Collaborative Marketplaces for eScience: a Medical Imaging Use Case
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Abstract—The development of digital imaging tech-
nology is creating extraordinary levels of accuracy
that provide support for improved reliability in dif-
ferent aspects of the image analysis such as content-
based image retrieval, image segmentation and classi-
fication. This has dramatically increased the volume
and generation rates of data, which make querying
and sharing non-trivial, and render centralized solu-
tions infeasible. Moreover, in many cases this data is
naturally distributed or has to be shared across mul-
tiple institutions requiring decentralized solutions. In
this paper, we present a federation approach that
can take advantage of advanced cyber-infrastructure
(ACI) by seamlessly and securely interacting with
information/data located across geographically dis-
tributed resources. We describe and evaluate the
establishment of a federated marketplace across re-
sources from UK and US in the context of collab-
orative research in medical imaging. We show how
users from different sites can transparently access to
remote data by placing computational requests in the
marketplace. Moreover, we evaluate different pricing
policies to demonstrate how site providers and users
can benefit from such federation.

I. INTRODUCTION

Medical imaging is a very intensive area of study with,
by 2010, more 5 billion medical imaging studies been
conducted worldwide [32]. It includes millions of applica-
tions in different disciplines such as radiology, pathology
and quantitative biology. Multimodal datasets, from
macro to micro resolutions, will make studies ranging
from human organ, tissue to cell and molecular levels
a reality. These studies enable personalized medicine
with medical decisions, practices and/or products be-
ing tailored to individual patients. Digital image pro-
cessing is an interdisciplinary field at the intersection
of biomedical imaging, computer science, data science,
mathematics, physics and medicine. This field develops
computational and mathematical methods for solving
problems pertaining to medical images and their use for

biomedical research and clinical care. These methods can
be grouped into several broad categories namely: image
segmentation, content-based image retrieval, and image-
based physiological modelling.

Content-based image retrieval (CBIR) applies com-
puter vision techniques to search for specific content
in digital images from large datasets. The image-based
content refers to various features, colors [7, 33, 36],
shapes [25], textures [18, 21] or any other informa-
tion [34, 36] that can be derived from query and can-
didate images accompanying the searching process to
the one similar to query image. The performance of
the retrieval and usability are usually ranked by some
criteria, such as appearance similarity or diagnostic rel-
evance. Over the last decade, there has been a growing
interest in the predictive assessment of disease or therapy
course. Image-based physiological modelling, such as
biomechanical or physiological nature, can extend the
possibilities of medical imaging from a descriptive to a
predictive angle of view. The International Union for
Physiological Science (IUPS) has been sponsoring the
IUPS Physiome Project for more than a decade [4, 15].
This is a worldwide public domain effort to provide
a computational framework for understanding human
physiology. It aims at developing integrative models at
levels of biological organization, from genes to the whole
organism via gene regulatory networks, protein path-
ways, integrative cell functions, and tissue and whole
organ structure/function relations. Such an approach
aims at transforming current practice in medicine and
therapy to a new era of computational medicine [41].

Near real-time processing of images has become es-
sential for a wide range of these biomedical researches,
especially for handling with the multimodal datasets.
Large-scale, multiple sites collaboration has become in-
dispensable for a wide range of research that rely on the
capacity of individuals do dynamically acquire, share,
and assess images and correlate data. To design, develop,



evaluate, and maintain a web-based model for interactive
telemedicine, intelligent archiving, and automated deci-
sion support in biomedical imaging is an overwhelming
trend in the near future. However, the heterogeneous
execution speed and memory capacity of distributed
computing infrastructures makes processing large data
sets with multiple sites challenging.

Federated computing has been explored in various
contexts and has been demonstrated as an attractive and
viable model for effectively harnessing the power offered
by distributed resources [3, 5, 13, 17, 27, 30]. More
recently, cloud federations are being explored as means
to extend as-a-service models to virtualized data-centers
federations [11, 23, 31, 39]. Clouds offer on-demand
access to computing utilities, an abstraction of unlimited
computing resources, customizable environments, and a
pay-as-you-go business model. They have a potential for
scale-up, scale-down and scale-out as needed, and for IT
outsourcing and automation. By federating private and
public clouds with local data centers, it is possible to cre-
ate hybrid cloud infrastructures. This creates interesting
marketplaces where users can take advantage of different
types of resources, quality of service (QoS), geographical
locations, and pricing models.

In this work, we describe how a federated marketplace
can provide participants access to a larger number of re-
sources and types of data. We use an application use case
in the context of cancer research and present a scenario
where different sites (e.g. hospitals, research centers)
have different types of data that they are willing to share
with other participants. We show how the federation
is able to overcome the computational limitations of a
single site by collaboratively distributing the workload
across sites. Moreover, we show how sites providers can
increase their profit by having a dynamic pricing policy.

The rest of the paper is organized as follows. Section II
collects the related work. Sections IIT and IV present the
medical imaging techniques and our federation model,
respectively. Section V describes the federated environ-
ment used for our experiments and Section VI details the
behaviour of the marketplace. Finally, in Section VII we
discuss the results of our experiments and in Section and
VIII we present the conclusions of this work.

II. RELATED WORK

Cloud computing can provide effective platforms
for certain classes of applications, for example high-
throughput computing (HTC) applications [11]. There
have been several early projects that have reported
successful deployments of applications on existing
clouds [10, 12, 16, 38]. Additionally, there are efforts
exploring other usage modes [23] and to combine clouds,
such as Amazon EC2 [1], with integrated computing

infrastructures. Villegas et al. [39] proposed a compo-
sition of cloud providers as an integrated (or federated)
cloud environment in a layered service model. Assuncao
et al. [9] described an approach of extending a local
cluster to cloud resources using different scheduling
strategies. Along the same lines, Ostermann et al. [22]
extended a grid workflow application development and
computing infrastructure to include cloud resources, and
experimented with Austrian Grid and an academic cloud
installation of Fucalyptus using a scientific workflow
application. Similarly, Vazquez et al. [37] proposed ar-
chitecture for an elastic grid infrastructure using the
GridWay meta-scheduler, and extended grid resources
to Globus Nimbus; Vockler et al. [40] used Pegasus and
Condor to execute an astronomy workflow on virtual
machine resources drawn from multiple cloud infrastruc-
tures based on FutureGrid, NERSC’s Magellan cloud
and Amazon EC2; Gorton et al. [14] designed a work-
flow infrastructure for Systems Biology Knowledgebase
(Kbase) and built a prototype using Amazon EC2 and
NERSC’s Magellan cloud; and Bittencourt et al. [6]
proposed an infrastructure to manage the execution of
service workflows in the hybrid system, composed of the
union of a grid and a cloud.

Given the growing popularity of virtualization, many
commercial products and research projects, such as
OpenNebula [35], OpenStack [43], Nimbus [42], Eu-
calyptus [20], IBM Smart Cloud [2], Amazon EC2,
and VMware vCloud Connector are being developed
to dynamically overlay physical resources with virtual
machines. Analogously, Riteau et al. [28] proposed a
computing model where resources from multiple cloud
providers are leveraged to create large-scale distributed
virtual clusters. They used resources from two experi-
mental testbeds, FutureGrid in the United States and
Grid’5000 in France. Celesti et al. [8] proposed a cross-
federation model based on using a customized cloud
manager component placeable inside the cloud architec-
tures. Other example are the Resevoir [29] and Siena [44]
that aims at contributing to best practices with a cloud
and federation architecture and defining standards for
cloud interoperability, respectively. These efforts are in-
tended to extend the benefits of virtualization from a
single resource to a pool of resources, decoupling the
VM not only from the physical infrastructure but also
from the physical location.

III. CONTENT-BASED IMAGE RETRIEVAL

With the advent of whole-slide virtual microscopy
technologies, the emphasis has shifted to the develop-
ment of methods capable of performing reliable, sub-
region searching to identify image patches exhibit-
ing specific patterns or structural characteristics. Re-
searchers at the Cancer Institute of New Jersey recently
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Figure 1: A demonstration of hierarchical searching process based on HAH and fine HAH. In every iteration, a
certain percentage of candidates will be discarded and the survived candidates will be refined in the second stage

focused our efforts on developing methods that enable
pathologists to select an input query (area or object of
interest) within a digitized specimen to reliably identify
other regions within either the same specimen or across
multiple specimens corresponding to a large patient
cohort to support characterization of different types
and stages of disease. It includes content localization,
hierarchical searching process, and performance evalu-
ation. The performance of the retrieval and usability
are usually ranked by some criteria, such as appearance
similarity or diagnostic relevance.

Xin et.al. [26] present a novel feature measure called
hierarchical annual histogram (HAH) and fine HAH. For
a given image patch, first it is segmented into several
closed bins with equal intervals with high weights in
center and decreasing weights outwards. Next, color
histogram of each bin is calculated on each color channel
and concatenated together. For fine HAH, the whole
patch is equally divided into eight segments, from which
each HAH is calculated and concatenated together. The
characteristics of HAH and fine HAH are as following:
(1) it is scale and rotation invariant; (2) it captures
spatial configuration of image features; and (3) it is suit-
able for hierarchical searching in the sub-image retrieval.
Because HAH and fine HAH significantly improve dis-
criminative power of feature descriptor, they can easily
differentiate image patches with similar intensity distri-
bution. The hierarchical searching process contains three
stages: rough searching, fine searching, and clustering.
The hierarchical searching scheme is an iterative process
that discards less similar candidates within each itera-
tion. The hierarchical searching procedure can greatly
reduce the computation load as it only computes one bin
of HAH or any image texture feature and rejects a large
portion of candidates within each iteration. The number
of candidates moving into the next iteration is largely
reduced by rejecting the obvious negative ones. Mean-
shift clustering [127] is applied at last stage of searching
to remove the redundancy of the top ranked candidates,

which could be caused by the high correlation among
those adjacent candidates. Figure 1 demonstrates the
whole hierarchical searching process.

IV. FEDERATION MODEL

Our federation model [11, 24] is designed to be dynam-
ically updated as it is created in a collaborative way,
where each site communicates with others to identify
itself, negotiate the terms of interaction, discover avail-
able resources, and advertise their own resources and
capabilities. In this way, a federated management space
is created at runtime and sites can join and leave at
any point. This federation model does not have any cen-
tralized component and users can access the federation
from any site, which increases the fault tolerance of the
overall federation, see Figure 2. Another key benefit of
this model is that since each site can differentiate itself
based on the availability of specialist capability, it is
possible to schedule tasks to take advantage of these
capabilities.

The federation model is based on the Comet [19] co-
ordination “spaces” (an abstraction, based on the avail-
ability of a distributed shared memory that all users and
providers can access and observe, enabling information
sharing by publishing requests/offers to/for information
to this shared memory). In particular, we have decided to
use two kinds of spaces in the federation. First, we have
a single federated management space used to create the
actual federation and orchestrate the different resources.
This space is used to exchange any operational messages
for discovering resources, announcing changes at a site,
routing users’ request to the appropriate site(s), or initi-
ating negotiations to create ad-hoc execution spaces. On
the other hand, we can have multiple shared execution
spaces that are created on-demand to satisfy computing
needs of the users. Execution spaces can be created in
the context of a single site to provision local resources or
to support a cloudburst to public clouds or external high
performance computing systems. Moreover, they can be
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Figure 2: The overall Federation Management Space,
here (M) denotes a master, (W) is a worker, (IW)
an isolated worker, (P) a proxy, and (R) is a request
handler.

used to create a private sub-federation across several
sites. This case can be useful when several sites have
some common interest and they decide to jointly target
certain types of tasks as a specialized community.

As shown in Figure 2, each shared execution space is
controlled by an agent that initially creates such space
and subsequently coordinates access to resources for the
execution of a particular set of tasks. Agents can act as a
master node within the space to manage task execution,
or delegate this role to a dedicated master (M) when
some specific functionality is required. Moreover, agents
deploy workers to actually compute the tasks. These
workers can be in a trusted network and be part of the
shared execution space, or they can be part of external
resources such as a public cloud and therefore in a non-
trusted network. The first type of workers are called
secure workers (W) and can pull tasks directly from the
space. Meanwhile, the second type of workers are called
isolated workers (IW) and cannot interact directly with
the shared space. Instead, they have to interact through
a proxy (P) and a request handler (R) to be able to pull
tasks from the space.

V. METHODOLOGY

In this paper, we investigate the use of sub-image
CBIR in several key pathology applications including
peripheral blood smears (BS), glomeruli of the kid-
ney (GK), and breast tissue microarrays(BTMA). We
present an scenario where different sites offer different
datasets. We consider that each dataset has a single
type of pathology data, see Table I. This represents

a typical scenario where different hospitals or research
centers have agreements on sharing their databases to
support collaborative research. Although the data is
anonymized to protect patients’ privacy, our federation
also implement security mechanisms to encrypt the com-
munications across sites. In our experiments we assumed
that the data is not allowed to be staged outside of its
origin and therefore we transfer the required data every
time a task needs it.

Table I: Location of each dataset

Site Dataset

Cardiff Breast tissue microarrays (BTMA)
FutureGrid  Glomeruli of the kidney (GK)
Rutgers Blood smears (BS)

CometCloud software stack has been developed using
Java and it is shipped in a convenient package ready to
use. The federation is created ad-hoc where peers talk
with each other to negotiate the terms of adhesion. In
order for a site to join the federation, it has to support
Java, have valid credentials (authorized SSH keys), and
configure some parameters (i.e. address, ports, number
of workers). Once this configuration is done, we can eas-
ily launch the different CometCloud components using
simple scripts and the site will join the federation, or it
will create it if it is the first one.

The federated marketplace used here is composed by
three different sites geographically distributed. Cardiff
site is located at Cardiff University, Cardiff, UK; Fu-
tureGrid site is located at Indiana University, Indiana,
USA; and Rutgers site is located at Rutgers University,
New Jersey, USA. Table II shows the bandwidth of the
interconnection network between sites. Table IV collects
the prices assigned to each site.

Table IT: Network speed in MB/s.

Network Cardiff FutureGrid Rutgers
Cardiff - 5 5
FutureGrid 5 - 10
Rutgers 5 10 -

Table III: Price assigned to the resource of each site
(based on Amazon EC2 pricing)

Site Computing Network

Cardiff 0.000033 $/s  0.0001 $/MB
FutureGrid  0.000017 $/s  0.0001 $/MB
Rutgers 0.000067 $/s  0.0001 $/MB

Next, we provide additional implementation details
within the three federated sites.



Cardiff Federation site: We deploy our architecture
on a cluster-based infrastructure with 12 dedicated clus-
ter machines. Each machine has 12 CPU cores at 3.2
GHz CPU speed. Each physical machine uses a KVM
(Kernel-based Virtual Machine) virtualization environ-
ment with each entity(master, workers, request-handler)
within our system, occupying a single virtual machine.
Each virtual machine runs Ubuntu Linux utilising one
3.2GHz core with 1GB of RAM and 10 GB storage
capacity. The networking infrastructure is Gigabit Eth-
ernet with a speed of 1 gigabit per second (Gbps). The
measured latency on the network is 0.706 ms on average.

Rutgers Federation site: The Rutgers federation
site is deployed on a cluster-based infrastructure with
32 nodes. Each node has 8 CPU cores at 2.6 GHz,
24 GB memory, 146 GB storage and Gigabit Ethernet
connection. The measured latency on the network is
0.227 ms on average.

FutureGrid Federation site: The FutureGrid feder-
ation site is deployed on a cloud infrastructure based
on OpenStack. In particular, we have used the infras-
tructure located at Indiana University. We have used in-
stances of type medium, where each instance has 2 cores
and 4 GB of memory. The networking infrastructure is
DDR Infiniband and the measured latency of the cloud
virtual network is 0.706 ms on average.

We have three types of tasks, one per type of pathol-
ogy, where each task involves the computation of mul-
tiple sub-tasks depending on the size of the dataset. In
our case we consider that all three datasets have 100
images. Table IV collects the average execution time for
each type of pathology for different sites, based on actual
executions. The task distribution is generated using a
Poisson distribution and the size of the input data is
randomly generated between 1MB and 100MB, which
amounts to 5GB.

Table IV: Execution time for single sub-tasks in seconds

Site BS GK BTMA
Cardiff 360s  600s 830s
FutureGrid 500s  700s 900s
Rutgers 300s  650s 770s

VI. MARKETPLACE DETAILS

In our federated marketplace, each site subscribes to
the type of tasks that they are interested on computing.
When a new request is submitted into the tuple-space, a
blind auction process is initiated. Here, each site that
is interested in that type of computation is notified.
Then, each site calculates the time to complete (TTC)
all the sub-tasks involved in the request and if they can
complete the task before the required deadline, an offer
is made considering the cost of the computation and the

desired profit. Once all offers are collected, the client
that put the task into the space decides which site has
the best offer and therefore executes the task.

e (Cost: The cost of computing a task is calculated
as the sum of the cost of computing each sub-task
and the cost of transferring the required input data.
cost = Z?Zl(exec_timei X ¢+ input__size; X nc),
where exec_time; is the average execution time of a
sub-task, ¢ represents the cost per core per second,
input__size is the size of the input data required
by the sub-task ¢ and nc is the network cost per
megabyte (MB). Different sites have different prices,
see Table III, and execution time for each type of
task, see Table IV. When the required data is stored
locally to the site, we do not incur in the network
cost.

e Profit: The computation of a task involves a cost,
but also provides a benefit. Therefore, the total
profit of a site Pr is calculated using the benefit b
obtained from each task (price that user pays) and
the cost cost of computing it, Pr =", (b— cost).

The auction winning criteria in these experiments will
be the ratio between cost and TTC.

VII. EVALUATION

We have performed a set of experiments in the pre-
viously described infrastructure. This infrastructure in-
cludes all the mechanisms needed for the coordination
across computational resources which are used by our
experiments. However, we have emulated the execution
of the tasks to better analyze the behaviour of the
marketplace.

In these experiments, we consider two use cases with
different pricing policy. We study how the pricing policy
affects to the overall profit of each site and the price that
users pay for the computation. Fist, we consider that
each site always charges the same amount of money to
compute tasks (static pricing). This price is calculated
adding a 10% to the cost formula described in Section
VI, which depends on the computation cost of the site
resources and the network cost when needed. Results are
collected in Figure 3. We can observe that most of the
sites obtain the maximum revenue from the type of tasks
that are local to them. The main reason is that data
transfer cost has influence in the overall cost of a task
(up to 8%). Then, if a site has the data locally available,
it eliminates the need for moving data, which reduces the
overall cost as well as the TTC. Since it can complete
the execution faster, it has higher chances of winning
auctions of this type of task and obtain higher profit
from it. However, we can see that FutureGrid, which
hosts the GK data, obtains the maximum profit from
the BTMA. Although, it executed more tasks of the GK
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type, but the BTMA tasks provide more profit due to
the longer duration of individual sub-tasks, see Table IV.

Figure 5 shows the market price of each type of
computation. Average prices are $2.5, $1.6, and $ 2.1 for
BTMA, BS, and GK type of task, respectively. However,
the standard deviation is around $1 in all cases. This
high variation is influenced by different sites winning
different types of tasks. The reason for this to happen
is the different prices of each site and specially the
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Figure 6: Market price for each type of task when using

a dynamic pricing policy.

limitation in the available resources.

Next, we consider that sites have dynamic pricing, in
an attempt to maximize their profit. Here, every time
that a site wins the same type of task consecutively,
this site increases the overall price of such type of task
by a 10% over the current market price. When a site
wins consecutively the same type of tasks, it can be as a
consequence of undercharging for the use of its resources.
Therefore, the site progressively increases its prices until



it stops winning that type of tasks. Once this happens,
the site know what is the actual market price for that
type of computation and it can maximize its profit by
staying around that price. Figure 4 collects the profit
over time of each site for each type of task.

We can observe, in Figure 4, that as in the previous
case, each site tends to obtain higher profit from the
tasks that do not involve data movement. In this case,
we observe that the overall profit of each site is much
higher than in the static pricing case. In particular, by
using dynamic pricing, sites can obtain between 40% and
80% more profit.

In Figure 6 we can observe the market price of each
type of computation. In this case, average prices are
$2.9, $2, and $2.2 for BTMA, BS, and GK type of task,
respectively. Again, the standard deviation is around $1
in all cases due to different sites winning different type of
tasks to optimize the use of their resources. The increase
in the market price for different type of tasks suppose
between 5% and 20% compared with the static pricing
policy. Although, sites tried to increase the market prices
as much as possible, the competition in our marketplace
kept prices within reasonable levels, preventing users
from being abused.

VIII. CONCLUSION

In this work we showed how federated computing can
help different sites to work in a collaborative way to
share their resources and obtain access to data that
otherwise will not be possible. We demonstrated that
a federated marketplace can be beneficial for both users
and site providers. We showed how static pricing policies
are not beneficial for site providers as they get very low
profit. On the other hand, by introducing price compe-
tition in the marketplace, we observed that providers
significantly increased their profit by adjusting their
prices to their competitors. Moreover, the competition
itself prevented users from being unreasonably charged
for their computation. Since the federation prevented
vendor lock-in, users were able to select the cheapest
resource at any given time.
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