ActiveSpaces, and Section 6 presents an experimental evaluation. Section 7
presents related work, and Section 8 concludes the paper.

2. BACKGROUND

2.1. Motivating coupled simulation scenario

A motivating application scenario used is the study of tokamak divertor heat load profiles in the
presence of MHD instabilities being undertaken by Center for Plasma Edge Simulation. The purpose
of the study is to understand the potential effect of rapid electromagnetic fluctuations on the heat
loads borne by critical tokamak fusion reactor components in order to better optimize their design.

The coupled simulation workflow used in this scenario involves two separate parallel application
codes (XGCO and M3D-MPP), along with auxiliary services for post-processing, diagnostics, and
visualization, as shown in Figure 1. XGCO0, which was developed from the original ion guiding-
center code XGC [1], is a kinetic code that follows the neoclassical ion-electron-neutral dynamics
and computes plasma equilibrium evolution in the edge region of tokamak plasmas. M3D-MPP, the
parallel version of M3D [12], is an extended MHD code that has been used to perform detailed
studies of the evolution of so-called edge localized modes. Because the interactions between the
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Figure 1. Application coupling scenario. Heterogeneous components exchange data objects and deploy data
kernel codes using ActiveSpaces.
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two codes and the auxiliary services are self-explanatory (e.g., monitoring, visualizing the results
of a timestep, or storing the results as a checkpoint), the description below focuses on the coupling
aspects between the two codes.

The two applications codes, XGCO0 and M3D-MPP, embody different physics (neoclassical trans-
port versus MHD instabilities), employ different computational models (particle-in-cell versus finite
element solver), and operate on somewhat different temporal scales (slow pedestal profile evolution
versus fast edge localized mode evolution). Nevertheless, it is of great current interest to examine
the effect on divertor heat loads as measured in the XGCO kinetic code when rapid changes in per-
turbed electromagnetic fields as computed by the M3D-MPP extended MHD code are introduced.
As a result, this code coupling scenario requires relatively frequent transfers of several fields of 3D
data representing the electrostatic potential and the components of the magnetic vector field from
M3D-MPP over to XGCO. For a typical coupled simulation of modest size on the Cray XT5 at Oak
Ridge National Laboratory (ORNL), both applications run on several hundred processor cores, and
each XGCO processor core is retrieving roughly 70 MB of data. In addition, the 3D field data that are
decomposed across the processor cores within M3D-MPP must be properly recomposed as coherent
3D arrays and then interpolated from the finite element mesh of M3D-MPP to the rectilinear mesh
and cylindrical grid coordinates of the XGCO code. Finally, in order to make the coupling scenario
fully self-consistent, it is preferable to send back from XGCO to M3D-MPP a data set describ-
ing the radial electric field, because this quantity cannot be directly computed within the extended
MHD code.

The initial implementation of this code-coupled simulation was performed using DataSpaces
[9, 10]. Each simulation was augmented with a DataSpaces client, and these two simulations were
launched concurrently along with the DataSpaces server. Periodically, the M3D-MPP code writes a
new dataset into the shared space, which contains the raw data values of the electrostatic potential
and magnetic vector field components at each finite element mesh point, cylindrical grid coordinates
for each of those points, and an index array for mapping the decomposed local chunks of the field
data from each M3D-MPP process into global arrays for each full 3D field. XGCO looks for and
reads in this data set, uses the index array to organize the data into global 3D arrays, and then uses the
grid coordinate data to interpolate the field data onto the XGCO rectilinear mesh. DataSpaces sup-
ports data set versioning, which allows for multiple data sets to be stored within the shared space and
alleviates the need for strict synchronization between the two applications. Additional data beyond
the raw field values (namely, the index array and the cylindrical grid coordinate data for the finite
element mesh) are being transferred from M3D-MPP to XGCO so that the latter code can properly
transform the field data for its use. Thus, it may be possible to improve upon the performance of
this implementation by having XGCO provide data kernels that could perform the requisite mapping
and interpolation of the field data within the shared space and then simply read out the transformed
field data. This approach is explored in more detail in Section 6 using the ActiveSpaces framework.

2.2. Overview of dataspaces

ActiveSpaces is based on the DataSpaces [9, 10] framework, which provides a virtual, distributed
shared space abstraction that can be asynchronously accessed by multiple applications. In the con-
text of the coupled simulation workflows, it overlays a virtual shared space abstraction over the
staging nodes that can be associatively accessed by applications and services using semantically
meaningful descriptors. For example, the coupled applications can interact by asynchronously stor-
ing and retrieving data objects using descriptors derived from the discretization of the application
domain. The coupled simulations may run on different systems, at different scales, and may have
different data decompositions. The simple put() and get() operators provided by DataSpaces are
agnostic to the location or distribution of the data, and data redistribution is implicitly handled. Sim-
ilarly, other application components and services, such as those for monitoring, visualization, or
verification, can access these data objects by dynamically connecting to DataSpaces and querying
for data objects of interest using semantic descriptors.

DataSpaces has two components, a DataSpaces server, which runs on the staging area, and
a DataSpaces client, which is integrated with the applications on the computing nodes. The
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DataSpaces servers create a distributed data storage layer across the staging area nodes to store
and maintain data objects from user applications. They implement data services such as the query
engine and the data lookup to access and manipulate the data objects. The server uses a Hilbert
space-filling curve to map the multi-dimensional applications domain to a linear index, and con-
structs a distributed hash table using this index to manage objects metadata. The data lookup service
uses the distributed hash table for quick data lookups. The query engine handles insert, retrieve, and
monitoring queries and uses the space-filling curve to index the data objects for fast data accesses.

The DataSpaces client is a lightweight component designed to have minimal overhead on the
applications. It essentially complements the data services provided by the server and exposes an API
for accessing DataSpaces at the application level. For example, it allows an application to submit
simple data queries to a DataSpaces server and obtain the results. In the case of more complex
queries, such as retrieving data objects that spans multiple server nodes, it transparently splits the
original query into multiple simple queries, then forwards them to DataSpaces servers and assembles
the final results. The data communication in DataSpaces uses the DART [7] data transport layer.
DART uses remote direct memory access to provide asynchronous memory to memory data transfers
and enables overlapping of computations with communications to hide data transfer latencies.

The DataSpaces in-memory exchange mechanism enables faster data transfers with less per-
formance variability than using a persistent storage system. This is particularly important for
applications that exchange data frequently because it avoids the latency and variability [13] of
parallel file systems [14] caused by concurrent accesses by multiple users of the system.

3. ACTIVESPACES ARCHITECTURE

ActiveSpaces derives from DataSpaces and inherits and extends its main components. It has a stand-
alone ActiveSpaces server component, which runs on the staging area and provides data services to
user applications, and an ActiveSpaces client component, which integrates with user applications
and runs on the computing nodes. The two components implement the programming API, which
is exposed at the application level, and the runtime system, which executes the user-defined data
kernels. Figure 2 presents a schematic overview of the ActiveSpaces architecture. In the rest of this
paper, we refer to the ActiveSpaces/DataSpaces server components running on the staging nodes as
the space.

The ActiveSpaces server is a distributed component based on DataSpaces servers. It constructs a
temporary storage space in-memory and provides data services for interacting with this space, such
as inserting and retrieving data objects, monitoring data of interest, and data lookup and indexing.
In addition, it provides a new data service that applies transformations to the data in the space or to
the results of a data request, for example, data filters. This service is implemented by the runtime
execution (Rexec) layer.

The Rexec layer extends the plug-in architecture of DART and integrates with other services pro-
vided by the server. Its main function is to transfer the binary code or Lua scripts code corresponding
to a user-defined data kernel from an application to the space, execute the code on data objects
selected by the kernel from the space, and return the results back to the application. The Rexec layer
handles the execution of self-contained data kernels, which describe transformations that do not rely
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Figure 2. ActiveSpaces framework architecture (the shaded area corresponds to DataSpaces).
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on external libraries. It also handles more complex data kernels that rely on other helper routines,
which require external calls to libraries or other services from the space. For example, a data kernel
implemented using C language may allocate or release dynamic memory and have to call the mal-
loc and free routines from the system libc library, it may print debug messages and have to call the
printf routine, or it may look up and retrieve data objects from the space and have to call other ser-
vices from the space. In the latter case, Rexec first links the kernel code with the server, so that the
external calls to library routines are resolved locally in the context of the server, and then executes
the compiled binary code .

The ActiveSpaces client is a lightweight component that integrates with user applications and
exposes APIs to access and use the data services provided by the space. The Rexec layer at the client
prepares user-defined data kernel codes for offloading and execution within the space. The client
Rexec layer complements the functionality of the runtime system of the space and coordinates the
execution of kernel codes on data objects that may be distributed over multiple servers. It uses other
data services from the client to determine the distribution and the location of different pieces of a
data object in the space, and it offloads the kernel code only to those servers that host the data. A data
kernel that is distributed in this manner can produce multiple partial results that need to be combined
in order to construct the final answer. Using the provided API, the client Rexec layer allows each
data kernel to be paired with a user-defined routine that implements the reduction operation. The
reduction operation executes on the client after all the partial results from the kernels executing on
the space have been gathered. This approach is similar to a map-reduce operation [15] and allows the
user to program the space as an accelerator for an application by dynamically offloading customized
data kernels to the space at runtime.

4. ACTIVESPACES PROGRAMMING APIS

4.1. Programming data kernels in C language

The ActiveSpaces client defines prototype signatures (presented in Listing 1) for the data kernel
routines implemented in C language. Every user-defined data kernel should have the same signature
because it is internally used by the client to load the code into the space, and by the runtime system
on the space to decode and execute the kernel. A data kernel accepts as input a reference to the
arguments structure, which contains fields for both input and output parameters.

The input ptr_data_in field parameter is a generic reference to a data object from the space, on
which the kernel will operate. This reference is initialized within the space by the runtime system
before the kernel is executed. The kernel code can internally cast this generic reference to the appro-
priate data type known by the application and perform the data transformations. The n;, n; and ng
parameters are initialized by the Rexec layer at each server in the space where the kernel executes,
exist in every rexec_args structure, and represent the size of the local fragment of data at each server
that intersects with the object descriptor specified in the kernel argument.

The output ptr_data_out field parameter is a generic reference to the result produced by the
execution of the kernel code, and the size_res parameter defines the size of the result. These two
parameters are used by the space to send the results back to the application that initiated the remote
call. The rc output parameter defines a return code for the execution of the data kernel, which is sent
to the application together with the results.

4.2. Programming data kernels in the Lua scripting language

The ActiveSpaces defines a set of C functions for the Lua data kernel to access the I/O data buffers.
At runtime, the server registers the C functions inside a global table, and creates an auxiliary Lua
library (named ‘DSpaceAux’ in our implementation). Each function in the Lua library actually
binds to the C implementation. As a result, the user-defined Lua script can directly write/read the
I/0 memory buffers allocated on the server by calling functions in the auxiliary Lua library. Unlike
the C data kernel, which provides more generic references to /O memory buffers and can cast the
references to any appropriate data types, the auxiliary library for Lua data kernels only abstracts the
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1 struct rexec_args {

2 /* Input arguments. */

3 void xptr_data_in;

4 int ni, nj, nk;

5

6 /* Output arguments. */
7 void *ptr_data_out;

8 size_t size_res;

9 int rc;

0}

11

1 typedef int (xbin_code_fn_t)(struct rexec_args *);

Listing 1. Prototype definitions for C language data kernels.

1 static const lual._Reg DSpaceAux_methods[] = {

2 /% Get the input buffer x/

3 {“‘get_input_obj’’, DSpaceAux_input},

4 /% Get the output buffer %/

5 {“‘get_output_obj’’, DSpaceAux_output},

s /% get_dim_size(i) returns the size of dimension i of
7 the input/output buffer %/

8 {“‘get_dim_size’’, DSpaceAux_get_dim_size},
9 /x get_val(i, j, k) returns the value at (i,j,k) %/
10 {“‘get_val’’, DSpaceAux_getval},

1 /% set_val(i, J, k, val) sets the value at (i,j,k) */
12 {“‘set_val’’, DSpaceAux_setval},

13 {0, 0} // End of the mapping

Listing 2. Registration of Lua auxiliary functions.

I/O memory buffers as N-dimensional double precision floating point arrays with row-major layout.
Listing 2 presents the mapping from the registered Lua function names to the C functions.

User-defined Lua scripts obtain the reference to the input data buffer of a kernel execution by
calling the get_input_obj auxiliary function. Similarly, the get_output_obj function is invoked to
obtain the reference to the output data buffer. Both data buffers are initialized within the space by
the Rexec layer before the data kernel code is executed. User Lua scripts can call the get_dim_size
function to obtain the size of the local N-dimensional array at each server, and call the get_val
and set_val functions to get/set the local array element specified by the cartesian coordinate-based
index (i, j, k).

The kernel codes (both C and Lua) can apply transformations in place on the data within the
space, which does not create additional data, or can create new data as a result of the execution.
In the latter case, the kernels have to allocate memory for the results. This allocated memory is
automatically released by the space after it returns the results to the application.

4.3. Examples of data kernel codes

ActiveSpace data kernels can use all the constructs available in the supported programming language
(we use the C and Lua language as examples in this paper), for example, arithmetic and logical
operations, conditional blocks, control loops, and all data types. Listing 3 and Listing 5 present
examples of data kernels that finds the minimum value for a 3D matrix.

To load a data kernel in the space, a user has to provide a reference to the code and an object
descriptor (see Listing 4 and 6). The object descriptor is a data type that describes and identifies a
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1 int rexec_min(struct rexec_args xrargs)

2 {

3 PLT_TAB;

4

s double (xA)[rargs—>ni][rargs—>nj][rargs—>nk];
6 inti, j, k;

7 double min, *retval;

8 int err = —ENOMEM,;

9

10 A =rargs—>ptr_data_in;

T min = (xA)[0][0][0];

13 for (i = 0; i < rargs—>ni; i++)

14 for (j = 0; j < rargs—>nj; j++)

s for (k = 0; k < rargs—>nk; k++)
6 if (min > (xA)[i][j1(k])
" min = (xA)[][1k];
18

19 rargs—>ptr_data_out =

2 retval = MALLOC( (sizeof(+retval));

21 rargs—>size_res = sizeof(min);

2 if (Iretval)

2 return err;

2% *retval = min;

25 return 0O;

Listing 3. Example C language kernel code to find the min value of a 3D matrix in the space.

1 void wrapper_space_min_binary(<obj_descriptor>)

2 {

3 /* Load and execute the min kernel code

4 on the space */

s dart_code_load_binary(&rexec_min, <obj_descriptor>);
6 /% Example of object descriptor:

7 flux:<10, 20, 5; 50, 40, 60> */

8 min_reduce(partial_results);

0}

Listing 4. Example application code to load and execute a C language data kernel in the space and reduce
the partial results.

data object within the space on which the data transformation should be applied. The object descrip-
tor parameter can describe data objects of arbitrary sizes, which can be stored at a single server in
the space or across multiple servers if the object is distributed. For distributed objects, the client
component uses the data lookup service to determine the servers that store fragments of the data
object, and then deploys the data kernel code to each server. For example, it transfers the same data
kernel code to the servers, and each server executes the data kernel on its local fragment of the data
object and returns a partial result to the client. The kernel code deployment process is handled trans-
parently by the ActiveSpaces client, but the partial results are returned to the application. In turn,
the application should pair each data kernel with an appropriate reduction routine that combines all
the partial results to produce the final result. The reduction routine executes within the application
and may need to be customized for each kernel operation.
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1 input_obj = DSpaceObj.get_input_obj(0)
> output_obj = DSpaceObj.get_output_obj(0)

4 ni=input_obj:get_dim_size(0)
s nj = input_obj:get_dim_size(1l)
s nk =input_obj:get_dim_size(2)
7 min = input_obj:getval(0, 0, 0)

o fori=0,ni—1 do

10 for j =0, nj—1 do

1" for k=0, nk—1 do

2 val = input_obj:getval(i, j, k)
13 if val < min then

14 min = val

15 end

16 end

17 end

s end

x  output_obj:setval(0, 0, 0, min)
u return O

Listing 5. Example Lua language kernel code to find the min value of a 3D matrix in the space.

1 void wrapper_space_min_lua(<obj_descriptor>)

2 {

3 /* Load and execute the lua script file on the sapce */
4 dart_code_load_lua(‘‘compute_min.lua’’, <obj_descriptor>);
s min_reduce(partial_results);

o}

Listing 6. Example application code to load and execute a Lua data kernel in the space and reduce
the partial results.

5. IMPLEMENTATION OF RUNTIME EXECUTION

5.1. Overview

The complete flow of a data kernel from source code to its execution in the space is presented in
Figure 3. A batch execution system runs the application executable on the computing nodes. The
running application uses the client API to load the kernel code (as presented in Listing 4 and 6), and
the runtime system transfers the kernel code to the space, executes it on the space, and returns the
results to the application. For data kernels implemented in C, the source code needs to be compiled
and linked with the application’s object files and libraries to create the application executable. For
data kernel implemented in Lua scripting language, the source code file is directly read into memory
by the client component at runtime, and transferred to the space for dynamic execution.

The ActiveSpaces server provides the runtime execution mechanisms for data kernels and uses
other data services provided by the space to implement these mechanisms. First, it registers the
remote execution data service with the data communication service (i.e., DART) to enable it to
receive and handle the incoming kernel transfer and execution requests. Second, it uses DART to
transfer the data kernel codes to the space for execution and send back the results to the application.
DART uses asynchronous remote direct memory access mechanism to fetch the raw data objects as
well as data kernel codes from the applications.
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Figure 3. Data kernel code offloading and execution.

Each request for a data kernel transfer contains an object descriptor that identifies the data object
on which the kernel should execute. The request may select a fragment or the entire data object, that
is, the overlap between the region specified by the request and the data object that is stored locally at
the server. To be effective, a data kernel operates on the data that is locally available within the data
storage layer at the server and does not require data movement between the servers in the space.

5.2. Code linking for C kernels

Based on the binary instructions, the runtime execution system distinguishes between two types of
kernel codes. A simple and self-contained kernel code whose execution is confined to the scope of
its binary code, and a more complex kernel code whose execution can jump to external addresses by
means of function calls. In the latter case, the linking process (Figure 3) resolves the addresses of the
functions called in the scope and address space of the application; thus, the calls are meaningful only
to that application. When the binary code associated with such a complex data kernel is transferred
to the space, these addresses have to be re-computed to have the same meaning in the new address
space for the kernel in order to execute correctly.

The standard solution available on POSIX-compliant systems of using the dlopen() and dilsym()
calls for resolving a symbol address does not work for our environment. Because the environment
on the computing nodes does not have a local file system to store custom shared libraries or object
files, it requires the applications to be statically linked, and it may not always provide a dynamic
linker for the external routines. Moreover, the kernels object files are not directly available to the
servers, and transferring them to the space is not a solution because the call to dlopen requires a full
path to a library and cannot load the object from an address in memory. ActiveSpaces is designed
to support data exchanges in memory and avoid the temporary use of a file system that would be
required to store the object file for a data kernel should it use the dlsym call.

The API to load a kernel to the space requires only a reference to the routine that implements that
kernel, and no other metadata information. A function call is encoded in a binary code as a jump
instruction with a relative offset. For example, the offset for a call to malloc is the difference between
the memory address of the current instruction and the memory address of the malloc routine. An
external routine may be called multiple times by a data kernel, and each instance of the call has a
different offset because it is called from different places. Executing a binary code in the space would
thus require overwriting relative offsets, which is intrusive and difficult in the absence of additional
metadata about the code.
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The ActiveSpaces runtime execution system provides a more straightforward approach. It defines
a local procedure linkage table (PLT) [16], registers the addresses of each external routine used by
the kernel codes at unique entries in this table, and replaces the direct calls to the external routines
with indirect calls through references stored in this table. The API provides wrapper routines with
the same names and signatures, but using capital letters, for all the external routines invoked by a
kernel code. A local PLT table is maintained by both the client and the server preserving the order
of the entries registered. A user can transparently use the wrapper routines, and the underlying
mechanism translates each call to the proper address for the routine requested. An example of a call
to a wrapper routine is presented on line 20 in Listing 3.

The approach described earlier presents several advantages. It eliminates the need for code over-
writing, and specifically the relative offsets used for function calls. This is because the new routine
calling scheme uses constant entries in the local PLTs, whose offsets are the same on both the client
and the server. Moreover, multiple calls to the same external routine no longer require different
relative offsets, because they use the same PLT entry, and thus the same reference to the external
routine. The overhead introduced by this approach consists of two additional load instructions, one
for the address of the PLT and the other for the address of the actual routine. However, the perfor-
mance impact is minimal because the PLT table is small and compact, and its contents can easily fit
in a data cache line.

As mentioned earlier, both the client and the server maintain a local PLT table, which is stored
at different memory addresses on the client and the server, respectively (Figure 4). To match these
addresses, ActiveSpaces instantiates the PLT tables on the stack frame of each kernel code (see line
3 in Listing 3) and transfers the PLT to the space as part of the binary kernel code. The client routine
that parses the binary code to determine its size also detects the offset where the PLT is stored on
the stack frame. The server runtime execution system uses this offset to overwrite the entries of the
PLT with local addresses for the corresponding routines.

5.3. Just-in-time compilation and execution for Lua kernels

Lua is an extension programming language and intended to be used as a cross-platform, lightweight,
embeddable scripting language. Being an extension language, Lua only works when embedded in a
host program. The host program can invoke functions to execute a piece of Lua code, can write and
read Lua variables, and can register C functions to be called by the Lua code. Lua is dynamically
typed, runs by interpreting bytecode for a register-based virtual machine, and has automatic memory
management with incremental garbage collection.

| |
I |
I |
I |
0x800202:printf | ' 0x800202: invalid | ! 0x800202: invalid
0x800604:malloc I 0x800604: invalid I 1 0x800604: invalid
0x800900:free ! 1 0x800900: invalid | ! 0x800900: invalid
1| Ox8005AF:malloc 1| Ox8005AF:malloc
: 0x80062E: free : I 0x80062E: free
, | 0x800F3B: printf | | OX800F3B: printf
1 [
1 I
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Figure 4. The linking process for the data kernel code with tine runtime execution system.
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Supporting Lua data kernels in ActiveSpaces presents several advantages. First, Lua is portable
to all platforms that have a standard C compiler. Second, Lua is embeddable and can be easily
embedded into a host program written in other language such as C/C++, Java. Third, Lua is fast and
is one of the fastest language in the realm of interpreted scripting languages.

ActiveSpaces uses LuaJIT [17], one of the fastest Lua implementation, to decrease the perfor-
mance gap between data kernels written in the Lua dynamic language and data kernels written in a
compiled static language (e.g. C). LualJIT combines a high-speed interpreter written in assembler,
with a state-of-the-art just-in-time (JIT) compiler.

The LuaJIT VM, interpreter, and JIT compiler are built into the ActiveSpaces server component,
and are used to evaluate the Lua data kernel code transferred from the client applications. Like the C
data kernel, the Lua kernel code can also be of two types. A simple kernel code that is implemented
only using Lua built-in data types, operations, and functions, and a complex kernel code that may
use data structure or invoke functions defined in external libraries. For the latter case, successful in-
space evaluation and execution of the data kernel requires that the ActiveSpaces server component
preload all the necessary external Lua modules/libraries.

6. EVALUATION

This section presents the experimental evaluation of the ActiveSpaces framework conducted on
the Jaguar Cray XTS5 system at Oak Ridge National Laboratory. The experiments used a coupled
application scenario in which one application inserts data into the space running in the staging
area, and another application retrieves the data for its local computations. In these experiments, we
implemented data reduction kernel such as min(), max(), sum(), and avg() and count data objects
with values above a given threshold (ca()), as well as data transformation kernels such as data field
map(). We integrated these data kernels with the application codes. Each experiment consisted of
two distinct cases. In the first case, the data were moved from the space to the consumer application
and the kernel code was applied locally by the consumer application. In the second case, the data
kernel was transferred to the space by the consumer application, executed on the data in the space,
and the result returned back to the consumer application. The evaluation explored the scalability
of ActiveSpaces under different scenarios and the trade-offs between the two cases. Note that the
experiments presented in Sections 6.1-6.4 deployed C language kernel codes, and those presented
in Section 6.5 deployed Lua script kernel codes.

6.1. Scalability

6.1.1. Weak scaling experiment. This experiment evaluates the behavior and performance of
dynamic code offloading using ActiveSpaces for a weak scaling scenario. We used two applications
to insert and retrieve data from the space, and implemented data reduction kernels that were exe-
cuted locally or deployed to the space. The first application ran on 16 processor cores, the space ran
on four processor cores, and the second application was scaled from 64 to 1024 processor cores.
The experiment also scaled the data size that was exchanged through the space from 64 MB to 1 GB
to keep a constant ratio of 1 MB per core processed by the second application.

The results presented in Figure 5 show that offloading the code to the space is faster in all the
cases considered. The size of the data kernels (Table I) that is transferred to the space and the size
of the results returned to the application are smaller than the size of the raw data, which results in
faster transfer times. The time savings for each case is presented in Figure 6, and it increases with
the number of cores because the total data size that needs to be processed increases. The increase in
code offloading and execution time with the number of cores is interesting considering that the size
of the data on which they operate is constant (1 MB). This is caused by the increase in the number
of kernel code instances that are transferred to the space. In fact, if the data are distributed across
the staging servers in the space, each processor core of the second application may send the code
to multiple servers where the data are stored. This observation indicates an opportunity for further
optimizations to reduce the number of code transfers.
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Figure 5. Time for data transfer and kernel code offloading cases for a weak scaling scenario.

Table I. Size of the C data kernels.
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Figure 6. Time savings due to kernel code offloading for a weak scaling scenario.

6.1.2. Strong scaling experiment. This experiment presents an evaluation of the time savings result-
ing from code offloading using ActiveSpaces under a strong scaling scenario. The experiment ran
one application on 16 processor cores that inserted data into the space, and scaled a second applica-
tion from 64 to 1024 processor cores that read data from the space and process it. The data size as
maintained constant at 128 MB and four staging servers were used for the space. We implemented
data kernels that were first executed locally after the data were transferred from the space and then
were deployed and executed in the space. The time for data transfers and remote kernel executions
is presented in Figure 7. The results show that the time for the data movement decreases when
the number of cores increases because the total data size is constant and the size of data per core
becomes smaller. At the same time, offloading and executing the kernel codes on the space become
more expensive, and the time savings decrease as the number of cores increase as seen in Figure 8.
As more processor cores offload data codes to the space, the cost of the transfer becomes an expen-
sive operation compared to the amount of data they need to retrieve. The next experiment shows a
crossover point at which moving the kernel codes to the space becomes a more expensive operation
than transferring the data from the space.
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Figure 9. Time for raw data transfer and kernel code offloading cases when data scales from 1 kB to 1 GB.

6.2. Data scaling experiment

This experiment used a constant number of cores to run the space and the applications, and scaled
the size of the data exchanged from 1 kB to 1 GB to investigate the relation between the time
required to move the data and the time required to deploy and execute custom kernel codes in the
space. Specifically, the experiment used one staging server to run the space, one processor core to
run the application that inserted data into the space, and one processor core to run the application
that processed the data retrieved from the space. The results are presented in Figure 9. For the
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Figure 10. Time savings due to kernel code offloading when data scales from 1 kB to 1 GB.

kernel codes used in this evaluation, moving 10 kB of data to the application and applying the
transformations locally take about the same amount of time as transferring and executing the code
in the space. For data sizes smaller than 10 kB, it is more efficient to move the data, while for data
sizes larger than 10 kB, it is more efficient to deploy the code in the space. In practice, applications
exchange large volumes of data, and we expect that moving the code using ActiveSpaces will be
more efficient.

The corresponding time savings are presented in Figure 10, as the difference between the time to
move the data and the time to deploy the code (the negative value of the first data point represents
a penalty). As expected, the time savings increase with the data size because the size of a kernel
code (Table I) and the size of the result generated by its execution are much smaller than the size of
the data. The two applications used in the experiment had different data representations: row major
for the application that inserted the data and column major for the application that retrieved it. The
data were rearranged in the space to match the representation at the destination application, and this
also contributed to the total data transfer time. However, executing the kernels in the space did not
require rearranging the data representation, and so their execution was not affected.

6.3. ActiveSpaces for applications coupling

This experiment used the XGCO and M3D-MPP applications to analyze the conditions under which
a real coupled application scenario would benefit from using ActiveSpaces to offload computations
to the space. In this scenario, the M3D-MPP application generates and inserts new field data to the
space. The XGCO application then retrieves the data from the space and locally applies data transfor-
mations, such as index mapping and coordinate interpolation, to prepare the data for computations.
To evaluate the benefits of code offloading, we implemented a data kernel to map the decomposed
field data into global field arrays and integrated it with the XGCO code—XGCO then deployed and
executes this kernel in the space. Once the kernel executes in the space, XGCO has to only retrieve
the global data arrays from the space, and no longer requires the index array used for the mapping
operation.

In this experiment, the XGCO test application was scaled from 1 to 512 processor cores, and each
core retrieved a 72 MB copy of the field data from the space. The mapping operation used an index
array to arrange the field data in the proper order in place in the space. This is an example of data
transformation that does not result in a reduction in data volume. Figure 11 presents the results of
this experiment. The results show that the field transfer to the application is the dominant operation,
while the kernel execution represents only a small fraction of the execution time. In this case, the
data reduction is minimal and equals the size of the index array, which is 76 kB, minus the size
of the data kernel, that is, is 5.5 kB, and is much smaller than the size of the field data, that is, is
72 MB. Nevertheless, offloading the map operation still offers some benefit as seen in Figure 12, as
the time difference between the transfer of the raw data and the transfer of pre-processed data. There
are two sources contributing to the time savings: first is the (small) data reduction and second is the
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Figure 12. Time savings due to offloading map operations to the space for the XGCO-M3D-MPP coupled
simulation scenario.

execution time for the map operation. The average time savings is 0.14 s per processor, which may
not seem significant. However, considering the case with 512 processor cores, at the application
level, the time savings become 1.2 min for each iteration, and for a 50-iteration run, it becomes 1 h
of CPU time savings. Given that CPU time is the metric used for billing applications, this saving
can be significant. Furthermore, this saving is additive.

These results clearly show that ActiveSpaces can improve application run times by offloading
data reduction and/or computationally intensive operations.

6.4. ActiveSpaces in distributed environments

Processing data using data kernels allows applications to run not only on a single architecture or
machine but also on distributed resources located at physically separated geographic locations. This
subsection presents an evaluation of ActiveSpaces using a distributed scenario involving two sites,
ORNL and Rutgers University (RU) interconnected over the WAN. The first experiment presents the
performance evaluation of ActiveSpaces across the two sites and the trade-offs of moving data ver-
sus code for data debugging and analysis over the WAN. The second experiment illustrates the use
of ActiveSpaces to deploy data kernels into the space for remote data monitoring and visualization.

6.4.1. Application setup. The setup of the application involves distinct components that run at the
two sites. The main simulation workflow and the space execute at the ORNL on the Jaguar Cray
system, while a remote client executes at RU and monitors the evolution of the simulation and
visualizes data values of interest (Figure 13). The simulations and the space execute on the compute
nodes of Jaguar, which are not directly accessible by local users or by remote machines. To make
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Figure 14. Wide application network data transfers results.

the data in the space accessible to remote users, an ActiveSpaces proxy client runs on the login
nodes and connects to the space over the internal network using DART, and to remote clients over
the WAN using the TCP transport. The proxy client relays data queries from clients at remote sites
to the space and returns the results of the queries from the space to the remote clients. It presents
a virtual interface to the space that is accessible by the remote clients. A remote ActiveSpaces
client (e.g., monitoring and visualization) runs on commodity machines at RU, sends data queries
or deploys data kernels to the space, and interfaces with a front-end visualization module to display
and monitor data values of interest.

The focus of these experiments is on data extraction from a running application using ActiveS-
paces. Nevertheless, the reverse is also possible, that is, data injection into a running application, for
example, for computational steering. Therefore, for the purpose of the experiments, we represented
the simulation workflow with one application, which produces and inserts data into the space.

6.4.2. Data scaling over wide area network. This experiment evaluates the performance of the
ActiveSpaces framework in a distributed environments over the WAN as a function of the data
size being exchanged, and analyzes the trade-offs between transferring data and deploying data-
processing kernels.

The data inserted in the space, which was scaled from 1 kB to 10 MB in size, were processed or
retrieved by the remote client during each simulation iteration for a total of 50 iterations. The remote
client running at RU sent direct data queries and transferred the data to local storage and then applied
data transformations locally. The remote client also deployed data-processing kernels into the space
and retrieved only the result. The experiment measured the total time required for each request to
complete in the two cases, and computed the average over the number of simulation iterations.

Figure 14 presents the average completion time for data transformation operations for the two
cases, that is, data transfer with local data manipulation and kernel deployment and remote exe-
cution. For data sizes smaller than 10 kB, some of the direct data transfers operations were faster
than the corresponding kernel deployment because the size of each direct transfer request is smaller
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Figure 16. Time for raw data transfer and Lua script offloading cases when data scales from 1 kB to 512 MB.

than the size of the kernel that was transferred from RU to ORNL. The 10 kB data size represents a
crossover point at which both direct transfers and kernel deployment operations have similar com-
pletion times. For data sizes larger than 10 kB, kernel deployment is clearly faster, and the difference
increases with the data size. The amount of time saved to complete these operations per simulation
iteration is presented in Figure 15.

6.5. Dynamic deployment of Lua scripts

This subsection presents a data scaling experiment for the dynamic deployment of Lua kernel code.
Specifically, the experiment used one staging server to run the space, one processor core to run
the data inserting application, and one processor core to run the data retrieving and processing
application. The size of data was scaled from 1 KB to 512 MB to investigate the relation between
the time required to move the data and the time required to deploy and execute kernel codes in
the space. A stat() data kernel was used in the evaluation, which computes simple statistics including
the maximum, minimum, sum, and average value of an input array data. The experiment compares
the performance of remote execution that deploys Lua kernel code into the space, and the perfor-
mance of local execution that fetches data from the space and executes the kernel code locally.
Figure 16 presents the execution time, and Figure 17 presents the corresponding time savings. The
results show the crossover point at 256 KB. For data sizes smaller than 256 KB, it is more effi-
cient to move the data, while for data sizes larger than 256 KB, it is more efficient to offload Lua
script data kernel on the space. As compared with the data scaling results in 6.2, the data size of the
crossover point for Lua data kernel is much larger than the C data kernel. Because of the runtime
overhead of Lua interpreter and virtual machines, there exists a performance gap between Lua script
execution and compiled C binary code execution. As a result, it needs larger data sizes to reach the
crossover point where the overhead of Lua execution is overshadowed by the overhead of network
data transfers.

Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2014)
DOI: 10.1002/cpe



ACTIVESPACES: DYNAMIC CODE DEPLOYMENT FOR DATA PROCESSING

‘saving‘ stat —m—

Time (s)

224 226 228

216 18 20y
Data size (bytes)

Figure 17. Time savings due to Lua script offloading when data scales from 1 kB to 512 MB.

7. RELATED WORK

This section presents a summary of related research efforts that support out-of-core data-processing
operations to improve overall application runtime, to reduce the size of data transferred over the
network and/or to better utilize available resources. It also discusses related research on dynamic
code deployment and execution at runtime.

The ActiveDisks [18, 19] project implements data-processing operations in the data storage path.
It uses lower-level resources such as disk controllers to deploy and apply simple user-defined oper-
ations on the data before it is stored or retrieved from the disk. This approach demonstrates good
improvements in performance for data-mining applications, where pattern searches and data filter-
ing can reduce the total traffic on the common interconnection bus. Data processing is limited to a
low number of operations per byte and is constrained by the processing power and available memory
at the controller.

The ActiveStorage [20] project leverages the concepts of ActiveDisks and moves the data-
processing operations to the file system level. It overcomes the processing limitations of a disk
controller by executing the data operations in a separate process in user space on behalf of the user.
This approach is mainly focused on file operations where data transformations can be applied to
reduce the network traffic from storage to the requesting clients. It requires external and indepen-
dent data transformation applications (independent from the consumer or the producer of the data)
that implement the processing operations.

Accelerator platforms can offload expensive data-processing operations to dedicated units to
improve the overall application runtime. For example, the GPU [21] and the Cell [22] architectures
provide hardware support and programming models to implement and deploy user-defined opera-
tions on additional processing cores. This approach has demonstrated good performance benefits
for a wide range of applications from gaming to graphics rendering, and to scientific computing.
However, the accelerator programming approach is different from the ActiveSpaces model because
in this case, the user has to deploy both the code and the data on the accelerator cores, while in
ActiveSpaces, only the code is deployed.

A related software effort focused on applying data transformations at the data storage is the Data-
Cutter [23] project. It applies data-processing operations such as aggregation and transformations at
the storage server before the data are retrieved by data analysis applications that run on distributed
clients. The goal is to reduce the volume of data that is transported over the network. DataCutter also
supports the application of data filters at intermediate nodes while the data is in transit from storage
to the clients. These filters must have predictable resource requirements and have to be provisioned
at the intermediate nodes in advance, that is, cannot be loaded dynamically at runtime.

A similar approach that applies data transformations while data is in transit is presented in [24].
The focus of this project is to meet end-to-end data transfer and processing requirements in con-
gested commodity networks. The authors try to compensate for the latency of the network links by
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processing data at intermediate nodes in a congested data path between data source and destination.
In this approach, once again, the data-processing operations have to be predefined and pre-installed
at the intermediate nodes within the data path.

The Abacus [25] system supports dynamic function placement for data-processing operations. It
implements mobile objects whose state can be serialized and restored, as well as operations that can
be executed independently on these objects. The runtime system can migrate the execution of the
operation to optimize the total execution time, but does not migrate the code itself, that is, the binary
code is statically compiled by the runtime system and called at each node on demand.

Dyninst [26] is a framework that provides programming support to insert user-defined codes into
a running program. The primary function of the inserted code is for instrumentation, debugging,
or profiling. The framework focuses on local use, and does not explore binary code transfers over
the network.

The ActiveStreams [27] project presents a different approach of applying data transformations
in the data path. The proposed solution is to move the source code implementing the data trans-
formations to intermediate nodes and compile it on demand. This approach has the advantage of
being portable. However, it can only support a limited set of data transformation operations because
the compiler and the runtime system are separate from the applications and lack valuable informa-
tion such as custom application defined data types. Moreover, it adds the overhead of compiling the
source code and requires compiler availability within the runtime system.

8. CONCLUSION AND FUTURE WORK

In this paper, we presented the design and implementation of the ActiveSpaces framework, which
supports the dynamic deployment and execution of data-processing routines on nodes that are part of
the data staging area. This work is motivated by the data management challenges of large-scale cou-
pled simulation workflows running on leadership-class resources, and explores an alternate approach
to moving the data for coupling, processing, or analysis, that is, moving the processing codes to the
data. The ActiveSpaces approach can be applied to different classes of applications including appli-
cations that filter data, for example, application monitoring, visualization, biomedical imaging, or
applications that pre-process data, for example, interpolation, compression, scaling, and inversion.
We demonstrated the framework usage using real production codes that are part of a coupled plasma
fusion application.

ActiveSpaces provides programming support for defining the data-processing routines that are
downloaded to the staging area, using the native C programming language or the Lua scripting
language, and runtime mechanisms for transporting binary codes associated with these routines to
the staging area, executing the routines on the nodes of the staging area, and returning the results to
the applications.

We also presented an experimental evaluation of ActiveSpaces on the Cray XTS5 system, and
investigated, in the context of real applications, the trade-offs between binary code deployment and
remote data processing at the staging area, and data movement and local data processing at the data
consumer.

The experiments presented used various data reduction kernels for analytics and visualization, as
well as data transformation kernels for code coupling. The experimental results demonstrated that
ActiveSpaces can achieve significant reduction of the overall data-processing time for data reduction
operations. In the case of data transformations that do not reduce the size of the data, ActiveSpaces
still provides some performance benefits as the processing is offloaded to the staging area nodes.
The results also demonstrated that the decision of whether to transport the code or the data for a
particular system configuration depends on multiple factors including the size of the data, the type
of processing, and the possibility of asynchronous execution.

Our future work includes further optimizations for binary code deployment, such as offloading
the binary code once and executing it on demand, which would reduce the total code transfer time,
especially at large scales. We will also explore alternate ways for offloading code to the staging
area and for conditional processing. For example, the code deployed may be guarded by a filter
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condition and it could be applied only to those data objects that satisfy the filter condition. We will
investigate the use of ActiveSpaces for remote code monitoring and debugging over commodity
networks, where efficient data transfers are critical.

ACKNOWLEDGEMENTS

The research presented in this work is supported in part by the US National Science Foundation (NSF) via
grant numbers ACI 1339036, ACI 1310283, DMS 1228203, and IIP 0758566; by the Director, Office of
Advanced Scientific Computing Research, Office of Science, of the US Department of Energy through the
Scientific Discovery through Advanced Computing (SciDAC) Institute of Scalable Data Management, Anal-
ysis and Visualization (SDAV) under award number DE-SC0007455; by the Advanced Scientific Computing
Research and Fusion Energy Sciences Partnership for Edge Physics Simulations (EPSI) under award number
DE-FG02-06ER54857; by the ExaCT Combustion Co-Design Center via subcontract number 4000110839
from UT Battelle; by the RSVP grant via subcontract number 4000126989 from UT Battelle; and by an IBM
Faculty Award. The research was conducted as part of the NSF Cloud and Autonomic Computing (CAC)
Center at Rutgers University and the Rutgers Discovery Informatics Institute (RDI2).

REFERENCES

1. Chang CS, Ku S, Weitzner H. Numerical study of neoclassical plasma pedestal in a tokamak geometry. Physics of
Plasmas 2004; 11(5):2649-2667.

2. Parashar M. Addressing the petascale data challenge using in-situ analytics. In Proceedings of the 2nd International
Workshop on Petascal Data Analytics: Challenges and Opportunities, PDAC *11. ACM: New York, NY, USA, 2011;
35-36. DOI: 10.1145/2110205.2110212.

3. Liu Q, Logan J, Tian Y, Abbasi H, Podhorszki N, Choi JY, Klasky S, Tchoua R, Lofstead J, Oldfield R, Parashar M,
Samatova N, Schwan K, Shoshani A, Wolf M, Wu K, Yu W. Hello adios: the challenges and lessons of developing
leadership class i/o frameworks. Concurrency and Computation: Practice and Experience 2014; 26(7):1453-1473.
DOI: 10.1002/cpe.3125.

4. ADIOS: ADaptable I/0O System. (Available from: https://www.olcf.ornl.gov/center-projects/adios/.) [Accessed on
January 2014].

5. Coloma K, Ching A, Choudhary A, keng Liao W, Ross R, Thakur R, Ward L. A new flexible MPI collective
I/0O implementation. Proceedings of the IEEE International Conference on Cluster Computing (CLUSTER’06),
Barcelona, Spain, 2006.

6. Abbasi H, Wolf M, Eisenhauer G, Zheng F, Schwan K, Klasky S. DataStager: scalable data staging services for
petascale applications. Proceedings of 18th International Symposium on High Performance Distributed Computing
(HPDC’09), Munich, Germany, 2009.

7. Docan C, Parashar M, Klasky S. Enabling high speed asynchronous data extraction and transfer using DART.
Concurrency and Computation: Practice and Experience 2010; 22(9):1181 —1204.

8. Lumetta SS, Culler DE. Managing concurrent access for shared memory active messages. Proceedings of 12th
International Parallel Processing Symposium and 9th Symposium on Parallel and Distributed Processing (IPP-
S/SPDP’98), Orlando, Florida USA, 1998.

9. Docan C, Parashar M, Klasky S. DataSpaces: an interaction and coordination framework for coupled simulation
workflows. Proceedings of 19th International Symposium on High Performance Distributed Computing (HPDC’10),
Chicago, Illinois USA, 2010.

10. Docan C, Parashar M, Klasky S. Dataspaces: an interaction and coordination framework for coupled simulation
workflows. Cluster Computing 2012; 15(2):163-181.

11. Zheng F, Abbasi H, Docan C, Lofstead J, Liu Q, Klasky S, Parashar M, Podhorszki N, Schwan K, Wolf M. PreDatA:
preparatory data analytics on peta-scale machines. Proceedings of International Parallel and Distributed Processing
Symposium (IPDPS’10), Atlanta, Georgia USA, 2010.

12. Park W, Belova EV, Fu GY, Tang XZ, Strauss HR, Sugiyama LE. Plasma simulation studies using multilevel physics
models. Physics of Plasmas 1999; 6(5):1796 —1803.

13. Lofstead J, Zheng F, Liu Q, Klasky S, Oldfield R, Kordenbrock T, Schwan K, Wolf M. Managing variability in
the io performance of petascale storage systems. Proceedings of the Conference on High Performance Computing
Networking, Storage and Analysis (SC’10), New Orleans, LA USA, 2010. To appear.

14. Braam PJ. Lustre: a scalable high performance file system, 2002. (Available from: http://www.lustre.org/docs/
whitepaper.pdf.) [Accessed on December 2011].

15. Dean J, Ghemawat S. MapReduce: simplified data processing on large clusters. Proceedings of 6th Symposium on
Operating Systems Design and Implementation (OSDI’04), San Francisco, CA USA, 2004.

16. Drepper U. How To Write Shared Libraries, 2002. (Available from: http://www.akkadia.org/drepper/dsohowto.pdf.)
[Accessed on December 2011].

17. luajit, 2013. (Available from: http://luajit.org/luajit.html.) [Accessed on January 2014].

18. Riedel E, Faloutsos C, Gibson GA, Nagle D. Active disks for large-scale data processing. IEEE Computer 2001;
34(6):68 —74.

Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2014)
DOI: 10.1002/cpe


https://www.olcf.ornl.gov/center-projects/adios/
http://www.lustre.org/docs/whitepaper.pdf
http://www.lustre.org/docs/whitepaper.pdf
http://www.akkadia.org/drepper/dsohowto.pdf
http://luajit.org/luajit.html

20.

21.

22.

23.

24.

25.

26.

217.

C. DOCAN ET AL.

. Riedel E. Active disks - remote execution for network-attached storage. Ph.D. Thesis, Carnegie Mellon University,

Pittsburgh, PA USA, 1999.

Piernas J, Nieplocha J, Felix EJ. Evaluation of active storage strategies for the Lustre parallel file system. Proceedings
of Super Computing Conference (SC’07), Reno, NV USA, 2007.

Owens JD, Houston M, Luebke D, Green S, Stone JE, Phillips JC. GPU Computing. Proceedings of the IEEE 2008;
96(5):879 —899.

Bellens P, Perez JM, Badia RM, Labarta J. CellSs: a programming model for the cell BE architecture. Proceedings
of Super Computing Conference (SC’06), Tampa, FL USA, 2006.

Beynon M, Ferreira R, Kurc T, Sussman A, Saltz J. DataCutter: middleware for filtering very large scientific datasets
on archival storage systems. Proceedings of 17th IEEE Symposium on Mass Storage Systems, College Park, MA
USA, 2000.

Bhat V, Parashar M, Klasky S. Experiments with in-transit processing for data intensive grid workflows. Proceedings
of the 8th IEEE International Conference on Grid Computing (Grid’07), Austin, Texas USA, 2007.

Amiri K, Petrou D, Ganger GR, Gibson GA. Dynamic function placement for data-intensive cluster computing.
Proceedings of USENIX Annual Technical Conference (USENIX’00), San Diego, CA USA, 2000.

Buck B, Hollingsworth JK. An API for runtime code patching. International Journal of High Performance Computing
Applications 2000; 14(4):317 -329.

Bustamante FE. The active streams approach to adaptive distributed applications and services. Ph.D. Thesis, Georgia
Instritute of Technology, Atlanta, GA USA, 2001.

Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2014)

DOI: 10.1002/cpe



	ActiveSpaces: Exploring dynamic code deployment for extreme scale data processing
	Summary
	INTRODUCTION
	BACKGROUND
	Motivating coupled simulation scenario
	Overview of dataspaces

	ACTIVESPACES ARCHITECTURE
	ACTIVESPACES PROGRAMMING APIs
	Programming data kernels in C language
	Programming data kernels in the Lua scripting language
	Examples of data kernel codes

	IMPLEMENTATION OF RUNTIME EXECUTION
	Overview
	Code linking for C kernels
	Just-in-time compilation and execution for Lua kernels

	EVALUATION
	Scalability
	Weak scaling experiment
	Strong scaling experiment

	Data scaling experiment
	ActiveSpaces for applications coupling
	ActiveSpaces in distributed environments
	Application setup
	Data scaling over wide area network

	Dynamic deployment of Lua scripts

	RELATED WORK
	CONCLUSION AND FUTURE WORK
	REFERENCES


