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Abstract. A bottleneck of histopathology image segmentation is its execution speed and 

memory capacity for large images containing hundreds and thousands of objects, such as cells. 

In this paper we propose an approach to perform online nuclear segmentation on large 

fluorescence brain tumor images using CometCloud, an autonomic Cloud Engine. Based on 

our previously developed cellular segmentation algorithm, the seed detection and contour 

generation were parallelized on CometCloud, using the HPC infrastructure available at 

Rutgers University. The method was tested on some fluorescence brain tumor images 

(4096x4096x3), containing thousands of nuclei within each image. We have achieved more 

than 100 times speed up compared to the original sequential implementation. 

1. Introduction 

Automatic image segmentation of cell nuclei is a fundamental operation in computational 

pathology image analysis, and is the first step in quantitative analysis of nuclear 

morphometry. Variations in tissue processing and staining make it difficult to achieve robust 

segmentation performance over large image datasets. Additional computational complexity is 

necessary to address variations and produce quality segmentation results, especially in 

neoplastic tissues where nuclei are densely packed. This complexity adds significant 

computational costs that must be addressed through software optimization, including the 

usage of parallel computational architectures [1]. Tissue segmentation using color or 

multispectral images by combining spatial clustering with multiphase vector level set active 

contours was proposed for segmenting histological prostate cancer tissues in [2]. There are 

many approaches utilizing color and texture to separate epithelial nuclei, stroma, and 

background regions in breast microarray [3] and hematoxylin and eosin stained prostate 

cancer [4]. Many researchers proposed efficient methods to tackle touching cells within the 

image, such as a rule-based approach [5] for merging over-segmented regions, and Voronoi 

diagram [6] to correct the overlapped regions. However, it is difficult to derive a generalized 



rule to merge the over-segmented regions in various image types. An ellipse-fitting technique 

was applied to segment based on these concavities among nuclei within overlap regions [7]. 

However, the ellipse may not be suitable to model certain shapes of the cells, especially for 

cancerous cells. Wen et al. [8] reported their study on decomposing clumps of nuclei using 

high-level geometric constraints derived from maximum curvatures. This approach is quite 

effective in separating touching nuclei. However, for some touching objects, the common 

connecting region may not have local maximal curvatures. Kothari et al. [7] proposed a semi-

automatic method for touching cell segmentation, in which they applied concavity detection at 

the edge of a cluster to find the points of overlap between two nuclei. Concave vertex graph [9] 

and another graph based method [10] were proposed to address touching cell segmentation. 

Chang et al. [11] proposed an approach to segment touching objects through iterative voting, 

level set is then followed to get final segmentation of each object. This approach fails when 

two objects overlaid with large areas. We have developed an cellular segmentation algorithm 

to handle this issue for overlapping cells in histopathology tissue microarray [12].  

Due to the computational power required to process the cellular segmentation, it is 

necessary to explore innovative solutions, involving the use of various distributed 

computational resources, to provide answers within a reasonable time limit. In this paper, we 

present the use of CometCloud to process the cellular segmentation algorithm in parallel on 

multiple high performance computing (HPC) resources with the goal of reducing the overall 

computational time. CometCloud is an autonomic Cloud framework that enables dynamic and 

on-demand federation of distributed infrastructures such as HPC, Grid, and Cloud. It also 

provides a flexible programming platform that supports several models (MapReduce, 

Workflow, Master-Worker/BOT) to easily develop applications that can run across the 

federated resources. Therefore, our proposed solution exploits the potential large parallelism 

of the problem by making effective use of distributed HPC resources at Rutgers University. 

 

2. Parallelizing the Nuclear Segmentation Algorithm 

The bottleneck of our cellular segmentation is its execution speed and memory load for 

large images containing hundreds and thousands of cells. Mostly it is hard to load and process 

a large image in a single system, and it is a very slow process to get contours of all the cells 

(nuclei). Using our developed cellular segmentation algorithm, for example a 4096x4096 

microscopic image taken under 20x objective containing 5,817 nuclei, which will take several 

hours to sequentially process the whole image by nuclei detection and contour generation. The 

aim of this paper is to study efficient methods to execute nuclear segmentation on large 

microscope images and explore the feasibility of running such an algorithm online by 

parallelizing our previous methods [12] using CometCloud. In this paper, we focus on the 

federation of HPC resources but the same framework and implementation can be used in other 

environments such as Clouds (e.g., Amazon Elastic Compute Cloud) as well.  

The data used for this study were 20X objective magnification scans of glioblastoma brain 

tumor tissues stained with DAPI. Slides were digitized with an Olympus VS120 microscope, 

compressed with JPEG at a quality factor of 80. Images were tiled into 4096x4096 pixel tiles, 

and example tiles with moderate to high nuclear density were selected from each whole-slide 

image in order to test segmentation performance. 

The whole cellular segmentation contains two sequential steps, seed detection and contour 

generation. Figure 1 shows the execution time for each step of seed detection and contour 

generation using an image (4096x4096) with 4,397 nuclei. From calculation profiles, voting 



and level set evolution are the bottlenecks for seed detection and contour generation, 

respectively.   

 

 

  (A) Seed Detection    (B) Contour Generation 

Fig 1. Execution time (seconds) for each step of seed detection and contour generation using 

an image (4096x4096) with 4,397 nuclei. 

Seed detection is a process to find the center of nuclei. Based on our algorithm [12], a 

gradient image F ,  including magnitude   and phase , were first 

calculated from the whole image I . The voting area  of each pixel 

with high gradient magnitude is defined by a cone-shape whose vertex is the pixel , and 

dependent on the radial and angular range defined by 

. The 

voting area of each pixel is marked by a 2-D Gaussian kernel  whose center is located 

at the center (centerX, centerY) of the voting area A and oriented in the voting direction 

. Here . For each pixel , the 

voting direction is defined as its negative gradient direction to be  

 .  

Due to independency of each pixel , the whole image voting process can be 

parallelized with independent tasks (i.e., bag-of-task paradigm). After the completion of the 

independent tasks, the results of voting area from each pixel  are consolidated to create a 

whole voting image , which is dependent on the radial and angular 

ranges and has the same dimensions as the original image I   

To calculate the voting image, the voting image  is reset for all 

pixels  as initialization.  For each pixel , the voting image is updated as 

, where 

. The final voting image is the sum of all voting images at each 

pixel.  The centers of mass are determined by mean shift on the possible centers of each cell 

after thresholding the voting image at various ratios (R  of maximum value 

of final voting image.  

After identifying the center of each nucleus, contour generation was performed using our 

proposed level set based interaction model. For a microscopic image containing thousands of 

nuclei, some nuclei are isolated from each other; some nuclei are touching boundaries or 
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overlapping with each other. We first divide the whole image into two images. One contains 

nuclei isolated from each other, and the other contains nuclei overlapping with one another 

and some large size nuclei. Using morphology processing, a mask containing isolated nuclei 

and its contour were created. For the image containing large nuclei and overlapping nuclei, 

given the accurately detected seeds, the touching cell segmentation was performed using our 

level set based interaction model with a repulsion term to prevent the contours of adjacent 

cells from overlapping and separate the touching cell boundaries [12]. Previously due to 

hundreds and thousands of nuclei within an overlapping image, it would take multiple hours 

to finish the second-order level set evolution within the whole image. To make a reduction in 

memory use and boost the performance of level set evolution, the level set is restricted by 

evolution to a smaller neighborhood around the seeds. Meanwhile each seed with its neighbor 

was assigned as one parallel task to achieve parallel calculation of level set evolutions on 

CometCloud. 

 

2.1 Image Segmentation across Federated Resources using CometCloud  

The main challenges of the nuclear segmentation algorithm execution are the high 

computational power required to process the images, which translates into long execution time, 

and the large amount of RAM memory required during the algorithm execution. In order to 

overcome these challenges, we split the input images into multiple chunks. These chunks are 

processed as independent parallel tasks as we described above. Nevertheless, this comes at the 

cost of increasing the complexity of the workflow execution. In particular, it is needed to 

orchestrate both the execution of the tasks and the federation of the appropriated distributed 

resources to effectively compute those tasks. Thus, we decided to develop a framework based 

on CometCloud that can efficiently deal with the whole execution process. CometCloud 

creates a cloud abstraction on top of the resources that allow applications to make use of those 

resources on demand. Next, we highlight the main CometCloud features that are essential to 

overcome the challenges of our application workflow. 

1) Usability. CometCloud creates a unified view of resources hiding their actual location and 

architecture. Users are able to interact with the federated resources using a programming 

abstraction. This abstraction eases the development of applications by decoupling the 

application from the particularities of the infrastructure. It supports several common 

distributed programming paradigms, including the master/worker, workflow and 

MapReduce.  

2) Scalability. It allows scientific applications to scale across institutional and geographic 

boundaries. This is essential because oftentimes a single resource is not sufficient to 

execute a given scientific workload (e.g. because resource is of limited scale, or it 

mismatches application requirements). Of course, this must be achieved without hindering 

the usability. 

3) Autonomic management. The manager enables the autonomic management and multi-

objective optimization (including performance, energy, cost, and reliability criteria) of 

application execution through cross-layer application/infrastructure adaptations. This 

component offers QoS by adapting the provisioned resources to the application's behavior 

as well as system configuration, which can change at run time, using the notion of 

elasticity at the application level.   

4) Fault tolerance. CometCloud has built in fault tolerance mechanisms to deal with 

unpredicted failures at the application and infrastructure levels. These mechanisms are 



essential to guarantee the execution of the application without the intervention of the user. 

Thus, in case of failed tasks the master recognizes the error and either directly resubmits 

task (hardware error), or regenerates it by, for example increasing the minimal hardware 

requirements (application error).  

5) Elasticity and on-demand access. An important factor that enables the previous features 

is the ability of CometCloud to seamlessly scale up/down or out resources as needed. 

What is important, the resulting elasticity makes the infrastructure resilient and hence 

improves its ability to sustain computational throughput and support fault tolerance 

mechanisms. 

 

 

Fig 2.  CometCloud workflow architecture for the image processing pipeline. 

In order to run our computational problem on a federation of resources, we combined the 

MATLAB-based implementation of the nuclear segmentation algorithm with CometCloud 

infrastructure using the master/worker paradigm. In this scenario, the segmentation algorithm 

serves as a computational engine, while CometCloud is responsible for orchestrating the entire 

execution. The master/worker model is among several directly supported by CometCloud, and 

it perfectly matches problems with large pool of independent tasks. The master component 

takes care of generating tasks, collecting results, verifying that all tasks executed properly, 

and keeping log of the execution. All tasks are automatically placed in the CometCloud-

managed task space for execution. In the proposed approach, the workers’ sole responsibility 

is to execute tasks pulled from the task space. To achieve this, each worker creates a 

subscription that indicates the type of tasks that is interested on and its computational 

characteristics. As soon as the tasks are placed into the task space, the autonomic manager 

notifies each worker when there are tasks matching its subscription. This publish/subscribe 

model enables an efficient use of the resources by reducing the overhead created when 

workers blindly query the task space looking for tasks to compute. 



Specifically, the workflow we have implemented has two main phases: 1) Seed detection, 

and 2) Contour generation (see Figure 2). Each of these phases has two stages where the 

output of one stage is the input of the next one. Note that our framework is prepared to 

process multiple images simultaneously, and therefore the execution of the workflow of an 

image is independent from the others. Next, we will describe the details about how the 

workflow works. 

The workflow starts with seed detection phase. The first stage of this phase is to compute 

the voting area from each pixel . Thus, the master splits each image and generates 

hundreds of tasks for each image. The number of tasks is given by the size of the image and 

the number of chunks in which the image is split. These tasks are computed by the workers 

that return the results to the master upon completion. Once the master has collected all the 

results of an image, the next stage of the workflow is started. This stage generates a single 

task to consolidate the results of that image and obtain the center of each nucleus. Next, the 

contour generation phase is started. In this phase, a single task analyzes the results of the seed 

detection phase and generates thousands of tasks. Here the number of tasks depends on the 

number of nuclei in the image. 

 

3. Experimental Evaluation 

In this section, we present the results obtained with the proposed parallel nuclear 

segmentation implementation. Specifically, we first provide results of the segmentation 

algorithm on some sample imagess. Then we will focus on the execution evaluation of the 

CometCloud implementation. 

Figure 3 (A) and (B) shows segmentation results of two fluorescence stained brain tumor 

images (4096x4096) at 20x objective. The first and third rows are the non-overlapping nuclei 

segmentation whose contours are in green with their zoom in sub-images. The second and 

fourth rows are the overlapping and large nuclei segmentation whose contours are in red with 

their zoom in sub-images.  

The experimental test bed consists of a set of state-of-the-art HPC resources including a 

32-core SMP system (Snake) with Intel Xeon X7550 processors and 128GB or RAM memory, 

and 32 systems with 8 cores (Intel Xeon E56620) and 6GB or RAM memory each (Dell 

cluster). While Snake supports large memory capacity demand, the cluster requires 

distributing the tasks among the nodes in such a way that can be executed in parallel and each 

parallel task has lower memory requirements. 

In this paper, we focus on the seed detection algorithm because it has higher potential for 

parallelization. In the current implementation of the level set component of contour generation 

(see Figure 1) each detected seed if processed considering the adjacent pixels, which may 

contain neighbor elements of interest. Thus, instead of parallelizing within images we exploit 

parallelism at the workload level (i.e., processing whole images in parallel).  

The contour generation algorithm execution over the whole data set took more than 3 hours 

sequentially and 36 minutes using CometCloud. On the other hand, the seed detection 

algorithm took more than 12 hours sequentially and less than 4 hours using CometCloud. Note 

that the seed detection algorithm does not scale linearly when smaller chunks of the image are 

run in parallel, i.e., the execution time for N chunks in parallel is larger than the execution 

time of processing the whole image sequentially divided by N. 

 

 



 

Fig 3.  (A) and (B): Segmentation results of two fluorescence stained brain tumor images 

(4096x4096) at 20x objective. 

 

 



Figure 4 shows the execution time of the tasks that process the chunks of the images in 

parallel. Note that tasks in Snake take longer than Dell cluster, because Snake is more 

subscribed than the Dell nodes, and the Snake cores are slower than the Dell nodes’ ones. The 

average task execution time is 793s in Snake and 563s in Dell. The standard deviation is 172s 

(21.75%) and 106s (18.80%) in Snake and Dell, respectively. This illustrates that the 

algorithm is clearly sensible to the content of each image chunk. 

 

 

 
 

Fig 4.  Tasks execution time on Snake and Dell 

 

One of the goals of this paper is to study the potential of the proposed implementation and 

execution framework to run automatic image segmentation in an online manner. This is an 

important aspect since we may want to determine, for example, how many resources are 

needed to meet certain deadline requirements. To do this, we have conducted a set of 

experiments processing with the seed detection algorithm on a sample image using 

CometCloud and different partition configurations. The experiments were conducted over a 

representative set of tasks. The partition configurations generate from 256 to 65,536 

independent tasks. The obtained results are shown in the summary table of Figure 5. It also 

shows the estimated cost for running the independent tasks in parallel. We used economic cost 

considering that local resources (i.e., 256 cores) are available for free, and the rest of the 

resources are obtained from Amazon EC2 in pay-as-you-go basis. The estimation was done 

based on the cost of “Medium” Amazon EC2 instances. Figure 5 also shows that overheads 

are higher for larger number of partitions and the tradeoff between the execution time and cost. 

The execution results also show that it wouldn’t always be the best option by mapping one 

task per core for high efficiency. For example, with 256 available cores we can use different 

number of tasks and task mappings: 

 256 tasks: 256 cores and each runs 1 task (3,280s) 

 1024 tasks: 256 cores and each runs 4 tasks (456s*4 = 1,824s < 3,280s) 

 4,096 tasks: 256 cores and each runs 16 tasks (184s*16 = 2,944s < 3,280s) 

 16,384 tasks: 256 cores and each runs 64 tasks (128s*64 = 8,192s > 3,280) 

 Etc. 

In this example the best configuration is to partition with (32,32) and run the 1,024 tasks on 

256 cores. The reason for this behavior can be found in the better utilization of memory with 

smaller chunks. 
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# Partitions (x, y) # Tasks/image AVG Exec time/task Estimated cost 

(16, 16) 256 3,280 s 0 $ (local) 

(32, 32) 1,024 456 s $15.56 

(64, 64) 4,096 184 s $ 25.1 

(128, 128) 16,384 128 s $ 68 

(256, 256) 65,536 117 s $ 254 

 

Fig 5.  The estimated task execution time with different partition configurations. The 

estimation is done based on the average of a representative set of tasks using a sample image. 

The cost is based on Amazon EC2 “Medium” instances. Note that the figure considers the 

best partition configuration for each number of cores. 

 

4. Conclusion 

In this paper, we describe a newly developed, online segmentation algorithm which we 

tested on an ensemble of glioblastoma brain tumor images. Our experimental evaluation stated 

that the contours of nuclei were delineated effectively using a new seed detection and level set 

active contour based interaction model. We demonstrated that using our parallelization 

approaches, the bottleneck of cellular segmentation due to execution speed and memory 

capacity for large images can be significantly reduced. The approach is automatic and not 

limited to domain specific prior knowledge. Therefore it can be extended to other imaging 

modality touching object segmentation applications.  At the same time, the CometCloud 

platform can exploit different types of resources such as public clouds, therefore enabling an 

online execution of the segmentation algorithm if more resources or budget are available. 
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