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Abstract—Due to the rapid growing popularity of mobile In-
ternet, broadband cellular wireless systems are expected to offer
higher and higher data rates even in high-mobility environments.
Cloud Radio Access Network (C-RAN) is a new centralized
paradigm for broadband wireless access that addresses efficiently
the fluctuation in capacity demand through real-time inter-
Base Station (BS) cooperation. An innovative Blind Source
Separation (BSS)-based cellular communication solution for C-
RANS, Cloud-BSS, which leverages the inter-BS cooperation, is
proposed. Cloud-BSS groups contiguous cells into clusters — sets
of neighboring cells inside which mobile stations do not need
to perform handovers — and allows them to use all of the fre-
quency channels. The proposed solution is studied under different
network topologies, and a novel strategy, called Channel-Select,
to improve the Signal-to-Noise Ratio (SNR) is introduced. Cloud-
BSS enhances the cluster spectral efficiency, decreases handovers,
eliminates the need for bandwidth-consuming channel estimation
techniques, and mitigates interference. Simulation results, which
are discussed along with concepts, confirm these expectations.

Index Terms—Cloud Radio Access Network; Cellular Systems;
Virtual Base Station; Blind Source Separation.

I. INTRODUCTION

Over the last few years, proliferation of personal mobile
computing devices like tablets and smartphones along with
a plethora of data-intensive mobile applications has resulted
in a tremendous increase in demand for ubiquitous and high
data-rate wireless communications. To meet this demand, the
fourth generation (4G) cellular communication system with
peak downlink data rate of 1 Gbps has been envisioned.
Long Term Evolution (LTE) systems based on Orthogonal Fre-
quency Division Multiple Access (OFDMA) represent a major
breakthrough in terms of achieving downlink peak data rates of
300 Mbps [1]. However, because LTE systems do not match
yet the International Mobile Telecommunications Advanced
(IMT-Advanced) “True 4G” requirements, a significant effort
is being made towards the development of LTE-Advanced.

The current practice to enhance data rates is to increase
the number of Base Stations (BSs) and go for smaller cells
so to increase the band reuse factor. However, additional
deployment and maintenance of a large number of cellular
BSs are highly inefficient due to excessive capital and oper-
ating expenditures. Moreover, with small cells the Inter-Cell
Interference (ICI) problem becomes more challenging. Smaller
cells also lead to a higher number of handovers between cells,
which is the process of transferring an ongoing call (or data
session) from one cell to another to avoid call termination
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Fig. 1: Comparison of the traditional Distributed Base Station
(BS) architecture against two C-RAN architectures differing
on how the communication functionalities are split among the
local Remote Radio Unit (RRH) and the Virtual Base Station
(VBS) in a remote datacenter. We focus on architecture 2.

when the mobile user gets outside the range of a cell. Enabling
frequent near-seamless and smooth handovers, with minimal
service disruption, calls for very high-speed communication
and co-operation among BSs.

A. Cloud Radio Access Network

Cloud Radio Access Network (C-RAN) [2] is a new
paradigm for broadband wireless access that addresses the
fluctuation in capacity demand efficiently while keeping the
cost of delivering services to the users low. It also enables
a higher degree of co-operation and communication among
BSs. C-RAN represents a clean-slate design and allows for
dynamic reconfiguration of computing and spectrum resources.
Characteristics of C-RAN are: i) centralized management
of computing resources, ii) reconfigurability of spectrum re-
sources, iii) collaborative communications, and iv) real-time
cloud computing on generic platforms. C-RAN is composed
of Remote Radio Heads (RRHs) distributed over a wide
geographic region controlled by remote Virtual Base Stations
(VBSs) housed in centralized BS pools (Fig. 1). VBSs and
their corresponding RRHs should be connected by high-
bandwidth low-latency media (e.g., use of optic fibers allows
for a maximum distance of separation of 40 Km between the
RRH and its VBS) [2].

Packet-level processing, Medium Access Control (MAC),
physical-layer (PHY) baseband processing, and Radio Fre-
quency (RF) functionalities may be split between the VBSs
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and the RRHs depending on the specific C-RAN architecture
(Fig. 1). In this paper, we focus on the second architecture as it
allows exploitation of the full potential of this paradigm. The
communication functionalities of the VBSs are implemented
(in software) on Virtual Machines (VMs) hosted over general-
purpose computing platforms (servers), which are housed in
one or more racks of a small cloud datacenter. In a centralized
VBS pool, as all the information from the BSs is resident in
a datacenter, BSs can exchange control data at Gbps speeds.

Cooperation and communication among BSs can improve
user Quality of Service (QoS) and system performance by
exploiting the extra degrees of freedom to make optimized
decisions. For instance, efficient schemes for handover and
interference cancelation, which need a high volume of data
to be exchanged among cooperating BSs, can be employed
in a C-RAN architecture because of the low-latency inter-
BS communication. However, even in C-RAN, where we
have Gbps connections among the VBSs, the aforementioned
schemes need a considerable time (almost 13% of the frame
time) to process the received data.

B. Contributions

We propose an uplink cooperative joint PHY and MAC solu-
tion for next-generation cellular communications that exploits
synergistically the advantages of C-RAN and Blind Source
Separation (BSS). BSS is a well-known technique in signal
processing to recover the underlying source signals from a set
of mixtures, where the mixing system is unknown (popularly
known as the “cocktail party problem”). C-RAN’s charac-
teristics are well suited for BSS-based cooperative cellular
communications as the source separation problem relies on
inter-BS cooperation. In our solution, named Cloud-BSS, we
divide a set of neighboring cells into clusters and allow them
to use all of the frequency channels in the system band. In each
cluster, the RRHs receive a mixture of the Mobile Station (MS)
signals. Then, the MS signals are separated from the mixtures
through BSS. Cloud-BSS provides the following benefits: 1)
enhancement of the cluster spectral efficiency, ii) decrease
in the number of handovers, iii) elimination of the need for
bandwidth-consuming channel estimation, and iv) interference
mitigation. We study our solution under different network
topologies and introduce a strategy, named Channel-Select,
to increase the Signal-to-Noise Ratio (SNR) of the estimated
signals. In other words, Cloud-BSS separates the intra-cluster
mixtures and Channel-Select mitigates the defective impact of
background noise (including inter-cluster interference) during
the separation process.

C. State of The Art

Centralized management of computing resources, i.e., BS
pooling, renders BS information global and, hence, enables
cooperative communication techniques at the MAC and PHY
layers that were previously not implementable due to strict
inter-BS coordination requirements (in terms of throughput
and latency). Examples of MAC- and PHY-layer enhance-
ments include joint flow scheduling and load balancing [3],
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macro diversity, interference alignment and cancelation [4],
and advanced mobility management [5]. Even though work has
been done on the aforementioned cooperative communication
techniques that can benefit from C-RAN, research on enabling
technologies for C-RAN itself is at a nascent stage and, hence,
there are only a few works in this area.

In [6] and [2], the authors introduce the centralized-BS
idea and study its advantages, challenges, and requirements;
they argue that the behavior of PHY and MAC layers are
quite different and, hence, are better suited for two different
processor architectures. In [7], the authors assume that only the
MAC-layer functionality is centralized at the BS pool, propose
a MAC-layer consolidation solution, and compare the multi-
plexing gain over today’s distributed BS architecture, depicted
in Fig. 1(left). In [5], the authors address the problem of inter-
BS communication, study the latencies involved in information
exchange among distributed BSs, and consider BS pooling
as a potential solution for higher degree of BS co-operation
in broadband cellular networks. The authors also review a
few well-known co-operative Multiple Input Multiple Output
(MIMO) techniques w.r.t. their inter-BS communication needs
and their challenges in a distributed architecture, and discuss
how these are mitigated in a pooled BS model.

In summary, prior work on C-RANSs focused on the overall
system architecture, on the feasibility of virtual software BS
stacks as well as on the performance gains. In contrast to
existing works, which do not explore the potential of C-RAN
to enhance the system spectral efficiency, we propose a novel
solution based on BSS to improve the cluster (and, hence, the
system) spectral efficiency and system performance using the
centralized advantage of C-RAN.

The rest of the paper is organized as follows. In Sect. II,
we present our solution, which aims at enhancing the cluster
spectral efficiency and system performance using the com-
bined advantages of C-RAN and BSS; first, we formalize our
solution and explain why for different network topologies the
system performance varies; then, we introduce our strategy to
maximize the performance. In Sect. III, we discuss the other
benefits of Cloud-BSS. Finally, in Sect. IV, we draw the main
conclusions and wrap up the paper discussing future work.

II. PROPOSED SOLUTION: CLOUD-BSS

Generally, in cellular networks, neighboring cells avoid
to reuse the same set of frequencies (or channels) so to
keep the interference below a certain threshold and to ensure
user QoS. As a drawback, however, the whole cellular band
cannot be used by the cells, which leads to low data rates.
Here, we introduce Cloud-BSS, our BSS-based solution, which
increases the user capacity — thus achieving high data rates —
by exploiting the characteristics of the C-RAN architecture;
specifically, Cloud-BSS is able 1) to grant multiple users access
to the same OFDMA channels simultaneously and 2) to assign
multiple channels to the same user. These features, together,
lead to a higher per-user capacity and hence, data rate, given a
fixed cellular band. We also explain how the proposed solution
mitigates the interference problem and decreases the number
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Fig. 2: Four network topologies in which the RRHs receive different combinations (‘mixtures’) of the MS signals. From
Topology 1 to 4 (worst to best), the distance between a MS in a cell and the RRHs in the other cells becomes higher.

of handovers, regardless of the handover procedure used by
the system. In fact, a handover will only be needed when a
MS moves from one cluster to another (as opposed to from
one cell to another). In other words, as long as a MS remains
in a certain cluster, no handover is needed, which provides the
following advantages: an increase in user QoS and a decrease
in overall system computation and communication overhead.

In Cloud-BSS, we divide a set of contiguous cells into a
cluster and allow them to use all of the frequency channels in
the system band, thus achieving a frequency-reuse factor of 1.
Hence, in each cluster, the RRHs receive a mixture of the MS
signals. Figure 2(a) shows our clustering idea: here the cluster
size is 3 and a;; is the channel coefficient between MS #j
and RRH #i. The relationship between the received and the
MS signals at different time instants can be expressed through
the following linear noisy model (for clarity time is omitted),

N
x=3 sa+n=As+n (1)

i=1
Here, s = [s1,...,5sn5]7 is the N x 1 vector of complex-
valued MS signals (sources), x = [z1, ..., 2|7 is the M x 1
vector of signals (mixtures) received by the RRHs, A is the
M x N complex-valued channel coefficient (mixing) matrix
with linearly independent columns (a; being its i** column),
and n = [ng,...,ny|7 is the M x 1 Gaussian noise vector
with independent and identically-distributed (i.i.d.) compo-
nents. Note that, in (1), the inter-cluster interference is part of
the background noise, and that the MS signals are assumed to
be statistically independent; such assumption is almost always
met in practice for physically-separated transmitters. Now, to
extract the MS data in the VBS we need to separate the MS
signals (sources) from the received RRH signals (mixtures);
in a cluster, this is in fact a BSS problem.

First, we provide some preliminary background on BSS
and Independent Component Analysis (ICA). Then, we argue
that the topology configuration of the MSs affects the system
performance and show that diagonal dominant topologies lead
to better performance, i.e., to a lower Bit Error Rate (BER).
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We introduce a metric to measure how much a M x N mixing
matrix is diagonal dominant and use it in the simulation
analysis to show the performance associated with different
topologies. Finally, we introduce a strategy, named Channel-
Select, to ‘group’ the best set of active MSs (i.e., assign them
to the same OFDMA channel) based on their locations so to
induce diagonal dominance in the mixing matrices.

A. Blind Source Separation (BSS)

In BSS, a set of mixtures of different source signals is
available and the goal is to separate the source signals when
we have no information about the mixing system or the source
signals (hence the name blind) [8]. The mixing and separating
systems can be represented mathematically as,

x(t) = As(t), y(t) = Bx(1), 2)

where s(t) = [s1(t),...,sn(t)]T is the vector of sources
that are mixed by the mixing matrix A and x(¢)
[1(), ...,z (t)]T is the vector of available observations. Let
A be a M x N matrix of full-column rank, which means that
the observations are linearly independent; the goal is to design
a separating matrix B such that y(t) = [y1(¢),...,yn(#)]T
is an estimate of the sources. A method to solve BSS is
ICA, which exploits the assumption of source independence
and estimates B such that the outputs y;(¢)s are statistically
independent. For this assumption to hold, however, the number
of observations must be equal or greater than the number
of sources (i.e., M > N). The essence of ICA can be
understood better by considering the “cocktail party problem,”
in which many people are talking simultaneously: if several
microphones at different positions are available, then different
mixtures of the voices can be recorded. Given such mixtures
and the assumption that the original voice signals are indepen-
dent from each other, ICA can recover the original voices from
the mixtures. However, most of the ICA algorithms are only
applicable to real signals, whereas in digital communication
systems we deal with complex-valued signals. To solve this
problem, some ICA algorithms have been proposed (such as
the ones in [9]-[11]) to deal with complex-valued signals.
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for allocating frequency channels to the MS’s.

B. System Performance for Different Topologies

In cellular networks the interfering signals from other cells
decrease the performance of the system. To overcome this
problem, BSs avoid reuse of the same set of frequencies.
However, in the case of C-RAN, as we have access to all
of the BSs’ received signals in a cluster, the MS signals
can be separated by the use of ICA algorithms. Hence, with
reference to the model in (1), since we have access to all the
z;s (1 <7 < M), we can separate the MS signals (sources)
from the RRH signals (mixtures) through ICA. Note that it was
studied in [9] that the case of multiple paths, where several
coherent wireless signals from a single transmitter are mixed
in the received signal, does not affect the ICA problem.

Without considering the noise — and as long as the sources
are independent and the mixing channel coefficient matrix is
full rank — ICA methods can extract the source signals simply
by estimating the inverse of the mixing matrix. However, in
the presence of noise, when the ICA algorithms estimate B
as A~1 and multiply it by the observation so to extract the
source signals, from (1) we obtain,

Bx(t) = 8(t) + Bn(t), 3)

where each estimated source signal is associated with a combi-
nation of the additive noises at all the receivers. If we assume
that the noises at all the receivers have the same variance a%,
then the noise in the i*" estimated source has a variance of
(b2 + -+~ +b%) - 02, where b;; is the (i,7)"™™ component
of the separation matrix B. As the b;;s are dependent on the
determinant of the mixing matrix A, the noise level of the
estimated sources is highly dependent on the mixing matrix.
The determinant of a matrix is the volume of the parallelepiped
composed of its rows/columns. It is straightforward to prove

40

that if a diagonal dominant' and a non-diagonal dominant
matrix have the same row/column norm, then the former has
the greater determinant and, hence, lower component values
in its inverse matrix [12].

Theorem 1. Let us assume that a N x N matrix C is
diagonally dominant by rows, and let us set ; = min (|c”| -
3

> leijl). 1t follows that ||C*1”OC < 1/B. Proof in Appendix.
J#

From Theorem 1, we infer that when (3 is low the upper
bound of HC’1 H , which is the maximum absolute row sum
of the matrix C™*, becomes high [13]. Hence, considering A
to be a N x N, when the non-diagonal components of the
mixing channel coefficient matrix A in each row are close to
the diagonal component, /3 becomes lower and, as a drawback,
the maximum absolute row sum of the separation matrix B
becomes higher, leading to low SNR in the estimated sources
in (3). Hence, in order to have a high SNR in the estimated
source signals, the absolute value of the diagonal dominant
component of A should be as high as possible, and the
absolute value of non-diagonal components of A should be as
low as possible. This translates into the following observation:
in a certain frequency channel, the it MS needs to be as close
as possible and the j*" MS needs to be as far as possible to
the it" RRH (with j # i).

In our solution, where the mixing channel coefficient matrix
depends on the topology of the network, we expect that
for different network topologies the performance would vary.
Depending on the topology, the mixing channel coefficient
matrix A and thus the variance of the noise in the estimated
sources are different. As we discussed earlier, we expect that
for topologies with a diagonally dominant mixing (channel

'A matrix is said to be row/column diagonally dominant if, for every
row/column, the magnitude of the diagonal entry in a row/column is larger
than or equal to the sum of the magnitudes of all the other entries in that

row/column; ie., A = (a;;)i; is row diagonally dominant if |a;;| >
> laij|, Vi; and column diagonal dominant if |ai;| > > |asj;|, V5.
P iz



coefficient) matrix the performance would be better than for
topologies with a non-diagonally dominant mixing matrix;
in the diagonally dominant case, in fact, the variance of
the noise associated with each estimated transmitted signal
is lower than in the non-diagonally dominant case. Hence,
the more diagonal dominant the mixing matrix, the better
the performance. Based on the formulation we described for
Fig. 2(a), we introduce metric D(A) to define how much a
M x N mixing matrix A is row diagonally dominant as,

N
N 7 laik]
k=1 1
Tas )
y max;|aq;|
J=1

where a;; is the (¢, 7)*" component of matrix A and max;|a;|
is the maximum absolute value in the j** column of the
matrix. In (4), we find the maximum components in each
column of matrix A, then perform a normalized sum only over
those rows where the maximum components exist. In fact, in
the mixing matrix A, the components of each column/row
correspond to a certain MS/RRH, respectively. In the case
where N < M, (4) eliminates (M — N) rows corresponding
to the RRHs for which there is no MS in their cells. With
this definition, D(A) always ranges in [0, 1], being equal to 0
when A is diagonal. For the topologies in which D(A) is high,
the maximum absolute row sum of the separation matrix B
becomes higher than for the topologies with lower D(A). An
increase in D(A) causes a decrease in SNR and consequently
an increase in the BER. Figure 3(a) shows the increase of the
BER as D(A) approaches 1, for the cases of N = M = 3,4,5
and SNR= 15 dB.

To verify that the system performance depends on the topol-
ogy — as inferred from the above mathematical analysis — we
analyzed four topologies, as shown in Fig. 2, and considered a
cluster of three cells. We implemented the JADE algorithm [9]
for separating the MS signals from their mixtures. JADE
uses the whole fourth-order statistics of the received data,
from which very good separation results can be achieved.
In Topology 1 (worst), the channel coefficient matrix A is
not diagonally dominant at all, whereas in Topology 4 (best)
all of the columns of the matrix are diagonally dominant.
In between, we have Topology 2 and 3, in which only one
and two columns, respectively, are diagonally dominant. If
we consider D;(A) as the diagonal dominance metric of the
Ith topology, then we have D4(A) < D3(A) < Dy(A) <
D1 (A). Consequently, moving orderly from Topology 1 to 4,
we expect progressively better performance due to the decrease
in noise level of the estimated MS signals. The decreasing
BER curves with the SNR (not surprising) and with topology
order (corroborating our analysis) are depicted in Fig. 3(b).

“

)th

C. Proposed Strategy for Operation under Non Ildealities

We propose the Channel-Select strategy, which changes the
transmitting frequency (channel) of each user so to make
the mixing matrices “as diagonally dominant as possible”.
Depending on the ‘instantaneous’ topology, we optimize the
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frequency allocation for each MS so that the channel co-
efficient matrix in each channel is as diagonal dominant
as possible. To achieve this goal, Channel-Select uses the
following objective function,

F(Aq1,...,Ar) =minmax[D(A4),...,D(AL)], (5

where A; is the mixing matrix in the [** frequency channel
fi and L is the total number of channels available in the
OFDMA system. The complexity of this combinatorial opti-
mization problem depends on the number of MSs and cluster
size, and grows exponentially as these parameters increase.
Assuming K MSs are uniformly distributed in the cluster, the
problem complexity is O((K/M)M) : consequently, as we are
dealing with a large number of MSs in a cluster, a solution
under real-world timing constraints is infeasible. Therefore, we
introduce a simple heuristic algorithm that makes the diagonal
and non-diagonal component of matrix A higher and lower,
respectively, causing D(A;)’s in (5) to be low.

Without any loss in generality, we assume that: (i) We have
L frequency channels (f1,---, fr) and K MSs; (ii) We have
enough frequency channels to admit all the users in each cell;
(iii) All cells have the same size and in each cluster all the
RRHs can receive all the MSs’ signals; (iv) All MSs use the
same output power (i.e., no power control is performed); (v)
We approximately know where the MSs are, but we do not
know their trajectory (i.e., no horizon).
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Fig. 4: Channel-Select vs. optimal solution (by exhaustive

search) for small problem sizes (cluster size M = 3).

With these realistic working assumptions, we propose
Channel-Select, an algorithm to allocate the frequency chan-
nels to the MSs in such a way that D(A;)’s become as low
as possible. Figure 3(c) clarifies our explanations for the case
when the cluster size M is 3 and the number of channels L
is 4. Firstly, based on the location of the MSs, we calculate
the distances between the MSs and RRHs. Then, we define
how many MSs should be allocated to each frequency channel
as N = [K/L] (as in Fig. 3(c), where K = 11, L = 4,
and N = 3). Furthermore, we find the nearest MS in cell #1
(MS11) and N — 1 farthest MSs in the other cells (MS23 and
MS33) to the RRH #1 and allocate channel f; to this group



TABLE I: Computational Complexity, Run Time (RT), and Performance Index (PI) of three competing ICA methods for five
parameters: N = no. of sources, M = no. of mixtures, 7" = no. of data samples, () = no. of iterations, and I = no. of executed

sweep; in the simulations, we considered N = M = 5.

Method Computational Complexity (flops)

T=2000 T=4000 T=8000
RT [s] PI RT |s] PI RT |s] PI

min{TM?/2 + 4M3/3 + NMT,2K M?
3TN(N + 1)(N? + N + 2)/8 + TN

i ]

1) + 75+ 4N + AN(M? - 1))/2

JADE [9] min(4N®/3, 8N3(N? + 3)) + IN(N — 1)(75 + | 03445 | 708145 0.04657 | 2.10674 | 0.07535 | 0.43901
21N +4N2)/2
min{TM?/2 + 4M3/3 + NMT,2TM?} +

Complex ICA-EBM [10] | 4M3/3+(Q — 1)M3/2+ IN(N —1)(17(M? — | 1.05756 | 8.07938 | 1.50168 | 2.13367 | 1.69157 | 0.35794

min{TM2/2 + 4M3/3 + NMT,2TM?
(2(N —1)(N +T) +5TN(N +1)/2)K

Complex FastICA [11]

P+

0.45037 | 9.33160 | 0.75995 | 5.77939 | 1.38608 | 1.78655

of MSs. We repeat this procedure for the remaining cells and
MSs until when all the MSs have been allocated a channel.
Algorithm 1 presents the pseudo-code of our Channel-Select
allocation strategy: here, lines 6 and 8 make the diagonal
and non-diagonal component of matrix A, respectively, higher
and lower, which forces the maximum D(A;) to be as small
as possible, as required by the objective function in (5).
Figure 4 compares our Channel-Select strategy with random
select and optimal solution for different number of MS’s. As
we expect, for a large number of MSs the possible combination
of MSs increases and, as a result, the average D(A) of our
Channel-Select strategy and optimal solution decreases. So,
unlike in random select, Channel-Select is able to increase the
SNR (by decreasing the negative effect of background noise)
of estimated source signals by exploiting diagonal dominant
mixing channel coefficient matrices. From Fig. 3(a), we see
that the difference between Channel-Select and optimal is not
significant as the increase in BER is in order of 1074,

It should be mentioned that our solution, Cloud-BSS, is
transparent to the MSs. The only over-the-air signaling that
it requires is the one for conveying the channel allocation
decision (made by Channel-Select) to the MSs; and this
uplink-channel-allocation signaling is already part of current
as well as next-generation OFDMA-based cellular systems.

D. Cluster Size and Computational Complexity

One of the main requisites for LTE is the requirement of
very low level of latency. So, it is necessary to explore the
computational complexity and run time of our Cloud-BSS
solution for different cluster sizes. The cluster size dictates
the computational complexity and the accuracy of the ICA
methods, where the former depends on the no. of sources
(N), no. of mixtures (M), no. of data samples (1"), no. of
iterations (Q), and no. of sweeps>(I). As the cluster size, i.e.,
the no. of RRHs (mixtures) and MS signals (sources), increase
the computational complexity increases. The computational
complexity of an algorithm is measured by the required
floating point operations (flops) to execute it, where a flop
corresponds to a multiplication followed by an addition.

Here, we briefly compare the complexity and accuracy of
three well-known complex-valued ICA algorithms: JADE [9],

2A sweep is an iteration process over all principal 2 x 2 submatrices.
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Algorithm 1 Channel-Select Strategy
Input: L= Total number of frequency channels available, M
= Number of cells in a cluster
Output: M S; = Set of MSs associated with the {*" channel
Description:

1:forl=1;I<L;l++ do

22 t=1; K =1mod M;

if X = 0 then
K = M,
end if

M S;(t)=Find in cell #K the nearest MS to RRH #K;
for j=1: M && j! = K do
M S;(++t)=Find in cell #; the farthest MS to RRH
#K;
9:  end for
10:  Among M S;(2 : L) keep the N — 1 farthest MSs and
remove the others, reducing the size of M.S; from M
to NV;
11:  Allocate f; to the remaining M S;s;
12:  if All MSs have been allocated with a channel then
13: return;
14:  end if
15: end for

A

Complex ICA-EBM [10], and Complex FastICA [11]. Com-
plex ICA-EBM adopts a line-search optimization procedure
using a projected conjugate gradient, while Complex FastICA
finds independent components by separately maximizing the
negentropy of each mixture. To compare the separation quality
of these algorithms, we use the Performance Index (PI), which
measures the difference between the mixing and estimated
separating matrix, defined as,

PI = X N |pix|? 1 X lpwil? 1
(6)
where p;; is the (i,7)" element of the matrix P = BA,
and max;|p;;| and max;|p;;| are the maximum absolute value
in the i** row and column of matrix P, respectively. As the
PI increases, the difference between B and A~1 increases,

so the separation quality is correspondingly poorer. If the
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Fig. 5: Four cases of mobile network in which all the MS’s are using the same frequency channel.

separation is perfect, then the separating matrix is the inverse
of the mixing matrix and the PI is zero. Table I lists the
computational complexity, separation quality, and run time?
of the aforementioned ICA algorithmic methods for different
numbers of data samples 7". As we can see, the PI decreases
as T increases from 2000 to 8000, although at the price of the
Run Time (RT): this is because with more data samples more
information about the statistics of the mixtures is available,
which enables the ICA algorithms to estimate the separating
matrix more accurately. From Table I it is clear that the exe-
cution time of our Cloud-BSS solution using JADE algorithm
is in order of millisecond, which is feasible in LTE systems.
Moreover, Fig. 6 shows the increase in RT (left y-axis) and
PI (right y-axis) with the increase in the number of sources and
mixtures (here N = M). To sum up, increasing the cluster size
leads to higher computational complexity and lower accuracy;
however, it also brings a few advantages, which we study in
the following section, calling for finding the right trade-off.

III. OTHER BENEFITS OF OUR PROPOSED CLOUD-BSS

Besides improving the system spectral efficiency, using BSS
within C-RAN brings several other advantages, some of which
are briefly discussed below.

TABLE II: Reduction of handovers by clustering the cells
using our BSS-based solution; cell radius = 1 km, simulation
area = 30 x 30 km?, Spmin = 0, Smaz = 30 m/s, simulation

time = 1 hr, no. of MSs = 1000, d = 7, § = 15 m/s,
dy, ., ~ N(m1), sz,, ~ N(15,3), no. of simulations
= 100.
Number of Handovers
Mobility Model Without Cells/Cluster | Cells/Cluster | Cells/Cluster
Clustering =3 =4 =5
Random Waypoint 5716 + 5% 2318 + 4% 1268 + 5% 843 + 6%
Gauss-Markov 3673 £0.6% | 1682+ 1.1% | 711 £2.3% | 457 £2.9%

Fewer Handovers: As long as the active users stay in the
same cluster, there is no need to perform costly handovers
because when a MS moves from one cell to another all the

3The experiments were performed on an Intel Core2 Quad CPU 2.4-GHz
PC with 8 GB of RAM.
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Fig. 6: Increase in Run Time (RT) and Performance Index (PI)
of the three ICA algorithms with increase in the no. of sources
and mixtures (here T=8000). The left y-axis reports the RT in
seconds, while the right y-axis reports the PI as in (6).

RRHs within the cluster are still able to receive the mixtures
of the transmitted signals. The number of handovers can be
further reduced by increasing the size of the clusters. However,
with an increase in both NV and M, the complexity of the ICA
methods and of the frequency-allocation algorithm, as well as
the noise level in the estimated sources, will also increase.
To show the performance of our proposed solution in terms
of number of handover sessions, we consider two mobility
models: 1) Random Waypoint and 2) Gauss-Markov [14]. In
the first model, a MS moves from its current location to a
new one by choosing randomly a direction d [rd] and a speed
s [m/s] from pre-defined ranges, e.g., [0, 27| and [Symin, Smaz)s
respectively. After choosing these parameters, a MS moves to
its new location by traveling for a certain time or distance. The
model also includes pause time between changes in direction
and speed. The second mobility model is designed to adapt to
different levels of randomness by means of a tuning parameter:
the direction and speed at the n?”* step are calculated based



on those at the (n — l)th step and on a random variable, as,

dpn=adp, 1+ (1—a)d++/(1—-a?)d,,_,

Spn=asp—1+ (1 —a)s+ /(1 —a?)se,_,,

)

where d,, and s, are the new direction and speed for the
nth step, o (0 < a < 1) is the tuning parameter to vary the
randomness, d and 5 are constants representing the mean value
of direction and speed as n — oo, and d,, , and s, , are
random variables from a Gaussian distribution.

Table II represents the reduction in the number of handover
sessions using Cloud-BSS. In the simulations, we performed
an handover to the neighboring cell/cluster if both of the
following conditions are met [15]: (1) If the signal strength
from the neighboring cell/cluster exceeds that of the serving
cell/cluster by an hysteresis (i.e., margin) level of at least 1 dB;
(2) If the distance from the serving cell/cluster exceeds that
of the neighboring cell/cluster by more than 1.1 km. It is
clear that the number of handover sessions decreases with the
increase of the cluster size. However, as we show in Figs. 3(a)
and 6, the complexity of the ICA algorithms and the noise level
of the estimated MS signals also increase.

Furthermore, we show how robust our solution is in terms of
mobility and handover. As we observed previously, the achiev-
able BER is highly dependent on the topology; so, in order to
improve the BER performance, we introduced Channel-Select,
a frequency-channel allocation heuristic. Now, we study how
robust our solution is under user mobility without considering
Channel-Select. To do this, we consider clusters of four cells
(cell radius = 3 km), as shown in Fig. 5, and study four cases:
in the first, all the MSs are in different cells while in the forth
all the MS’s have moved into cell #2. As we can see, in the
first case, the topology is diagonal dominant and we expect
an acceptable BER. However, from case #1 to case #4, D(A)
increases and we expect a decrease in the BER performance.
Figure 7(a) shows the BER performance for these four cases,
which corroborates our analysis.

Increased Reliability: We can trade capacity for improved
BER performance. As mentioned earlier, we can assign each
frequency channel to a maximum of as many as the total
number of RRHs (recall that ICA algorithms require the no.
of mixtures to be equal or greater than the no. of sources,
ie., M > N). The relationship between the Net Channel
Capacity C,, of our proposed Cloud-BSS solution and the no.
of admitted MSs N per frequency channel is,

where C,;, is the capacity of the frequency channel and
BER(N) indicates that the BER depends on N, as studied in
Fig. 3(a). Figure 7(b) shows the increase of the net channel
capacity with respect to the number of admitted MS’s for the
SNR ranging in [5,20] dB and D(A) = 0.3.

When the capacity is not the key issue, we can improve the
BER by not using all the potential capacity of the network,
i.e., by allocating each channel to fewer MSs so to induce
diagonally dominant mixing matrices. This would lead to the
reduction of the columns of matrix A and to a higher degree
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of freedom in making the mixing matrix diagonally dominant.
To illustrate this intuition, we consider Topology 2 in Fig. 2(b),
which is not diagonally dominant. However, we can make it
so by allocating the channel to only two users instead of three,
e.g., we can either remove MS #2 or MS #3. Figure 7(c)
shows the BER performance in such scenario: interestingly,
by removing MS #3 the performance is better than removing
MS #2 as we obtain a lower D(A), leading to a lower BER.

Interference Cancelation: Due to the orthogonality of
subcarriers in LTE systems, the MSs have immunity to intra-
cell interference. However, cell-edge users are known to face
large ICI, especially, in a highly-loaded cellular environment.
In Cloud-BSS, as BSS deals with mixed signals, intra-cluster
interference is not a concern as it is a part of the received
mixed signals and, as such, the ICA algorithms take care of it
when separating the sources. Hence, there is no need for the
BSs to go through costly inter-BS message exchange to exe-
cute coordinated interference cancelation. In fact, by applying
the ICA algorithm to the received signals in a cluster, harmful
interference can be turned into useful signal, which boosts
performance by transforming a ‘foe’ into a ‘friend’. Moreover,
the Channel-Select strategy decreases the defective impact of
inter-cluster interference (background noise) on the estimated
signals by exploiting the diagonal dominant mixing channel
coefficient matrices. With the increase in the cluster size,
the average Signal to Interference plus Noise Ratio (SINR)
also increases, which allows the cellular network to enjoy
great spectral efficiency enhancement. Table III represents
the improvement of spectral efficiency and throughput using
Cloud-BSS. With a cluster size equal to 5, Cloud-BSS enhances
the uplink average cell user and cell-edge user throughput by
49% and 93%, respectively.

TABLE III: Comparison of uplink Spectral Efficiency (SE) and
Throughput (R) between non-cooperative traditional systems
and Cloud-BSS (cell radius = 1 km).

Method Average Cell User Cell Edge User
SE [bps/Hz] R [Mbps] SE [bps/Hz] R [Mbps]

Traditional System | o 17 7306 | 1085 | 0.73+6.8% | 3.65
(Non-Cooperative)

Cloud-BSS o

M = 3) 2.76 £ 6.8% 13.79 1.12+6.2% 5.60

Cloud-BSS . . . 00 ..

(M = 4) 3.07+7.1% 15.35 1.27 £ 6.3% 6.35

Cloud-BSS o

M = 5) 3.23+7.1% 16.14 1.41 +7.8% 7.05

No Additional Overhead Compared to CoMP: Coordi-
nated Multipoint Processing (CoMP) is another approach to
mitigate the average interference, in which the BSs within a
cluster exchange Channel State Information (CSI) [16]. How-
ever, this approach requires a pilot-symbol overhead (19% of
the capacity) in order to estimate the channel coefficients [17].
Releasing this huge amount of capacity can increase the net
bit rate, which may be used for other purposes like coding
to increase reliability. Our BSS-based solution implicitly esti-
mates the channel coefficients and therefore does not require
pilot-data exchange as in CoMP.
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Fig. 7: (a) Increase of Bit Error Rate (BER) with Signal to Noise Ratio (SNR) by moving the MS’s towards a common cell; (b)
Increase in the Net Channel Capacity with increase in N, with M = 7, for different SNR = 5,10, 15,20 dB and D(A) = 0.3;
(c) Trading off capacity for improved BER: decrease of BER with SNR when removing MS # 2 or MS # 3 from Fig. 2(b).

IV. CONCLUSION AND FUTURE WORK

We presented a novel Blind Source Separation (BSS)-based
solution, Cloud-BSS, that leverages the centralized character-
istic of Cloud Radio Access Network (C-RAN) so to improve
performance of highly mobile cellular networks. Cloud-BSS
divides a set of neighboring cells into clusters that can use
all of the frequency channels in the system band, thus in-
creasing the system spectral efficiency, decreasing handovers,
and eliminating the need for bandwidth-consuming channel
estimation while mitigating interference. We discussed the
effect of irregular topologies on Cloud-BSS performance in
terms of BER and introduced a strategy, named Channel-
Select, to improve the SNR.

Although Cloud-BSS is able to mitigate the intra-cluster
interference, it can not mitigate the inter-cluster interference
and we only are able to decrease the effect of inter-cluster
interference on estimated source signals by exploiting the
Channel-Select strategy. As a result, the achieved system ca-
pacity — while improved — is still not close to the interference-
free-capacity upper bound, especially in environments with
strong Co-Channel Interference (CCI). Therefore, in order
to mitigate the inter-cluster interference and approach such
upper bound, we are currently exploring the possibility to
define different clusters for different frequency channels and
to dynamically determine clusters’ sizes based on the current
and future positions of the mobile users.
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APPENDIX
PROOF OF THEOREM 1
Since ||C7Y||Z} = inf Hl‘(j:ﬁ”w
X oo
alx|l, < ||Cx||,, for all x. Take some vector x and let
llz]l., = |=;|; then, it follows that 0 < a < |ci| — > |cij].
J#i

, we only need to show that

With some manipulation, we have,
0 < alzi| < euzi| — 2 |eijz;| < lewzi] — |3 cija;] <
£ =

j#i J
12 cijaj| < max 3 cijaj] = [|Cx|loo.
J J
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