CONCURRENCY AND COMPUTATION: PRACTICE AND EXPERIENCE
Concurrency Computat.: Pract. Exper. 2014; 26:644—-661
Published online 17 April 2013 in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/cpe.3025

XpressSpace: a programming framework for coupling partitioned
global address space simulation codes

Fan Zhang !-*-7, Ciprian Docan !, Hoang Bui !, Manish Parashar ! and Scott Klasky 2

'NSF Cloud and Autonomic Computing Center, Rutgers University, Piscataway NJ, USA
20ak Ridge National Laboratory, Oak Ridge TN, USA

SUMMARY

Complex coupled multiphysics simulations are playing increasingly important roles in scientific and engi-
neering applications such as fusion, combustion, and climate modeling. At the same time, extreme scales,
increased levels of concurrency, and the advent of multicores are making programming of high-end parallel
computing systems on which these simulations run challenging. Although partitioned global address space
(PGAS) languages attempt to address the problem by providing a shared memory abstraction for parallel
processes within a single program, the PGAS model does not easily support data coupling across multi-
ple heterogeneous programs, which is necessary for coupled multiphysics simulations. This paper explores
how multiphysics-coupled simulations can be supported by the PGAS programming model. Specifically,
in this paper, we present the design and implementation of the XpressSpace programming system, which
extends existing PGAS data sharing and data access models with a semantically specialized shared data space
abstraction to enable data coupling across multiple independent PGAS executables. XpressSpace supports a
global-view style programming interface that is consistent with the PGAS memory model, and provides an
efficient runtime system that can dynamically capture the data decomposition of global-view data-structures
such as arrays, and enable fast exchange of these distributed data-structures between coupled applications.
In this paper, we also evaluate the performance and scalability of a prototype implementation of XpressS-
pace by using different coupling patterns extracted from real world multiphysics simulation scenarios, on
the Jaguar Cray XTS5 system at Oak Ridge National Laboratory. Copyright © 2013 John Wiley & Sons, Ltd.

Received 20 October 2011; Revised 8 January 2013; Accepted 11 March 2013

KEY WORDS: coupled multiphysics simulation workflows; programming system; partitioned global
address space

1. INTRODUCTION

In recent years, partitioned global address space (PGAS) has emerged as a promising program-
ming model to improve the productivity of developing applications for emerging large scale parallel
systems with increasing levels of concurrency. The PGAS model provides a distributed shared mem-
ory space abstraction and gives each process flexible remote access to it through language-level
one-sided communication. PGAS languages, such as Unified Parallel C (UPC) [1], Co-Array For-
tran [2], and Titanium [3], extend existing C, Fortran, and Java languages respectively, and support
language-level constructs to explicitly express parallelism and data distributions. PGAS program-
ming libraries, such as Global Arrays toolkit [4], provide a shared memory style programming
environment in the context of distributed array data structures. As PGAS programming model is
gaining attention in both academia and industry, newer members of PGAS language family, such
as IBM X10 [5] and Cray Chapel [6], have been developed as part of Defense Advanced Research
Projects Agency High Productivity Computing Systems initiative.

*Correspondence to: Fan Zhang, NSF Cloud and Autonomic Computing Center, Rutgers University, Piscataway
NJ, USA.

TE-mail: zhangfan @cac.rutgers.edu

Copyright © 2013 John Wiley & Sons, Ltd.



XPRESSSPACE: A PROGRAMMING FRAMEWORK FOR COUPLING PGAS SIMULATION CODES 645

At the same time, emerging scientific and engineering simulations are increasingly focusing
on end-to-end phenomena and are composed of multiple coupled parallel component applications
that interact by sharing data at runtime. For example, in the Center for Plasma Edge Simulation
Full-ELM coupling framework, the gyrokinetic edge component, XGCO [7], and the MHD core
component, M3D-OMP [8] run independently on different numbers of processors and exchange
data as part of the coupled fusion simulation workflow. Similarly, in the Community Earth System
Model (CESM) [9], separate simulation components are coupled as part of a multiphysics model
to simulate the interaction of the earth, ocean, atmosphere, land surface, and sea ice. As a result,
coupling and data sharing substrates that can facilitate such data exchange between independent
parallel component applications in an efficient and scalable manner, are critical for these coupled
applications.

However, building these coupled multiphysics simulation workflows from heterogeneous PGAS
programs presents several challenges. First, although the PGAS model provides a shared memory
abstraction for data exchange between parallel processes within single program, it does not eas-
ily support data coupling across heterogeneous programs. Multiple programs would have multiple
PGAS shared memory spaces that are isolated from each other, and moving data across the different
PGAS memory spaces is not supported by current PGAS runtimes. Furthermore, most existing cou-
pling systems [10-12] are designed by using message-passing libraries such as MPI or PVM and
are targeted at components applications based on the fragmented memory model, which is concep-
tually mismatched with the PGAS shared memory space model. As a result, the integration of these
tools with PGAS-based applications leads to a mixing of PGAS and MPI/PVM runtimes and can
result in degraded communication performance. Supporting coupled simulation workflows within
the PGAS model thus requires specialized runtimes that support coupling and interactions across
PGAS programs.

In this paper, we present the design, implementation, and experimental evaluation of XpressSpace,
a programming system that extends the existing PGAS data access model by defining a semantically
specialized shared data space abstraction that spans heterogenous PGAS programs and supports cou-
pling and interactions between them. The contributions of our work are threefold. First, XpressSpace
defines a global-view programming interface that conforms with the PGAS shared memory model.
Coupled component applications share or exchange data through a shared data space abstraction by
using one-sided data access operators. Second, XpressSpace enhances the basic data access interface
with the ability to explicitly define coupling patterns between interacting applications that are part
of the simulation workflow. Coupling patterns can be easily adapted based on user-defined specifi-
cations without requiring source code modification. Third, XpressSpace implements a lightweight
runtime system for efficient and scalable memory-to-memory data redistribution between the cou-
pled applications. Our current prototype implementation of XpressSpace and the discussion in this
paper focus on UPC and Global Arrays; however, the ideas presented in this paper are applica-
ble to most PGAS languages. In this paper, we also evaluate the performance and scalability of a
prototype implementation of XpressSpace by using different coupling patterns extracted from real
world multiphysics simulation scenarios, on the Jaguar Cray XTS5 system at Oak Ridge National
Laboratory.

The rest of the paper is structured as follows. Section 2 provides background material and out-
lines research challenges related to coupling heterogeneous PGAS programs. Section 3 presents
an overview on the XpressSpace system architecture. Section 4 presents the high-level program-
ming abstractions provided by XpressSpace and demonstrates the use of its programming interface
by using a simple example. Section 5 describes the design and implementation of the XpressS-
pace runtime. Section 6 shows the experimental evaluation. Section 7 discusses related work, and
Section 8 concludes the paper.

2. BACKGROUND AND CHALLENGES

This section describes performance issues related to multiphysics codes coupling and the challenges
of coupling heterogeneous PGAS programs.

Copyright © 2013 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2014; 26:644-661
DOI: 10.1002/cpe



646 F. ZHANG ET AL.

2.1. Multiphysics code coupling challenges

Application-to-application interactions in most coupled simulation workflows are based on exchang-
ing data corresponding to coupled application variables. In parallel applications, data structures such
as global multidimensional arrays are decomposed and distributed across the application processes,
and exchanging data between different coupled simulation programs typically requires moving data
from one application running on M processes to another application running on N processes, that
is, the MxN problem. Efficiently redistributing the data from M to N application processes is a fun-
damental problem that has to be addressed by the supporting programming systems. Key associated
technical challenges include:

Representation of global array data decomposition. Applications in coupled simulation work-
flow should have a unified way to specify the data decomposition of the coupled variables. First, it
should clearly define the mapping from data elements of the distributed data structure (e.g., array)
to application processes. Furthermore, it should be flexible and support different types of data dis-
tributions. Canonical distributions for array data structures supported by languages such as High
Performance Fortran (HPF) [13], for example, Block, Cyclic, and Block-Cyclic, are a good example
of such a representation and is used in the prototype described in this paper.

Computation of communication schedule. Communication schedule is the sequence of data
transfers required to correctly move data between coupled applications. This information enables the
senders in the MxN redistribution to determine the local data elements that needs to be transferred
as well as the receivers for the data. Creation of the communication schedule requires matching
the data decomposition of overlapped data domain for the coupled applications. The algorithm for
computing communication schedule should be dynamic and scalable to handle the increasing com-
plexity caused by the dynamic interactions between heterogeneous coupled applications, which run
on thousands of processor cores.

Support for different coupling patterns. Tight coupling and loose coupling are two typical cou-
pling patterns in coupled simulation workflows. In tight coupling, coupled applications progress at
approximately the same speed and exchange data at each simulation time step. However, in loose
coupling, coupled applications progress at different speeds and exchange data in an on-demand (pos-
sibly opportunistic) and asynchronous manner. In most cases, tightly coupled simulation workflow
rely on direct transfers where data is moved directly from the memory of processes running one
application to the memory of the processes running the other. Loose coupling often uses an interme-
diate data staging service, such as memory of a dedicated set of coupling servers, for asynchronous
data sharing between the coupled applications.

Explicit definition of coupling patterns. In most current coupled simulation workflows, data
coupling patterns are embedded into the source code of the coupled application programs by care-
fully matching data send and receive calls. This method presents the following drawbacks. First,
when the number of coupled application changes, users have to reprogram the data coupling logic
for all the application programs involved. Second, it is hard to reuse the implementation of the cou-
pling patterns across application because the data coupling logic is implemented for one specific
application context. Addressing these issues requires high-level programming interfaces that enable
users to explicitly define the coupling patterns.

2.2. Challenges in coupling heterogeneous PGAS programs

The memory model presented by PGAS languages provides the abstraction of a global memory
address space that is logically partitioned, and each process has a local section of this address
space. One important advantage of PGAS over message passing models (such as MPI) is its global-
view and data-centric programming model. Although message passing presents users with a more
fragmented-view and control-centric programming interface, PGAS users can utilize high level lan-
guage constructs to express data parallelism. For example, by using UPC, a user can define a global
array by using the shared keyword in a single statement. Similarly, in the Global Arrays library,
the collective operation NGA_Create() would create an n-dimensional shared array. Important tasks
such as data decomposition and mapping array data elements to physical processors are handled
by the language runtime. This is in contrast with message passing programming systems such as

Copyright © 2013 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2014; 26:644-661
DOI: 10.1002/cpe



XPRESSSPACE: A PROGRAMMING FRAMEWORK FOR COUPLING PGAS SIMULATION CODES 647

MPI where applications have to explicitly manage the low level details of data decomposition and
distribution, such as synchronization and process-to-process data communication.

Extending the PGAS model to enable the coupling heterogeneous PGAS programs requires devel-
oping a global memory address space abstraction that can be shared between multiple programs
and a new programming interface for this abstraction that is consistent with the global-view and
data-centric programming model. Users should be able to program coupled simulation workflow by
expressing coordination, data movement, and coupling patterns at a higher level, and not be required
to handle lower-level details such as computing communication schedule and programming match-
ing data send and receive operations. Furthermore, coupling heterogeneous PGAS programs also
implies that the new programming framework must support the sharing for data between applica-
tions developed using different PGAS languages or libraries. For example, it must support coupling
a UPC-based land model and a Global Arrays-based sea model to simulate climate change.

Existing data coupling software tools are mostly designed for MPI-based applications and do not
match well with PGAS shared-memory model. For example, by using the Model Coupling Toolkit
(MCT) [10, 11] or InterComm [12] library, users have to specify the detailed data decomposition for
each coupled variable to compute communication schedules. To do this by using the PGAS model,
users need to specify the locality for each data element of the global data structures (e.g., array) by
using language features such as data affinity in UPC, data locale in Chapel, or data place in X10.
In addition, most existing coupled simulation workflows are developed as single MPI executables
composed of multiple submodules, and data exchanges are hard-coded into the source code of each
submodule. Using this approach, it is difficult to couple heterogeneous executables and to build
workflows with dynamic data coupling patterns.

3. SYSTEM ARCHITECTURE OVERVIEW

The XpressSpace programming system extends the existing PGAS programming model to support
coupling and interactions between heterogenous PGAS programs. It provides a simple program-
ming interface that is designed to be consistent with the PGAS global-view programming model
and extends them to enable users to compose PGAS applications into coupled application work-
flows. For a coupled application workflow, users must specify the coupled variables that are to be
shared and define the coupling patterns (i.e., the structure of the workflow) in a separate XML
file. Details of how data coupling is performed is abstracted from the users and is handled by the
XpressSpace runtime.

The XpressSpace system architecture consists of two main components as illustrated in Figure 1,
the XpressSpace bootstrap server and one or more independently running applications that are part
of the coupled application workflow. The bootstrap server acts as a rendezvous point and is used to
establish connections between independent PGAS (e.g., UPC [1] or Global Arrays [4]) executables
that are part of the workflow and have no prior knowledge of each other. Both of these components
are built on top of a layered architecture that is composed of the DART Communication Layer, the
XpressSpace Runtime Layer, the XpressSpace Core API, and a High-level User API. In our current
prototype, the high-level user API supports UPC and Global Arrays. These layers are described in
the succeeding texts.

DART Communication Layer. This layer is based on our previous work on DART [14] and
provides asynchronous messaging and data transport services to the other system components. The
DART communication layer support different network architectures, including Cray XT Portals
[15], Cray Gemini [16], IBM BlueGene/P Deep Computing Messaging Framework [17], Infini-
Band, and TCP/IP, and implements remote direct memory access (RDMA) based data movement.
DART provides an remote procedure call-like programming abstractions and hides the complexi-
ties of the underlying communication systems such as coordination and buffer management (e.g.,
RDMA buffers setup, registration, unregistration, and cleanup).

XpressSpace Runtime Layer. The runtime layer implements four major functional modules. The
bootstrap module is used by the XpressSpace bootstrap server to parse the user-defined XML file,
which is used to specify the workflow structure and to extract details about the coupling and data

Copyright © 2013 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2014; 26:644-661
DOI: 10.1002/cpe



648 F. ZHANG ET AL.

UPC UPC UPC
Thread 0 Thread1 """ Thread n-1

UPC Simulation Code 1
UPC User APIs| GA User APIs | others
XpressSpace Core APIs
XpressSpace Runtime Layer
DART Communication Layer

Bootstrap Server
XpressSpace Core APIs
XpressSpace Runtime Layer

DART Communication Layer
Network

Network
GA  GA ...
Process 0 Process 1 Process m-1
DATA Global Arrays Simulation Code 2

UPC User APIs| GA User APIs | others
XpressSpace Core APIs
XpressSpace Runtime Layer
DART Communication Layer
Network

Figure 1. Schematic overview of the XpressSpace layered system architecture.

exchange patterns. The bootstrap server uses this information to generate data exchange schedules
for the coupled variables and distributes these schedules to the corresponding application processes.

The XpressSpace runtime layer maintains Distributed Coupled Variables Directory (DCVD),
which is a distributed hash table (DHT) that spans across the processes of the coupled applications
and efficiently supports the computation of communication schedules. The DCVD maintains infor-
mation about the coupled variables such as their distributions and data decompositions. In a coupled
application workflow, an application can query the DCVD for the details of its coupled variables
and can, for example, use it to compute necessary communication schedules. Each application in
the coupled application workflow uses the DCVD module to build and maintain the DHT.

The index of the DHT is derived from the multidimensional data structures (e.g., arrays) used
by the applications using the Hilbert space filling curve (SFC) [18], which maps the multidimen-
sional index onto a one-dimensional address space. The key of each DHT entry is an interval
(start_index, end_index) from this one-dimensional address space, which in turn is derived from
the multidimensional data structure, for example, from the index corresponding to the region of
interest of a multidimensional index. The data value of each DHT entry records the location of the
data corresponding to that region.

The data storage module allocates and manages RDMA memory buffers to facilitate asyn-
chronous data sharing. Data at the producer application processes is cached in local memory buffers
from where it can be accessed on-demand by the consumer application processes. The data transfer
module performs the RDMA-based parallel data transfers between the coupled workflow applica-
tions and implements both asynchronous pull and synchronous push transfer modes (details will be
discussed in Section 5) to meet the requirements of different application coupling patterns.

XpressSpace Core API and High-level User API. XpressSpace provides a small set of core
operators that exposes the functionalities from the runtime layer. The XpressSpace core API is inde-
pendent of any high-level PGAS language constructs and provides binding for both C and Fortran.
It is the building block that can be used to develop customized high-level user APIs for various
PGAS languages. The high-level user API layer is a thin layer on top of the core API that support
the global-view programming abstraction for different PGAS languages or libraries.

4. XPRESSSPACE PROGRAMMING INTERFACE

As noted earlier, XpressSpace provides a semantically specialized shared space abstraction [19] that
extends across the coupled heterogeneous PGAS applications and supports data exchange between

Copyright © 2013 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2014; 26:644-661
DOI: 10.1002/cpe



XPRESSSPACE: A PROGRAMMING FRAMEWORK FOR COUPLING PGAS SIMULATION CODES 649

Table I. XpressSpace User APL

[upc/ga]_xs_init() Initialize the XpressSpace runtime.

[upc/ga]_xs_regsiter_var() Register coupled variables with the
XpresSpace shared data space.

[upc/ga]_xs_couple_var() Perform parallel data transfer for the
registered coupled variables.

[upc/ga]_xs_unregsiter_var() Unregister coupled variables from the
XpresSpace shared data space.

[upc/ga]_xs_finalize() Release XpressSpace resources and
terminate.

multi-dimensional coupled data
region shared in the space

Application 1 (UPC)
PGAS address space

Pt G

Application 2 (GA) |
PGAS address space l

Shared Data
Space Abstraction

Figure 2. The XpressSpace shared space abstraction for coupling different PGAS programs.

these applications. The abstraction provides a tuple space-like model [20] and can be associatively
accessed by the applications that are part of the workflow and enables decoupled interaction and
coordination between these applications. XpressSpace also provides a high-level user API (Table I)
that builds on top of the shared space abstraction. Although the current implementation focuses on
cartesian grids and the PGAS distributed array defined over these grids, the proposed abstraction
and approach can be applied to more general data domain and data structures.

This section introduces the XpressSpace shared space abstraction and describes the high-level
user API it provides. This section also presents an example to illustrate how the XpressSpace API
can be used to implement a coupled application workflow composed of both UPC and Global Arrays
applications. As shown in Figure 2, even though coupled Applicationl and Application2 have their
own separate and isolated PGAS address spaces local to their processes, they can share and exchange
data associated with the coupled variables by using the XpressSpace extended shared space abstrac-
tion. An XpressSpace-based coupled application implementation consists of two steps, inserting the
XpressSpace global-view programming interface within the data coupling sections of the application
source codes and explicitly defining the workflow structure and data coupling patterns within a cou-
pling pattern specification (CPS) XML file. To use XpressSpace for coupling, the PGAS application
source codes have to be modified as follows:

1. Define the data distribution templates for coupled variables. XpressSpace currently focuses
on multidimensional array data structures and supports three common data distribution types,
standard blocked, cyclic, and block-cyclic, as defined by most data parallel languages [13].
The data_distribution data structure is used to describe the data decomposition scheme. For
example, for a general n-dimensional global array, it consists of three parameters: processors
layout, data distribution type, and data block size. An n-tuple (p1, ..., pn) specifies the num-
ber of processors in each dimension of the data domain. For the block-cyclic distribution, the
block size also needs to be specified. An n-tuple (by, ..., by) is used to specify the block size in
each dimension of the data block.

2. Associate each coupled variable with a data distribution template by using the
xs_register_var() call. In addition, users have to specify the region of the domain that need

Copyright © 2013 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2014; 26:644-661
DOI: 10.1002/cpe



650 F. ZHANG ET AL.

to be coupled, for example, the relevant region of a global array. Note that only data associ-
ated with the coupled region is transferred at runtime. The size of the region is dependent on
the application.

3. Perform coupling. Within the coupling section of the source codes, users have to insert
xs_couple_var() initiate the data transfer. Note that this function can be invoked only on the
coupled variables that are already registered with xs_register_var().

This simple API provides users with the global-view operators on distributed global coupled data
structures, for example, a global array, which is consistent with the PGAS memory model. However,
the API does not provide users with direct control on coupling details such as which application to
interact with or what direction the data is transferred. These coupling details have to be expressed
in the separate CPS XML file, which contains the following key elements:

<coupling>
<couple_var attribute = "Temperature">
<schedule attribute="push">
<from> 1 </from>
<to> 2 </to>
<start_ts> 1 </start_ts>
<end_ts> 2000 </end_ts>
<ts_interval> 1 </ts_interval>
</schedule>
</couple_var>
<couple_var attribute = "Velocity">
<schedule attribute="push">
<from> 1 </from>
<to> 3 </to>
<start_ts> 1 </start_ts>
<end_ts> 1000 </end_ts>
<ts_interval> 4 </ts_interval>
</schedule>
</couple_var>

</coupling>

Listing 1. Sample CPS file for the coupled application workflow example.

e coupling: Serves as a container for other elements and must be used as the root element. The
children elements are couple_var describing the coupled variables.

e couple_var: Represents a container for a coupled variable in the application. The expected
children would be zero or more schedule elements.

e schedule: Records detailed information about coupling process between two applications. Pro-
grammers can use children elements from and to to specify the names of the sender and receiver
applications for the coupled variables, use elements start_ts and end_ts to specify the time step
scope for the coupling, and use ts_interval to specify the frequency of data coupling. Another
configuration parameter that is part of schedule is the attribute field, which specifies the mode
of data exchange. If it is specified as push, the data transfer mode will be Direct-Push, and
it is specified as pull, the data transfer mode will be Cache-Pull (details of these modes are
explained in Section 5). In both modes, the element ts_interval becomes optional because data
transfer is triggered by the requests from the coupled applications.

The most important benefit provided by the XpressSpace programming interface is the ability
to program with a global-view model without having to describe the mechanics of the coupling
such as matching data receive and send functions. To illustrate this, we provide a simple example
in Figure 3. The coupled simulation workflow in this example is composed of three iterative PGAS
applications, of which Appl and App2 are implemented in UPC, and App3 is implemented by using

Copyright © 2013 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2014; 26:644-661
DOI: 10.1002/cpe



XPRESSSPACE: A PROGRAMMING FRAMEWORK FOR COUPLING PGAS SIMULATION CODES 651

Appl
/* Define two 2D global arrays */
shared [BLOCK_SIZE] double
temperature[dimx][dimy],
velocity[dimx][dimy];
int time_step = 1;
int app_id = 1; /unique application id

/* Register coupling variables, specify:

(1) the unique variable name
(2) assocated distribution template
(3) pointer to the global array
(4) coupled data region */
upc_xs_register_var("Temperature”,
&struct_template,
&temperature[0][0],
0, 0, 0, dimx-1, dimy-1, 0);

upc_xs_register_var("Velocity",
&struct_template,
&velocity[0][0],
0, 0, 0, dimx, dimy/2-1, 0);

/* Code computation stage */

/* Code coupling stage */

upc_xs_couple_var("Temperature",
&temperature[0][0], time_step);

upc_xs_couple_var("Velocity",
&temperature[0][0], time_step);

App2

/* Define one 2D global array */

shared [BLOCK_SIZE] double
temperature[dimx][dimy];

int time_step = 1;

int app_id = 2; /unique application id

/* Register coupling variables, specify:
(1) the unique variable name
(2) assocated distribution template
(3) UPC pointer to the global array
(4) coupled data region */
upc_xs_register_var("Temperature”,
&struct_template,
&temperature[0][0],
0, 0, 0, dimx-1, dimy-1, 0);

/* Code computation stage */

/* Code coupling stage */
upc_xs_couple_var("Temperature”,
&temperature[0][0], time_step);

time_step++;

App3

/* Define dimensions and blocks size
for the 2D global array */

int dimensions[2] = {dimx, dimy};

int block_size[2] = {blk_x, blk_y};

int time_step = 1;

int app_id = 2; /unique application id

/* Create "Velocity" global array */

int handle_velocity = NGA_Create(
C_DBL, 2, dimensions,
"Velocity", block_size);

/* Register coupling variables, specify:
(1) the unique variable name
(2) assocated distribution template
(3) GA handle to the global array
(4) coupled data region */
ga_xs_register_var("Velocity",
&struct_template,
handle_velocity,
0, 0, 0, dimx-1, dimy/2-1, 0);

/* Code computation stage */

/* Code coupling stage */
ga_xs_couple_var("Velocity",
handle_velocity, time_step);

time_step++;

time_step++;

Figure 3. Programs for the coupled simulation workflow example.

the Global Arrays library. The three PGAS applications run concurrently on different sets of proces-
sors, and data is transferred from Appl to App2 and App3 during the coupling stage in each time
step, and the applications runs for 2000 time steps, that is, | <= time_step <= 2000. There are
two coupled variables; in this workflow are 2-dimensional global arrays ‘Temperature’ and ‘Veloc-
ity’. During coupling in each time step, Temperature is redistributed from Appl to App2. Also, data
region < 0,0,0;dimx — 1,dimy/2 — 1,0 > of Appl global array Velocity is redistributed to data
region < 0,0,0;dimx — 1,dimy/2 — 1,0 > of App3 global array Velocity every four time steps
when 1 <= time_step <= 1000. The CPS XML file shown in Listing 4 specifies the coupling
details for each application.

5. IMPLEMENTATION OF THE XPRESSSPACE RUNTIME

5.1. Automatic detection of data locality

As discussed in the previous section, XpressSpace does not require users to specify the data decom-
position details for each coupled variable. Instead, users only need to define data distribution types
at a high level by using the XpressSpace global-view programming interface. While this hides low-
level programming complexity from the uses, the XpressSpace runtime has to effectively determine
locality for the data elements of the shared global array before performing actual parallel data
transfers. At runtime, each process of the coupled applications constructs a list of descriptors to
record what data is locally computed and stored. In case of arrays defined on a Cartesian grid, these
are geometric descriptors. A geometric descriptor contains two cartesian coordinates to specify the
bounding box of data region mapped to the local process as illustrated in Figure 4. Figure 4 shows
two examples of how data decomposition information is internally represented within the XpressS-
pace runtime for UPC programs. The execution vehicle for a UPC program is called a UPC thread,
which can be implemented either as full-fledged OS processes or as threads. In this paper, we will
use the term UPC thread instead of process for description of the UPC-based application scenar-
i0s. Coupled variable ‘Temperature’ is a 4x4 2D global array, which is decomposed across 4 UPC
threads by using the block-block distribution by application Codel and is decomposed across 2

Copyright © 2013 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2014; 26:644-661

DOI: 10.1002/cpe



652 F. ZHANG ET AL.

Coupling variable “Temperature” Coupling variable “Temperature”
(Block, Block) distributet)j( (Block, Cyclic) distribution
- X
TO

i
I
5 I m
!
i
I
I

B T2 .4___..___4.___..:r_0
..I:I:I:D___..___..___..:r_l
Y Y @
<0,0,0;1,1,0>

TO <0,0,0;3,0,0>
T1 <2,0,0;3,1,0> <0,2,0;3,2 0>
T2 <0,2,0;1,3,0> T1 <0,1,0;3,1,0>
T3 <2,2,0;3,3,0> <0,3,0;3,3,0>

List of descriptors for Codel threads List of descriptors for Code2 threads

Figure 4. XpressSpace geometric descriptors for a Cartesian grid representing the data decomposition of
the coupled variables.

UPC threads by using the block-cyclic distribution by application Code2. In this case, the geometric
descriptor < 0,0,0;1,1,0 > for UPC thread TO in Codel indicates that data associated with the
2x2 subgrid bounded by coordinates < 0,0,0 > and < 1, 1,0 > is currently stored at UPC thread
TO. This geometric descriptor data structure forms the basis for the DCVD service.

The XpressSpace runtime uses two methods to inspect for data locality. First, for global arrays
with standard data distributions such as blocked, cyclic, and block-cyclic, the XpressSpace runtime
can easily determine what array data elements have local affinity because these distribution patterns
are static. For example, the blocked distribution evenly decomposes an array among application
processes, and each process owns one contiguous part of the array, while the cyclic distribution
distributed an array elements across processes in a round-robin fashion. In the block-cyclic distri-
bution, an array is divided into user-defined size blocks, and the blocks are cyclically distributed
among processes. Second, for global array with irregular distributions, XpressSpace leverages the
data locality detection features of PGAS languages or libraries to construct the geometric descrip-
tors. For example, the upc_threadof(shared void *ptr) function can return the rank of UPC thread
that has affinity to the shared array element pointed by ptr. Similarly, Global Arrays provides the
library function NGA_Distribution(), which can find out the regions of the global array that a calling
process owns.

5.2. Dynamic computation of communication schedules

Once data locality information is successfully determined, the DCVD service is built and uses a
DHT to index the data decomposition for each coupled variable. At runtime, DCVD services as
distributed directory and responds queries from other coupled applications. The process of gener-
ating the communication schedule consists of three steps as described in the succeeding texts. The
description uses the example presented in Figure 4 and uses Figure 5 to illustrate how application
Codel and Code? build their communication schedules for shared global array ‘Temperature’ using
the DCVD service.

First, DCVD uses the Hilbert space filling curve to map the n-dimensional domain to a one-
dimensional index space. By using this mapping, we can uniquely identify a data point in the domain
by using either n-dimensional coordinates or an one-dimensional index value. Similarly, a continu-
ous data region can be represented by the geometric descriptor described earlier or a set of pairs of
lower and upper indices in the one-dimensional index space. For example, as shown in Figure 5, the
data region < 0,0,0; 1, 1,0 > stored in UPC thread TO belonging to Codel can be described by the
interval <4 —7 >.

Second, a hash table is created by using the linearized one-dimensional index space as hash table
keys and the data locality information as hash table values. The hash table records the mapping

Copyright © 2013 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2014; 26:644-661
DOI: 10.1002/cpe



XPRESSSPACE: A PROGRAMMING FRAMEWORK FOR COUPLING PGAS SIMULATION CODES 653

Codel: linearized index intervals Hash table of “Temperature” TO T1 T2 T3
= data decomposition
SFC-based linearization To—> <a-> ] P [<>[T2] [<&>[T0) [B>[11) [I2[T3)

...... i e eee e
of 2D array *Temperature” 1 <8~ 11> <1>[T12 <3>[T12] [<7>[T0] [<11>[T1] [<155[T3
oy [ (T2 |y, [<3>T2] [<7>[T0] [s1>[TH] [<155]T8]

T2
5;--F-16| 9r-1-710 Step 1 Step 2 <12>[ T3 Step 3 Distributed Coupling Variables Directory(DCVD)
1 ' ' 1 T3 <12 ~ 15> <13>| T3 n
: i : =l Codel
4|7 8| il <14>| T3 query DCVD query DCVD
I 213 ! . X ) . <15>/ T3 of Codel of Codel
3117|7712 Code2: linearized index intervals Codel
T T0 —»{ <2-3> T0 T0
0~ 114 -r-15 <5~ 6> <0-1> [T1 [ <8 T1
<9~10> <2~3> |T0 <9~10> |TO
<12 ~ 13> <4> |T1 <11> T1
—— <5~6> | TO <12~13> |TO
Stepl T1 —» <0-~1> Step 2 <12>| TO| Step 3 <> |T1 <14~15> | T1
<4> <13>| TO
| <7~8> | <14>[ T1 st : - -
A =TSk ‘ Distributed Coupling Variables Directory(DCVD) ‘
<14 ~ 15> Code2 Code2

Figure 5. Building XpressSpace communication schedules.

between each data element and its storage location. For example, a key-value pair (< 12—15 >, T'3)
for Codel indicates that data elements in the region < 12— 15 > are associated with UPC thread T3.
This association has two meanings in a coupled application workflow. When Code 1 is producing
the coupled data, the key-value pair indicated where the corresponding data elements produced by
T3 are stored. When Codel is consuming the coupled data, the associated one-dimensional index
intervals are used as the key to query the DCVD service of another application to determine the
location of the data elements. The hash table created is distributed by dividing up the index space
so as to load-balance the query load from consumer applications.

Third, consumer application processes concurrently query the DCVD DHT of the producer appli-
cations. Each querying process specifies data regions of interest within the global domain in its
query request. The DCVD DHT returns the corresponding storage locations of the data elements
of interest back to the querying process. To optimize performance, the XpressSpace runtime cre-
ates a in-memory local communication schedule cache to keep retrieved data location information.
During each application time step, application processes or threads first look for communication
schedules within this local cache. If the lookup succeeds, it is not necessary to query the DCVD of
remote application. This optimization can significantly reduce the cost of querying the DCVD for
applications where the coupling pattern is repeated, which is the case for many coupled scientific
simulations.

5.3. Data transfer modes

XpressSpace supports two different data transfer modes, Direct-Push and Cache-Pull, to support
data transfer requirements of the tight-coupling and loose-coupling patterns respectively. In a tightly
coupled application workflow, the coupled applications usually progress at the same speed and the
data transfer for the coupled variables is performed every time step in a synchronous manner. In this
case, it is desirable to push coupled variables from the sender to the receiver application as soon
as the data is produced. In a loosely coupled application workflow, applications may run at very
different speeds, and asynchronous interactions are required.

Direct-Push employs a sender-driven push approach to support fast and synchronous data trans-
fers appropriate for tight-coupling patterns. By using XpressSpace, we found that each process of
the receiver application registers a memory buffer that can be accessed remotely by using the RDMA
one-sided put operation. At every time step, processes of the sender application uses the communi-
cation scheduled to put the produced data of the coupled variable and region of interest directly into
the remote receive buffer of the corresponding receiver process.

Cache-Pull employs a receiver-driven pull approach to support on-demand and asynchronous data
transfer of the coupled variable and is appropriate for loose-coupling patterns. To implement this
approach, each process of the sender application allocates a local memory buffer for data caching,
and this buffer is accessible remotely by using the RDMA one-sided get operation. At every time

Copyright © 2013 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2014; 26:644-661
DOI: 10.1002/cpe



654 F. ZHANG ET AL.

Appl App2 App3 App4
Init recv. buffer

forVarlD 1 0 ceeeeeeefeeo
Send|address of recv. buffer for Var1D

———————————————————————————— cache Var2D (ver=1)
,,,,,,,, e

TS1 RDMA put of Var1D data (ver=1) | TS 1 RDMA get of Var2D data (ver=1) | TS 1

,,,,,,,, T3 S2 >
''''''''''' cache Var2D (ver=2) ---=—=2------
— e

152 L RBMApL oD e ver2 [T52

53 cache Var2D (ver=3) TS 2
TS3 w» Ts3 IR DMA get of Var2D data (ver=3
TS: time step o o TS: time step
¢ Vver: version Vver: version ¢
Direct Push Cache Pull

Figure 6. Sequence diagrams for the XpressSpace data transfer modes.

step, processes of the sender application save relevant-produced data into the local buffer and con-
tinue to next time step. When the receiver application required data for the coupled variables, it will
get the latest data from remote cache buffer. XpressSpace tags each data object cached in the local
memory buffer with a version attribute. Because of memory space constraint, only a limited number
of data objects and versions can be cached. By default, older versions of the data objects are evicted
out of local memory buffer following a FIFO schedule. However applications can enforce blocking
semantics when the buffers are full, making the coupling pattern more synchronous.

Figure 6 uses sequence diagrams of two simple coupling examples to illustrate the Direct-Push
and Cache-Pull data transfer modes. In the first case, workflow applications Appl and App2 are
tightly coupled, and the coupled variable ‘VariD’ (a 1D global array) is redistributed from Appl
to App2 at every time step. In the second case, workflow applications App3 and App4 are loosely
coupled and running at different speeds with varied time-step lengths. Coupled variable ‘Var2D’
(a 2D global array) is redistributed from App3 to App4, but the coupling frequency is not deter-
mined. Data is transferred only when receiver App4 demands it, and only the latest version of
‘Var2D’ is fetched by App4 processes.

6. EXPERIMENTAL EVALUATION

The prototype implementation of XpressSpace was evaluated on the Cray XTS5 Jaguar system at
Oak Ridge National Laboratory. Jaguar XT5 has 18,688 compute nodes, and each compute node
has a 2.6 GHz dual hex-core AMD Opteron processor, 16GB memory, and a SeaStar2+ router that
interconnects the nodes via a fast network with a 3D torus topology.

The XpressSpace evaluation presented in this section consists of three distinct sets of experi-
ments. The first set of experiments aims to evaluate the scalability of XpressSpace with increasing
numbers of application processes and increasing coupled data sizes. The second set of experiments
evaluates the performance of XpressSpace parallel data transfers for an MxN data redistribution
by using a two-way tight coupling scenario in which two coupled application codes exchange data
synchronously during the coupling stage of each time step. The third set of experiments are aimed at
analyzing the overheads of computing the communication schedules by using DCVD. In addition,
for the second and third sets of experiments, we compare the performance of XpressSpace with the
MCT library, which is used to implement the coupler in the CESM 1.0 climate modeling system.
The experiments used skeleton codes, which capture the interaction behaviors of real applications
while removing the complexity of the computational aspects. We used the Berkeley UPC version
2.12 to develop our UPC skeleton codes, Global Arrays version 5.0 to develop the GA skeleton
codes, and MCT 2.6.0 to develop the MPI skeleton codes.

Copyright © 2013 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2014; 26:644-661
DOI: 10.1002/cpe



XPRESSSPACE: A PROGRAMMING FRAMEWORK FOR COUPLING PGAS SIMULATION CODES 655

16GB 32GB 64GB 128GB 256GB
1.0 T T T — 500
Data redistribution time  —#—
091 Aggregate throughput -4~ ] 450
0.8 41 400
o.7.//'/'/./. 350
A
0.6 o 300
n o
% 05 250 @
£ a
= 0.4 A/ 200 5]
0.3 150
02 g 100
01— . : 50
D
0 - s 0
7, 7 7,
Q. Q O, 7 fo
%, %, s ®, %,
% % ) %, <,
@

Figure 7. Transfer time and aggregate throughput for parallel data redistribution and data transfers by

using XpressSpace. The bottom X axis represents the number of application processes that produce

data / the number of application processes that consume data. The top X axis represents the size of the
redistributed data.

6.1. Experiment 1: XpressSpace scalability

Coupled application workflows simulating complex phenomena such as climate modeling and
plasma fusion science typically run on a large number of processor cores and significant amounts
of data is transferred between the coupled simulation components. The scalability experiments pre-
sented in this section evaluates the ability of the XpressSpace framework to support parallel data
redistribution for a different numbers of application processes and data sizes.

This experiment uses a one-way tightly coupled workflow composed of two heterogeneous PGAS
applications, a UPC data producer application and a Global Arrays data consumer application, which
interact at runtime by using XpressSpace. The two applications perform parallel computations over
a common two-dimensional computational domain, and each application is assigned a distinct set
of processor cores. The coupled variable was a two-dimensional global array that is decomposed by
using a standard blocked distribution, and its data is redistributed from the producer to the consumer
application during coupling.

This is a weak scaling experiment. Each process executing the producer application generate a
fixed 16 MB of data per iteration. The number of data producing processes is varied from 1024
to 16,384 and the number of data consuming processes from 128 to 2048. Consequently, the size
of data transferred is varied from 16 GB to 256 GB. In the experiment, each application ran for
50 iterations to simulate 50 parallel data redistributions and data transfers between the coupled
applications.

Figure 7 presents the average transfer time and aggregate throughput required by XpressSpace to
complete the parallel data redistributions and data transfers. The results show good overall scala-
bility with increasing number of processes and data sizes. When that data size was increased from
16 GB to 256 GB (i.e., 16 fold), the transfer time increased less than 15%. The performance degra-
dation is mainly due to contention at the shared network links, which is caused by the increasing
number of concurrent data transfers at larger scales. However, this small increase in transfer time is
acceptable when considering the scale of the application. Furthermore, the aggregate data transfer
throughput maintained a near linear performance. When the number of data producing processes
was increased from 1024 to 16,384, the throughput increased almost 13 times from 25 GB/s to
325 GB/s.

6.2. Experiment 2: Evaluation of parallel data transfer
This experiment uses a two-way tightly coupled workflow composed of two applications, Appl and
App2, which exchange data at runtime. There are two coupled variables ‘Var!’ and ‘Var2’, both of

Copyright © 2013 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2014; 26:644-661
DOI: 10.1002/cpe



656 F. ZHANG ET AL.

60

60

‘XpressSpace redistribution time —&— kpressSpace redistribution time 457‘
MCT redistribution time ~ ----&---- g MCT redistribution time ~ ----&----
50 50
_ 40 __ 40
(%2} [2]
£ E
@ o 30
= E
[ [
. 20
10 \\ “““““““““ 10 \g
““““““ y
0 0
1024/256 2048/512 4096/1024 8192/2048 1024/256 2048/512 4096/1024 8192/2048
(@) size of data exchanged - 1GB (b) size of data exchanged - 2GB
110 Y istrbution fi ' 220 ‘XpressSpace redistribution time —g—
oo o e, 2| 20 BT edarosionme 2
90 Fy 180 P\
80 160
,g 70 Tg 140
60 120 -
GE) 50 i\ g 100 \\fi
= 40 F 80
30 e 60
20 ey 40 Ty
10 20
0 0
1024/256 2048/512 4096/1024 8192/2048 1024/256 2048/512 4096/1024 8192/2048
(c) size of data exchanged - 4GB (d) size of data exchanged - 8GB

Figure 8. Data exchange time (redistribution and transfer) in millisecond for VarI and Var2. The bottom X
axis is the number of processes running Appl / the number of processes running App2.

which are two-dimensional shared global arrays and are decomposed by using a standard blocked
distribution. The two global arrays have the same size. ‘Varl’ is redistributed from Appl to App2
and ‘Var2’ is redistributed in the reverse direction from App2 to Appl. In the XpressSpace version
of the workflow, Appl and App2 are implemented as two independent UPC programs that run as
separate executables, and the Direct-Push data transfer mode is used. In the MCT version of the
workflow, Appl and App2 are implemented as two sub-modules of a single MPI program and ran
as a single executable. We refer to the number of processes running Appl as num_proc_appl,
the number of processes running App2 as num_proc_app?2, and the total exchanged data size as
size_data. In our experiments, each process ran a single UPC thread or MPI process. The value of
num_proc_appl was varied from 1024 to 8192, the value of num_proc_app?2 was varied from
256 to 2048, and size_data was increased from 1 GB to 8 GB.

The results of the experiment are plotted in Figure 8 and Figure 9. Figure 8 plots the average
data exchange time required by XpressSpace and MCT. Figure 9 plots the average bidirectional
bandwidth measured at each process for Appl and App2. As shown in Figure 8(a—d), the over-
all performance for the two frameworks are comparable. When redistributing a fixed size of data,
the exchange time decreased with increasing numbers of processes. This is because the amount
of data exchanged by each process decreased, requiring less time for data transfer. Furthermore,
it can be seen from Figure 9(a—d) that XpressSpace has better performance than MCT when the
size of the data exchanged is large. For example, the performance of XpressSpace and MCT is
very close when that size of the data exchanged is 1 GB. However, the difference between that
achieved bidirectional bandwidth per process for the two implementations becomes large as size
of data exchanged increases beyond 1 GB (i.e., 2GB, 4GB, and 8GB). This performance gap is
because MCT uses two-sided MPI message passing as the underlying data transport mechanism,
which requires two memory copies at each end of the data transfer, and requires enforcing MPI’s
message matching semantics. In contrast, XpressSpace can directly push data into RDMA buffers at
the receiving processes without requiring extra memory copies. The one-sided semantics can more
effectively utilize the capabilities of the underlying RDMA hardware than MPI’s two-sided message
passing semantics.

Copyright © 2013 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2014; 26:644-661
DOI: 10.1002/cpe



XPRESSSPACE: A PROGRAMMING FRAMEWORK FOR COUPLING PGAS SIMULATION CODES 657

400

XpllessSpace —a— XdressSpace —a—
_ 350 MCT & | _ 350 MCT A |
[ ] ]
§ @ 3004 5 g
=m =
= EE
23 200 @B 200
33 150 83 150
© C ®© <
3& 100 @ 100
> >
<< <<
50 50
0 0
1GB 2GB 4GB 8GB 1GB 2GB 4GB 8GB
Size of Redistributed Data Size of Redistributed Data
(a) 1024/256 (b) 2048/512
4 . . 4 . .
00 XpressSpace —&— 00 XpressSpace —&—
350 MCT & ] 350 MCT & |
© ©
§ @ 300 ; S @ 300
54 5 a !
8= £2
S £ S £
&5 2007 o3
23 150 23 150
g5 25
2o 100 2m 100
< <
50 50
0 0
1GB 2GB 4GB 8GB 1GB 2GB 4GB 8GB
Size of Redistributed Data Size of Redistributed Data
(c) 4096/1024 (d) 8192/2048

Figure 9. Average bidirectional bandwidth per process for redistribution of Varl and Var2.

Figure 9(a—d) highlight another interesting trend—the bidirectional bandwidth per process
decreases with increasing numbers of processes for both XpressSpace and MCT implementations.
With the size of the data exchanged, remaining constant larger numbers of processes implies that
data redistribution will require more parallel data communications, which in turn will cause more
contentions at the shared network links and the resulting impact on achievable throughput. This
also explains why the rate of change of the data redistribution time (Figure 8(a—d)) decreases as the
number of processes increases. As seen in these figures, the slopes of data redistribution time curves
for both XpressSpace, and MCT decreases when the number of processes running Appl and App2
is increased from 1024/256 to 8192/2048.

6.3. Experiment 3: Evaluation of the overheads for computing communication schedules

This experiment evaluates the overheads of computing communication schedules in XpressSpace.
As in Experiment 2, the workflow used in this set of experiments is composed of two coupled
applications Appl and App2, and two coupled variables ‘Varl’ and ‘Var2’ that are exchanged
during coupling.

Table II lists the average time or computing communication schedules for the MxN data redis-
tribution required during coupling. As expected, the results in Table II show that in both cases, that
is, using XpressSpace and MCT, increasing the size of the coupled data does not affect the time
required to compute the communication schedules. However, increasing the scale of the application
did cause the time required to generate the schedules to increase.

In the XpressSpace case, each process running Appl and App2 queries a number of DCVD pro-
cesses to get information about the location of the desired data region of the coupled variable. The
increasing number of queried DCVD processes results in increased communication costs and an
overall increase in the times required to generate the communication schedules. Note that the num-
ber of queried DCVD processes is determined by the types of data distributions involved and how
the data location information is distributed in each application’s DCVD but not the data size of the
coupled data. For example, when the number of processes running an application becomes larger,
its DCVD distributed across a larger number of processes and the data location information is more
fragmented within DCVD, which results in higher query costs.

Copyright © 2013 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2014; 26:644-661
DOI: 10.1002/cpe



658 F. ZHANG ET AL.

Table II. Communication schedule computation time in seconds.

(a) XpressSpace
Array size 1 GB 2GB 4GB 8 GB
1024/256 0.0119 0.0194 0.0218 0.0211
2048/512 0.0226 0.0237 0.0268 0.0290
4096/1024 0.0276 0.0337 0.0385 0.0462
8192/2048 0.0365 0.0490 0.0509 0.0624
(b) MCT
Array size 1 GB 2GB 4GB 8 GB
1024/256 0.0130 0.0160 0.0131 0.0141
2048/512 0.0344 0.0334 0.0354 0.0387
4096/1024 0.05963 0.0682 0.1260 0.1371
8192/2048 0.0774 0.0922 0.1567 0.1797

The results in Table II also show that XpressSpace has lower overheads for computing commu-
nication schedules than MCT. As shown in the table, XpressSpace scales well as the number of
data producing and consuming processes increase and is about two times faster than MCT when
the number of processes is 8192/2048. The main advantages of XpressSpace are twofold. First,
each application process can issue concurrent DCVD queries, and the communication schedule
information is received asynchronously by using RDMA buffers that can be directly accessed by
remote DCVD processes. Second, each application process only queries for relevant data locality
information, and the size of this information is usually very small.

7. RELATED WORK

Programming abstractions and languages for multidisciplinary coordination: Several research
projects have explored new programming abstractions and languages, or extensions to existing par-
allel languages to enable multidisciplinary, multiscale and multiphysics coordination. Opus [21]
extends data parallel languages with the Shared Data Abstraction mechanism, which can be used
as computation servers as well as shared data repositories to support the coupling of multiple pro-
grams. Orca [22] is a programming language for implementing parallel applications on loosely
coupled distributed system. It provides a shared data abstraction that can be accessed by using
user-defined high-level operations. This abstraction enables interaction and coordination between
coupled application processes. Our work extends the PGAS parallel programming model to support
both tightly and loosely coupled interactions between heterogeneous PGAS applications. Specifi-
cally, our XpressSpace programming system extends existing PGAS data sharing and data access
models with a semantically specialized shared data space abstraction and operators to enable data
coupling across multiple independent PGAS executables.

Data coupling software tools: Several research groups, including our group, have addressed
coupling of parallel simulations such as the MxN coupling problem where a component running
on M nodes is coupled with another component running on N nodes. To tackle this problem, the
MxN working group of the Common Component Architecture (CCA) [23] forum developed a set
of software tools for parallel data redistribution for coupled simulation including MCT [10, 11],
InterComm [12], Parallel Application Workspace [24], and Meta-Chaos [25]. The CCA forum also
defined a set of standard interfaces for coupled components to promote interoperability between
components developed by different groups. Thus, InterComm programmers can use an XML job
description file to describe the components in a coupled simulation. However, most CCA software
tools build coupled simulation workflows as a single MPI program composed of different commu-
nicator groups, which limits their applicability. Furthermore, these tools were originally developed
for message passing based parallel programs and do not consider more recent memory models and
language features such as those introduced by PGAS languages.

Copyright © 2013 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2014; 26:644-661
DOI: 10.1002/cpe



XPRESSSPACE: A PROGRAMMING FRAMEWORK FOR COUPLING PGAS SIMULATION CODES 659

A coupler based data sharing and exchange framework has been used in real world multiphysics
simulations. In the CESM climate modeling system, different simulation models such as atmo-
sphere, land, sea ice, and ocean are connected by a single coupler component. Synchronization
and data flow is completely controlled by the coupler component. Data exchanges between dif-
ferent models go through a two-step transfer, first from the source model to the coupler, and then
redistributed from the coupler to the destination model. The Mesh-based Parallel Code Coupling
Interface [26] library also implements a coupling server and each parallel process communicates
with this Mesh-based Parallel Code Coupling Interface coupling server engine. Performance, scal-
ability, and resource limitations at a central coupler are some of the issues with the coupler-based
coupled simulation system, especially when coupling is tight and involves large amounts of data.

Our work on XpressSpace explores an asynchronous approach to MxN coupling and is based on
a common shared space data model that was used to couple heterogeneous applications. Our work
also develops a distributed and scalable implementation that is based on memory-to-memory data
transfers. These transfers can occur directly between the nodes running the coupled simulations,
enabling the approach to support a wide range of different coupling workflow patterns.

Coupling through PGAS communication systems: Networking communication libraries such
as Aggregate Remote Memory Copy Interface (ARMCI) [27] and GASNet [28] provides RDMA-
based one-sided data access to data associated with distributed array data structures and are used
for low level communications and data transfers in PGAS runtime systems, such as UPC, Global
Arrays and Chapel. Although users can implement parallel MxN data redistribution by using PGAS-
compatible ARMCI or GASNet APIs, there are two constraints. First, these libraries only support
data communications between processes or threads within a single PGAS executable. In contrast,
XpressSpace can be used to exchange data between heterogeneous PGAS executables. Second,
ARMCT and GASNet define a very basic and general programming APIs using which users have to
build the coupled application workflows. In contrast, XpressSpace provides a simple high level pro-
gramming interface that hides implementation complexities from users and can be used to directly
specify interaction and coordination patterns of coupled application workflows.

8. CONCLUSION

This paper presented the design and implementation of XpressSpace—a programming system that
extends existing PGAS data sharing and data access models with a semantically specialized shared
data space abstraction to enable data coupling across multiple independent PGAS executables.
XpressSpace supports a global-view style programming interface that is consistent with the PGAS
memory model and provides an efficient runtime system that can dynamically capture the data
decomposition of global-view data structures such as arrays and enable fast exchange of these
distributed data structures between coupled applications. XpressSpace also provides a simple pro-
gramming interface that enables users to compose PGAS applications into coupled application
workflows—users specify the coupled variables that are to be shared and define the coupling patterns
(i.e., the structure of the workflow) in a separate XML file, and details of how data coupling is per-
formed is abstracted from the users and is handled by the XpressSpace runtime, which implements
efficient direct memory-to-memory data redistribution by using RDMA.

The paper also presented an experimental evaluation of XpressSpace, which demonstrated its
performance and scalability. The evaluation compared the performance of XpressSpace with MCT.
Our future work includes further optimizing parallel data transfers by using data locality aware
mapping of application processes to physical processor cores. We will also explore support for
using the directed acyclic graph to compose and represent more complex coupled simulation
workflow scenarios.

ACKNOWLEDGEMENTS

The research presented in this work is supported in part by the National Science Foundation (NSF) via grant
numbers DMS 1228203 and ITP 0758566, by the DoE ExaCT Combustion Co-Design Center via subcontract
number 4000110839 from UT Battelle, by the DoE Scalable Data Management, Analysis, and Visualization

Copyright © 2013 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2014; 26:644-661
DOI: 10.1002/cpe



660 F. ZHANG ET AL.

Institute via the grant numbers DE-SC0007455, by the NSF Center for Remote Data Analysis and Visual-
ization via subcontract number A10-0064-S005, by the DoE Partnership for Edge Physics Simulations via
grant numbers DE-SC0008455 and DE-FG02-06ER54857, and by an IBM Faculty Award. The research and
was conducted as part of the NSF Cloud and Autonomic Computing Center at Rutgers University and the
Rutgers Discovery Informatics Institute (RDI2).

10.

11.

12.

13.

14.

15.

16.

18.

19.

20.

21.

22.

REFERENCES

. Carlson WW, Draper JM, Culler DE, Yelick K, Brooks E, Warren K. Introduction to UPC and language specification.

Technical Report CCS-TR-99-157, George Washington University, 1999.

. Numrich RW, Reid J. Co-array fortran for parallel programming. SIGPLAN Fortran Forum 1998; 17:1-31.
. Yelick K, Semenzato L, Pike G, Miyamoto C, Liblit B, Krishnamurthy A, Hilfinger P, Graham S, Gay D, Colella P,

Aiken A. Titanium: a high-performance java dialect. Concurrency and Computation: Practice & Experience 1998;
10:825-836.

. Nieplocha J, Palmer B, Tipparaju V, Krishnan M, Trease H, Apra E. Advances, applications and performance

of the global arrays shared memory programming toolkit. International Journal of High Performance Computing
Applications 2006; 20:203-231.

. Charles P, Grothoff C, Saraswat V, Donawa C, Kielstra A, Ebcioglu K, von Praun C, Sarkar V. X10: an object-

oriented approach to non-uniform cluster computing. Proceedings of the 20th Annual ACM Sigplan Conference on
Object-oriented Programming, Systems, Languages, and Applications (OOPSLA’05), San Diego, CA, USA, 2005;
519-538.

. Chamberlain BL, Callahan D, Zima HP. Parallel programmability and the chapel language. International Journal of

High Performance Computing Applications (IJHPCA) 2007; 21:291-312.

. Chang CS, Ku S, Weitzner H. Numerical study of neoclassical plasma pedestal in a tokamak geometry. Physics of

Plasmas 2004; 11:2649-2667.

. Park W, Belova EV, Fu GY, Tang XZ, Strauss HR, Sugiyama LE. Plasma simulation studies using multilevel physics

models. Physics of Plasmas 1999; 6:1796-1803.

. Collins WD, Bitz CM, Blackmon ML, Bonan GB, Bretherton CS, Carton JA, Chang P, Doney SC, Hack JJ, Hender-

son TB, Kiehl JT, Large WG, McKenna DS, Santer BD, Smith RD. The community climate system model version 3
(CCSM3). Journal of Climate 2006; 19(11):2122-2143.

Larson J, Jacob R, Ong E. The model coupling toolkit: a new fortran90 toolkit for building multiphysics parallel
coupled models. International Journal of High Performance Computing Applications (IJHPCA) 2005; 19:277-292.
Jacob R, Larson J, Ong E. MXN communication and parallel interpolation in community climate system model
version 3 using the model coupling toolkit. International Journal of High Performance Computing Applications
(IJHPCA) 2005; 19:293-307.

Lee JY, Sussman A. High performance communication between parallel programs. Proceedings of the 19th Inter-
national Parallel and Distributed Processing Symposium (IPDPS’05) - Workshop 4 - Volume 05, Denver, CO, USA,
2005; 177.2.

Koelbel CH, Loveman DB, Schreiber RS, Steele GL, Jr., Zosel ME. The High Performance Fortran Handbook. MIT
Press: Cambridge, MA, USA, 1994.

Docan C, Parashar M, Klasky S. DART: a substrate for high speed asynchronous data 10. Proceedings of 17th
International Symposium on High Performance Distributed Computing (HPDC’08), Boston, MA, USA, 2008;
219-220.

Brightwell R, Hudson T, Pedretti K, Riesen R, Underwood K. Implementation and performance of portals 3.3 on
the Cray XT3. Proceedings of International Conference on Cluster Computing (CLUSTER’05), Boston, MA, USA,
2005; 1-10.

Alverson R, Roweth D, Kaplan L. The gemini system interconnect. /EEE 18th Annual Symposium on High
Performance Interconnects (HOTI’10), Mountain View, CA, USA, 2010; 83-87.

. Kumar S, Dozsa G, Almasi G, Heidelberger P, Chen D, Giampapa ME, Blocksome M, Faraj A, Parker J, Ratterman

J, Smith B, Archer CJ. The deep computing messaging framework: generalized scalable message passing on the blue
gene/P supercomputer. Proceedings of 22nd Annual International Conference on Supercomputing (ICS’08), Island
of Kos, Greece, 2008; 94—-103.

Sagan H. Space-filling Curves. Springer: New York, NY, USA, 1994.

Docan C, Parashar M, Klasky S. Dataspaces: an interaction and coordination framework for coupled simulation
workflows. Proceedings of International Symposium on High Performance and Distributed Computing (HPDC’10),
Chicago, Illinois, 2010; 25-36.

Gelernter D. Generative communication in Linda. ACM Transaction on Programming Language System 1985;
7(1):80-112.

Chapman B, Haines M, Mehrota P, Zima H, Van Rosendale J. Opus: a coordination language for multidisciplinary
applications. Scientific Programming 1997; 6(4):345-362.

Bal HE, Kaashoek MF, Tanenbaum AS. Orca: a language for parallel programming of distributed systems. /EEE
Transaction on Software Engineering 1992; 18(3):190-205.

Copyright © 2013 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2014; 26:644-661

DOI: 10.1002/cpe



23.

24.

25.

26.

27.

28.

XPRESSSPACE: A PROGRAMMING FRAMEWORK FOR COUPLING PGAS SIMULATION CODES 661

Armstrong R, Gannon D, Geist A, Keahey K, Kohn S, Mclnnes L, Parker S, Smolinski B. Toward a common compo-
nent architecture for high-performance scientific computing. Proceedings of 8th International Symposium on High
Performance Distributed Computing (HPDC’99), Redondo Beach, California, 1999; 13.

Fasel P, Mniszewski S. PAWS: collective interactions and data transfers. Proceedings of the 10th International
Symposium on High Performance Distributed Computing (HPDC’01), San Francisco, California, 2001; 47-54.
Edjlali G, Sussman A, Saltz JH. Interoperability of data parallel runtime libraries. Proceedings of the 11th
International Symposium on Parallel Processing (IPPS’97), Geneva, Switzerland, 1997; 451-459.

Joppich W, Kurschner M. MPCCI—a tool for the simulation of coupled applications. Concurrency and Computation:
Practice & Experience 2006; 18:183-192.

Nieplocha J, Carpenter B. ARMCI: a portable remote memory copy libray for ditributed array libraries and compiler
run-time systems. Proceedings of the 11 IPPS/SPDP’99 Workshops Held in Conjunction with the 13th International
Parallel Processing Symposium and 10th Symposium on Parallel and Distributed Processing, San Juan, Puerto Rico,
1999; 533-546.

Nishtala R, Hargrove PH, Bonachea DO, Yelick KA. Scaling communication-intensive applications on blue gene/P
using one-sided communication and overlap. Proceedings of 23th IEEE International Parallel and Distributed
Processing Symposium (IPDPS’09), Rome, Italy, 2009; 1-12.

Copyright © 2013 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2014; 26:644-661

DOI: 10.1002/cpe



