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Abstract—Social Clouds provide the capability to share re-
sources among participants within a social network – leveraging
on the trust relationships already existing between such par-
ticipants. In such a system, users are able to trade resources
between each other, rather than make use of capability offered
at a (centralized) data centre. Incentives for sharing remain
an important hurdle to make more effective use of such an
environment, which has a significant potential for improving
resource utilization and making available additional capacity that
remains dormant. We utilize the socio-economic model proposed
by Silvio Gesell to demonstrate how a “virtual currency” could
be used to incentivise sharing of resources within a “community”.
We subsequently demonstrate the benefit provided to participants
within such a community using a variety of economic (such
as overall credits gained) and technical (number of successfully
completed transactions) metrics, through simulation.

I. INTRODUCTION & CONTEXT

Over recent years there has been a considerable increase
in the availability of mobile devices with internet capability,
along with a proliferation of set-top boxes and home user
machines (such as media centres) supporting content down-
load. This can also be observed by the significant increase
in the take up of TV-over-IP (TVoIP) services – according to
a survey from Samsung electronics 1, Internet video (which
accounts for television, Video-on-Demand and Peer-2-Peer
traffic) will account for 91% of consumer Internet traffic in
2013. Similarly, according to other surveys (such as from
Morgan Stanley 2 conducted in 2010), mobile will be bigger
than desktop internet in 5 years. Such studies also demonstrate
the considerable new modes of service delivery and access
that will become available when mobile internet becomes the
dominant mode of access to content. It is also inevitable
that such mobile devices (including set-top boxes) are not
just used to access content, but also provide caching, storage
and processing capability to other users (limited currently by
battery power and security considerations).

In previous work, the STACEE system [1] was developed
for dynamically creating storage Clouds using edge devices,
such as routers, routing switches, multiplexers, mobile phones,
PCs/media centers, set-top boxes and modems. The functional

1http://mpeg.chiariglione.org/tutorials/seminars/mmt-2010/Samsung.pdf
2http://www.morganstanley.com/institutional/techresearch/pdfs/Internet

Trends 041210.pdf

architecture within STACEE makes use of edge device capac-
ity in a Cloud using Peer-to-Peer (P2P) technology, thereby
reducing energy consumption at a single site and maximising
user engagement with the system. With a four layer archi-
tecture, the system ensures a high level of communication,
control, synchronization and data access. The availability of
storage resources and access latency are also significantly
improved. The establishment of such P2P-based community
Clouds requires a robust mechanism for controlling interac-
tions between end-users and their access to resources/devices.
For instance, in the context of such a Cloud model, end-
users can contribute with their own resources in addition to
making use of resources provided by others (at different times
and for access to differing services). It is necessary to have
inherent trust between users and providers of such systems,
an approach also explored in Social Clouds [2] – which
considers how storage resources can be traded between friends
within a social network such as Facebook. The Social Cloud
model assumes the existence of trust between users within
such a system, thereby overcoming some of the restrictions
to sharing that would arise within a more open environment.
A number of incentive models are also outlined in [2] that
encourage users to contribute resources for use by others.
In previous work [3], we have also investigated the role of
trust relationships between participants within a Social Cloud,
in particular identifying how malicious behaviour (through
inaccurate feedback) could impact the selection of a suitable
resource provider.

In this paper, we describe how a resource sharing model
based on modelling intra- and inter-community exchange can
be supported within a P2P, edge-device based environment.
We propose a decentralized model that provides: (i) incentives
for providers to offer resources; (ii) consumers to provide
feedback about the quality they receive. We argue that this
model provides a more natural model for sharing resources
– as it does not rely on any central coordination servers or
the establishment of a central exchange currency. Our model
is based on the concept that excess capacity owned by a
user can be traded within a “community”, in order to earn
virtual currency and credits they could utilize at a later time.
Our model is validated through simulation and two design
implementations based on the CometCloud framework are
proposed.



II. SHARING MODELS

Our approach is based on the concept of local communities
identified by the socio-economist Silvio Gesell in his book
“The Natural Economic Order” [4]. In local communities
participants can generate their own currencies and exchange
services between each other, thereby contributing to a more
autonomous market exchange. The approach utilizes demand
within a community to set up local service providers. “The
Natural Economic Order” identifies sharing models between
participants within a regional context, building on previously
established trust relationships, and providing a process for the
exchange of goods and services with the ultimate objective of
regulating a specific market. Gesell’s approach also includes
other aspects (not considered here), such as a currency losing
value over time and therefore the need to support currency
circulation and prevent hoarding.

In our model, every node (or exchanging entity) has its
own currency – the value of which fluctuates according to the
reputation of the node as a provider (based on its ability to
offer a capability) within a market. We assume participants in
the network belong to a community (modelled as a “cluster”)
such that nodes that belong to the same community/cluster are
connected directly or by a few hops in the underlying social
graph. The notion of a cluster is based on the observation that
often nodes that are connected through social relationships are
more likely to interact and trust each other. Therefore clusters
are characterized by a certain level of social trust. When one
node is using a service from another, a transaction occurs
between them. More formally a transaction is defined by a
consumer, a provider and a price.

In our approach, we define two payment schemes between
pairs of nodes. Payment within the same cluster involves
converting a currency of one node with another – depending on
the current exchange rate known within the cluster. Currency
exchange rates depend directly on a node’s reputation. Nodes
that belong to different clusters are not allowed to convert
currencies i.e., payments are kept only as credits, similar to
credit networks [5], [6], [7], [8]. Payments in credit networks
involve passing IOU (I Owe You) messages between trusting
nodes. When a node A offers a service to node B, then B
passes an IOU to A, indicating that node A can receive a
service in the future from B (and only from B) in return.

Consider that during a transaction node A (using A-dollars)
pays node B (which uses B-dollars) – then there are two
possibilities:

1) If A and B are in the same cluster, B will transform A-
dollars into B-dollars according to the current exchange
rate. If rep(A) is the the reputation of node A and
rep(B) the reputation of node B then 1 A-dollar equals
rep(A)/rep(B) B-dollars. B can then use its B-dollars
to buy services from other nodes in the network and
is not restricted to trade with A only (i.e., if it kept A-
dollars as credit) – unlike credit networks. It is therefore
necessary to maintain exchange rates to enable such
conversion to be carried out.

2) If A and B are in different clusters: B will keep A-dollars
and use these as a credit with A for a future transaction.

When two nodes belonging to the same cluster successfully
complete a transaction, the consumer node gives feedback (as
a score) about the provider node – leading to an update of
the reputation of the provider node. A reputation value is
calculated as an average of all received scores. In every cluster,
a list of reputation values for nodes that belong to that cluster
is maintained.

Figure 1 provides an illustrative example of two clusters.
It shows the role and currency of each node involved in
two transactions and the flow of messages between nodes in
Transaction 1. When a service is requested and delivered, the
consumer pays for it (x A-dollars) and scores the provider’s
service. Specifically, in step (5) the provider’s reputation is
updated by combining the new score with previous values.
This could be undertaken in a number of possible ways: (i)
averaging of values across all previous transactions – which is
the simplest approach that could be adopted; (ii) weighting
of values based on recency – i.e., transactions that have
completed most recently are given a greater weighting than
those that occurred a long time ago – this ensures that good
recent behaviour is given greater emphasis; (iii) normalising
the weighting across all nodes within a system, similar to
Eigentrust [9]. Normalisation is particularly useful to avoid
giving very high reputation scores to particular nodes and
thereby always selecting them, limiting selection of other
nodes (in this way, although a normalisation approach is used
similar to Eigentrust, it is different objectives). Reputation
values can be stored by multiple cluster header nodes or
alternatively a distributed hash table (DHT) can be used to
store and retrieve them.

Transaction 2 reflects the service payment in consumer’s
currency (A-dollars), which cannot be converted to the
provider’s currency (B-dollars). Such a transaction demon-
strates cross-cluster interaction, a useful outcome to ensure
that nodes within clusters are still able to collaborate, but with
credits that can only be redeemed by one provider. The ability
to support both currency conversions and credits increases the
incentives to collaborate and enable both “trustful” sharing
(within a cluster) and “explorative” sharing (between clusters).
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Fig. 1: Example transactions. Transaction 1 is performed
within a cluster and transaction 2 between different clusters



By “trustful” sharing we assume that nodes in a cluster
report scores about providers/resources honestly and convert
currencies according to the cluster related exchange rates. As
a part of our future work we plan to consider and analyze
non-cooperative behavior as well.

III. EVALUATION

To demonstrate the benefits and limitations of using the
resource sharing model we perform a set of experiments taking
account of the connectivity within and between clusters. Our
experiments answer the following questions: (i) how does the
number and sizes of clusters/communities affect the number
of transactions completed? (ii) is the approach scalable? (iii)
how much does the non-uniform (power-law) distribution of
the reputation and social graph degrees affect successfully
completed transactions?

A. Experimental Setup

All nodes are connected via an underlying social graph.
We simulated a social graph using the findings from a large
study about the Microsoft Messenger instant messaging (IM)
system [10]. The study identifies that the graph has two
important structural properties which are related to the: node
degree distribution and the clustering coefficient. In this study,
two graphs from the instant-messaging system were derived
and observed: a buddy (friends) graph and a communication
graph. The buddy graph contains edges between nodes who
are buddies or friends i.e., are in each others contact lists
while the communication graph contains edges only between
those buddy nodes who have communicated during the ob-
served period. Both graphs have a power law node degree
distribution with an exponential cutoff p(k) ≈ k−ae−bk. It
was observed that the communication graph has parameters
a = 0.8 and b = 0.03 and the buddy graph has a = 0.6
and b = 0.01. The second property is related to the clustering
coefficient, which is a quantitative measure of transitivity in
a communication network i.e., showing to what extent people
who have common friends tend to be friends themselves. The
clustering coefficient of a node is formally defined as a fraction
of triangles around a node, where a triangle refers to the
situation when two friends of a node are friends themselves.
Some earlier studies on web graphs [11] show that clustering
coefficient decays as c = k−1 while the study with the instant-
messaging system shows it decays at a much slower rate,
as c = k−0.37. This indicates that the clustering coefficient
in the social graph is higher than in the web graph. The
average clustering coefficient was observed to be 0.137. We
used these two structural properties to simulate an online
social network graph. Our simulated graph has a node degree
distribution p(k) ≈ k−ae−bk with a = 0.8 and b = 0.03
which corresponds to social communication graph. We tuned
the average clustering coefficient to be ≈ 0.137.

Subsequently, we simulated a clustering algorithm that
divides the nodes of the graph into a large number of small
clusters. Our clustering algorithm satisfies two conditions:
(1) clusters are non-overlapping and (2) nodes that belong

to the same cluster are all connected. We used merging of
neighboring clusters to experiment with varying numbers of
clusters and different cluster sizes. We carried out various
experiments with a pre-defined node consumer, provider and
a price. A transaction is carried out along the shortest path’s
chain of nodes between the consumer and the provider. After a
transaction the node consumer gives a score about the provider
node based on: (i) randomly from a predefined interval for
scores; (ii) a distribution (following a non-uniform power law)
based on the Quality of Service, e.g. if a quality value for a
node provider is q, then the score will be randomly selected
over the interval [q − t, q + t] where t is a threshold.

B. Experimental Results

We performed a set of experiments to study the long
term liquidity (i.e., capacity to route payments when nodes
repeatedly transact with each other), as well as the overall
credits gained during transactions. We analyzed how various
parameters influence the success of transactions. In particular,
we observed the following parameters: (1) the size and the
number of clusters, (2) the distribution of reputation values,
(3) the size of the social graph, (4) the density of the social
graph and (5) the limit of nodes’ accounts.

1) Impact of cluster sizes: Assuming that “socially close”
nodes trust each other, our first experiment aims to identify
how much it pays to trust each other. For this purpose we
observed the network under the following conditions: when
no trust exists at all, when trust exists within small groups
and large groups. The main metric used is the number of
successful transactions. A transaction is successful if every
single payment between a pair of nodes along the chain
between the provider and the consumer is successful. Our
purpose is to find out how much the success of transactions
increases when we increase the clusters’ sizes.

The number of nodes in our initial setting is 1024 and
the maximal degree a node could have is 64. Note however
that node degrees are selected according to the power-law
distribution and most of the nodes have degrees much less
than 64. In each experiment we start with a predefined set
of transactions to be attempted. We present results for five
experiments with 200, 400, 600, 800 and 1000 transactions
respectively. For each transaction we specify a node consumer
and a node provider which are selected uniformly at random
from the set of all nodes. The value of the price was set
to 20 and the account limit for each node was set to 100.
These parameters where selected to result in some nodes
being depleted of their budget/account. This happens when
the number of transactions a node can sustain defined by the
ratio of account and price is less or equal to the number
of transactions a node participates in. In this experiment all
reputation scores were selected uniformly at random from the
interval from 0 to 10.

Figure 2a illustrates the number of successful transactions
for the different clustering scenarios. In each of these different
scenarios we have one large cluster and several smaller clus-
ters. We illustrate how the number of successful transactions
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Fig. 2: Summary of experimental results

differ depending on the size of the largest cluster. We compare
these different scenarios to the case with no clustering which
corresponds to the credit networks. First observation is that
although the success rate increases with increasing the largest
cluster size, it increases in a non-linear way. In particular,
Figure 2c illustrates how the percentage of the successful
transaction grows with the largest cluster size. It can be
observed that the number of successful transactions steadily
grows when the largest cluster is less than 900 nodes and then
significantly increases. The fact that all clustering scenarios
lead to higher number of successful transactions compared to
the case with no clustering (which is intuitive and expected)
illustrates how much our approach would improve upon the
approaches based solely on credit networks. At this point we
emphasize that the clusters (either small or large) are not
meant to be predefined in advance. The nodes should instead

be incentivized by proper mechanisms to join clusters and
thus contribute to their own and to the global success. In
Figure 2b we then consider equally sized clusters, i.e., we have
two and then three large clusters. These scenarios correspond
to a situation where two or three large groups act as allies,
where individuals within the group trust each other, however
groups themselves are antagonistic to each other. Although the
clustering again provides higher success rate it is to a lesser
extent than in the previous case.

2) Impact of reputation distribution: We performed the
next experiment in order to observe how different reputation
distributions affect the final outcome in terms of transaction
success. We compared three experiments where the reputation
scores were selected as follows. In the first case all the
reputation values were equal (in our case equal to 1). In the
second case they were selected uniformly at random from the



interval from 0 to 10. In the third case they were selected
according to a power-law distributed variable whose values
are selected from the interval between 0 and 100. Since we
calculate the currency values depending on the reputations
directly, in the last two cases we have uniformly and power-
law distributed currency values, as well. Figure 2d illustrates
the number of successful transactions for this case.

We observe that the cases where reputations and conse-
quently currency values are either equal or selected uniformly
at random have almost the same performance. On the other
hand in the third scenario, which is a model of network
with huge differences in currency values, the performance
is significantly lower. This indicates that a proper incentive
mechanism is needed that will motivate the nodes who offer
poor quality to strive for a better quality. Our Gesell economy
inspired model provides the right incentive for this, since the
nodes’ individual account values depend directly on its quality
of service and reputation. Figure 2e illustrates the values of
individual accounts. The values of individual accounts are
calculated as products of the total amount of money/currency
multiplied by the value of that currency. It is obvious that the
distribution of values of money nodes make corresponds very
well to the same power-law distribution of nodes’ reputations.
Thus by trying to increase it own welfare by improving its
reputation, a node directly contributes to the economic welfare
of the community.

3) Impact of the size of the graph: In this experiment we
varied the graph size. We set the number of nodes to be 256,
512, 1024, 2048 and 4096 respectively and selected the largest
cluster size to be approximately 90% of the network’s size.
We observed that the percentage of successful transactions
was always between 70% and 80% which indicates a good
scalability. In particular for the network size of 256 nodes
we obtained 76.00%, for the network size of 512 nodes we
obtained 72.86%, for the size of 1024 nodes we obtained
81.70%, for the size 2048 we got 78.70% and for the largest
size of 4096 we tested, we got 70.65% success rate. We
emphasize at this point that we do not impose the size of
the largest cluster to be always 90% of the network’s size.
This parameter was set to a fixed value in order to test the
scalability of the model with different population sizes. In
reality the users should make individual decisions regarding
which clusters to join.

4) Impact of the density of the graph: Next we observed
how the density of the underlying social graph affects the
transaction success. For this purpose we varied the parameters
a and b specific for the power-law node degree distribution, the
maximal node degree maxdeg and the clustering coefficient
exponent. The results are given in Figure 2f and Figure 2g. The
initial values for these parameters were: a = 0.08 and b = 0.3,
maxdeg = 64 and clustering coefficient exponent 0.37. We
have changed these values by increasing and decreasing them
a little bit, since we did not want to perturb the original social
graph too much. We observe that even small changes in these
parameters affect the success rate. Decreasing the clustering
coefficient exponent leads to worse success rate and increasing

it improves the rate. Thus the higher the density of the graph
is the better the success rate. Increasing the values of a and
b means more skewed distribution and a little decrease in the
success rate. The maximal degree value does not appear to
have a significant influence.

5) Impact of account limits: Finally we changed the ac-
count limits for every node to observe its impact and plot the
results in Figure 2h. It turns (as expected) the account limits
have huge influence on the success rate. We can observe that
when we increase the credit limits by a factor of two and three
respectively, after 1000 transactions the success rate increases
by almost the same factors, i.e., two and three.

C. Implementation in CometCloud

Using the outcome of simulation, our implementation (cur-
rently in progress) makes use of the CometCloud framework 3.
Conceptually, CometCloud is composed of a programming
layer, service layer and an infrastructure layer. The infras-
tructure layer uses the Chord self-organizing overlay [12],
and the Squid [13] information discovery and content-based
routing substrate that is built on top of Chord. The routing
engine supports flexible content-based routing and complex
querying using partial keywords, wildcards and ranges. It
also guarantees that all peer nodes with data elements that
match a query/message will be located. The service layer
supports a Linda-like [14] tuple space coordination model,
and provides a virtual shared-space abstraction as well as as-
sociative access primitives. Dynamically constructed transient
spaces are also supported and enable applications to explicitly
exploit context locality to improve system performance. In
this paper, we build the proposed social cloud community
model using such a shared space. The programming layer
provides the basic framework for application development and
management. It supports a range of paradigms including the
master/worker/Bag-Of-Tasks. Masters and workers can com-
municate via virtual shared space or using a direct connection.
Scheduling and monitoring of tasks are supported by the
application framework. The task consistency service handles
lost/failed tasks. Other supported paradigms include workflow-
based applications as well as MapReduce/Hadoop. We pro-
pose two implementation designs based on master/worker: i)
one tuple space per cluster/community; (ii) one coordination
tuple space and multiple transient spaces – one for each
cluster/community. CometCloud uses a pull-based tuple con-
sumption model: master nodes generate transactions between
peers and insert them (in the form of tuples) into the tuple
space, then the workers pick up tasks from the tuple space and
consume them. Workers model both provider and consumer
nodes of the Social Cloud. These (secure) workers can access
and possibly host part of the virtual shared space coordination
infrastructure; however, isolated workers (can get tuples only
through a proxy, a gateway node to access the shared space)
can be eventually used for scalability/security reasons.

3http://www.cometcloud.org



IV. RELATED WORK

Within an economic market that operates within a local
community, participants can generate their own currency by
using a valuable service as an exchangeable object. Local,
in this context, implies that the participants are known to
each other, and therefore utilize pre-existing trust relationships.
Several experiments, such as Wärgl in 1932 (stamp scrip [15]),
Comox Valley in 1983 (LETS: Local Exchange Trading Sys-
tem [16]) and in Ithaca since 1991 (Ithaca Hours [17]) used
the barter of complementary currencies for supporting values
such as volunteer work, daily help or skills that are often not
regularly utilized within a financial market.

Facilitating the exchange of computational and data services
by using complementary currencies has become an alternative
solution for Peer-2-Peer (P2P) networks as powerful instru-
ments to promote exchange. iWAT [18], Geek Credit [19] and
Ripple [20] are examples of systems that use such complemen-
tary currencies for exchanges of computational service such
as storage, computational capacity and network bandwidth.
Within such a market, a peer node can exchange capability
that it does not immediately need for an alternative service –
thereby enabling a better sharing of overall capacity between
participants in the market.

iWAT [18] is an internet version of the WAT system and
implements the core aspects of WAT – focusing specifically
on the problem of ticket exchange. As an issued ticket can
circulate between a number of different users within the WAT
system, the party responsible for issuing the ticket is also
responsible for validating it’s authenticity – as the redeemer
of the ticket may be different from the one to whom the
ticket was initially issued. The system also provides incentive
mechanisms for keeping users online, thereby providing a
large enough population of users to enable ticket exchange.

Samsara [21] concentrates on establishing service rela-
tionships between peers, minimising risk due to failure and
claim, to ensure equivalence between the contribution and
consumption of peer nodes. Establishing symmetric storage
relationships leads to fairness and is handled as a central
goal. Samsara is similar to the WAT system, however although
designed as a mechanism to support exchanging objects for
storage replication, it is preoccupied with fairness, rather than
offering an accurate payment representation.

The Ripple protocol [20] enables trustworthy ‘IOU’ ex-
changes defining particular trusted connections for each cur-
rency. Each currency operates on a separate user network,
but participants also have the authority to accede in different
currency networks. It is assumed that one unit of a product
has equal significance for all the participants. In most cases
this assertion represents only an assumption; e.g. one com-
modity has one significance for A but probably has different
significance (utility) for B.

V. CONCLUSION AND FUTURE WORK

We propose an incentive model for resource sharing in
social clouds. Our model extends work in credit networks,
does not require a central reputation management system and

supports asynchronous demands. In addition, we utilize trust
inherent within social networks to achieve more flexibility
by introducing a virtual currency representation motivated by
work of Gesell. We study the long term liquidity, that is the
capacity to route payments, when nodes repeatedly transact
with each other. Using simulations we show how network
size, clustering strategy, reputation distributions, density of
the social graph and credit limits impact the success of
transactions and the overall credit gain. Our future work will
focus on studying other realistic scenarios such as network
and cluster dynamics and non-cooperative behavior, along with
deploying the model using the CometCloud framework.
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