Understanding the Computational Requirements of

Virtualized Baseband Units using a Programmable
Cloud Radio Access Network Testbed

Tuyen X. Tran, Ayman Younis, and Dario Pompili
Department of Electrical and Computer Engineering
Rutgers University—New Brunswick, NJ, USA
E-mails: {tuyen.tran, a.younis, pompili } @rutgers.edu

Abstract—Cloud Radio Access Network (C-RAN) is emerging
as a transformative architecture for the next generation of mobile
cellular networks. In C-RAN, the Baseband Unit (BBU) is decou-
pled from the Base Station (BS) and consolidated in a centralized
processing center. While the potential benefits of C-RAN have
been studied extensively from the theoretical perspective, there
are only a few works that address the system implementation
issues and characterize the computational requirements of the
virtualized BBU. In this paper, a programmable C-RAN testbed
is presented where the BBU is virtualized using the OpenAir-
Interface (OAI) software platform, and the eNodeB and User
Equipment (UEs) are implemented using USRP boards. Extensive
experiments have been performed in a FDD downlink LTE
emulation system to characterize the performance and computing
resource consumption of the BBU under various conditions. It is
shown that the processing time and CPU utilization of the BBU
increase with the channel resources and with the Modulation
and Coding Scheme (MCS) index, and that the CPU utilization
percentage can be well approximated as a linear increasing
function of the maximum downlink data rate. These results
provide real-world insights into the characteristics of the BBU in
terms of computing resource and power consumption, which may
serve as inputs for the design of efficient resource-provisioning
and allocation strategies in C-RAN systems.

Index Terms—Cloud Radio Access Network; Testbed;
Software-Defined Radio; Network Virtualization; Profiling; LTE.

I. INTRODUCTION

Cloud Radio Access Network (C-RAN) [1] has been intro-
duced as a revolutionary redesign of the cellular architecture
to address the increase in data traffic and to reduce the capital
expenditure (CAPEX) and operating expenditure (OPEX) [2].
The idea of C-RAN is to decouple the computational function-
alities from the distributed BS (a.k.a. eNodeB in LTE) and to
consolidate them in a centralized processing center. A typical
C-RAN is composed of: (i) light-weight, distributed Radio
Remote Heads (RRHs) plus antennae, which are located at
the remote site and are controlled by a centralized virtual base
station pool, (ii) the Base Band Unit (BBU) composed of high-
speed programmable processors and real-time virtualization
technology to carry out the digital processing tasks, and
(iii) low-latency high-bandwidth optical fibers, which connect
the RRHs to the BBU pool. In a centralized BBU pool, since
information about the network resides in a common place, the

BBU can exchange control data at Gbps rate. By exploiting
the global view of the network condition and traffic demand
available at the BBU, dynamic provisioning and allocation
of spectrum, computing, and radio resources can improve
network performance [3]-[8]. Interestingly, C-RAN paves the
way for bridging the gap between two so-far disconnected
worlds: cellular communications and cloud computing.

In a BBU pool, most of the communication functionali-
ties are implemented in part or fully in a virtualized envi-
ronment hosted over general-purpose computing servers and
can be realized using Virtual Machines (VMs). The flexible
reconfigurability of the virtualized BBU allows for it to
be dynamically resized ‘on the fly’ in order to meet the
fluctuations in capacity demands. This elasticity will enable
significant improvement in user Quality of Service (QoS) and
efficiency in energy and computing resource utilization in C-
RANSs. However, determining the computational resources of
a virtualized BBU (VM) that is capable of providing adequate
processing capabilities with respect to the traffic load presents
non-trivial challenges.

Our vision: We seek to characterize the computational
requirements of virtualized BBUs over a real-world implemen-
tation of a small-scale C-RAN system. Software implementa-
tions coupled with real-hardware experiments is essential to
understand the runtime complexity as well as performance
limits of the BBU in terms of processing throughput and
latency and how they translate into mobile-user QoS metrics.
The realization of the C-RAN emulation testbed on virtualized
general-purpose computing servers will allow for profiling of
the computational complexity of the different communication
functionalities implemented in software. In particular, such
profiling results will provide a “mapping” from the number
and combination of different types of user traffic to VM
computational capacity. Hence, we aim at establishing em-
pirical models for the estimation of processing time and CPU
utilization with respect to different radio-resource configura-
tions and traffic load. Our model will provide researchers and
practitioners with real-world insights and the necessary tools
for designing advanced and efficient resource-provisioning and
allocation strategies in C-RAN systems.

Related works: There has been a considerable number of

works addressing the benefits of C-RAN from the cooperative
communications perspectives. For instance, the work in [9]
consider the power minimization problem by jointly optimiz-
ing the set of active RRHs and precoding or beamforming
design. In addition, the optimal tradeoff between transmission
power and delay performance is investigated in [10] via a
cross-layer based approach, taking into account the imperfect
channel information. Furthermore, the works in [11], [12]
address the front-haul uplink compression problem in C-RAN.
While showing promising performance gains brought by the
centralized cooperation and network optimization C-RAN,
these works often overlook the system issues and mostly rely
on simplified assumptions when modeling the computational
resources of the BBU. From the system perspectives, several
LTE RAN prototypes have been implemented over General-
Purpose Platforms (GPPs) such as the Intel solutions based
on hybrid GPP-accelerator [13], Amarisoft solution [14], and
OpenAirnterface platform [15]. Studies on these systems have
demonstrated the preliminary potential benefits of C-RAN in
improving statistical multiplexing gains, energy efficiency, and
computing resource utilization. Field-trial results in [1], [16]
show the feasibility of deploying C-RAN front-haul using
CPRI compression, single fiber bidirection, and wavelength-
division multiplexing. The authors in [17] focus on the issue of
minimizing computational and networking latencies by VMs
or containers. Kong et al. [18] present the architecture and
implementation of a BBU cluster testbed to improve energy
efficiency in C-RAN. Wu [19] shows a high-level architecture
for programmable RAN (PRAN) that centralizes base stations’
L1/L2 processing of BBU pool onto cluster of commodity
servers. This approach shows the feasibility of fast data path
control and efficiency of resource pooling. In summary, these
works focus on the overall system architecture, feasibility of
virtual software BS stacks, performance requirements, and
analysis of optical links between the RRHs and the BBU
cloud. However, most of these systems are either proprietary
or ad-hoc based, and do not provide a generalized characteri-
zation that facilitates research on new algorithms.

Our contributions: Given the importance of designing ef-
fective resource-management solutions in C-RAN and the lack
of experimental studies into the computational performance
and requirements of the BBU pool, we make the following
contributions in this paper.

e We present the design and implementation of a pro-
grammable C-RAN testbed comprising of a virtualized
BBU connected to multiple eNodeBs (eNBs). In particular,
the BBU is implemented using an open-source software
platform OpenAirlnterface (OAI) that allows for simulation
and emulation of the LTE protocol stack. The eNBs are
realized using programmable USRP boards.

o We perform extensive experiments with transmissions be-
tween the eNB and the UE under various configurations
in order to profile the runtime complexity and performance
limits of the BBU in terms of processing, throughput, and
latency. It is shown that the processing time and CPU

RRH Functionalities RRH Functionalities

((ﬁ))

I
 RRH3

~

Cloud BBU Pool

Functionalities
-
AL I pHY !
L

Backhaul Network Backhaul Network

@ (b)

N,

Fig. 1. (a) Each BBU is assigned to one RRH, (b) Consolidated BBU.

utilization of the BBU increase with the Modulation and
Coding Scheme (MCS) index and with the number of
allocated Physical Resource Blocks (PRBs).

o Using empirical data, we model the BBU processing time
as a function of the CPU frequency, MCS, and PRBs, and
show that the CPU utilization percentage of the BBU can
be well approximated as a linear increasing function of the
maximum downlink data rate. These approximated models
provide real-world insights and key inputs to formulate,
design, and evaluate optimized resource-management prob-
lems in C-RAN.

Paper organization: In Sect. II, we describe the C-RAN
system architecture; in Sect. III, we discuss the design and
implementation of our C-RAN testbed; in Sect. IV, we present
the experimental results and provide our empirical models;
finally, we conclude the paper in Sect. V.

II. SYSTEM OVERVIEW

We describe here the C-RAN system architecture and the
OALI software platform that is capable of realizing a virtualized
C-RAN system.

A. C-RAN Architecture

The general architecture of C-RAN mainly consists of two
parts: the distributed RRHs plus antennae deployed at the
remote site and the centralized BBU pool hosted in a cloud
datacenter. The BBU pool consists of multiple BBUs, each
hosted on a VM and connected to the corresponding RRH via
high-bandwidth low-latency media (e.g., use of optic fibers
allows for maximum distance separation of 40 Km between
the RRH and its BBU [1]). Packet-level processing, Medium
Access Control (MAC), physical-layer (PHY) baseband pro-
cessing, and Radio Frequency (RF) functionalities may be split
between the BBU and the RRHs depending on the specific
C-RAN implementation. In this paper, we consider the full
centralization of C-RAN in order to exploit fully the potential
of this paradigm where only RF functionalities are deployed
at the RRHs. Based on the network performance and system
implementation complexity, each BBU can be assigned to one
RRH, as shown in Fig. 1(a) or the BBUs can be consolidated
into one entity, called BBU pool as depicted in Fig. 1(b).

Evolved Packet Core (EPC)

: ((())) UE
ethl ethl LI
______________ L
\ | mme _”1 enB
N 7z [}

N ! eth
N e
ethl ~ !

7
7
7
S ! +7 ethl
\\/ -
ol

Fig. 2. Evolved Packet Core (EPC) network topology diagram.

B. Emulation Platform

We choose an open-source software implementation of LTE
standard called OpenAirlnterface (OAI) [15] developed by
EUROCOM to realize the virtualized C-RAN system. OAI
can be used to build and customize mobile network operators
consisting of eNBs and Commercial off-the-shelf (COST)
UEs as well as software-defined UEs. The structure of
OAI mainly consists of two components: one part, called
Openairinterefacebg, is used for building and running eNB
units; the other part, called Openair-cn, is responsible for
building and running the Evolved Packet Core (EPC) net-
works, as shown in Fig. 2. The Openair-cn component
provides a programmable environment to implement and man-
age the following network elements: Mobility Management
Entity (MME), Home Subscriber Server (HSS), Serving Gate-
way (S-GW), and PDN Gateway (P-GW).

III. C-RAN EXPERIMENTAL TESTBED

We detail now our C-RAN testbed using OAI including the
testbed architecture, configuration, and experiment methods.

A. Testbed Architecture

Figure 3(a) illustrates the architecture of our testbed. The
RRH front-ends of the C-RAN testbed are implemented using
SDR USRP B210s, each supporting 2 x 2 MIMO with sample
rate up to 62 MS/s. In addition, each radio head is equipped
with a GPSDO module for precise synchronization. Each
instance of the virtual BBU is implemented using the OAI
LTE stack, which is hosted in a VMware VM. All the RRHs
are connected to the BBU pool (the physical servers hosting
the VMs) via USB 3 connections.

The Ubuntu 14.04 LTS with kernel 3.19.0-91-lowlatency
is used for both host and guest operating systems. In order
to achieve a high performance for our testbed, all power-
management features in the BIOS, C-states, and CPU fre-
quency scaling have been turned off. The CPU should support
the sse3 and sse4.1 features. These flags must be exposed
from the host to the guest, and can be checked by using the
command cat/proc/cpuinfolgrep flags|uniq. For the physical
sever hosting the BBU, we use a Dell Precision T5810 work-
station with Intel Xeon CPU E5-1650, 12-core at 3.5 GHz, and
32 GB RAM. There are several configurations that depend on

the guest OS’s specific setup that should be calibrated in order
to boost the performance of the testbed. Most importantly,
the maximum transmit power at the eNB and the UE can be
calibrated as follows.

e eNB: The maximum transmit power at the eNB is sig-
naled to the UE so that it can do its power control.
The parameter is PDSCH Energy Per Resource Ele-
ment (EPRE) [dBm]| and it is part of the configuration file,
pdsch_referenceSignalPower. It should be measured using
a vector signal analyzer with LTE option for the utilized
frequency and then put in the configuration file.

o UE: At the UE, the maximum transmit power [dBm] is
measured over the whole (usable) bandwidth. If the same
hardware is used at the UE and at the eNB, the power is
max_ue_power = PDSCH_EPRE+101log;, (12N_PRB).

B. Monitoring the OAI eNB and the UE

As illustrated in Fig. 3(b), our C-RAN experimental testbed
consists of one unit of UE and one unit of eNB, both
implemented using the USRP B210 boards and running on
OAI The OAI software instances of the eNB and UE run in
separate Linux-based Intel x86-64 machines comprising of 4
cores for UE and 12 cores for eNB, respectively, with Intel i7
processor core at 3.6 GHz. OAI comes with useful monitoring
tools such as network protocol analyzers, loggers, performance
profilers, timing analyzers, and command line interfaces for
performing the intended measurements and monitoring of the
network. Specifically, the supported monitoring tools include:

o OAI Soft Scope, which monitors received-transmitted wave-
forms and also tracks the channel impulse response.

o WireShark Interface and ITTI Analyzer, which can be used
to analyze the exchanges between eNB and UE protocols.

o OpenAirlnterface performance profiler, which is used for
processing-time measurements.

TABLE I
TESTBED CONFIGURATION PARAMETERS

Parameters eNB UE
Duplexing mode FDD FDD
Frequency 2.66 GHz 2.66 GHz
Transmitted power | [150 < 170] dBm | [150 = 170] dBm
MCS [0+ 27] [0+ 27]
Mobility Static Static
PRB 25,50, 100 25,50, 100
Radiation pattern Isotropic Isotropic

Figure 3(c) illustrates the OAI processing flow for building,
running, and monitoring stages. In addition, we summarize
the testbed configuration parameters in Table I. In particular,
the eNB is configured in band 7 (FDD) and the transmission
bandwidth can be set to 5, 10, and 20 MHz, corresponding to
25, 50, and 100 PRBs, respectively. In order to determine the
successful connection between eNB and UE, the RRC states
should be observed in OAI console. Specifically, when the UE

“\“‘ UE

\l !
“\\\\ UE N \“\\ UE

R R R

l [(onrens] [oarens | [oawens]}

BBU Pool

Hypervisor (VMware)

Standard Hardware (CPU, Memory)

(a) (b)

1- Requirements.
* Install OAI, Kernel setup (low-
latency kernel)

2- Connections.

* Observe the RRC Connection
Reconfiguration.

* Observe UE state
(RRC_RECONFIGURED message).

* Observe Ping testsand Iperf Test

* Build OAI eNB and OAI UE

* CPU setting

* Edit USRP B210 configuration.
* RuneNBand UE

&

3- 0AI Monitoring tools.

* OAISoft Scopes.

* Wireshark/ PCAP Interface.

* OAItiming analyzer: build the

Ubuntu machine

veo.
« OAI message sequence chart
(Msc).

Fig. 3. (a) Logical illustration of C-RAN testbed architecture; (b) C-RAN testbed implementation utilizing OAI; and (c) OAI processing flow.

is successfully paired to the eNB, the RRC connection setup
message should be seen.

C. Interference-free Testbed Environment

We set up the experiment environment to emulate a “quiet”
transmission between the eNB and UE in which there is no
interference from other devices (so to have better control of
the environment). To accomplish this, we use two configurable
attenuators, model name Trilithic Asia 35110D-SMA-R, which
connect the Tx and Rx ports of the eNB to the Rx and Tx ports
of the UE, respectively, as shown in Fig. 4. In order to establish
a stable connection, the transmitter and received gains in the
downlink have been set to 90 and 125 dB, respectively.

_Ii LTE FDD Band 7

.]

[FEEN [FEESSN
OAl eNB OAI UE
IP address 10.0.1.1 IP address 10.0.1.9
Attenuator E -
.@l‘ (60-80)dB -@t
- Attenuator h
(60-80)dB

USRP B210 USRP B210

Fig. 4. Configuration of the eNB-UE connection.

We use iperf to generate 500 packets to send from the eNB
to the UE. Figure 5 illustrates the throughput performance
versus the attenuation level between the eNB and UE. It can
be seen that the achievable throughput significantly decreases
with attenuation level. Specifically, when the attenuation level
is 60 dB the achievable throughputs are around 5, 10, and
20 Mbps when using 25, 50, and 100 PRBs, respectively. On
the other hand, at an attenuation of 80 dB, the throughputs
are much lower, i.e., 0.98, 1.64, and 3.40 Mbps, respectively.
We observe that the eNB-UE connection will drop when the
attenuation level goes higher than 80 dB.

IV. EXPERIMENTAL RESULTS AND EMPIRICAL MODELS

We present the performance of the virtualized BBU, i.e.,
the OAI eNB, in terms of packet delay, CPU processing time,
and utilization under various PRB and MCS configurations.

20 2

-
o
T

-
o

(&)

Average Throughput (Mbps)

Attenuation Level (dB)

Fig. 5. Downlink throughput performance at different attenuation levels.

A. Delay Performance

To test the delay in the C-RAN testbed, we focus on
measuring the RTT when sending packets between the eNB
and the UE. The VM hosting the BBU is configured with
4 virtual cores and 8 GB RAM in a VMware hypervisor,
running on a physical machine with 12 cores, 3.5 GHz
CPU, and 16 GB RAM. The OAI UE runs on a low-latency
Ubuntu physical machine with 3.0 GHz CPU and 8 GB RAM.
Figure 6 illustrates the relationship between RTT and packet
size when the BBU is set at different CPU frequencies. For
each experiment, we sent 500 Internet Control Message Pro-
tocol (ICMP) echo request packets from the eNB to the UE. It
can be seen that the RTT exponentially increases as the packet
size increases. Moreover, we have also noted that the RTT is
greater when OAI eNB runs on a VM than on a physical
machine, which may be due to the overhead incurred when
running the VM. In addition, there is a correlation between
the CPU frequency and the OAI software performance. We
have recorded that the minimum CPU threshold frequency to
run OAI in our scenario is 2.5 GHz. Below the threshold
value, we observed that the synchronization between eNB and
UE is occasionally missed. By controlling the CPU frequency
using the Cpupower tool, we have noticed that the RTT can
be improved by increasing the CPU frequency steps.

26 ﬁ
40 [o4 M§§ S é]
2 "y
22 7
; —_z
3520 ,ﬁj x—
/7
w 18 7
3 200 400 600
E 30 5
m f
25
—%— CPU3.5GHz
— + — CPU3GHz
20 —=&— CPU25GHz

0 1000 2000 3000 4000 5000 6000 7000 8000
Packet Size (bytes)

Fig. 6. RTT measurement for different packet sizes.

B. Processing Time of LTE Subframes

In this section, we study the BBU processing time of
each LTE subframe with respect to different CPU frequency
configurations in the VMware environment. The execution
time of each signal processing module in the downlink is
measured using timestamps at the beginning and at the end of
each subframe. OAI uses the RDTSC instruction implemented
on all x86 and x64 processors as of the Pentium processors to
achieve precise timestamps [20]. The cpupower tool in Linux
is used to control the available CPU frequencies. To avoid
significant delay and to not miss the synchronization between
eNB and UE hardware, we recommend to run the experiment
within a 2.8 + 3.5 GHz CPU frequency range.

650 g
> PRB25
600 — — — Fitted curve PRB 25
* PRB50
550 1 Fitted curve PRB 50
O PRB100
Y N N Rttt Fitted curve PRB 100 | |

Processing Time (1)
N N
o ()]
o o

(&)

a

o
T

w

(=3

o
T

CPU (GHz)

Fig. 7. Processing time of LTE subframes against CPU frequency with
MCS = 27 and various PRB allocations.

In Fig. 7, we depict the processing time of the eNB given
different CPU-frequency steps, in which the MCS index is
set to 27 for both UL and DL. It can be seen that the pro-
cessing time dramatically decreases when the CPU frequency
increases. To model the subframe processing time against the
CPU frequency and radio-resource configuration, we repeat
the experiment in Fig. 7 with different MCS indexes. The

subframe processing time Ty, [14$] can be well approximated
as a function of CPU frequency f [Hz], MCS, and PRB as,

QPRB
1
7 ey

where aprp and Pycs are two parameters that increase with
PRB and MCS values as reported in Table II.

+ Bumcs + 2.508,

Tsub [MS] =

TABLE II
VALUES OF PARAMETERS aprB AND fMCs-

PRB 25 [50 [100
Qs [12s] | 900 | 940 | 970

MCS 0| 9 |10 16| 17 | 24 |27
Bucs|#s] | 0 | 97 |11.8|375|39.7|648 |75

C. CPU Utilization

In C-RAN, it is of critical important to understand the
CPU utilization of the BBU in order to design efficient
resource provisioning and allocation schemes. In the previous
subsections, we have seen the relationship between MCS and
CPU usage for different values of PRBs. In this experiment,
the CPU utilization percentage is calculated using the top
command in Linux, which is widely used to display processor
activities as well as various tasks managed by the kernel in
real time. We repeatedly send UDP traffic from the eNB to the
UE with various MCS and PRB settings. The CPU utilization
percentage has been recorded as in Fig. 8. By setting the CPU
frequency of the OAI eNB to 3.5 GHz, we have seen that the
highest CPU consumption occurred at MCS 27, corresponding
to 72%, 80%, and 88% when PRBs are 25, 50, and 100,
respectively. We can conclude that the total processing time
and computing resources were mainly spent on the modulation,
demodulation, coding, and decoding. These tasks played the
bigger roles in terms of complexity and runtime overhead in
the BBU protocol stack.

—v— PRB 25 (
— © —PRB50 /]

o]
o
T

—5— PRB 100

~
o
T

60 -

50 r

40 1

CPU Utilization(%)

W
o

n
(=]
T

0 5 10 15 20 25
MCS

Fig. 8. CPU utilization of the BBU at different values of MCS and PRB.

To understand better the BBU computational consumption
in C-RAN with respect to the users’ traffic demand, we will

now establish the relationship between the DL throughput and
the percentage of CPU usage at the BBU. To begin, we learn
that OAI supports 28 different MCSs with index ranging from
0 to 27. In the downlink direction, MCSs with the index 0 to
9 are modulated using QPSK, index 10 to 16 are modulated
using 16-QAM, and the rest are based on 64-QAM. For
instance, in LTE FDD system with PRB 100, corresponding
to bandwidth of 20 MHz, we can get 12 x 7 x 2 = 168
symbols per ms, in case of normal Cyclic Prefix (CP) [21],
which is equivalent to a data rate of 16.8 Mbps. Based on
the MCS index used in each experiment, we can calculate the
corresponding DL throughput by multiplying the bit rate by
the number of bits in the modulation scheme.

@
o

~
o

(o2}
o

(o)
o

CPU Utilization (%)

N
o

D> Experiment result
Fitted curve

w
o

L L L

20 40 60 80 100
Throughput (Mbps)

20

Fig. 9. Percentage of CPU usage versus the downlink throughput.

Figure 9 shows the CPU utilization percentage at the
BBU corresponding to different DL throughputs. Using the
calculated results, we have fitted the CPU utilization as a linear
function of the DL throughput as,

CPU [%] = 0.6237¢ + 21.3544, 2)
where ¢ is the throughput measured in Mbps.

V. CONCLUSIONS

To exploit the benefits of C-RAN, software implementation
coupled with real-hardware experiments is essential to under-
stand the runtime complexity and performance limits of virtual
Baseband Units (BBUs). We studied and analyzed several
aspects related to the practical implementation of the C-RAN
architecture to support 5G systems. First, we presented the
main C-RAN testbed implementation challenges and studied
several virtualization approaches. Second, by using an OAI
emulation platform, we built the eNB and UE on low-latency
Linux VMs. Experiments were carried out to evaluate the
BBU performance under various computing and radio-resource
configurations. Our experimental results showed that the frame
processing time and CPU utilization of the BBU increase with
the PRB resource and MCS index. Third, based on these re-
sults, we established empirical models for the estimation of the
BBU processing time as a function of CPU frequency, MCS,
and PRB index, as well as for the BBU’s CPU usage as a linear

function of the downlink throughput. These models provide
real-world insights into the computational requirements of the
BBU, and may serve as key inputs for the design of resource-
management solutions in C-RAN systems.
Acknowledgments: This work was partially supported by
the US National Science Foundation Grant No. CNS-1319945.

REFERENCES

[1] China Mobile Research Institute, “C-RAN: The Road Towards Green
RAN,” White Paper, Sept. 2013.

[2] J. Wu, Z. Zhang, Y. Hong, and Y. Wen, “Cloud radio access network
(C-RAN): a primer,” IEEE Network, vol. 29, no. 1, pp. 35-41, 2015.

[3] T. X. Tran and D. Pompili, “Dynamic Radio Cooperation for Downlink
Cloud-RANs with Computing Resource Sharing,” in Proc. IEEE Int.
Conf. on Mobile Ad hoc and Sensor Systems (MASS), pp. 118-126, Oct.
2015.

[4] D. Pompili, A. Hajisami, and T. X. Tran, “Elastic resource utilization
framework for high capacity and energy efficiency in Cloud RAN,” IEEE
Commun. Mag., vol. 54, no. 1, pp. 26-32, 2016.

[5] T. X. Tran and D. Pompili, “Octopus: A Cooperative Hierarchical
Caching Strategy for Cloud Radio Access Networks,” Proc. of the IEEE
Intl. Conf. on Mobile Ad hoc and Sensor Systems (MASS), pp. 154-162,
Oct. 2016.

[6] T. X. Tran and D. Pompili, “Dynamic Radio Cooperation for User-
Centric Cloud-RAN with Computing Resource Sharing,” IEEE Trans.
on Wireless Commun., vol. 16, no. 4, pp. 2379-2393, 2017.

[7]1 P. Luong, C. Despins, F. Gagnon, and L.-N. Tran, “A fast converging
algorithm for limited fronthaul C-RANs design: Power and throughput
trade-off,” in Proc. IEEE Int. Conf. Commun. (ICC), May 2017.

[8] M.-P. Hosseini, H. Soltanian-Zadeh, K. Elisevich, and D. Pompili,
“Cloud-based deep learning of big eeg data for epileptic seizure pre-
diction,” in Proc. IEEE Global Conference on Signal and Information
Processing (GlobalSIP), pp. 1151-1155, 2016.

[9]1 P. Luong, L.-N. Tran, C. Despins, and F. Gagnon, “Joint beamforming
and remote radio head selection in limited fronthaul C-RAN,” in Proc.
IEEE Veh. Tech. Conf. (VIC-Fall), pp. 1-6, 2016.

[10] T. X. Tran, A. Hajisami, and D. Pompili, “QuaRo: A Queue-Aware
Robust Coordinated Transmission Strategy for Downlink C-RANs,” in
Proc. IEEE Int. Conf. on Sensing, Commununications, and Networking
(SECON), pp. 441-449, June 2016.

[11] T. X. Vu, H. D. Nguyen, and T. Q. Quek, “Adaptive compression and
joint detection for fronthaul uplinks in cloud radio access networks,”
IEEE Trans. Commun., vol. 63, no. 11, pp. 45654575, 2015.

[12] K.-G. Nguyen, Q.-D. Vu, M. Juntti, and L.-N. Tran, “Energy efficient
precoding C-RAN downlink with compression at fronthaul,” in Proc.
IEEE Int. Conf. Commun. (ICC), May 2017.

[13] R. Schooler, “Transforming networks with NFV and SDN,” Intel Archi-
tecture Group, 2013.

[14] “Amarisoft LTE software base station.” Available:
http://www.amarisoft.com/?p=amarilte.
[15] EURECOM, “Open air interface.” Available:

http://www.openairinterface.org/, Oct. 2014.

[16] C.-L. I, J. Huang, R. Duan, C. Cui, J. Jiang, and L. Li, “Recent Progress
on C-RAN Centralization and Cloudification,” IEEE Access, vol. 2,
pp- 1030-1039, 2014.

[17] C.-N. Mao, M.-H. Huang, S. Padhy, S.-T. Wang, W.-C. Chung, Y.-C.
Chung, and C.-H. Hsu, “Minimizing latency of real-time container cloud
for software radio access networks,” in Proc. IEEE Int. Conf. on Cloud
Computing Technology and Science (CloudCom), pp. 611-616, 2015.

[18] Z. Kong, J. Gong, C.-Z. Xu, K. Wang, and J. Rao, “ebase: A baseband
unit cluster testbed to improve energy-efficiency for cloud radio access
network,” in Proc. IEEE Int. Conf. on Commun. (ICC), pp. 4222-4227,
2013.

[19] W. Wu, L. E. Li, A. Panda, and S. Shenker, “Pran: Programmable radio
access networks,” in Proc. ACM Workshop on Hot Topics in Networks,
p. 6, 2014.

[20] 1. Alyafawi, E. Schiller, T. Braun, D. Dimitrova, A. Gomes, and
N. Nikaein, “Critical issues of centralized and cloudified Ite-fdd radio
access networks,” in Proc. IEEE Int. Conf. on Commun. (ICC), pp. 5523—
5528, 2015.

[21] E. Dahlman, S. Parkvall, and J. Skold, 4G: LTE/LTE-advanced for
mobile broadband. Academic press, 2013.

