
ADAPTIVE RUNTIME MANAGEMENT OF

SPATIAL AND TEMPORAL

HETEROGENEITY OF DYNAMIC SAMR

APPLICATIONS

BY XIAOLIN LI

A dissertation submitted to the

Graduate School—New Brunswick

Rutgers, The State University of New Jersey

in partial fulfillment of the requirements

for the degree of

Doctor of Philosophy

Graduate Program in Electrical and Computer Engineering

Written under the direction of

Professor Manish Parashar

and approved by

New Brunswick, New Jersey

October, 2005

ABSTRACT OF THE DISSERTATION

Adaptive Runtime Management of Spatial and

Temporal Heterogeneity of Dynamic SAMR

Applications

by Xiaolin Li

Dissertation Director: Professor Manish Parashar

Structured adaptive mesh refinement (SAMR) techniques provide an effective

means for dynamically concentrating computational effort and resources to ap-

propriate regions in the application domain and have the potential for enabling

highly accurate solutions to simulations of complex systems. However, due to

the dynamism and space-time heterogeneity exhibited by these techniques, their

scalable parallel implementation continues to present significant challenges.

This thesis aims at designing and evaluating an adaptive runtime management

system for parallel SAMR applications by explicitly considering their spatial and

temporal heterogeneity on large systems. The key idea is to identify relatively

homogenous regions in the computational domain at runtime and apply the most

appropriate algorithms that address local requirements of these regions. A hybrid

space-time runtime management strategy based on this idea has been developed,

ii

which consists of three components. First, adaptive hierarchical strategies dynam-

ically apply multiple partitioners to different regions of the application domain,

in a hierarchical manner, to match the local requirements. Novel clustering and

partitioning algorithms are developed. The strategy allows incremental reparti-

tioning and rescheduling and concurrent operations. The second component is an

application-level pipelining strategy, which trades space for time when resources

are sufficiently large and under-utilized. The third component is an application-

level out-of-core strategy, which trades time for space when resources are scarce in

order to improve the performance and enhance the survivability of applications.

The proposed solutions have been implemented and experimentally evaluated

on large-scale systems including the IBM SP4 cluster at San Diego Supercomputer

Center with up to 1280 processors. These experiments demonstrate the perfor-

mance benefits of the developed strategies. Finally, the GridMate simulator is

developed to investigate applicability of theses strategies in Grid environments.

iii

Acknowledgements

I would like to express my sincere gratitude to my advisor Prof. Manish Parashar

for his invaluable guidance, insightful ideas, and continuous encouragement during

the course of this work and throughout my study at Rutgers. I am very thankful to

Prof. Ivan Marsic, Prof. Hoang Pham, Prof. Deborah Silver, and Prof. Yanyong

Zhang for being on my thesis committee and for their advice and suggestions

regarding the thesis and beyond. I would like to thank Sumir Chandra and

Johan Steensland for valuable research discussions and collaboration. I would

like to thank Julian Cummings, Jaideep Ray, Ravi Samtaney, and Mary Wheeler

for collaboration on the real-world SAMR applications, and Victors Berstis and

Luba Cherbakov for collaboration on the Grid simulator. Moreover, I would like

to thank my colleagues at The Applied Software Systems Laboratory (TASSL)

and other friends at Rutgers for their friendship and help, which makes my study

at Rutgers enjoyable and fruitful. I am also thankful to staff at the Center

for Advanced Information Processing (CAIP) and Department of Electrical &

Computer Engineering for their assistance and support.

I am grateful to Paul & Diana, Rick & Lorie, Jerry & Lucia, Zhengyi &

Yingxiu, Zhengzhong & Xiuchun for their warmhearted help and guidance. My

special thanks go to my family for their endless love and spiritual support.

The work presented in this thesis was supported in part by NSF via grants ACI

9984357, EIA 0103674, EIA 0120934, ANI 0335244, CNS 0305495, CNS 0426354

and IIS 0430826, and by DOE ASCI/ASAP (Caltech) via grant PC295251. I

thank these funding agencies for their generous financial support.

iv

Table of Contents

Abstract . ii

Acknowledgements . iv

List of Tables . ix

List of Figures . x

1. Introduction . 1

1.1. Motivation . 1

1.1.1. Problem Statement . 2

1.2. Research Overview . 3

1.3. Contributions . 5

1.4. Outline of the Thesis . 6

2. Problem Description and Related Work 7

2.1. Structured Adaptive Mesh Refinement 7

2.1.1. SAMR Algorithm . 9

2.2. Spatial and Temporal Heterogeneity of SAMR Applications 11

2.3. Computation and Communication Patterns for Parallel SAMR Ap-

plications . 13

2.3.1. Communication Overheads for Distributed SAMR Applica-

tions . 14

2.4. Computation and Communication Workload Analysis 15

2.4.1. Computation Workload . 16

v

2.4.2. Communication Workload 18

2.5. Requirement Analysis for Partitioning and Scheduling Strategies . 19

2.6. Taxonomy for Runtime Management of SAMR Applications . . . 20

2.6.1. Related Work on Managing Distributed SAMR Applications 25

2.7. Concluding Remarks . 28

3. Hybrid Space-Time Runtime Management Strategy 29

3.1. Conceptual Overview of HRMS 30

3.2. Operations of HRMS . 32

3.3. SAMR Application Kernels for Experimental Evaluation 34

3.4. Concluding Remarks . 34

4. Hierarchical Partitioning Algorithms 36

4.1. Hierarchical Partitioning Algorithm 38

4.1.1. General HPA . 38

4.1.2. Static HPA . 42

4.1.3. Adaptive HPA . 45

4.2. Level-based Partitioning Algorithm 48

4.3. Concluding Remarks . 52

5. Adaptive Hierarchical Multi-Partitioner Strategy 53

5.1. Adaptive Hierarchical Multi-Partitioner Strategy 54

5.2. Requirement Analysis of Clustering Schemes 57

5.3. Segmentation-based Clustering (SBC) 58

5.4. Application-level Pipelining Strategy 62

5.5. Application-level Out-of-Core Strategy 65

5.6. Experimental Evaluation . 68

5.6.1. Clustering Quality Metric 68

vi

5.6.2. Evaluating the Effectiveness of SBC Scheme 69

5.6.3. Performance Evaluation 72

5.7. Concluding Remarks . 77

6. GridMate: Simulation of Dynamic Applications on Multi-Site

Grid Systems . 79

6.1. Motivation . 80

6.2. Related Work . 81

6.3. Conceptual Architecture . 82

6.4. Scheduling Architecture and Operations 84

6.5. Experimental Evaluation . 88

6.5.1. System Setup . 88

6.5.2. Evaluation Metric . 89

6.5.3. Simulation Results . 90

6.6. Concluding Remarks . 91

7. Summary, Conclusions and Future Work 93

7.1. Summary and Conclusions . 93

7.2. Contributions . 95

7.2.1. Addressing the Synchronization Costs 96

7.2.2. Addressing the Space-Time Heterogeneity 96

7.2.3. Handling Different Resource Situations 97

7.2.4. Investigating the Applicability of HRMS in Grid Environ-

ments . 97

7.2.5. Impact of the Research . 97

7.3. Future Work . 98

7.3.1. Extension to Partitioning and Clustering Schemes 99

7.3.2. Extension to Adaptive Hierarchical Schemes 99

vii

7.3.3. Extension to SAMR Techniques 100

References . 103

Appendix A. Glossary . 110

Curriculum Vita . 112

viii

List of Tables

2.1. The Berger-Oliger AMR Algorithm 9

2.2. Classification of Application Characteristics 20

2.3. Classification of Application Partitioners 22

2.4. Parallel and Distributed AMR Infrastructures 27

3.1. SAMR Application Kernels . 35

4.1. Load balancing phase in the general HPA 42

4.2. Hierarchical Partitioning Algorithm 44

4.3. Load Partitioning and Assignment in Adaptive HPA 46

4.4. Level-based Partitioning Algorithm (LPA) 49

5.1. Adaptive Hierarchical Multi-Partitioner 55

5.2. Segmentation-Based Clustering Algorithm 60

5.3. Average Refinement Homogeneity H(l) for 6 SAMR Applications 70

5.4. Homogeneity Improvements using SBC for 6 SAMR Applications 71

ix

List of Figures

1.1. An Illustrative Runtime Management System 3

2.1. Adaptive Grid Hierarchy - 2D (Berger-Oliger AMR scheme), Cour-

tesy: M. Parashar . 8

2.2. SAMR Example: 1-D Wave Equation 10

2.3. SAMR Example: Richtmyer-Meshkov Instability Flows in a 2D

Slice of RM3D, Courtesy: R. Samtaney 11

2.4. Flames simulation: ignition of H2-Air mixture in a non-uniform

temperature field. Courtesy: J. Ray, et al. 12

2.5. Spatial and Temporal Heterogeneity and Workload Dynamism of

a 3D Richtmyer-Meshkov Simulation using SAMR 13

2.6. Timing Diagram for Distributed SAMR Algorithm 14

2.7. Computation Load Versus Refinement Levels 17

2.8. Patch-based Decomposition of 1D Application, Courtesy: M. Parashar 23

2.9. Domain-based Decomposition of 1D Application, Courtesy: M.

Parashar . 24

2.10. Space Filling Curves - Self-Similarity Property. Courtesy: M.

Parashar . 26

3.1. Conceptual Architecture of HRMS 30

3.2. Workflow of HRMS . 32

4.1. Sequence Diagram for the Non-HPA Scheme 39

4.2. A General Hierarchical Structure of Processor Groups 40

4.3. Sequence Diagram for the HPA Scheme 43

x

4.4. Execution time: Static HPA versus Non-HPA Schemes 45

4.5. Communication Cost: Comparison of Non-HPA, Static HPA and

Adaptive HPA Schemes . 47

4.6. Execution Time: Static HPA versus Adaptive HPA Schemes . . . 47

4.7. Partitions of a 1-D Grid Hierarchy (a) GPA (b) LPA 49

4.8. Timing Diagrams of the Example (a) GPA (b) LPA 50

4.9. Execution and Communication Time 51

5.1. A Flowchart for the Adaptive Clustering and Partitioning Strategy 55

5.2. AHMP Operations - An Illustrative Example 56

5.3. Clustering Results of LBC Algorithm 59

5.4. Clustering Results for the SBC Scheme 61

5.5. Load Density Distribution and Histogram for SBC 62

5.6. Application-level Pipelining Strategy 63

5.7. Number of Page Faults versus Allocated Memory 65

5.8. Processing Time versus Allocated Memory 66

5.9. Application-level Out-of-core Strategy 67

5.10. Refinement Homogeneity for the Transport2D Application Kernel

(4 levels of refinement) . 69

5.11. Refinement Homogeneity for RM2D (4 levels) and RM3D Appli-

cations (2 levels) . 70

5.12. Homogeneity Improvements using SBC for TP2D 71

5.13. Maximum Total Communication for RM3D on 64 Processors . . . 72

5.14. Clustering Costs for the 6 SAMR Application Kernels 73

5.15. Impact of Load Imbalance Threshold for RM3D on 128 Processors 74

5.16. Overall Performance for RM3D 75

5.17. Experimental Results: AHMP with and without ALP 76

5.18. Number of Page Faults: NonALOC versus ALOC 77

xi

6.1. Spatial and Temporal Heterogeneity of Resources on Two Sites . . 81

6.2. System Architecture of GridMate 83

6.3. Conceptual Architecture of HRMS on a Multi-Site Grid 84

6.4. Class Diagram of GridMate Entities 86

6.5. Sequence Diagram for Interaction among GridMate Entities . . . 88

6.6. Waiting Time and Response Time: HRMS and Baseline Schemes 90

6.7. Processor Efficiency Factor and Mean Number of Processors Used:

HRMS and Baseline Schemes . 91

xii

1

Chapter 1

Introduction

1.1 Motivation

The last decade has witnessed a dramatic technology boost in computing, net-

working and storage. A personal computer today is as fast as a supercomputer

in 1990 and can be installed with more than 100 GB storage, which is as much

as an entire supercomputer center in 1990 [28]. The rapid advance of technolo-

gies, driven by Moore’s law [66] for CPUs, storage systems, as well as Gilder’s

law [49] for networks, has led to parallel and distributed systems of unprecedented

scales. Harnessing resources of such scale requires efficient runtime management

strategies.

At the same time, a new generation of large-scale scientific and engineering

simulations that require an increasing amount of computing and storage resources

to provide new insights into complex systems, such as interacting black holes and

neutron stars, formations of galaxies, combustion simulation, subsurface modeling

and oil reservoir simulation [41, 51, 70]. Dynamically adaptive techniques, such

as the dynamic structured adaptive mesh refinement (SAMR) technique [26], are

emerging as attractive formulations of these simulations. Compared to numerical

techniques based on static uniform discretization, SAMR can yield highly ad-

vantageous ratios for cost/accuracy by adaptively concentrating computational

effort and resources to appropriate regions of the domain at runtime. Large-scale

parallel implementations of SAMR-based applications have the potential for ac-

curately modeling complex physical phenomena and providing dramatic insights.

2

However, due to the dynamism and space-time heterogeneity, the scalable parallel

implementation remains a significant challenge. Specifically, SAMR-based appli-

cations are inherently dynamic because the physical phenomena being modeled

and the corresponding adaptive computational domain change as the simulation

evolves. Further, adaptation naturally leads to a computational domain that is

spatially heterogeneous, i.e., different regions in the computational domain and

different levels of refinements have different computational and communication re-

quirements. Finally, the SAMR algorithm periodically regrids the computational

domain causing regions of refinement to be created/deleted/moved to match the

physics being modeled, i.e., it exhibits temporal heterogeneity.

The exponential growth in computing, networking and storage technologies

has also ushered in a new distributed computing paradigm, Grid computing, for

solving grand challenge problems in varied domains of science, engineering and

business [46, 47, 45]. A number of major Grid infrastructures are being developed

and deployed [6, 11, 18] and many grand challenge problems are being tackled

by exploiting the power of the Grid [1, 5, 9, 12, 15, 16]. Migrating dynamic and

heterogeneous SAMR applications to Grid environments introduces another level

of complexity and challenges.

1.1.1 Problem Statement

As mentioned above, SAMR applications exhibit dynamism and space-time het-

erogeneity, making their scalable implementation a significant challenge. To ad-

dress the scalability and performance issues, this thesis aims at designing, im-

plementing and evaluating an adaptive runtime management system for parallel

SAMR applications by explicitly considering their dynamism and space-time het-

erogeneity on large-scale systems. The specific objectives are as follows.

• To explore the characteristics of parallel SAMR applications: to investigate

3

their communication/computation behavior and to analyze the localized

features of the computational domain.

• To explicitly address the synchronization costs caused by the dynamism of

parallel SAMR applications, by identifying the sources of these costs and

designing efficient strategies to reduce their impact on performance.

• To explicitly address the spatial and temporal heterogeneity exhibited in

SAMR applications. Specifically, to characterize the heterogeneity, iden-

tify and isolate subproblems, and design a divide-and-conquer strategy to

address it. Further, to design strategies to enhance survivability of the

application when the available resource is not sufficient.

• To investigate the applicability of the proposed strategies in Grid environ-

ments. In particular, to consider the coordination of application partitioning

and resource scheduling strategies.

1.2 Research Overview

Dynamic Applications

Runtime Management System

Parallel and Distributed Systems

Monitor
Analyze

Partition applications

Allocate resources

Balance load

Manage communication

Figure 1.1: An Illustrative Runtime Management System

4

A runtime management system (RMS) is in charge of partitioning applica-

tions at runtime and distributing each partition to available resources in order

to efficiently utilize resources and minimize the execution time of applications.

Figure 1.1 shows an RMS as a middleware system that bridges the gap between

applications and operating systems and provides efficient runtime support, pri-

marily including dynamic partitioning, resource allocation, coordination, and load

balancing. In the figure, the input application is a combustion simulation of

hydrogen-air mixture with three initial ignition spots [70]. As shown in the fig-

ure, a RMS monitors the runtime states of applications and resources, analyzes

requirements, and delivers a plan for partitioning, scheduling and executing the

application on parallel and distributed systems to maximize their performance,

efficiency and utilization. In case of SAMR applications, the RMS must address

their dynamism and space-time heterogeneity.

The overall goal of this thesis is to design, implement and evaluate an adap-

tive runtime management system for parallel SAMR applications on parallel and

distributed systems. To address the spatial and temporal heterogeneity, the key

idea is to identify relatively homogenous regions in the computational domain at

runtime and apply the most appropriate algorithms that address local require-

ments of these regions. A hybrid space-time runtime management strategy based

on this idea has been developed, which consists of three components. First, adap-

tive hierarchical strategies dynamically apply multiple partitioners to different

regions of the application domain, in a hierarchical manner, to match the local

requirements. Novel clustering and partitioning algorithms are developed. The

strategy allows incremental repartitioning and rescheduling and concurrent oper-

ations. The second component is an application-level pipelining strategy, which

trades space for time when resources are sufficiently large and under-utilized.

The third component is an application-level out-of-core strategy, which trades

time for space when resources are scarce in order to improve the performance

5

and enhance the survivability of applications. To investigate the applicability

of theses strategies in Grid environments, GridMate, a Grid simulator, has been

developed.

1.3 Contributions

The main contributions of this thesis are as follows.

• A hybrid space-time runtime management strategy and system (HRMS).

HRMS has been implemented and experimentally evaluated on large-scale

systems with up to 1280 processors. These experiments demonstrate that

HRMS successfully improves the overall performance and scalability by ex-

plicitly addressing the dynamism and heterogeneity of SAMR applications.

The contributions of HRMS are elaborated as follows:

– HRMS addresses the dynamism of SAMR applications by identifying

and minimizing two kinds of synchronization costs: one is due to the

flat organization of processors, and the other is due to the load im-

balance at each refinement level. Hierarchical partitioning strategies

organize processors in a hierarchical manner to match the hierarchy of

the computational domain and enable incremental redistribution and

concurrent communication to reduce the first kind of synchronization

costs. Moreover, the level-based partitioning strategy explicitly ad-

dresses the second kind of synchronization costs by balancing both the

overall workload and the workload at each refinement level.

– HRMS addresses the space-time heterogeneity of SAMR applications

by identifying and characterizing the localized requirements of the com-

putational domain, and further applying multiple partitioners to match

these localized requirements. In particular, the segmentation-based

clustering scheme is developed to formulate well-structured subregions

6

and characterize their local requirements. These subregions are ex-

ploited by the adaptive hierarchical multi-partitioner to enable multi-

ple partitioners to concurrently operate on different subregions.

– HRMS is also able to handle different resource situations. When the

resources are under-utilized, the application-level pipelining scheme

leverages domain-based schemes to reduce communication overheads

and patch-based schemes to reduce load imbalance. In contrast, when

the available physical memory capacity is not sufficient to support the

application, an application-level out-of-core scheme has been developed

to exploit the memory access pattern of SAMR applications and enable

incremental operation on patches at different refinement levels. As a

result, it enhances the survivability.

• The design and evaluation of GridMate, a Grid simulator for distributed

scientific applications on multi-site clusters. GridMate is able to model a

multi-site heterogeneous Grid computing environment. It adopts a super-

scheduler and local-scheduler scheduling paradigm and integrates partition-

ing and scheduling schemes in HRMS. As a result, it enables the perfor-

mance evaluation of HRMS schemes on multi-site Grid environments.

1.4 Outline of the Thesis

The rest of the thesis is organized as follows. Chapter 2 presents the problem

description and related work. Chapter 3 presents the conceptual framework of

HRMS. Chapter 4 presents the hierarchical partitioning algorithm. Chapter 5

presents the adaptive hierarchical multi-partitioner approach. GridMate, a Grid

simulator for distributed scientific applications, is presented in Chapter 5. Chap-

ter 6 concludes the thesis and presents some future research directions.

7

Chapter 2

Problem Description and Related Work

As mentioned in the previous chapter, SAMR applications exhibit dynamism

and spatial and temporal heterogeneity. As a result, it is a challenging problem

to dynamically partition applications and distribute them on dynamic resources

at runtime to maximize performance, efficiency and resource utilization. This

chapter first describes the target applications, which are based on the SAMR

technique. It then investigates the spatial and temporal heterogeneity of SAMR

applications and the computation and communication patterns for parallel SAMR

implementations. Further, it analyzes the computation and communication work-

load. After that, this chapter presents a taxonomy for runtime management for

SAMR applications and describes related research efforts and systems.

2.1 Structured Adaptive Mesh Refinement

The applications targeted in this thesis are large-scale dynamic scientific and engi-

neering applications, such as scientific simulations that solve sophisticated partial

differential equations (PDEs) using Adaptive Mesh Refinement (AMR) [26] tech-

niques. Partial differential equations are widely used for mathematically modeling

and studying physical phenomena in science and engineering, such as heat trans-

fer in solids, interacting black holes and neutron stars, electrostatics of conductive

media, formations of galaxies, combustion simulation, wave propagation, and sub-

surface flows in oil reservoirs [41, 51, 70]. One numerical method to solve PDEs

is to compute approximate solutions for discrete points by uniformly discretizing

8

the physical domain. This approach results in a homogeneous grid system with

a uniform resolution over the entire physical domain. However, many physical

phenomena exhibit shocks, discontinuities or steep gradients in localized regions

of the physical domain. In these cases, to achieve acceptable resolution in these

small regions, uniform resolution methods will result in a very fine discretization

of the entire domain. Consequently, it requires a significant amount of unneces-

sary computation and storage.

G

1

0

G

1

1

G

1

2

G

1

0

G

1

1
 G

2

1
 G

3

1

G

1

2
 G

2

2
 G

3

2

G

1

3

G

4

2

Level 0

Level 2

Level 1

Figure 2.1: Adaptive Grid Hierarchy - 2D (Berger-Oliger AMR scheme), Cour-
tesy: M. Parashar

Instead of using uniform discretization or refinement to obtain finer resolution,

SAMR techniques dynamically apply non-uniform refinement on different regions

according to their local resolution requirements. SAMR techniques track regions

in the domain that require additional resolution and dynamically overlay finer

grids over these regions. This technique concentrates computational efforts (finer

grids with finer integration time steps) on regions that exhibit higher numerical

errors. These methods start with a base coarse grid with minimum acceptable

resolution that covers the entire computational domain. As the solution pro-

gresses, regions in the domain requiring additional resolution are tagged and finer

grids are over laid on these tagged regions of the coarse grid. Refinement pro-

ceeds recursively so that regions on the finer grid requiring more resolution are

9

similarly tagged and even finer grids are overlaid on these regions. The resulting

grid structure for the Structured Berger-Oliger AMR is a dynamic adaptive grid

hierarchy [26] as shown in Figure 2.1.

2.1.1 SAMR Algorithm

The primary steps involving in the SAMR algorithm are presented in Table 2.1.

Table 2.1: The Berger-Oliger AMR Algorithm

1. Recursive Procedure Integrate(level)

2. If (isRegridTime)

3. Regrid()

4. EndIf

5. Boundary update (including ghost region communication)

6. Evolve one time step (∆t) on all patches on level level

7. If (level + 1 exists)

8. Recursive Integrate(level + 1)

9. Update(level, level + 1)

10. EndIf

11. EndIntegrate

To better understand the SAMR algorithm, we show a simple example. Con-

sider a 1-dimensional wave equation,

ut + aux = 0 (2.1)

with

u(x, 0) = u0(x) (initial condition) (2.2)

u(0, t) = uL(t) (boundary condition) (2.3)

10

where a is a constant and a > 0.

Using the first-order difference approximation, we obtain the numerical solu-

tion as follows,

un+1
i = (1 − c)un

i + cun
i−1 (2.4)

where c is the courant number, c = a∆t/∆x.

To achieve higher accuracy using conventional uniform discretization numer-

ical techniques, we have two options: one is to apply higher order numerical

solution, and the other is to apply finer space and time resolution. Note that

these approaches are applied uniformly on the entire space and time domain.

Accurate solution

SAMR solution

Uniform numerical solution

t=100
dt

u
 Accurate solution

SAMR solution

Uniform numerical solution

Accurate solution

SAMR solution

Uniform numerical solution

t=100
dt

u

Figure 2.2: SAMR Example: 1-D Wave Equation

The better solution is to apply adaptive mesh refinement technique as illus-

trated in Figure 2.2. From this figure, we observe that the SAMR technique

applies finer resolution merely in the small subdomains that require finer resolu-

tion, i.e., regions with high truncation errors. Compared to the static uniform

discretization approach, SAMR method can achieve one to two orders of mag-

nitude of savings in computation and storage costs for many applications with

localized features.

Figure 2.3 shows a real-world application, the Richtmyer-Meshkov instability

flows in a 2D slice of a 3D application (RM3D) using the SAMR technique [72].

We observe that, to accurately capture the intensive activities in those narrow re-

gions around the shock-wave front, much finer resolution is applied, while coarser

refinement is applied in the relatively homogenous and inactive regions.

11

Figure 2.3: SAMR Example: Richtmyer-Meshkov Instability Flows in a 2D Slice
of RM3D, Courtesy: R. Samtaney

2.2 Spatial and Temporal Heterogeneity of SAMR Appli-

cations

SAMR techniques can yield highly advantageous ratios for cost/accuracy when

compared to methods based upon static uniform approximations [67]. Parallel

implementations of these methods offer the potential for accurate solutions of

physically realistic models of complex physical phenomena. However, the dy-

namism and spatial and temporal heterogeneity of the adaptive grid hierarchy

underlying SAMR algorithms makes their efficient distributed implementation a

significant challenge. To illustrate the irregular and complex behaviors of SAMR

applications, two examples are presented below.

Figure 2.4 shows a series of snapshots of a 2D SAMR-based combustion simu-

lation of hydrogen-air mixture [69]. The simulation starts with the initial ignition

at 3 spots. As seen in the figure, the application exhibits high dynamics and spa-

tial and temporal heterogeneity. Specifically, the triple flame structure requires

higher resolution and thus more computational resources, while the rest of the

domain does not. Further, as the simulation proceeds, the triple hot-spots expand

and relocate, and cause the regions of refinement created, deleted and relocated.

This behavior of the SAMR application reveals the temporal heterogeneity.

12

Temporal

Heterogeneity

Spatial

Heterogeneity

Temporal

Heterogeneity

Spatial

Heterogeneity

Spatial

Heterogeneity

Figure 2.4: Flames simulation: ignition of H2-Air mixture in a non-uniform tem-
perature field. Courtesy: J. Ray, et al.

The 3-D compressible turbulence simulation kernel solving the Richtmyer-

Meshkov (RM3D) instability [41] also demonstrates the space-time heterogeneity

of SAMR applications. Figure 2.5 shows a selection of snapshots of the RM3D

adaptive grid hierarchy as well as a plot of its load dynamics at different re-

grid steps. Since the adaptive grid hierarchy remains unchanged between two

regrid steps, we plot workload dynamics in terms of regrid steps. The work-

load in this figure represents the computational/storage requirement, which is

computed based on the number of grid points in the grid hierarchy. Applica-

tion variables are typically defined at these grid points and are updated at each

iteration of the simulation, and consequently, the computational/storage require-

ments are proportional to the number of grid points. The snapshots in this fig-

ure clearly demonstrate the dynamics and spatial and temporal heterogeneity of

SAMR applications - different subregions in the computational domain have dif-

ferent computational and communication requirements and regions of refinement

are created, deleted, relocated, and grow/shrink at runtime.

13

regrid step 114

regrid step 5

regrid step 96

RM3D (200 regrid steps, size=256*64*64)

0

10

20

30

40

50

60

70

80

0
 20
 40
 60
 80
 100
 120
 140
 160
 180
 200

Regrid Steps

T
o

ta
l

L
o

a
d

 (
1

0
0

k
)

regrid step 200
regrid step 160

Figure 2.5: Spatial and Temporal Heterogeneity and Workload Dynamism of a
3D Richtmyer-Meshkov Simulation using SAMR

2.3 Computation and Communication Patterns for Paral-

lel SAMR Applications

The overall performance of parallel SAMR implementations is limited by the abil-

ity to partition the underlying grid hierarchies at runtime to expose all inherent

parallelism, minimize communication and synchronization overheads, and bal-

ance load. A critical requirement for the load partitioner is to maintain logical

locality across partitions at different levels of the hierarchy and at the same level

when they are decomposed and mapped across processors. Preserving locality

minimizes the total communication and synchronization overheads.

The timing diagram (note that the timing is not drawn to scale) in Figure 2.6

illustrates the operation of the SAMR algorithm with a 3 level grid hierarchy. For

simplicity, the computation and communication behaviors of only two processors,

P1 and P2, are shown. The three components of SAMR communication overheads

(listed in Section 2.3.1) are illustrated in the enlarged portion of the time line.

This figure shows the exact computation and communication patterns for parallel

SAMR implementations. The timing diagram shows that there is one time step

14

P1

0

0

1

1

2

2

2

2
 1
 0

1

1

2

2

2

2
 1

0

computation

communication

time

0

0

1

1

2

2

2

2
 1
 0

1

1

2

2

2

2
 1

0

computation

communication

time

P2

. . .

. . .

* The number in the time slot box denotes the refinement level of the load under processing

* In this case, the number of refinement levels is 3 and the refinement factor is 2.

* The communication time consists of three types, intra-level, iter-level and synchronization cost

2 intra-level

2 intra-level

2 sync
 2 and 1 inter-level

computation

communication

time

computation

communication

time

. . .
P1

P2

2

. . .
 2

2 and 1 inter-level

Enlarged with more details

1 intra-level

1 intra-level

2 sync

. . .
1

. . .
1

Figure 2.6: Timing Diagram for Distributed SAMR Algorithm

on the coarsest level (level 0) of the grid hierarchy followed by two time steps on

the first refinement level and four time steps on the second level, before the second

time step on level 0 can start. Further, the computation and communication steps

for each refinement level are interleaved. This behavior makes partitioning the

dynamic SAMR grid hierarchy to both balance load and minimize communication

overheads a significant challenge.

2.3.1 Communication Overheads for Distributed SAMR

Applications

As shown in Figure 2.6, the communication overheads of parallel SAMR appli-

cations primarily consist of four components: (1) Inter-level communications,

defined between component grids at different levels of the grid hierarchy and

consist of prolongations (coarse to fine transfer and interpolation) and restric-

tions (fine to coarse transfer and interpolation); (2) Intra-level communications,

required to update the grid-elements along the boundaries of local portions of a

distributed grid, consisting of near-neighbor exchanges; (3) Synchronization cost,

15

which occurs when the workload is not well balanced among all processors; (4)

Data migration, which occurs between two successive regridding and re-mapping

steps. These costs occur at all time steps and at all refinement levels due to the

hierarchical refinement of space and time in the SAMR formulation.

2.4 Computation and Communication Workload Analysis

The previous section illustrates the computation and communication patterns

in distributed SAMR applications. This section further analyzes the computa-

tion and communication requirements. In this discussion, we use the following

notations.

CP (0): denotes the computation cost for a region with bounding box (lbx, lby, lbz,

ubx, uby, ubz) on the coarsest level (level 0), where, (lbx, lby, lbz) denote the

coordinates of the lower bound and (ubx, uby, ubz) denote the coordinates

of the upper bound.

CP (l): denotes the computation cost for a patch at refinement level l.

CM (0): denotes the communication cost for a region with the bounding box

(lbx, lby, lbz, ubx, uby, ubz) on the coarsest level (level 0), where, (lbx, lby, lbz)

denote the coordinates of the lower bound and (ubx, uby, ubz) denote the

coordinates of the upper bound.

CM (l): denotes the communication cost for a patch at refinement level l.

α: denotes the computation cost on a single grid point. It is assumed that all

grid points at all levels carry the same workload.

β: denotes the communication cost for exchanging a unit size of message.

θ: denotes the communication overhead such as the synchronization and startup

cost.

16

r: denotes the refinement factor.

d: denotes the dimension of the application domain.

∆x, ∆y, ∆z: denote the step sizes in each of the 3 dimensions for the region on

the coarsest level. The coarsest level without refinements is also referred to

as the base-level.

nx, ny, nz: denote the number of grid points in x, y, z dimensions respectively.

2.4.1 Computation Workload

Using notations defined in the previous section, we calculate the computation

cost on the base level of grid hierarchy as follows,

CP (0) = α × nx × ny × nz (2.5)

= α ×
(

ubx − lbx

∆x
+ 1

)

×
(

uby − lby

∆y
+ 1

)

×
(

ubz − lbz

∆z
+ 1

)

(2.6)

The Berger-Oliger’s SAMR algorithm refines in time as well as in space. We

assume the refinement factor r remains same for all levels of refinement and is

used to refine in both time and space. Thus, the grids on the fine level l + 1

will be advanced r time steps for every coarse time step on the level l. Thus,

the computation cost for the same region as the base domain on the level l,

l = 1, 2, ..., n, is given by,

CP (l) = rd+1 × CP (l−1) (2.7)

= (rd+1)l × CP (0) (2.8)

We define a composite grid as a sub-domain with multiple refinement levels

starting with the base level. Thus, the computation cost for a composite grid can

17

be computed as, by,

CPcomposite =
maxlev
∑

l=0

CP (l) (2.9)

=
maxlev
∑

l=0

(rd+1)l × CP (0) (2.10)

To obtain the relationship between patches with equivalent computation cost,

we assume two cubic regions Ri and Rj. The base level patch in the region Ri is

of size nxi×nyi×nzi (nxi = nyi = nyi), and the base level patch in the region Rj

is of size nxj×nyj×nzj (nxj = nyj = nyj), respectively. From the equation (2.5),

the patch at refinement level m in the region Ri and the patch at refinement level

n in the region Rj are of equivalent computation cost if the following equations

are satisfied.

CP (i) = CP (j) (2.11)

(rd+1)i × CP
(0)
i = (rd+1)j × CP

(0)
j (2.12)

ri(d+1) × α × nx3
i = rj(d+1) × α × nx3

j (2.13)

nxi = nxj ×
3
√

r(d+1)(j−i) (2.14)

0 200 400 600 800 1000 1200
0

0.5
1

2

5

10

15
x 10

7

The size of the dimension

C
o

m
p

u
ta

ti
o

n
 lo

ad
 f

o
r

ea
ch

 le
ve

l

level 0
level 1
level 2
level 3

0 200 300 400 600 800 1000 1200

10
3

10
4

10
5

10
6

10
7

10
8

10
9

C
o

m
p

u
ta

ti
o

n
 lo

ad
 f

o
r

ea
ch

 le
ve

l (
lo

g
)

level 0
level 1
level 2
level 3

The size of the dimension

Figure 2.7: Computation Load Versus Refinement Levels

Figure 2.7 shows the workload distribution for different refinement levels in

terms of the size of the domain. Note that the right figure uses the log of the

18

workload size. An important observation is that the highest refinement level

dominates the computation cost. The right figure shows that the patch of size =

800×800×800 at the base level (level 0) requires the same computation workload

as the patch of size = 300 × 300 × 300 at the refinement level 1 .

2.4.2 Communication Workload

The communication in SAMR applications mainly includes intra-level and inter-

level communication.

Consider a 3 dimension domain assuming uniform refinement, the inter-level

communication cost from the base level to the refinement level 1 of grid hierarchy

is given by,

CM
(0→1)
inter = β × nx × ny × nz

= β ×
(

ubx − lbx

∆x
+ 1

)

×
(

uby − lby

∆y
+ 1

)

×
(

ubz − lbz

∆z
+ 1

)

The inter-level communication for the same region from a level l patch to the

corresponding level l + 1 patch is given by,

CM
(l→l+1)
inter = rd+1 × CM

(l−1→l)
inter (2.15)

The intra-level communication (also called ghost communication) occurs dur-

ing the exchange of the solution at the boundary based on the stencil used by

the forward difference operation, including the edge, face and corner stencil. Sim-

ilarly, assuming uniform refinement, the intra-level communication on the base

level of the grid hierarchy is given by,

CM
(0)
intra = β × (edge + face + corner) (2.16)

The intra-level communication for the same region on the level l + 1 and the

level l has the following relationship,

CM
(l+1)
intra = rd+1 × CM

(l)
intra (2.17)

19

Thus the total communication cost is given by,

CM = CMinter + CMintra + θ (2.18)

where CMinter and CMintra include all communication costs at all refinement

levels.

2.5 Requirement Analysis for Partitioning and Scheduling

Strategies

In order to achieve the desired performance, an optimal partitioning of the SAMR

grid hierarchy and scalable implementations of SAMR applications require careful

consideration of the timing pattern shown in Figure 2.6. From above analysis and

observations, the desired properties of an SAMR partitioner include:

1. Balance load. The objective of load balancing is to ensure that the same

amount of load is assigned to each processor in homogeneous systems, or

the amount of load that is assigned to a processor is proportional to the

processor’s capacity in heterogeneous systems.

2. Preserve locality. Preserving locality requires that communication are local-

ized and possibly on the same processor when the workload is distributed.

In the case of SAMR applications, this implies (a) maintaining the parent-

child locality to minimize the inter-level communication overhead; (b) as-

signing the proximate application subregions to closely-networked resources

or resource groups to minimize the intra-level and inter-level communica-

tion overheads; (c) maintaining locality between two repartition steps to

minimize the data migration overheads.

3. Be fast and efficient. Parallel SAMR requires regular regridding and repar-

titioning. A good partitioner should be fast and efficient.

20

Note that these three properties may contradict each other. For example, to

achieve perfect load balancing, fine granularity is preferred. However, fine gran-

ularity may affect the locality property and incur more partitioning and commu-

nication overheads. A good strategy strives to achieve the best overall trade-off.

2.6 Taxonomy for Runtime Management of SAMR Ap-

plications

In this section, we present a taxonomy for dynamic application management, par-

ticularly for partitioning SAMR applications. The taxonomy is based on the char-

acteristics of applications and application-level partitioners as shown in tables 2.2

and 2.3. We decouple the classification of applications and their partitioners. In

this way, we can obtain a better understanding of both aspects. The decoupling

also implicitly indicates that we can potentially apply different partitioners for

different application characteristics in a flexible manner.

Table 2.2: Classification of Application Characteristics
Application Characteristics Categories

Execution Mode Computation-Intensive, Communication-
Intensive, IO-Intensive

Activity Dynamic (Localized Adaptivity, Scattered
Adaptivity), Static

Granularity Fine-Grained, Coarse-Grained, Indivisible
Dependency Independent, Workflow, Hybrid

In Table 2.2, applications are characterized based on their execution mode,

activity, granularity and dependency. The execution mode can be computation-

intensive, communication-intensive or IO-intensive [39, 80]. Most SAMR applica-

tions are computation-intensive, belonging to high performance scientific comput-

ing category. Due to deep levels of adaptive refinements, SAMR applications can

also be communication-intensive. In some cases, when dealing with large amounts

of data, SAMR applications can fall into IO-intensive category. Experiments show

21

that, during the entire course of execution, SAMR applications may run in dif-

ferent execution modes as the simulated physical phenomena evolve [39, 80]. The

activities of applications are classified as dynamic or static. Many embarrass-

ingly parallel applications belong to the static application category, for example,

parallel geometrical transformations of images and Monte Carlo simulations [84].

SAMR applications are dynamic in nature because of their high adaptivity. Dy-

namic behaviors of SAMR applications may demonstrate localized adaptivity

pattern or scattered adaptivity pattern in different execution phases. From the

perspective of divisibility, some applications are fine-grained [83], some are coarse-

grained [20], while others are not divisible at all [31, 75]. Workloads in the divisible

load scheduling paradigm are assumed to be homogeneous and arbitrarily divis-

ible in the sense that, each portion of the load can be independently processed

on any processor on the network. Coarse-grained divisible applications typically

involve dependencies among subtasks. Indivisible tasks are atomic and cannot be

further divided into smaller sub-tasks, and have to be completely processed on a

single processor. SAMR applications fall into the fine-grained or coarse-grained

divisible categories. When the underlying physical domain exhibits more homo-

geneity, the load associated with this domain belongs to the fine-grained divisible

category. When the physical domain exhibits scattered heterogeneity with deep

refinements, however, the load may be classified as coarse-grained divisible. Note

that SAMR applications involve iterative operations and frequent communica-

tions. Therefore, they do not belong to the embarrassingly parallel category. The

last criterion is the dependency. Independent applications are common in the

divisible load scheduling category, such as parallel low level image processing and

distributed database query processing [83]. Workflow applications are composed

of several modules or subtasks that must run in order, for example, data-driven

parallel applications, scientific simulations, and visualization applications. For

SAMR applications, although load partitions can be processed independently,

22

they need communications iteratively. If dynamic load balancing strategies are

adopted, repartitioning may result in load movement or process migration, thus

exhibiting a hybrid dependency.

Table 2.3: Classification of Application Partitioners
Partitioner Characteristics Categories

Organization static single-partitioner, adaptive single-
partitioner (meta-partitioner), adaptive hier-
archical multiple-partitioner

Decomposition Data Decomposition (Domain-based, Patch-
based, Hybrid), Functional Decomposition

Partitioning Method Binary dissection, Multilevel, SFC-based,
etc.

Operations
Dynamic Repartitioning policy (Periodic,

Event Driven), System Sensitive
Static

As shown in Table 2.3, application-level partitioners/schedulers are classified

with respect to their organization, decomposition method and operations. The

organization of partitioners falls into three categories: static single partitioner,

adaptive single partitioner, adaptive multiple partitioner. For static single par-

titioner approaches, one predefined partitioning and repartitioning strategy is

adopted throughout the entire lifecycle of SAMR applications. For adaptive sin-

gle partitioner approaches, also termed meta-partitioner in the literature [80], the

most appropriate partitioning routine is selected based on the runtime behavior

of SAMR applications. Adaptive multiple partitioner approaches not only select

appropriate partitioning strategies based on the runtime state of the SAMR ap-

plication but also apply multiple partitioners simultaneously to local relatively

homogeneous regions of the domain based on the local requirements. In this

thesis, we propose such an adaptive hierarchical multiple partitioning strategy.

Decomposition methods can be classified as data decomposition and functional

decomposition. Functional decomposition exploits functional parallelism by di-

viding problems into a series of subtasks. Pipelining techniques can be employed

23

to speedup applications with functional parallelism.

Data decomposition is commonly applied to achieve data parallelism for ap-

plications that require the same operations to be performed on different data

elements, for example, SPMD (Single Program Multiple Data) applications. In

the case of SAMR applications, data decomposition methods can be further clas-

sified as patch-based and domain-based.

P0 P3P2P1 P0 P3P2P1 P0 P3P2P1

1 G
1

2 G
1
3

1

2
G G

2

2
G

2

3

P0 P1 P2 P3

G
0

1

P1 P2 P3 P0 P1 P2 P3P0
P0P1P2P3

G
1

Figure 2.8: Patch-based Decomposition of 1D Application, Courtesy: M. Parashar

Patch-based decomposition methods make partitioning decisions for each patch

at different refinement levels independently [36, 57, 67, 77]. An example of patch-

based decomposition for a 1-dimensional domain is illustrated in Figure 2.8.

Patch-based technique results in well-balanced load distribution as long as each

patch is sufficiently large. Since workload is balanced for each patch, an implicit

feature of this scheme is that it does not need redistribution when a patch is

deleted at runtime. However, it does not preserve locality and result in con-

siderable inter-level communication overheads. Moreover, these communications

may lead to serializing of the computation and severe performance bottleneck.

Inter-level communications occur during restriction and prolongation data trans-

fer operations between parent children (coarser-finer) patches. For instance, in

Figure 2.8, a restriction operation from the patch G1
1 to the patch G0

1 requires all

other processors to communicate with the processor P0.

In contrast, domain-based approaches partition the physical domain rather

than the individual patches at each refinement level [36, 67, 77]. A subdomain

24

G
1

2 G
1
3

1

2
G G

2

2
G

2

3

P0

G
0

1

G
1

1

P1 P2 P3

Figure 2.9: Domain-based Decomposition of 1D Application, Courtesy: M.
Parashar

includes all patches on all refinement levels in that region. An example for a

1-dimensional application is illustrated in Figure 2.9. From this figure, we ob-

serve that domain-based schemes maintain the parent-child locality while striving

to balance overall workload distribution. As a result, these techniques substan-

tially eliminate inter-level communication overheads and the associated commu-

nication bottleneck. However, due to their strict domain-based partitioning, they

may incur considerable load imbalance when the application has deep refinements

on very narrow regions with strongly localized features. In these cases, hybrid

schemes that combine patch-based and domain-based techniques are required.

Partitioning methods for SAMR applications include dissection-based meth-

ods, multilevel methods, and space filling curve (SFC) based methods [71]. These

methods are described in detail in the next section. Further, partitioning can

be static or dynamic. Static schemes use one or possibly multiple predefined

partitioning methods and remain same partitions of the domain for the entire

execution process. Dynamic schemes apply partitioning and repartitioning meth-

ods at runtime and dynamically change the partitions of the domain to match

the requirements of the application. Specifically, dynamic schemes can be fur-

ther classified as periodic , event-driven or system-sensitive according to their

repartitioning policies. Since SAMR applications typically execute in an iterative

25

manner, the natural repartitioning policies are periodic. For example, reparti-

tioning is invoked every n iterations. Event-driven repartitioning policies is more

flexible in the sense that repartitioning is triggered only when it is needed. Fur-

thermore, system-sensitive dynamic schemes adapt to system availability, capacity

and changing patterns.

2.6.1 Related Work on Managing Distributed SAMR Ap-

plications

Efficiently managing distributed SAMR applications and minimizing their overall

execution time requires load balance and minimumal communication overheads.

To achieve these two objectives, most partitioners take advantages of the geom-

etry of the application, its locality and load dynamics, to partition and balance

the workload among processors. The underlying partitioning algorithms include

binary dissection algorithms [32], multilevel algorithms [52, 74] and space-filling

curve (SFC) based algorithms [67, 68]. The binary dissection algorithm pro-

ceeds by recursively partitioning the physical domain into two parts such that it

equalizes the computational load in each part, naturally generating a binary tree

structure. Its variants, such as parametric binary dissection, extend the basic

binary dissection method to minimize communication cost between the two par-

titions. Multilevel algorithms usually consist of the following steps: coarsening

the graph that represents the domain, partitioning the coarse graph, and refining

the partitions step by step. Their primary objectives are to minimize the cut

edge weight, which approximates the total communication cost in the underlying

solver. Due to the complexity of multilevel algorithms, however, they are more

suitable for static partitioning schemes.

SFC has been widely used in domain-based partitioning schemes [67, 68,

26

Level 3Level 2

Level 2Level 1

Level 1

Figure 2.10: Space Filling Curves - Self-Similarity Property. Courtesy: M.
Parashar

71, 77]. SFCs are locality-preserving recursive self-similar mappings from n-

dimensional space to 1-dimensional space. Specifically, locality preserving im-

plies that points that are close together in the 1-dimensional space (the curve)

are mapped from points that are close together in the n-dimensional space. Self-

similarity implies that, as a d-dimensional region is refined, the refined subregions

can be recursively filled by curves having the same structure as the curve filling

the original (unrefined) region, but possibly a different orientation. Figure 2.10

illustrates this property for a 2-dimensional region with refinements by factors of

2 and 3. In the case of SAMR grid hierarchies, the locality-preserving and self-

similar properties of SFC mappings are exploited to represent the hierarchical

structure and to maintain locality across different hierarchy levels. Furthermore,

these techniques are computationally efficient.

There exist a number of infrastructures that support parallel and distributed

implementations of structured and unstructured AMR applications. Each of these

systems represents a combination of design choices. Table 2.4 summarizes these

27

Table 2.4: Parallel and Distributed AMR Infrastructures

Sy
stem

Execution

Mode

Granularity

Partitioner

Organization

Decomposition

 Institute

CHARM

Compu
-

intensive

Coarse
-

grained

Static single
 -

partitioner

Domain
-
based

 UIUC

Chombo

Comp
-

intensive

Fine
-
grained,

coarse
-

grained

Static single
 -

parti
ti
oner

Domain
-
based

 LBNL

HRMS/

GrACE

Comp
-

intensive

Fine
-
grained,

coarse
-

grained

Adaptive

multi
-

parti
ti
oner,

Hybrid

strategies

Domain
-
based,

hybrid

Rutgers

Nature+

Fable

Comp
-

intensive

Coarse
-

grained

Single meta
 -

parti
t
ioner

Domain
-
based,

h
y
brid

Sandia

ParaMesh

Comp
-

intensive

Fine
-
grained,

coarse
-

grained

Static single
 -

part
it
ioner

Domain
-
based

 NASA

ParMetis

Comp
-

intensive,

comm
-

intensive

Fine
-
grained

Static single
 -

part
it
ioner

Graph
-
based

 Minnesota

PART

Comp
-

intensive

Coarse
-

grained

Static single
 -

partitioner

Domain
-
based

 Northwestern

SAMRAI

Comp
-

intensive,

comm
-

intensive

Fine
-
grained,

coarse
-

grained

Static single
 -

parti
ti
oner

Patch
-
based

 LLNL

systems and their features according to our taxonomy.

Charm++ [55] is a comprehensive parallel C++ library that supports proces-

sor virtualization and provides an intelligent runtime system. Its AMR module

offers flexible representation and communication for implementing the AMR algo-

rithm. It uses the domain-based decomposition method and a quad-tree structure

to partition and index the computational domain and supports coarse-grained

partitioning. Chombo [3] consists of four core modules: BoxTools, AMRTools,

AMRTimeDependent, AMRElliptic. Its load balance strategy follows Kernighan-

Lin multilevel partitioning algorithm. GrACE [8] is an object-oriented adap-

tive computational engine with pluggable domain-based partitioners. HRMS

built on GrACE consists of an adaptive hierarchical multi-partitioner scheme

and other hybrid schemes proposed in this thesis. Nature+Fable formulates a

meta-partitioner approach by characterizing both partitioners and application do-

mains [77]. ParaMesh [65] uses octree representation of the adaptive grid structure

28

with predefined blocksizes and uses this representation to partition the SAMR do-

main. ParMetis [56] applies multilevel hypergraph partitioning and repartitioning

techniques to balance the load. PART [40] considers heterogeneities in the ap-

plication and the distributed system. It uses simulated annealing to perform

the backtracking search for desired partitions. Nevertheless, simplistic partition-

ing schemes are used in the PART system. SAMRAI [57] is an object oriented

framework (based on LPARX) It uses a patch-based decomposition scheme.

2.7 Concluding Remarks

This chapter presented the background and related work for parallel SAMR imple-

mentations and gave an overview of the proposed strategies. First, the dynamism

and space-time heterogeneity of parallel SAMR applications was described and

the computation/communication patterns were identified and analyzed. To have

a common context for comparison and evaluation, the taxonomy for runtime man-

agement of SAMR applications was then presented. Related work on managing

SAMR applications was surveyed and discussed using our taxonomy.

29

Chapter 3

Hybrid Space-Time Runtime Management

Strategy

The overarching goal of this thesis is to design adaptive runtime management

strategies for complex SAMR-based scientific applications to minimize their over-

all execution time on large-scale parallel and distributed systems (PDS). The key

challenge is how to efficiently manage the dynamism and space-time heterogeneity

exhibited in SAMR applications. Confronted with these multi-dimensional chal-

lenges, we propose a solution framework, hybrid space-time runtime management

strategy and system (HRMS), which adapts to the requirements of applications

at runtime. It also takes advantage of a number of schemes by combining and

integrating their strengths for varied scenarios at runtime.

Large-scale parallel implementations of SAMR-based applications have the

potential to accurately model complex physical phenomena and provide dra-

matic insights. However, while there have been some large-scale implemen-

tations [43, 55, 54, 56, 65, 67], these implementations are typically based on

application-specific customizations and the general scalable implementation of

SAMR applications continues to present significant challenges. This is primarily

due to the dynamism and space-time heterogeneity exhibited by these applica-

tions as described in previous sections. SAMR-based applications are inherently

dynamic because the physical phenomena being modeled and the correspond-

ing adaptive computational domain change as the simulation evolves. Further,

adaptation naturally leads to a computational domain that is spatially heteroge-

neous, i.e., different regions in the computational domain and different levels of

30

refinements have different computational and communication requirements. Fi-

nally, the SAMR algorithm periodically regrids the computational domain caus-

ing regions of refinement to be created/deleted/moved to match the physics being

modeled, i.e., it exhibits temporal heterogeneity.

To address the dynamism and space-time heterogeneity in SAMR applications,

this chapter presents an overview of the proposed solution - hybrid space-time

runtime management strategy and system (HRMS). In addition, a set of SAMR

application kernels used in this thesis is summarized.

3.1 Conceptual Overview of HRMS

RM

RM
 RM
 RM

RM
 ...
 RM
...

LPA

SFC

(b) Partitioning and Hybrid Strategies within a Runtime Manager
(a) Runtime Manager Hierarchy

G-MISP+SP

pBD-ISP

LBC

SBC

HPA
 AHMP

GPA

ALP
 ALOC

* Algorithms proposed in this thesis are highlighted

Figure 3.1: Conceptual Architecture of HRMS

To address the dynamism and space-time heterogeneity in SAMR applications,

this thesis proposes the hybrid space-time runtime management system (HRMS)

framework. Its conceptual architecture is presented in Figure 3.1. In the figure,

runtime managers are organized in a hierarchical manner. Runtime managers

reside in each resource group and communicate with each other using messages

in a hierarchical manner. Further, they make management decisions concurrently

based on the runtime states of the resource and the application.

Each runtime manager is equipped with a set of partitioning, clustering,

scheduling and hybrid strategies organized in three layers as shown in Figure 3.1

(b). These strategies are all based on the space-filling curve technique (SFC) [71].

31

A set of domain-based partitioning and clustering schemes have been proposed,

namely, LPA (level-based partitioning algorithm) [60], SBC (segmentation-based

clustering algorithm), GPA (greedy partitioning algorithm, LBC (level-based clus-

tering algorithm), G-MISP+SP (geometric multilevel + sequence partitioning),

and pBD-ISP (p-way binary dissection algorithm) [39, 38, 67, 77] . Note that

the algorithms proposed in this thesis are highlighted. These strategies decom-

pose the application domain hierarchy using SFC. Based on these schemes, we

have developed ALP (application-level pipelining) and ALOC (application-level

out-of-core) algorithms. In the top layer, we have HPA (hierarchical partitioning

algorithm) [61] and AHMP (adaptive hierarchical multiple partitioner) schemes.

Strategies proposed in this thesis are summarized as follows.

• Hierarchical Partitioning Algorithm (HPA): HPA seeks to match the adap-

tive grid hierarchy to the hierarchically organized processor groups. Specif-

ically, HPA divides resources into hierarchical processor groups and then

partitions the domain accordingly in a hierarchical manner. Note that HPA

uses one partitioning scheme over the entire domain for initial partitioning

and for later repartitionings.

• Level-based Partitioning Algorithm (LPA): LPA is a simple but elegant

partitioning method. It significantly reduces synchronization cost by bal-

anacing the overall load as well as the load at every refinement level.

• Adaptive Hierarchical Multi-Partitioner Scheme (AHMP): AHMP extends

HPA. It first hierarchically clusters the domain into several coarse subregions

with similar properties, called cliques. It then recursively applies the most

appropriate partitioning methods to each clique recursively. In this way, it

enables multiple partitioners to concurrently operate on different subregions.

32

• Segmentation-based Clustering Algorithm (SBC): The SBC scheme gen-

erates the clique hierarchy to support the AHMP scheme by clustering to-

gether subregions exhibiting similar properties. SBC extends the level-based

clustering scheme (LBC) that clusters the subregions simply by refinement

levels.

• Application-level Pipelining Algorithm (ALP): When the resource is under-

utilized, the domain-based partitioning schemes can no longer speed up

execution. ALP comes to rescue in this situation by integrating patch-based

and domain-based schemes and applying them within a local resource group.

• Application-level Out-of-Core Algorithm (ALOC): When the available re-

sources are insufficient, the ALOC scheme leverages the out-of-core scheme

to enhance the survivability of SAMR applications.

3.2 Operations of HRMS

Dynamic Driver Application
Dynamic Driver Application

Segmentation
 -
based Clustering Scheme

C1
 C2
 C5

VCU

1

0

VCU

1

1
 VCU

2

1

VCU

n

1

VCU

1

2
 VCU

2

2
 VCU

i

2
 VCU

j

2

C1

C2

C5

Segmentation
 -
based Clustering Scheme

C1
 C2
 C5

VCU

1

0

VCU

1

1
 VCU

2

1

VCU

n

1

VCU

1

2
 VCU

2

2
 VCU

i

2
 VCU

j

2

C1
 C2
 C5

VCU

1

0

VCU

1

1
 VCU

2

1

VCU

n

1

VCU

1

2
 VCU

2

2
 VCU

i

2
 VCU

j

2

C1

C2

C5

Application

Runtime States

Hierarchical Partitioning Algorithm (HPA)

Adaptive Hierarchical

Multi
-
Partitioner
 Scheme (AHMP)

Repartitioning and

Rescheduling
 Clique Hierarchy

Clique Characteristics

Resource States

Space
-
Time Hybrid Schemes

-
Application
-
level Pipelining

-
Application
-
level Out
-
of
-
core

Partitioning Schemes

-
Level
-
based Partitioning

-
Greedy partitioning

-
Others

Space
-
Time Hybrid Schemes

-
Application
-
level Pipelining

-
Application
-
level Out
-
of
-
core

Partitioning Schemes

-
Level
-
based Partitioning

-
Greedy partitioning

-
Others

Select a Scheme

for Each Clique

Figure 3.2: Workflow of HRMS

33

The basic operation of HRMS is illustrated in Figure 3.2. At runtime, HRMS

monitors the application status and represents it as the adaptive grid hierarchy

as illustrated in Figure 2.1. Clustering algorithms are then used to identify clique

hierarchies from the structure of the current grid hierarchy. A clique region is

a cluster of subregions that have relatively homogeneous requirements. We have

two options to work on the clique hierarchy: HPA and AHMP. The HPA ap-

proach selects a single partitioner for the entire domain for the whole execution

period. Alternatively, based on the characteristic of a clique and the current

resource states, AHMP selects an appropriate partitioner for each clique from

the partitioner repository. Essentially, AHMP extends HPA by enabling multiple

partitioners concurrently on different subregions of the application domain. Fi-

nally, the clique is partitioned and mapped to processors in a processor group.

These steps are recursively applied to each clique. When the application states

change significantly, the repartitioning process is then triggered among local pro-

cessor group hierarchically and incrementally. HRMS has two clustering algo-

rithms: level-based clustering (LBC) and segmentation-based clustering (SBC)

schemes. The available partitioners in the GrACE, an object-oriented infrastruc-

ture for enabling parallel SAMR applications [8], include GPA, LPA, BPA, and

others [79]. The selection policies are defined according to the characteristics of

each clique, including refinement homogeneity, communication/computation re-

quirements, scattered adaptation, activity dynamics [79]. This thesis specifically

focuses on developing policies based on refinement homogeneity, which will be

defined in the next chapter.

Overall, the operations of HRMS follow two main workflows: the hierarchical

partitioning scheme (HPA) and the adaptive hierarchical multi-partitioner scheme

(AHMP), which are presented in the next two chapters.

34

3.3 SAMR Application Kernels for Experimental Evalua-

tion

Table 3.1 summarizes the SAMR application kernels used for experimental eval-

uation in this thesis. These application kernels span multiple domains including

computational fluid dynamics (compressible turbulence: RM2D and RM3D, su-

personic flows: ENO2D), oil reservoir simulations (oil-water flow: BL2D and

BL3D), numerical relativity (Wave2D and Wave3D), and the transport equation

(TP2D). We characterize the partitioning requirements of these applications in

terms of load balancing, communication, data migration, and partitioning over-

heads [36, 79]. In this thesis, we use RM3D as the representative application for

most experiments because it is highly dynamic and its partitioning requirements

are challenging.

3.4 Concluding Remarks

The dynamism and space-time heterogeneity exhibited in SAMR applications

make it challenging to efficiently partition and manage these applications on large

systems. This chapter presented a hybrid space-time runtime management strat-

egy and system (HRMS) that seeks to explicitly address these issues. The con-

ceptual overview and operations of HRMS have been presented. In addition, a set

of SAMR application kernels used in this thesis for the experimental evaluation

were summarized.

35

Table 3.1: SAMR Application Kernels
Apps Dim Description Characteristics

TP 2D A benchmark kernel for solving trans-
port equation, included in the GrACE
toolkit [8].

Intense activity in
very narrowly con-
centrated regions.
Key partition re-
quirement: minimize
partitioning over-
heads.

RM 2D/3D A compressible turbulence application
solving the Richtmyer-Meshkov instabil-
ity. It is a fingering instability which
occurs at a material interface acceler-
ated by a shock wave. This instabil-
ity plays an important role in studies of
supernova and inertial confinement fu-
sion. It is a part of the virtual shock
physics test facility (VTF) developed by
the ASCI/ASAP Center at Caltech [41].

Intense activity in rel-
atively larger regions,
which are scattered.
Key partition require-
ment: minimize com-
munication and bal-
ance load on each re-
finement level.

ENO 2D A computational fluid dynamics applica-
tion for studying supersonic flows. The
application has several features includ-
ing bow shock, Mach stem, contact dis-
continuity, and a numerical boundary.
ENO2D is also a part of the VTF, a suite
of computational applications [41].

Intense activ-
ity in relatively
larger regions.
Key partition require-
ment: minimize load
imbalance.

BL 2D/3D An application for studying oil-water
flow simulation (OWFS) following the
Buckley-Leverette model. It is used for
simulation of hydrocarbon pollution in
aquifers. This kernel is a part of the
IPARS reservoir simulation toolkit (Inte-
grated Parallel Accurate Reservoir Sim-
ulator) developed by the University of
Texas at Austin [13].

Intense activity in
very narrow regions
sparsely, which are
highly scattered.
Key partition re-
quirement: minimize
communication and
data migration

Wave 2D/3D A numerical relativity kernel for solv-
ing Enstein’s and gravitational equations
used in Cactus toolkit [2, 20].

Intense activity in
narrow regions.
Key partition re-
quirement: minimize
communication.

36

Chapter 4

Hierarchical Partitioning Algorithms

Traditional distributed implementation of SAMR applications [3, 57, 65, 67] have

used dynamic partitioning/load-balancing algorithms that view the system as a

flat pool of processors. These approaches are typically based on a global knowl-

edge of the state of the adaptive grid hierarchy, and partition the grid hierarchy

across the set of processors. Global synchronization and communication is re-

quired to maintain this global knowledge and can lead to significant overheads

on large systems. Furthermore, these approaches do not exploit the hierarchical

nature of the grid structure and the distribution of communication and synchro-

nization in this structure.

The overall goal of the hierarchical partitioning algorithms (HPA) presented

in this chapter is to allow the distribution to reflect the state of the adaptive grid

hierarchy and exploit it to reduce synchronization requirements, improve load-

balance, and enable concurrent communications and incremental redistribution.

These techniques partition the computational domain into subdomains and as-

sign these subdomains to dynamically configured hierarchical processor groups.

Processor hierarchies and groups are formed to match natural hierarchies in the

grid structure. In addition to providing good load-balance, this approach al-

lows a large fraction of the communications required by the adaptive algorithms

to be localized within a group. Furthermore, communications within different

groups can proceed concurrently. Hierarchical partitioning also reduces the dy-

namic partitioning and data migration overheads by allowing these operations to

be performed concurrently within different groups and incrementally across the

37

domain.

Two variants of HPA are presented in this chapter: static hierarchical parti-

tioning algorithm (SHPA) and adaptive hierarchical partitioning algorithm (AHPA).

The SHPA scheme assigns portions of overall load to processor groups. In SHPA,

the group size and the number of processors in each group is set in advance and

remains unchanged during the execution. While SHPA is static in the sense that

its group topology is unchanged during the execution, it does perform dynamic

load balancing. To overcome the static nature of SHPA, we propose an AHPA

scheme that dynamically partitions the processor pool into hierarchical groups

that match the structure of the adaptive grid hierarchy. AHPA naturally adapts

to the runtime behavior of SAMR applications. To further reduce the synchro-

nization cost, a level-based partitioning algorithm (LPA) has been developed by

explicitly balancing the workload at each refinement level. Experimental evalu-

ation of HPA, LPA and the combined schemes shows performance improvement

over the existing solutions.

The HPA and LPA schemes are based on the composite grid distribution strat-

egy (CGDS) and the greedy partitioning algorithm (GPA) [37, 67]. CGDS aims

at partitioning the grid hierarchy such that all inter-level communication is local

to a processor. Using the SFC technique, which is described in the last chapter,

the n-dimensional computational domain is mapped to a 1-dimensional list of

blocks and the partitioning task is thus reduced to partition this 1-dimensional

representation. Based on the SFC technique, CGDS partitions the computational

domain and results in a global grid unit list (GUL). Each grid unit represents a

composite subdomain that includes all refinement levels, also termed the com-

posite grid. Further, based on the concept of CGDS, the GPA scheme scans

the global GUL only once to attempt to equally distribute workload among all

processors. The key motivation for using the GPA scheme is that it is fast and

efficient. This is important as the number of composite grid units can be large

38

and regrid steps can be quite frequent. Essentially, HPA and LPA schemes pre-

process the global GUL and apply GPA on the re-organized global GUL. Hence,

they take advantages of the composite grid decomposition technique to reduce

intra-level communications and localize inter-level communication. Note that the

GPA scheme is also referred to as the Non-HPA scheme when compared to HPA

schemes.

4.1 Hierarchical Partitioning Algorithm

This section first presents the general HPA scheme and describes its operation.

Two variants of the scheme, i.e., Static and Adaptive HPA, are then presented.

4.1.1 General HPA

In most parallel implementations of SAMR [8, 19, 54, 65], load distribution and

balancing is done collectively by all the processors in the system and all the

processors maintain a global knowledge of the state of the system and the total

workload. These schemes, referred to as Non-HPA schemes, have the advantage

of achieving a better load balance. However, they require the collection and

maintenance of global load information, which makes them expensive, specially

on large systems. Partitioning in such Non-HPA schemes consists of the following

steps:

• Global load information exchange and synchronization phase: All the pro-

cessors are engaged in this information exchange phase. After this phase,

all the processors have a global view of the grid hierarchy.

• Load partitioning phase: All the processors calculate the average load per

processor and partition the grid hierarchy. This operation is replicated on

each processor in the system.

39

Processor 1 Processor 2 Processor 3

Initial domain known.
Initial partition and
schedule ghost
communication

Ghost communications
Ghost communications

Computation Computation

Global
synchronization

Global synchronization and
exchange of local information to get
global view

Patitioning the
global domain

Partitioning the
global domain

Data migration based on
the new partition

Schedule ghost
communication.
Computation.

Initial domain known.
Initial partition and
schedule ghost
communication

Schedule ghost
communication.
Computation.

Figure 4.1: Sequence Diagram for the Non-HPA Scheme

The sequence diagram in Figure 4.1 shows the operations of the Non-HPA

scheme for partitioning the domain and scheduling ghost communications is il-

lustrated in the sequence diagram in Figure 4.1. At the startup, all processors

have the initial computational domain. Each processor partitions the domain

into subregions and assigns a subregions to itself. During the load balancing

phase, all the processors synchronize and exchange their local domain informa-

tion. At the end of this phase, every processor has a consistent global view of

the domain. The partitioning algorithm then partitions the domain among the

40

processors. After partitioning is complete, the processors migrate data that no

longer belong to their local subregions. Each processor then schedules intra/inter

level communications based on its new local subregions.

In large parallel/distributed systems, the global information exchange and

synchronization phase becomes a performance bottleneck. The HPA scheme does

not propose a new partitioner, but a hierarchical partitioning strategy. The un-

derlying partitioning schemes can be GPA, BPA, or LPA [37, 60, 67].

G0

G1 G2

G2,1 G2,2

G2,2,1
G2,2,2

G2,2,2

G2,2

G0

Gi Gn… …

Gi,1 Gi,2 Gi,3

…

P10 P14 P15 P16

P0 P1

G2,2

P5

G2

…

Figure 4.2: A General Hierarchical Structure of Processor Groups

Figure 4.2 illustrates a general hierarchical tree structure of processor groups,

where, G0 is the root level group (group level=0) containing all the processors,

Gi is the i-th group at group level 1. Note that individual processors form the

leaves of the tree. The communication between processors is conducted through

their closest common ancestor group which is their coordinator or master. For

example, processors P10 and P14 have common ancestor groups G0, G2 and G2,2.

However their closest common ancestor group is G2,2. Consequently their com-

munication is via the group G2,2 which is their coordinator or master. Similarly,

41

communications between processors P0 and P10 are via the group G0. Further-

more, Partitioning within different processor groups is performed in parallel based

on load information local to the processor groups. Workload is periodically prop-

agated up the processor group hierarchy in an incremental manner. As a result,

these localized operations in parallel reduce the global communication and syn-

chronization overheads.

In HPA, the partitioning phase is divided into two sub-phases as follows.

• Local partitioning phase: The processors belonging to a processor group

partition the group load based on a local load threshold and a portion of

the workload is assigned to each processor within the group . Parent groups

perform the partitioning among their children groups in a hierarchical man-

ner.

• Global partitioning phase: The root group coordinator (group level 0) de-

cides if a global repartitioning has to be performed among its children groups

at the group level 1 according to the group threshold.

The pseudo-code for the load balancing phase in the general HPA is given in

Table 4.1.

The HPA scheme attempts to exploit the fact that given a group with adequate

number of processors, and an appropriately defined number of groups, the number

of global partitioning phases can be reduced. The operation of the general HPA

is illustrated by the sequence diagram in Figure 4.3.

In this figure, we show a two level group hierarchy including the root group

G0. The hierarchical scheme first creates processor groups. After these groups are

created and the initial grid hierarchy is setup, the group coordinators/masters par-

tition the initial domain in the global partitioning phase. At the end of this phase

the coordinators have a portion of the domain that is then partitioned among the

42

Table 4.1: Load balancing phase in the general HPA

1. In the highest level group, if(my load greater than local threshold), per-
form the local partition in each group.

2. Loop from group level lev=num group level to 1

3. If(group load greater than group threshold), perform the group parti-
tion among children groups at lev, broadcast new composite list through
parent group. If(lev==1) it is a global partition among groups at level 1.

4. End of the loop

5. Begin computation ...

processors in the group subtrees. Recursively, portions of the computational do-

main are partitioned further and finally assigned to individual processors at the

leaves of the processor group hierarchy. This is the local partitioning phase.

4.1.2 Static HPA

In the Static HPA strategy, the group size and the group topology is defined at

startup based on the available processors and the size of the problem domain.

It is static in the sense that once the group configuration is setup it will be

fixed for the entire execution of the application. Even though it is static, SHPA

does possess the basic advantages of the general HPA strategy. It localizes the

load redistribution and balancing within processor groups and enables concurrent

communication among processor groups. Note that, SHPA is still a dynamic load

balancing algorithm [75], as load is dynamically redistributed within and across

processor groups – only the processor group hierarchy remains static.

The load partitioning and assignment procedure is presented in Table 4.2. As

described in the table, the number of groups, Ntotalgroups, is defined at application

startup. The load balancing phase in SHPA is similar to the steps in Table 4.1.

43

Processor 1
 (Group 1 Master)

Processor 2
 (Group 1)

Processor 3
 (Group 2 Master)

Processor 4
 (Group 2)

Computation

Computation

Synchronzation in group
to get global view in
group

Synchronization among masters to exchange
local domains to get global domain

Parti tion among masters to get
local domain

Broadcast local domain to group
Broadcast local domain to group

Parti tion in group
Parti tion in group

Computation Computation

Figure 4.3: Sequence Diagram for the HPA Scheme

The Static HPA is implemented as part of the GrACE toolkit [8]. The groups

are created using communicators provided by the MPI library. Communication

within groups is through intracommunicators while communication between pro-

cessors belonging to different groups is through intercommunicators.

The Static HPA scheme is evaluated on BlueHorizon, the IBM SP3 cluster at

San Diego Supercomputer Center, which consists of 1152 processors. Each SP3

node has 8 processors running at 375 MHz and 4GB RAM, and CPU peak per-

formance is 1.5 GFlops. Overall, BlueHorizon delivers a peak performance of 1.7

TeraFlops. The application used in these experiments is the RM3D as described

44

Table 4.2: Hierarchical Partitioning Algorithm

1. Setup the processor group hierarchy according to group size and group
levels. Apply SFC to obtain the composite grid unit list (GUL).

2. Loop from group level lev=1 to num group level

3. Partition the global GUL into Nlev subdomains, where Nlev is the num-
ber of processor groups at this level.

4. Assign the load Li on subdomain Ri to a group of processors Gi such
that the number of processors NPi in the group Gi is proportional to
the load Li, i.e., NPi = Li/Lsum × NPsum, where Lsum is the total size
of load and NPsum is the total number of processors in the parent group
level.

5. Loop until the leaves of the group tree hierarchy are reached. Partition
the load portion Li and assign the appropriate portion to the individual
processor in the group Gi, for i = 0, 1, ..., NPj − 1, where NPj is the
number of processors in the lowest group level.

in Chapter 3. RM3D is a representative application that exhibits substantial

spatial and temporal heterogeneity. The experiments measure the total execu-

tion time of RM3D using Static HPA and Non-HPA schemes. To evaluate the

benefits of incremental load balancing, we performed two experiments for Static

HPA scheme: SHPA without incremental balancing (labeled as SHPA NonInc in

the figure), and SHPA with incremental load balancing (labeled as SHPA Inc in

the figure). In Figure 4.4, we observe that the SHPA scheme improves the overall

execution time. The maximum performance gain is obtained for 192 processors

using SHPA Inc scheme - about 59% reduction in the overal execution time as

compared to Non-HPA scheme. We also observe that, for relatively small number

of processors, the SHPA NonInc scheme outperforms the SHPA Inc scheme. The

reason is that SHPA NonInc scheme has the advantage of better load balance than

the SHPA Inc scheme since it redistributes the load more frequently. However, for

larger number of processors, due to significant reduction of the synchronization

45

0

1000

2000

3000

4000

5000

6000

7000

8000

E
x

ec
u

ti
o

n
 T

im
e

(s
ec

s)

16
 32
 64
 96
 128
 192
 256

Number of Processors

Execution Time of RM3D application

(100 steps, size=128x32x32)

Non-HPA

SHPA NonInc

SHPA Inc

Figure 4.4: Execution time: Static HPA versus Non-HPA Schemes

and global communication overheads with incremental load balancing, the SHPA

Inc scheme outperforms the SHPA NonInc scheme in the long run. As shown by

the evaluation, the benefits of SHPA depends on the appropriate setup of proces-

sor group hierarchies, which in turn depends on the system and the application.

The adaptive HPA scheme attempts to address this limitation by dynamically

managing processor groups.

4.1.3 Adaptive HPA

In the Static HPA strategy, the total number of groups is predefined and remains

unchanged throughout the execution of the application. In order to account

for the application’s runtime dynamics, the AHPA proposes an adaptive strat-

egy. AHPA dynamically partitions the computational domain into subdomains

to match current adaptations. The subdomains created may have unequal loads.

The algorithm then assigns the subdomains to corresponding nonuniform hier-

archical processor groups. The detailed steps are presented in Table 4.3. Note

that the definition of processor groups may take into consideration the system

architecture - for example, group size can be chosen to match the size of a SMP

node in a SMP cluster.

46

Table 4.3: Load Partitioning and Assignment in Adaptive HPA

1. Use SFC to obtain the composite grid unit list (GUL).

2. Partition the GUL into subdomains such that subdomains Ri (i is odd)
consists of subdomains whose refinement level is not greater than i/2
and Rj (j is even) consists of subdomains whose refinement level is not
less than j/2. R0 consists of whole domain.

3. Assign the load Li on subdomain Ri to a group of processors Gi such
that the number of processors NPi in the group Gi is proportional to
the load Li, i.e., NPi = Li/Lsum × NPsum, where Lsum is the total size
of load and NPsum is the total number of processors.

4. Partition the load portion Li and assign the appropriate portion to the
individual processor in the group Gi, for i = 0, 1, ..., NPtotalgroups − 1.

As shown in Table 4.3, the AHPA scheme partitions the computational domain

according to its refinement level. This partitioning scheme naturally matches the

state of the grid hierarchy. The partitioning and assignment procedure presented

in the table is repeated at each regrid as the SAMR applications progress. Note

that, when the number of processors assigned to one group is large, SHPA can be

applied in this group. The load balancing phase in AHPA is similar to the steps

in Table 4.1 with dynamic group sizes and a dynamic number of group levels.

The communication cost of AHPA scheme is evaluated using trace-driven sim-

ulations. The simulations are conducted as follows. First, we obtain the refine-

ment trace for an SAMR application by running the application for a single pro-

cessor. Then the trace file is fed into HPA partitioners to partition and produce a

new trace file for multiple processors. Finally, the new trace file is input into the

SAMR simulator1 to obtain the runtime performance measurements on multiple

1SAMR simulator was developed by Manish Parashar at Rutgers University as a part of
ARMaDA project (http://www.caip.rutgers.edu/TASSL/Projects/ARMaDA/performance
simulator.html)

47

processors. The simulation results for the 2D Transport Equation and Wave3D

applications are shown in Figure 4.5.

0

1000

2000

3000

4000

5000

6000

7000

8000

M
es

sa
ge

 s
iz

e
(k

by
te

s)

8 16 24 32 48 64

Number of Processors

Wave3D Application
(100 steps, size = 32x32x32)

Non-HPA
Static HPA
Adaptive HPA

0

1000

2000

3000

4000

5000

6000

7000

8000

M
e

ss
ag

e
 s

iz
e

(k
b

yt
es

)

8 16 24 32 48 64

Number of Processors

2D Transport Equation
(100 steps, size = 128x128)

Non-HPA
Static HPA
Adaptive HPA

Figure 4.5: Communication Cost: Comparison of Non-HPA, Static HPA and
Adaptive HPA Schemes

In Figure 4.5, we observe that the communication cost (measured as the total

message size for intra-level and inter-level communication) is greatly reduced using

HPA schemes as compared to the Non-HPA scheme. Compared to the SHPA

scheme, AHPA scheme further reduces communication costs. As shown in the

figure, the reduction in communication cost is up to 70%, for the AHPA scheme

over the Non-HPA scheme. These simulation results validate that the Adaptive

HPA scheme is potentially an efficient solution to gain better system performance.

0

1000

2000

3000

4000

5000

6000

7000

8000

Ex
ec

ut
io

n
Ti

m
e

(s
ec

)

16 32 64 96 128

Number of Processors

Execution Time of RM3D application
(100 steps, size=128x32x32)

Non-HPA

SHPA Inc

AHPA

Figure 4.6: Execution Time: Static HPA versus Adaptive HPA Schemes

The experimental evaluation of AHPA is further conducted on BlueHorizon

48

using the RM3D application with the same configuration as in the previous sec-

tion. Figure 4.6 shows the execution time for Non-HPA, SHPA Inc, and AHPA

schemes. From the figure, we observe that the AHPA scheme further improves the

overall performance compared to the SHPA scheme. An important observation is

that AHPA marginally outperforms SHPA in larger systems. This motivates us

to seek new strategies, which results in the adaptive hierarchical multi-partitioner

strategy to be presented in the next chapter.

4.2 Level-based Partitioning Algorithm

As described in the last chapter, the computation and communication pattern

of parallel SAMR applications requires partitioning schemes to balance load and

preserve locality. One critical observation from the timing diagram in Figure 2.6

is that, in addition to balancing the total load assigned to each processor and

maintaining parent child locality, we also need to balance the load on each re-

finement level and address the communication and synchronization costs within

a level. The LPA scheme works towards this goal. GPA works very well for

homogeneous computational domain. However, for heterogeneous computational

domains, it may cause large intra-level synchronization cost due to load imbal-

ance for each refinement level. To further improve the performance, essentially,

LPA preprocesses a portion of the global GUL by disassembling it according to

refinement levels, and feeds the resulting homogeneous GUL to GPA. The GPA

then partitions this list to balance load. As a result of the preprocessing, the load

on each refinement level is also balanced.

The procedure of LPA scheme is presented in Table 4.4. We observe that

the LPA scheme partitions deep composite grid units before shallow grid units.

Since we cannot guarantee perfect load balance during the partitioning at each

iteration, to compensate the possible imbalance introduced in higher level and

49

Table 4.4: Level-based Partitioning Algorithm (LPA)

1. Get the maximum refinement level MaxLev. Disassemble the global
GUL into homogeneous GUL’s according to grid unit’s refinement
depth, denoted by gul array[lev]. The load assigned in the previous
iteration is denoted by load array[np].

2. Loop for refinement level lev = MaxLev to 0 reversely

3. Passing gul array[lev] and load array[np] to GPA to obtain local assign-
ment.

4. In GPA, it will partition the load such that each processor get equal
distribution on each refinement level.

equally partition the GUL on the lower level, we need to keep track of the load

on lower levels that is previously assigned. This is done using load array[np].

LPA takes full advantages of CGDS by keeping parent-children relationships in

the composite grid and localizing inter-level communications. Furthermore, it

balances the load on each refinement level which reduces the synchronization

cost.

level 0

level 1

P0
 P1

(a)

level 0

level 1

P0
 P1
 P0
 P1

(b)

Figure 4.7: Partitions of a 1-D Grid Hierarchy (a) GPA (b) LPA

50

P0

P1

0

0
 0

computation

communication

time
. . .

1

1

1

1

0

0

computation

communication

time

synchronization cost

synchronization cost
 0

. . .
0

. . .
0

(a)

P0

P1

0

0
 0

computation

communication

time
. . .

1

1

1

1

0

0

computation

communication

time
0

. . .
0

. . .
0

(b)

1

1

1

1

. . .

. . .

Figure 4.8: Timing Diagrams of the Example (a) GPA (b) LPA

To compare the partitioning effect of GPA and LPA, we show a simple exam-

ple. Consider partitioning a one dimensional grid hierarchy with two refinement

levels, as shown in Figure 4.7. For this 1-D example, GPA partitions the compos-

ite grid unit list into two subdomains. These two parts contain exactly same load:

the workload assigned to P0 is 2 + 2 × 4 = 10 units while the workload assigned

to P1 is also 10 units. From the viewpoint of GPA scheme, the partition result is

perfectly balanced. However, due to the heterogeneity of SAMR algorithm, this

distribution leads to large synchronization costs as shown in the timing diagram

of Figure 4.8 (a). The LPA scheme takes these synchronization costs at each

refinement level into consideration. For this simple example, LPA will produce a

partition as shown in Figure 4.7 (b) which results in the computation and com-

munication behavior as shown in Figure 4.8 (b). As a result, LPA improves the

overall performance and reduces communication and synchronization time.

The experimental evaluation of LPA is conducted on BlueHorizon, the IBM

SP3 cluster at San Diego Supercomputer Center. The RM3D application [41] is

also used for the experiments. The input configurations are as follow: the base

grid size is 128 × 32 × 32, maximum 3 refinement levels, refinement factor is 2,

granularity is 4, regrid every 4 time steps on each level, the total base level time

51

Figure 4.9: Execution and Communication Time

steps are 100. Four partitioning schemes are used in the experiments, namely,

GPA, LPA, HPA and HPA+LPA. The number of processors used is between 16

and 128.

Figure 4.9 shows the execution times for GPA, LPA, HPA and HPA+LPA

schemes. In this figure, the execution time for the different parameters are nor-

malized against GPA on 16 processors (100%). We observe that execution time

reduction using LPA scheme compared to GPA is about 48.8% on the average for

these five system configurations. HPA scheme alone reduces the execution time by

about 52.9% on the average. Applying HPA scheme along with the LPA scheme,

we gain further improvement reducing overall execution time by about 56% for 16

processors, 60% for 128 processors, and 57.3% on the average. These reductions

in the overall execution times are due to a reduction in communication times as

shown in Figure 4.9. The figure also shows that, HPA greatly reduces the global

communication time. For all cases, HPA+LPA delivers the best performance

since it takes full advantages of HPA and LPA.

52

4.3 Concluding Remarks

This chapter presented the hierarchical partitioning algorithms (HPA) and the

level-based partitioning algorithm (LPA). HPA schemes allow the distribution to

reflect the state of the adaptive grid hierarchy and dynamically match the com-

putational domain hierarchy with the processor group hierarchy. By enabling

incremental redistribution and concurrent communication, HPA schemes reduce

the global communication and synchronization costs due to the dynamics of par-

allel SAMR applications. Further, the LPA scheme was presented to explicitly

address the load balance issues for each refinement level, which is largely ignored

in existing solutions. Combining HPA and LPA was experimentally evaluated

and demonstrated performance improvement over the existing scheme.

53

Chapter 5

Adaptive Hierarchical Multi-Partitioner

Strategy

SAMR dynamism/heterogeneity has been traditionally addressed using a dynamic

partitioning and load-balancing algorithm that partitions and load-balances the

domain when it changes, for example, the mechanism presented in [54, 67]. More

recently, it was observed in [79], that, for parallel SAMR applications, the ap-

propriate choice and configuration of the partitioning/load-balancing algorithm

depends on the application, its runtime state and its execution context. This

leads to development of meta-partitioners [81], which select and configure parti-

tioners at runtime, from a pool of partitioners, to match the application’s current

requirements. However, due to the spatial heterogeneity of the SAMR domain,

the computation/communication requirements can vary significantly across the

domain, and as a result, using single partitioner for the entire domain can lead to

decompositions that are locally inefficient. This is especially true for large-scale

simulations that run on systems with many 1000’s of processors.

The objective of the research presented in this chapter is to address this issue.

Specifically, we investigate an adaptive multi-partitioner approach that dynami-

cally applies multiple partitioners to different regions of the domain, in a hierar-

chical manner, to match the local requirements of the regions. In this chapter, we

first present a segmentation-based clustering algorithm (SBC) that can efficiently

identify regions in the domain at runtime, called cliques, that have relatively

homogeneous requirements. Note that cliques are similar in concept to natural

regions proposed by Steensland [77]. However, unlike natural regions, cliques are

54

not restricted to strict geometric shapes but are more flexible and take advantage

of the locality-preserving property of SFCs. We then characterize the partitioning

requirements of these clique regions and select the most appropriate partitioner

for each clique. This research builds on the work on meta-partitioning [81] and

adaptive hierarchical partitioning [60] to define an adaptive hierarchical multi-

partitioner approach (AHMP). The experimental evaluation demonstrates the

performance gains using AHMP. Further, to handle different resource situations,

application-level pipelining (ALP) scheme has been developed to improve the

performance when resources are under-utilized, and application-level out-of-core

(ALOC) scheme has been developed to handle the case of inadequate resources.

5.1 Adaptive Hierarchical Multi-Partitioner Strategy

AHMP extends the hierarchical partitioning algorithm (HPA) presented in the

last chapter and also enables incremental repartitioning and rescheduling to re-

duce global communication and synchronization costs. Furthermore, AHMP ad-

dresses spatial heterogeneity by applying the most appropriate partitioner to each

clique based on its characteristics and requirements. As a result, multiple par-

titioners can concurrently operate on different subregions of the computational

domain.

The basic operation of the AHMP strategy is presented in Figure 5.1. The

input is the structure of the current grid hierarchy (an example is illustrated in

Figure 2.1), which represents the runtime state of the SAMR application. The

strategy consists of the following steps (see Table 5.1). First, the clustering algo-

rithm is used to identify clique hierarchies. Second, each clique is characterized

and its partitioning requirements identified and the available resources are par-

titioned into resource groups based on the relative requirements of the cliques.

Third, these requirements are used by the adaptive hierarchical multi-partitioner

55

Start

Clustering

grid

hierarchy

clique

hierarchy

Adaptive Hierarchical Multi-

Partitioner Scheme (AHMP)

LBC

SBC
Recursively

for each clique

End

Characterize clique

Partition clique

Partitioner

Repository

Selection

Policies

Repartitioning

Figure 5.1: A Flowchart for the Adaptive Clustering and Partitioning Strategy

to select and configure an appropriate partitioner for each clique. The partitioner

is selected from a partitioner repository using selection policies. Finally, each

clique is partitioned and mapped to processors in a resource group.

Table 5.1: Adaptive Hierarchical Multi-Partitioner

1. Identify clique regions and characterize their states and requirements.

2. Characterize properties of partitioners.

3. Select the appropriate partitioner for each clique.

4. Repartition and reschedule incrementally and hierarchically within local
resource group.

The strategy is triggered locally when the application states change signifi-

cantly (determined using the load-imbalance metric described below), and par-

titioning proceeds hierarchically and incrementally. Two clustering algorithms,

level-based clustering (LBC) and segmentation-based clustering (SBC) schemes,

are developed. Partitioning schemes in the partitioner repository include GPA,

56

LPA, BPA, GMISP+SP, and pBD+ISP [37, 60, 79]. Partitioner selection poli-

cies are based on clique partitioning requirements defined in terms of refinement

homogeneity, communication/computation requirements, scattered adaptation,

activity dynamics [79]. This thesis specifically focuses on developing partitioning

policies based on refinement homogeneity, which is defined in Section 5.6.1.

The load imbalance factor (LIF) metric is used as the criteria for triggering

repartitioning and rescheduling within a local resource group, and is defined as

follows:

LIFA =
maxAn

i=1 Ti − minAn

i=1 Ti
∑An

i=1 Ti/An

where An is the total number of processors in resource group A, and Ti is the

estimated execution time for the processor i, which is proportional to its load.

The local load imbalance threshold is γA. When LIFA > γA, the repartitioning is

triggered inside the local group. Note that the imbalance factor can be recursively

calculated for larger groups as well.

RG2

RG1

RG3

RG4

Repartition

reschedule
 AHMP

GPA

AHMP

LPA

Partition

schedule

AHMP

ALP

AHMP

ALOC

GPA: Greedy Partitioning Algorithm
 LPA: Level
-
based Partitioning Algorithm

ALP: Application
-
level Pipelining Scheme
 ALOC: Application
-
level Out
-
of
-
Core Scheme

RG
: Resource Group

RG2

RG1

RG3

RG4

Repartition

reschedule
 AHMP

GPA

AHMP

LPA

Partition

schedule

AHMP

ALP

AHMP

ALOC

GPA: Greedy Partitioning Algorithm
 LPA: Level
-
based Partitioning Algorithm

ALP: Application
-
level Pipelining Scheme
 ALOC: Application
-
level Out
-
of
-
Core Scheme

RG
: Resource Group

Figure 5.2: AHMP Operations - An Illustrative Example

The AHMP concept is illustrated in Figure 5.2 using a combustion simulation

of hydrogen-air mixture with three initial ignition spots [70]. As shown in the

figure, AHMP first applies SBC to obtain partitions of cliques and maps a re-

source group to each clique using the appropriate partitioning algorithm. When

57

the application requirements change significantly within a resource group, repar-

titioning is triggered and only affects the load assignment among processors in

the resource group. As a result, AHMP facilitates localized data movement and

communication, and enables concurrent operations across different cliques and

resource groups.

5.2 Requirement Analysis of Clustering Schemes

The objective of clustering is to identify well-structured subregions in the SAMR

grid hierarchy, called cliques. A clique is a quasi-homogeneous computational sub-

domain with relatively homogeneous partitioning requirements. By formulating

well-structured cliques, clustering schemes attempt to ease the partitioning task

since most partitioners are good at partitioning uniform/homogeneous regions.

Towards this end, we identify several desired properties of an efficient and effective

clustering scheme.

Subregions in a clique exhibit similar properties, such as similar refinement

level structure, similar load density or similar dynamics. To minimize communica-

tion overheads presented in Chapter 2, we list the following guidelines for formu-

lating these clique regions. (1) Clique structures should naturally reflect the state

and characteristics of the current computational domain and provide an abstrac-

tion of the current computation, communication and storage requirements. (2) A

clique should be connected and well structured. Well-structured cliques have sim-

ple interfaces or boundaries between them so that inter-clique communication is

minimized. (3) Cliques defined in consecutive time steps should preserve locality.

A clique abstracts and clusters some localized activity features in a sub-region.

It strives to track the dynamics of computational domains. Locality-preserving

feature is critical at reducing the data migration cost between two successive re-

partitioning and re-distribution steps. (4) Cliques should be of coarse granularity.

58

A clique is a high-level abstraction and defines a quasi-homogeneous sub-region.

A fine-granularity clique will diminish the effect of clustering. (5) A clustering

algorithm itself should be efficient. As mentioned before, parallel SAMR applica-

tions require regular and frequent re-partitioning and re-balancing. As a result,

a clustering algorithm should be effective and efficient to minimize its overheads.

5.3 Segmentation-based Clustering (SBC)

Typical SAMR applications exhibit localized features, and thus result in local-

ized refinements. Moveover, refinement levels and the resulting adaptive grid

hierarchy reflect the application runtime state. Therefore, we attempt to cluster

subregions with similar refinement levels. An immediate solution is to cluster sub-

regions purely based on refinement levels. We name this scheme as the level-based

clustering algorithm (LBC). SFCs feature self-similarity, locality-preserving and

efficiency, which provides a basis for formulating clustering algorithms for creat-

ing clique regions. Basically, LBC operates on the SFC-indexed subregion list.

Following the SFC sequence, LBC simply groups subregions of similar refinements

together.

A simple example of LBC operations on a 2-D space is illustrated in Figure 5.3.

This figure shows a grid hierarchy with 0 to 3 refinement levels. The SFC traverses

through the entire domain and transform the 2-D space into a 1-D sequence. Note

that the SFC index in the figure is based on the base level only. The figure shows

the resulting cliques, totally 11 subregions.

Based on the intuitive interpretation of refinement levels, LBC scheme is sim-

ple and efficient. However, it results in many small and irregularly-structured

cliques as shown in Figure 5.3. A better solution is to employ a scheme that

smoothes out small subregions and maintains spatial proximity. To this end,

59

1
 2

3
4
 13
14

9
 12

11
10

5
 8

7
6

15
 16

R1

R2

R4

R5

R3

R6

R7

R8
 R9

R10

R11

* R1 to R11 are resulting cliques by LBC

Figure 5.3: Clustering Results of LBC Algorithm

we borrow some ideas from image segmentation [50] to formulate a segmentation-

based clustering algorithm (SBC), which is based on space-filling curves (SFC) [71].

The algorithm is motivated by the locality-preserving property of SFCs and the

localized nature of the physical features in SAMR applications.

The segmentation-based clustering algorithm is based on ideas in image seg-

mentation [50]. The algorithm first defines load density factor (LDF) as follows:

LDF (rlev) =
associated load on the subdomain

volume of the subdomain at rlev
(5.1)

where rlev denotes the refinement level and the volume (area and length in case

of 2 and 1 D domains) for the subregion of interest. Note that LDF can be

computed for the entire domain or for an individual clique.

The SBC algorithm is listed in Table 5.2. SBC strives to cluster domains with

similar load density together to form clique regions. The algorithm first smooths

out subregions that are smaller than a predefined threshold (the template size).

To achieve this, SBC follows the SFC indices and extracts subregions (defined

60

Table 5.2: Segmentation-Based Clustering Algorithm

1. SBC(refinement-level rlev, SFC-indexed-subregion-list sfc list)

2. Calculate the load density of the sfc list based on the rlev and the
template size, and record its frequency.

3. Find a threshold θ using the histogram of load density.

4. Partition and group subregions into several clusters based on the thresh-
old θ.

5. For each cluster, if it contains higher refinements than rlev, recursively
call SBC(rlev+1, SFC-indexed-list of this cluster including higher re-
fined subregions).

by rectangular bounding boxes) from the list until the size of the accumulated

subregion set reaches the template size. SBC then calculates the load density

for this set of subregions and records the frequency according to the load den-

sity. It continues to scan through the entire subregion list, and repeat the above

process, calculating the load density and recording its frequency. At the third

step, it finds a threshold θ based on the histogram of the load density obtained.

The histogram represents the frequency/number of subregions with certain load

density values. A simple intermeans thresholding algorithm [50] is used to find

an appropriate threshold. Basically, the intermeans algorithm selects an initial

threshold, partitions the histogram into two parts using the threshold, calcu-

lates the mean values in two parts, then uses the average of these two values

as the new threshold to repeat the process until the threshold does not change

significantly in successive iterations. While there are many more sophisticated

approaches for identifying good thresholds for segmentation and edge detection

in image processing [50], this method is sufficient for our purpose. Using the

threshold obtained, SBC then partitions the domain into several clique regions.

Finally, a hierarchical structure of clique regions is created by recursively call-

ing the SBC algorithm for finer refinements. The maximum number of cliques

61

created can be adjusted to the number of processors available. Note that this

algorithm has similarities to the point clustering algorithms proposed by Berger

and Regoutsos in [27]. However, the SBC scheme differs from this scheme in two

aspects. Unlike the Berger-Regoutsos scheme, which creates fine grained cluster,

the SBS scheme targets coarser granularity cliques. SBC also takes advantage

of the locality-preserving property of SFCs to potentially reduce data movement

costs between consecutive repartitioning phases.

Clique 1
 Clique 2
 Clique 3

10
 11

12

13
14

15
 16

3
4

1
 2

7
6

5
 8
 9

Figure 5.4: Clustering Results for the SBC Scheme

The SBC algorithm is illustrated using a simple 2-D example in Figure 5.4.

In this figure, SBC results in three cliques, which are shaded in the figure.

Figure 5.5 shows the load density distribution and histogram for an SFC-

indexed subdomain list. For this example, the SBC algorithm creates three cliques

defined by the regions separated by the vertical lines in the figure on the left. The

template size in this example is two boxes on the base level. The figure on the

right shows a histogram of the load density. For this example, based on the

62

0

10

20

30

40

50

60

70

80

1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16

SFC Index on the Base-level

L
o

a
d

 D
e

n
s

it
y

0

2

4

6

8

10

12

0
 10
 20
 30
 40
 50
 60
 70

Load Density

N
u

m
b

e
r

o
f

S
u

b
re

g
io

n
s

Histogram

threshold

Figure 5.5: Load Density Distribution and Histogram for SBC

histogram, the threshold is identified in between 1 and 9 using the intermeans

thresholding algorithm. Note that we assume a predefined minimum size for a

clique region. In this example, the subregion with index 14 in Figure 5.4 does not

form a clique as its size is less then the template size. It is instead clustered with

another subregion in its proximity.

Also note that SBC automatically smoothes out the boundary between cliques.

As mentioned in a recent paper [78], using buffer zones between partitions can

eliminate significant synchronization cost. Buffer zones are coarser subregions

that surround finer subregions in order to reduce communication and synchro-

nization costs. Using smoothing, SBC implicitly creates buffer zones between

cliques and hence reduces synchronization costs.

Comparing Figure 5.4 and 5.3, we observe that SBC creates better structured

cliques than LBC. Experimental evaluation also confirms that SBC considerably

outperforms LBC. Thus, we will focus on SBC in the rest of this chapter.

5.4 Application-level Pipelining Strategy

Due to the granularity constraint, domain-based partitioning schemes can explore

only limited parallelism. In some cases when the deep refinements are located

63

Computation

Communication

Time

. . .
0

0

1

1
 0

P0

P1

Computation

Time

Communication

P2

Computation

Time

Communication

idle

idle

1

1

0

Computation

Communication

Time

. . .
0

0
 0

P0

0

P1

Computation

Time

Communication

P2

Computation

Time

Communication

1

1

1

1

1

1

1

1

1

1

1

1

1

1

. . .

. . .

Computation

Communication

Time

. . .
0

0
 0

P0

0

P1

Computation

Time

Communication

P2

Computation

Time

Communication

1

1

1

1

1

1

1

1

0

0

1

1

1

1

. . .

. . .

0

0

0

0

0

0

0

0

0

(b) ALP

(a) domain-based strategy when resource is excessively sufficient

(c) ALPwR

Figure 5.6: Application-level Pipelining Strategy

in a very narrow region, domain-based partitioning schemes will inevitably re-

sult in significant load imbalance when partitioning and scheduling an SAMR

application onto a large-scale system. For example, assume the predefined min-

imum dimension of a 3D block/grid on the base level is 4 grid points. In this

case, the minimum workload of a composite grid unit with 3 refinement levels is

43+2×83+2×2×163 = 17472, i.e., the granularity constraint is δ ≥ 17472 units.

Such a composite block can result in significant load imbalance if only domain-

based partitioning schemes are used. To expose more parallelism in these cases,

a patch-based partitioning approach must be used. The ALP strategy combines

domain-based and patch-based schemes. To reduce communication overheads, we

restrict the application of the ALP scheme to a clique region that is allocated to a

resource group when certain conditions are met. These conditions include: (1) re-

sources are sufficient; (2) resources are under-utilized; (3) the gain by using ALP

64

outweighs the extra communication cost incurred. For simplicity, we illustrate a

situation with three processors in a resource group in Figure 5.6. The clique has

only two refinement levels.

ALP has two options: one is pure pipelining (ALP); the other is the pipelin-

ing with redundant computation (ALPwR). ALP splits the smallest domain-based

partitions into patches of different refinement levels, partitions the finer patch into

n portions and schedules each portion to each processor. Since the smallest load

unit on the base-level can not be further partitioned, the pure pipelining scheme

processes the level 0 patch at P0 while ALPwR scheme redundantly processes

the level 0 patch at all participating processors. Although ALP saves redundant

computation, it needs the inter-level communication between P0 and other pro-

cessors, which can be expensive. In contrast, ALPwR trades computing resource

for less inter-level communication overheads. To avoid significant overheads, ALP

schemes are applied only in a small and closely-networked resource group. The

basic operations of ALP consist of pairing two refinement levels, duplicating the

computation on the coarser patch and partitioning the finer patch among a small

resource group. Thus, it creates a complicated hybrid partition hierarchy.

To specify the criteria for choosing ALP, we define the resource sufficiency

factor (RSF) as follows.

RSF =
Nrg

Lq/Lδ

(5.2)

where Lq denotes the total load for a clique region, Nrg denotes the total number

of processors in a resource group, and Lδ, the granularity, denotes the load on

the smallest base-level subregion with the maximum refinement level. In the case

of deep refinements, Lδ is significantly large. When RSF > ρ and resources

are under-utilized, where ρ is the threshold, we can apply ALP to explore more

parallelism.

65

5.5 Application-level Out-of-Core Strategy

When the available physical memory of resources is not sufficient to execute the

application, one option is to rely on the virtual memory mechanism of the op-

erating system (OS). The OS will then handle page faults and replace the less

frequently used pages by loading data from disks. Using this approach, OS has

little knowledge of the application characteristics and its memory access pattern.

Consequently, it will result in many unnecessary swap-in and swap-out operations

which are very expensive. The data rates from the disk are approximately two

orders of magnitude less than from the memory [53]. In many systems, OS sets

a default maximum physical and virtual memory allocation. When the applica-

tion uses up the preset quota of memory, it cannot proceed but crash. To show

the influence of memory availability on the performance, we show two simple

experiments.

Number of Page Faults During Memory Allocation

0

400

800

1200

1600

2000

2400

2800

3200

3600

0
 100
 200
 300
 400
 500
 600
 700
 800
 900
 1000
 1100
 1200
 1300
 1400

Memory Allocation

P
a

g
e

 F
a

u
lt

s
 #

1 mega

5 mega

10 mega

20 mega

30 mega

40 mega

50 mega

Figure 5.7: Number of Page Faults versus Allocated Memory

The experiments on the effects of allocated memory are performed on an In-

tel Pentium 4 machine with the following specifications: 1.70GHz CPU, 256 KB

cache, 512 MB physical memory, 1 GB swap space, Linux 2.4 kernel. The first

66

Processing Time versus Allocated Memory

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1
 51
 101
 151
 201
 251
 301
 351
 401
 451
 501
 551
 601

Memory Allocation (MB)

P
ro

c
e
s
s
in

g
 T

im
e
 (

m
s
/o

p
e
ra

ti
o

n
)

Processing Time versus Allocated Memory

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

1
 51
 101
 151
 201
 251
 301
 351
 401

Memory Allocation (MB)

P
ro

c
e
s
s
in

g
 T

im
e
 (

m
s
/o

p
e
ra

ti
o

n
)

Figure 5.8: Processing Time versus Allocated Memory

experiment measures the number of page faults when we allocate memory incre-

mentally. Seven cases with different incremental steps, 1 MB to 50 MB every

loop, are shown in Figure 5.7. We clearly observe the dramatic increase of the

number of page faults when we allocate memory up to about 400-500 MB, which is

close to the physical memory capacity. To measure the performance degradation

due to excessive memory allocation, we conduct another experiment to measure

the computing speed. The operations are one floating-point multiplication and

division on randomly selected memory addresses. Figure 5.8 shows serious per-

formance degradation when we use up to about 400-500 MB memory. From these

experiments, we observe that, as expected, the amount of the allocated memory

plays a critical role at affecting the overall system performance. Thus we need a

strategy that judiciously avoids this performance degradation.

Instead of blindly resorting to the OS, our solution is to design an application-

level out-of-core scheme by exploiting the application memory access patterns to

guide the paging process and explicitly keep the working-set of application patches

while swapping out the unused patches.

We approach the solution through the application-level out-of-core (ALOC)

mechanism to execute the application incrementally by proactively managing

application-level pages. Using the ALOC strategy, we aim to not only improve

the performance but also enhance the survivability under the severe shortage of

67

P1

swap out lower level patches

swap in higher level patches

swap out higher level patches

swap in lower level patches

Computation

Communication

Time
. . .

T-VCU
 1

0,1

0

0

1

1

0

0

1

1

T-VCU
 2

1,2

2

2

2

2

T-VCU
 2

2,1

T-VCU
 2

2,2

1

1

1

T-VCU
 2

1,1

. . .
3

3

T-VCU
 2

3,1

. . .

0

0

1

1

T-VCU
 3

0,3

1

1

Computation

Communication

Time
. . .

T-VCU
 1

0,1

0

0

1

1

0

0

1

1

T-VCU
 2

1,2

2

2

2

2

T-VCU
 2

2,1

T-VCU
 2

2,2

1

1

1

T-VCU
 2

1,1

. . .
3

3

T-VCU
 2

3,1

. . .

0

0

1

1

T-VCU
 3

0,3

1

1

P2

Figure 5.9: Application-level Out-of-core Strategy

resources. For instance, as shown in Figure 2.5, the RM3D application presented

requires 4 times more memory during the peak time than the average while the

peak time lasts for less than 10% of the total execution time. In this case, if

the pre-allocated resources are sufficient to meet only the requirement of a very

long running SAMR application for 90% of its execution time but not sufficient

to accommodate the peak requirements of the application, without using ALOC

strategy, it will result in a significant slow down or a crash (being killed by OS).

As illustrated in Figure 5.9, ALOC scheme incrementally partitions the local

grid hierarchy into T-VCU (temporal virtual computational unit) according to

refinement levels and runtime iterations. In the figure, the notation T-VCUa
b,c

denotes the temporal VCU, where a denotes the time step at the base level, b

for the current refinement level and c for the time step at the current level. To

avoid undesired page-swapping, ALOC automatically releases the memory held by

lower-level patches and swaps them out to the disk. The condition to trigger the

ALOC mechanism is that the ratio between the amount of the allocated memory

and the amount of the physical memory is over a predefined threshold φ.

68

5.6 Experimental Evaluation

5.6.1 Clustering Quality Metric

To aid the evaluation of the effectiveness of the SBC clustering scheme, a clus-

tering quality metric is defined. The metric consists of two components, the

static quality and the dynamic quality of the clique regions generated. The static

quality of a clique is measured in terms of its refinement homogeneity and the

efficiency of the clustering algorithm. The dynamic quality of the clique hierarchy

is measured in terms of its communication costs (intra-level, inter-level, and data

migration). These criteria are defined as follows.

(1) Refinement Homogeneity: This measures the quality of the structure of

a clique. Partitioning algorithms typically work very well on highly homoge-

neous grid structures and can generate scalable partitions with desired load

balance. Let |Rtotal
i (l)| denote the total size of a subregion or a clique at

refinement level l, which is composed of Rref
i (l), the size of refined regions,

and Runref
i (l), the size of un-refined regions at refinement level l. Refine-

ment homogeneity is recursively defined between two refinement levels as

follows:

Hi(l) =
|Rref

i (l)|
|Rtotal

i (l)|

Hall(l) =
1

n

n
∑

i=1

Hi(l), if |Rref
i (l)| 6= 0

where n is the total number of subregions that have refinement level l + 1.

(2) Communication Cost: This measures the communication overheads of a

clique and includes inter-level communication, intra-level communication,

synchronization cost, and data migration cost as described in the previous

chapter.

69

(3) Clustering Cost: This measures the efficiency of the clustering algo-

rithm itself. As mentioned above, SAMR applications require regular re-

partitioning and re-balancing, and as a result clustering cost become im-

portant.

5.6.2 Evaluating the Effectiveness of SBC Scheme

This section evaluates the effectiveness of SBC-based clustering using the metrics

defined above. First, it compares the refinement homogeneity of 6 SAMR appli-

cation kernels with and without clustering. These applications are summarized

in Table 3.1.

Refined Homogeneity for TP2D

0

0.2

0.4

0.6

0.8

1

1.2

0
 20
 40
 60
 80
 100
 120
 140
 160
 180

Regridding Steps

H
(l

)

Level0

Level1

Level2

Level3

Figure 5.10: Refinement Homogeneity for the Transport2D Application Kernel (4
levels of refinement)

Figure 5.10 shows the refinement homogeneity at different regrid steps for the

TP2D application with 4 refinement levels and without clustering. The refinement

homogeneity is smooth for level 0 and very dynamic and irregular for levels 1,

2 and 3. The refinement homogeneity for RM3D and RM2D is illustrated in

Figure 5.11. We observe similar irregular and dynamic refinement behavior.

70

Refined Homogeneity for RM2D

0

0.2

0.4

0.6

0.8

1

1.2

0
 50
 100
 150
 200
 250
 300
 350
 400
 450
 500

Regridding Steps

H
(l

)

Level0

Level1

Level2

Level3

Refined Homogeneity for RM3D

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0
 20
 40
 60
 80
 100
 120
 140
 160
 180
 200

Regridding Steps

H
(l

)
 Level0

Level1

Figure 5.11: Refinement Homogeneity for RM2D (4 levels) and RM3D Applica-
tions (2 levels)

Table 5.3: Average Refinement Homogeneity H(l) for 6 SAMR Applications
Application Level0 Level1 Level2 Level3

TP2D 0.067 0.498 0.598 0.6680
RM2D 0.220 0.680 0.830 0.901
RM3D 0.427 0.618
ENO2D 0.137 0.597 0.649 0.761
BL3D 0.044 0.267
BL2D 0.020 0.438 0.406 0.316

The average refinement homogeneity for 6 SAMR applications without cluster-

ing is presented in Table 5.3. The table shows that the refinement homogeneity

H(l) increases as the refinement level l increases. Typical ranges of H(l) are:

H(0) ∈ [0.02, 0.22], H(1) ∈ [0.26, 0.68], H(2) ∈ [0.59, 0.83] and H(3) ∈ [0.66, 0.9].

Since the refinement homogeneity on level 3 and above is typically over 0.6 and

refined subregions on deeper refinement levels tend to be more scattered, the

clustering schemes will focus efforts on clustering level 0, 1 and 2. Furthermore,

based on these statistics, we set the threshold θ for switching between different

lower-level partitioners as follows: θ0 = 0.4, θ1 = 0.6, and θ2 = 0.8, where the sub-

scripts denote the refinement level. Based on the experiments presented in [79],

policies are defined to select the partitioners GPA and G-MISP+SP for cliques

with refinement homogeneity less than the threshold θ, and the partitioners LPA

71

and pBD-ISP for cliques with refinement homogeneity greater than the threshold.

The objective of this policy is to obtain better load balance for less refined cliques,

and to reduce communication and synchronization costs for highly refined cliques.

Clustering Effects for Transport2D

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0
 20
 40
 60
 80
 100
 120
 140
 160
 180

Regridding Steps

H
(0

)

SBC Clustered

Original

Figure 5.12: Homogeneity Improvements using SBC for TP2D

Figure 5.12 and Table 5.4 demonstrate the improvements in refinement homo-

geneity by using the SBC algorithm. Figure 5.12 shows the effects of using SBC

on level 0 for the Transport2D application. The original homogeneity H(0) is in

the range [0, 0.15], while the improved homogeneity using SBC is in the range

[0.5, 0.8].

Table 5.4: Homogeneity Improvements using SBC for 6 SAMR Applications
Application Level0 Level1 Gain on Level0 Gain on Level1

TP2D 0.565 0.989 8.433 1.986
RM2D 0.671 0.996 3.050 1.465
RM3D 0.802 0.980 1.878 1.586
ENO2D 0.851 0.995 6.212 1.667
BL3D 0.450 0.583 10.227 2.184
BL2D 0.563 0.794 28.150 1.813

The effects of clustering using SBC for the 6 SAMR applications are presented

72

in Table 5.4. In this table, gain is defined as the ratio of the improved homogeneity

over the original homogeneity at each level. The gains for TP2D, ENO2D, BL3D,

and BL2D on level 0 are quite large. The gains for RM3D and RM2D applications

are smaller because these applications already exhibit high refinement homogene-

ity starting from level 0 as shown in Table 5.3. These results demonstrate the

effectiveness of the clustering scheme. Moreover, clustering significantly increases

the effectiveness of partitioners and improves overall performance as shown in the

next chapter.

5.6.3 Performance Evaluation

This section presents an evaluation of the AHMP scheme using the clustering

quality metrics defined above.

Maximum Total Communication Cost (RM3D on 64 Processors)

0

500

1000

1500

2000

2500

1
 21
 41
 61
 81
 101
 121
 141
 161
 181
 201

Regridding Steps

C
o

m
m

u
n

ic
a

ti
o

n
 M

e
s

s
a

g
e

 S
iz

e

SBC+AHMP

GPA

Figure 5.13: Maximum Total Communication for RM3D on 64 Processors

Communication Costs: The evaluation of communication cost uses a trace-

driven simulation. Figure 5.13 shows the total communication cost for the RM3D

application on 64 processors for GPA and AHMP (using SBC) schemes. The figure

shows that the overall communication cost is lower for SBC+AHMP. However,

73

in the interval between regrid steps 60 and 100, SBC+AHMP exhibits higher

communication costs. This is because the application is highly dynamic with

scattered refinements in this period. The snapshot at the regrid step 96 in Fig-

ure 2.5 demonstrates the scattered refinements. This in turn causes significant

clique movement during re-clustering. Note that the simulator does not measure

synchronization costs. Since LPA has been shown to significantly reduce synchro-

nization costs [60], selecting LPA within AHMP should further reduce these costs

and improve performance.

Clustering Time for SBC

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

rm3d
 rm2d
 bl3d
 tp2d
 bl2d
 eno2d

SAMR Applications

T
im

e
 (

m
ic

ro
s

e
c

o
n

d
)

Figure 5.14: Clustering Costs for the 6 SAMR Application Kernels

Clustering Costs: The cost of the SBC clustering algorithm is experimen-

tally evaluated using the 6 different SAMR application kernels on Frea, a Beowulf

cluster at Rutgers University. The cluster consists of 64 processors and each pro-

cessor has a 1.7 GHz Pentium IV CPU, 512 MB physical memory, 1 GB swap

space, and a Linux 2.4 kernel. The costs are plotted in Figure 5.14. As seen in this

figure, the overall clustering time on average is less than 0.01 second. Note that

the computational time between successive repartitioning/rescheduling phases is

typically in the order of 10’s of seconds, and as a result, the clustering costs are

74

not significant.

The overall performance benefit of the AHMP scheme is evaluated on DataS-

tar, the IBM SP4 cluster at San Diego Supercomputer Center. DataStar has 176

(8-way) P655+ nodes (SP4). Each node has 8 (1.5 GHz) processors, 16 GB mem-

ory, and CPU peak performance is 6.0 GFlops. The evaluation uses the RM3D

application kernel with a base grid of size 256x64x64, up to 3 refinement levels,

and 1000 base level time steps. As described in Chapter 3, RM3D is highly dy-

namic, and exhibits scattered refinement activity and space-time heterogeneity.

These characteristics make approaches that use single partitioner inadequate. As

a result, RM3D is an appropriate application that can demonstrate the benefits

using the AHMP scheme. In the experiment, the number of processors used was

between 64 and 1280.

4000

4500

5000

5500

6000

6500

7000

7500

5%
 10%
 20%
 30%
 40%
 50%
 60%

Load Imbalance Threshold

E
x

e
c

u
ti

o
n

 T
im

e
 (

s
e

c
)

min_groupsize=4

min_groupsize=6

min_groupsize=8

Figure 5.15: Impact of Load Imbalance Threshold for RM3D on 128 Processors

Impact of Load Imbalance Threshold and Resource Group Size: As

mentioned in Section 3, the load imbalance threshold γ is used to trigger repar-

titioning and redistribution within a resource group. This threshold plays an

important role because it affects the frequency of redistribution and hence the

75

overall performance. The impact of this threshold for different sizes of resource

groups for the RM3D application is plotted in Figure 5.15. When γ increases from

5% to around 20% to 30%, the execution time decreases. On the other hand, when

γ increases from 30% to 60%, the execution time increases significantly. Smaller

values of γ result in more frequent repartitioning within a resource group, while

larger thresholds may lead to increased load imbalance. The best performance is

obtained for γ = 20% and min group size = 4. Due to the increased load im-

balance, larger group sizes do not enhance performance. The overall performance

evaluation below uses γ = 20% and min group size = 4.

Execution Time for RM3D Application

(1000 time steps, size=256x64x64)

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

64
 128
 256
 512
 1024
 1280

Number of Processors

E
x
e
c
u

ti
o

n
 T

im
e
 (

s
e
c
)

GPA

LPA

SBC+AHMP

Figure 5.16: Overall Performance for RM3D

Overall Performance: The overall execution time is plotted in Figure 5.16.

The figure plots execution times for static GPA, static LPA and the AHMP

scheme with clustering, i.e., SBC+AHMP in the plot. The plot shows that

SBC+AHMP delivers the best performance. Compared to GPA, the performance

improvement is between 30% to 42%. These improvements can be attributed to

the following factors: (1) the AHMP scheme takes advantage of the strength of dif-

ferent partitioning schemes matching them to the requirements of each clique; (2)

the SBC scheme creates well-structured cliques that reduce the communication

76

traffic between cliques; (3) the AHMP scheme enables incremental repartition-

ing/redistribution and concurrent communication between resource groups.

Execution Time for RM3D Application

(1000 time steps, size=128x32x32)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

16
 32
 48
 64
 96
 128
 256
 384
 512

Number of Processors

E
x

e
c

u
ti

o
n

 T
im

e
 (

s
e

c
)

AHMP without ALP

AHMP with ALP

Figure 5.17: Experimental Results: AHMP with and without ALP

Impact of Pipelining: To show the impact of application-level pipelining

scheme (ALP), we conduct the experiment using RM3D with a smaller domain,

128x32x32. All the other parameters are same as in the previous experiment.

Due to the smaller computational domain, without ALP, the overall performance

degrades when we deploy it on a cluster with over 256 processors. The main

reason is that, without ALP, the granularity constraint and the increasing com-

munication overheads overshadow the increased computing resources. However,

with ALP, AHMP can further scale up to 512 processors with performance gains

up to 40% compared to the scheme without ALP. Note that the maximum per-

formance gain (40%) is achieved when using 512 processors, wherein the scheme

without ALP results in the degraded performance.

Impact of Out-of-Core: The ALOC scheme has been implemented using

the HDF5 library [10], which is particularly suited to store scientific data. The

effect of the out-of-core scheme is evaluated using RM3D on the Frea Beowulf

cluster. The configuration of RM3D consists of a base grid of size 128×32×32, 4

refinement levels, and 100 base-level time steps (totally 99 regridding steps). The

77

Number of Page Faults for RM3D Application

(100 time steps, size=128x32x32, 4 refinement levels)

0

1000

2000

3000

4000

5000

6000

1
 11
 21
 31
 41
 51
 61
 71
 81
 91

Regridding Steps

N
u

m
b

e
r

o
f

P
a

g
e

 F
a

u
lt

s

NonALOC

ALOC

crash point

Execution Time for RM3D Application

(100 time steps, size=128x32x32, 4 refinement levels)

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

1
 11
 21
 31
 41
 51
 61
 71
 81
 91

Regridding Steps

E
x

e
c

u
ti

o
n

 T
im

e

NonALOC

ALOC

crash point

Figure 5.18: Number of Page Faults: NonALOC versus ALOC

number of processors used is 64. Without ALOC, it took about 13507 seconds to

complete 63 regridding steps at which point the application crashed. With ALOC,

the application successfully completed the execution of 99 regridding steps. The

execution time for the same 63 regridding steps was 9573 seconds, which includes

938 seconds for explicit out-of-core I/O operations. Figure 5.18 shows the page

faults distribution and the execution time for experiments using NonALOC and

ALOC schemes. As seen in the figure, without ALOC, the application incurs

significant page faults due to memory thrashing. With ALOC, the number of

page faults is reduced. As a result, the ALOC scheme improves the performance

and enhances the survivability.

5.7 Concluding Remarks

This chapter presented the adaptive hierarchical multi-partitioner (AHMP) scheme

to address the space-time heterogeneity in dynamic SAMR applications. The

AHMP scheme applies multiple partitioners to different regions of the domain,

in a hierarchical manner, to match the local requirements of the regions. The

chapter first presented a segmentation-based clustering algorithm (SBC) that

can efficiently identify clique regions in the domain at runtime, which have rela-

tively homogeneous requirements. The partitioning requirements of these clique

regions are then characterized, and the most appropriate partitioner for each

78

clique is selected. To handle different resource situations, two hybrid schemes

have been developed. The application-level pipelining scheme (ALP) combines

the domain-based and patch-based decomposition techniques when resources are

under-utilized. In contrast, when resources are inadequate, the application-level

out-of-core scheme (ALOC) has been developed to operate on the computational

domain incrementally and enhance the survivability. This AHMP approach and

its components have been implemented and experimentally evaluated using 6

SAMR application kernels. The evaluations demonstrated the effectiveness of the

clustering and the performance improvements using AHMP strategies.

79

Chapter 6

GridMate: Simulation of Dynamic Applications

on Multi-Site Grid Systems

The exponential growth in computing, networking and storage technologies has

also ushered in a new computing era for harnessing the potential of heteroge-

neous and distributed resources on an unprecedented scale. Inspired by the per-

vasiveness, convenience, economics and open standards of the electrical power

grid, Grid computing is rapidly emerging as the new computing paradigm of the

21st century for solving grand challenge problems in varied domains of science,

engineering and business [46, 47, 45]. Its goal is to provide a service-oriented

infrastructure that leverages open standard protocols and services to enable co-

ordinated resource sharing and problem solving in dynamic multi-institutional

virtual organizations [45]. A number of major Grid infrastructures are being de-

veloped and deployed [6, 11, 18] and many grand challenge problems are being

tackled by exploiting the power of the Grid [1, 5, 9, 12, 15]. Furthermore, re-

sources on the Grid, including geographically distributed computers and storage

systems, are also inherently heterogeneous and dynamic. The coupled hetero-

geneity and dynamism of resources and applications make runtime management

of SAMR-based dynamic Grid applications a significant challenge.

The previous chapters experimentally demonstrate the performance of the

proposed schemes. However, these experiments are restricted to a single-site

supercomputer cluster. To aid the evaluation of the viability of the proposed

strategies in Grid environments, we build a simulation environment that is suited

to our needs. Grid-based SAMR applications exhibit three key distinguishing

80

characteristics: (1) They are inherently large and require large amount of com-

putational resources, typically spanning multiple sites on the Grid. Furthermore,

the exact resource requirements are often not known a priori and depend on the

application runtime behavior. (2) They may execute for days, weeks or months

and often the exact execution time is not known a priori. For instance, it is not

always known how long a scientific and engineering simulation will have to run

before it provides meaningful insights into the phenomenon being modelled. (3)

They are highly dynamic and heterogeneous in space and time. In addition, their

dynamics and heterogeneity patterns are not known a priori.

Thus, the desired simulator needs to model the systems and applications such

that these realistic characteristics are well reflected. This chapter presents the

design, operations and evaluation of the GridMate simulator.

6.1 Motivation

As described in the previous chapters, SAMR applications are highly dynamic and

exhibit space-time heterogeneity. In Grid environments, we are confronted with a

new dimension of complexity. Particularly, Grid systems consists of largely differ-

ent software and hardware resources with changing capacity and availability and

are inherently dynamic and heterogeneous. To demonstrate these characteristics,

we show a typical scenario with two resource sites in Figure 6.1. The tempo-

ral heterogeneity is represented by the variation of available capacity (number of

available processors) of a single resource site over time. The spatial heterogene-

ity is represented by the variation in the available resources across sites. In this

chapter, we consider the heterogeneity at a coarse-granularity. Specifically, we

focus on space-sharing scenarios and leave the time-sharing cases for future work.

The resource usage patterns presented are derived from synthesized traces based

on the real traces from supercomputer centers [64]. More details will be presented

81

Resource Usage Pattern on Site 1

0

10

20

30

40

50

60

70

80

90

100

110

120

130

0
 20
 40
 60
 80
 100
 120
 140

Time (hour)

N
u

m
b

e
r

o
f

U
s
e
d

 P
ro

c
e
s
s
o

rs

Resource Usage Pattern on Site 2

0

10

20

30

40

50

60

70

80

90

100

110

120

130

0
 20
 40
 60
 80
 100
 120
 140

Time (hour)

N
u

m
b

e
r

o
f

U
s
e
d

 P
ro

c
e
s
s
o

rs

Figure 6.1: Spatial and Temporal Heterogeneity of Resources on Two Sites

in the experimental evaluation section.

6.2 Related Work

Grid computing is emerging as an important new distributed computing paradigm.

Grid environments are inherently heterogeneous and highly dynamic. Further,

the ever-increasing system complexity, scale and diversity of software and hard-

ware make system management a significant challenge. To attack this chal-

lenge, a number of resource management systems have been developed, such as

Globus [7, 42, 48], Condor [4, 62], AppLeS [29, 85] and Legion [14].

Performance evaluation plays a critical role in studying, calibrating, and com-

paring various resource management techniques and systems for Grids. How-

ever, in Grid environments, the capacity and availability of resources change with

time, along with a wide spectrum of dynamic applications. Due to the inherent

dynamism and heterogeneity in Grid environments, it is quite difficult to obtain

repeatable and comparable performance evaluation under identical system setups.

Hence, simulation techniques are adopted. Simulation has been widely used for

modeling and studying real-world systems and phenomena. To enable simula-

tion, researchers have proposed some general simulation languages (Parsec [21])

82

and specifications (DEVS and HLA [86]). Moreover, a large number of simula-

tion tool kits and libraries have been developed, including NS2 [33], OpenNet,

Ptolemy [63], SimJava [17]. However, because Grid computing involves complex

interacting components, there are only a few simulators that can model Grid

environments. These include MicroGrid [76], SimGrid [58], and GridSim [34].

MicroGrid, a prominent Grid emulator developed in UCSD, is based on the

Globus Toolkit [7]. It offers a virtual Grid environment for simulating the exe-

cution of real applications. As an emulator, MicroGrid produces quite accurate

simulation results. However, the simulation modelling and configuration pro-

cess is quite demanding. In addition, due to its emulation nature, simulation

based on MicroGrid is quite time-consuming. The SimGrid toolkit, developed in

UCSD, features flexible application scheduling mechanisms. It supports model-

ing of time-shared resources and applications from realistic traces. The GridSim

toolkit, developed in University of Melbourne, is a Java-based simulation tool.

It supports modeling of space-shared and time-shared large-scale resources in

Grid environments. It also supports the simulation of economy-based resource

scheduling policies in the Grid.

The Grid simulators described above enable simulating a wide spectrum of sce-

narios in Grid environments. However, they consider only resource heterogeneity

and do not address the coupled space-time heterogeneity of both resources and

SAMR applications. As a result, using these simulation toolkits, one needs to

manually create the graph representing the SAMR domain, manually partition

it, and assign the partitions to the heterogeneous resources.

6.3 Conceptual Architecture

To explicitly address the coupled heterogeneity of both applications and resources,

we design the simulator to leverage both application partitioning techniques and

83

resource scheduling techniques. Thus, our main tasks are to model systems, ap-

plications, application partitioning and resource scheduling heuristics. Following

this rationale, we build a Grid simulator called GridMate. The multi-layer system

architecture of GridMate is illustrated in Figure 6.2. The bomottom layer is the

User Interface

Application traces

Resource configuration

Performance

results

JobGenerator

VirtualOrganization
 LocalScheduler

SuperScheduler

Machine
 Cluster
 Network
 JobPartitioner

InformationServices

Statistics

Performance

Analyzer

SimJava
 Java Native Interface

HRMS/GrACE

Operating System

Java3D

Java Virtual Machine

Figure 6.2: System Architecture of GridMate

operating system. On the top of the operating system, we have three components,

Java Virtual Machine (JVM), GrACE and Java Native Interface (JNI). JVM pro-

vides the portable runtime support for Java bytecoded files. Because our specific

application/job partitioners are implemented using the GrACE toolkit which is

implemented in C++, we add a JNI wrapper layer to expose partitioning and

other services to the simulator. On top of the JVM, we use the discrete-event

simulation tool SimJava [17]. GridMate is built based on SimJava and GrACE

(via JNI) [8]. It consists of the following major components: job generators,

information services, virtual organization (machines, clusters, networks), local

scheduler, super scheduler and performance monitor and analyzer. The input to

the GridMate are a set of application traces including local jobs and SAMR jobs,

resource configuration and scheduling policies. The output from the GridMate

84

are various performance results based on the performance metrics defined in the

next section.

6.4 Scheduling Architecture and Operations

Site 1

Super Scheduler

SAMR Job

Local Scheduler

PE

Local Job

Grid Information

Service

Application

Information Service

LS

GIS
 AIS

PE

PE

PE

Site n-2

LS

GIS
 AIS

PE

PE

PE

Site n-1

LS

GIS
 AIS

PE

PE

Site n
Local Job

Scheduling

Policy

PE: Processing Element
 AP: Application Partitioner
 LS: Local Scheduler

RM: Runtime Manager
 GIS: Grid Information Service
 AIS: Application Information Service

Runtime Manager

AP
 Sensor

Runtime Manager

AP
 Sensor

PE

RM

PE

Figure 6.3: Conceptual Architecture of HRMS on a Multi-Site Grid

Handling the coupled heterogeneity of SAMR applications in complex grid

computing environments is challenging. Figure 6.3 shows the scheduling architec-

ture of GridMate. It attempts to incorporate mechanisms to enable hierarchical

runtime management and self-adaptivity. In particular, the conceptual architec-

ture consists of three different levels: the overall system level (Grid), local site

level (VO) and individual machine level. Key components are:

• Super Scheduler (SS): The target SAMR job is submitted to the super

scheduler. SS makes scheduling decisions according to scheduling policies

and current runtime states of SAMR jobs and resources. SS is in charge of

dynamic co-allocation of the SAMR job to different resource sites through

their local schedulers. In the Grid, there can be a variety of SSs for different

85

classes of big jobs. In this thesis, we only consider the case when there is

only one SS for the SAMR job.

• Local Scheduler (LS): There is a local job queue associated with each lo-

cal scheduler. These local jobs could be batch or interactive with various

job specifications, such as number of processors required, execution time,

deadline etc. We differentiate these local jobs with SAMR jobs. LS makes

scheduling decisions according to its local scheduling policies for local jobs

and SAMR jobs.

• Runtime Manager (RM): Runtime managers are organized in a hierarchi-

cal fashion as shown in Figure 3.1. An RM is composed of application

partitioners and sensors.

• Application Partitioner (AP): These are adaptive application-centric parti-

tioners specialized for SAMR jobs. An AP resides in each processor in order

to monitor the runtime requirements of applications and strives to improve

performance by repartitioning and balancing for the target dynamic ap-

plications. APs take into account the application runtime characteristics

to make partitioning or repartitioning decisions on behalf of SAMR jobs.

Several partitioning strategies have been presented in the previous chapters.

• Sensors: These sensors monitor both resource and application runtime sta-

tus. Grid information service (GIS) pulls the resource information from

these sensors. Application information service (AIS) gathers the applica-

tion runtime information from these sensors also. Resource sensors can be

implemented using NWS [85], while application sensors are embedded into

each application sub-task.

• Application Information Service (AIS): AIS collects the updated informa-

tion of application runtime states from application sensors. AIS resides in

86

each local site and thus enables the aggregation of application states in a

hierarchical fashion.

• Grid Information Service (GIS): GIS collects the updated information of

resource states from resource sensors. It provides resource information to

super scheduler and application partitioners so that they can make schedul-

ing and partitioning decisions according to policies and current resource

status.

SimEntity

body()

LocalJobGeneratorw

work()

BigJobGenerator

work()

LocalScheduler

work()

SuperScheduler

work()

SyncGroup

work()

Machine

work()

Collector

work()

Thread

run()

Network

body()

GridEntity

work()
 1
1

Figure 6.4: Class Diagram of GridMate Entities

As required by SimJava, all the simulation entities are derived from the

“Sim entity” class. Figure 6.4 plots a class diagram describing the inheritance

hierarchy of major simulation entities. In the figure, GridEntity defines an ab-

stract method work() to wrap the body() method as required by SimJava. Fur-

ther, all these entities are derived from Thread of Java runtime library. When

the simulation starts, all these entities will be instantiated and will execute in

87

parallel as independent threads. This multi-thread feature is crucial to simulate

parallel applications. Every GridEntity object and its derived object is equipped

with a Network communication channel, which enables flexible and transparent

communication modeling. In the simulation model, the communication cost is

associated with the sender’s messaging overhead, which is proportional to the

message size plus a small constant overhead. The non-blocked send approach is

adopted such that a sender will not be blocked even though the corresponding

receiver is not ready receiving. On the receiver’s side, if the message is available,

there is no communication delay for the receiver; if the message is not available,

the receiver has options to process other tasks or to be blocked until the message

arrives. This communication model simulates the non-blocking message passing

paradigm (such as MPI Isend() and MPI Irecv()), which is a common practice

in Sparallel applications.

The sequence diagram in Figure 6.5 illustrates the primary interactions among

GridMate entities. Note that the local job generators and global job generator

execute in parallel. Their job arrivals can be overlapped and result in resource

contention and jobs queued at local schedulers or super scheduler. For local jobs,

we assume that the parallel execution times obtained from application traces in-

clude all processing time, communication time and other overheads. Since we

intend to model the exact computation and communication patterns in parallel

SAMR applications, for SAMR jobs, we explicitly consider the communication

cost incurred during synchronization after each iteration due to resource hetero-

geneity and load imbalance.

88

 : LocalJob

Generatorw

 : BigJob

Generator

 : Local

Scheduler

PE1 : Machine
 : Collector
 : BigJob

Partitioner

PE2 : Machine
 : SyncGroup
 : Super

Scheduler

submit

schedule

process
 process

done local job

done local job
update resource

submit

wait for more resources

submit to local scheduler 1

submit to local scheduler 2

schedule

schedule

process

process

synchronization

synchronization

comm done

comm done

process

done for stats

done for stats

process

sync

sync

comm done

comm done

submit

queued

done for stats

submit

submit

Partition()

partition results

Figure 6.5: Sequence Diagram for Interaction among GridMate Entities

6.5 Experimental Evaluation

6.5.1 System Setup

In GridMate, the Grid system is composed of several computer/resource sites.

Totally, we set up 4 resource sites. On each site, there are 128 homogeneous

processors. On different sites, computers are heterogeneous in computing speed,

communication bandwidth and memory capacity. Each site has its local sched-

uler and its local job arrivals follow the workload model presented in [64]. This

89

workload model is based on workload logs from three sites, San Diego Super-

computer Center (SDSC), Los Alamos National Lab (LANL) and Swedish Royal

Institute of Technology. In this model, the job sizes follow a two-stage uniform

distribution, job execution times follow the hyper-Gamma distribution and job

arrivals follow two Gamma distributions. In this thesis, we will focus our study

mainly on partitioning and scheduling SAMR jobs. For local job scheduling, a

substantial research effort already exists [44].

The target application is RM3D [41]. Its execution trace is submitted to

the super-scheduler and executed across sites. The performance evaluation of

HRMS strategies is compared with the baseline scheme. The baseline scheme

statically allocates resources such that they meet the peak requirement of the

SAMR application.

6.5.2 Evaluation Metric

The performance evaluation metrics used are waiting time, execution time and

response time for the SAMR job. Additionally, to compare with the baseline

scheme, we define a processor efficiency factor η and processor-time factor ς as

follows.

ς =
n

∑

i=1

s
∑

j=1

(NCj × Ni,j × τi,j) (6.1)

where, n is the total number of application iterations/phases, s is the total number

of sites, NCj is the normalized capacity of one processor on site j, Ni,j is the

number of allocated processors, τi,j is the length of the i-th time interval and the

subscript (i, j) denotes in the i-th time interval on the site j. ςh is denoted for

the HRMS scheme and ςb for the baseline scheme. This equation represents the

normalized total computational resource consumption. The physical meaning of

ς could be interpreted as the total execution time if the application is assigned to

90

a single standard processor (its NC = 1).

Thus the mean number of processors used is defined by,

N =
ς

Texe

(6.2)

where, Texe is the total execution time.

Using the processor-time factor ς, we define the processor efficiency factor η

by the following equation.

η =
ςb

ςh
=

N
b × T b

exe

N
h × T h

exe

(6.3)

6.5.3 Simulation Results

Waiting Time

0

200000

400000

600000

800000

1000000

1200000

1400000

5%
 16%
 22%
 35%
 46%
 65%

Average Resource Utilization

W
a

it
in

g
 T

im
e

 (
s

e
c

)

HRMS

Baseline

Total Response Time

0

500000

1000000

1500000

2000000

5%
 16%
 22%
 35%
 46%
 65%

Average Resource Utilization

R
e

s
p

o
n

s
e

 T
im

e
 (

s
e

c
)

HRMS

Baseline

Figure 6.6: Waiting Time and Response Time: HRMS and Baseline Schemes

Figure 6.6 shows the waiting time and response time of the SAMR job with

respect to the resource utilization using HRMS and baseline schemes respectively.

The average resource utilization is measured for all resource sites with local job ar-

rivals only. The simulation results show that the simple baseline scheme results in

large waiting time due to its high requirement for large number of processors. The

waiting time increases significantly as the resource utilization increases. While

using HRMS scheme, we observe a significant performance boost for the SAMR

job due to its adaptive policies taking full advantages of resource-centric and

application-centric approaches. Compared to the baseline scheme, HRMS scheme

achieves significant speedups.

91

Mean Number of Processors Used

0

50

100

150

200

250

300

5%
 16%
 22%
 35%
 46%
 65%

Average Resource Utilization

M
e

a
n

 N
u

m
b

e
r

o
f

P
ro

c
e

s
s

o
rs

HRMS

Baseline

Processor Efficiency Factor

0

2

4

6

8

10

12

14

16

18

5%
 16%
 22%
 35%
 46%
 65%

Average Resource Utilization

E
ff

ic
ie

n
c

y
 F

a
c

to
r

Figure 6.7: Processor Efficiency Factor and Mean Number of Processors Used:
HRMS and Baseline Schemes

To demonstrate the resource usage of HRMS and baseline schemes, Figure

6.7 shows the processor efficiency factor and mean number of processors used,

which are defined in equations (6.3) and (6.2) respectively. For the baseline

scheme, its mean number of processors used is constant, 256 processors, due

to its static resource allocation. Compared to the baseline scheme, the mean

number of processors used for HRMS scheme is in the range from 70 to 190. One

interesting observation is that the mean number of processors used for HRMS does

not monotonically increase or decrease with respect to the resource utilization.

This is because of the definition of N in the equation (6.2). Compared to the

baseline scheme, HRMS scheme results in reduction on both the numerator and

the denominator of the equation (6.2). As a comparison of these two schemes,

the processor efficiency factor ranges from 6 to 17. These simulation results

demonstrate the benefits of using HRMS strategies compared to the baseline

scheme.

6.6 Concluding Remarks

This chapter complements the previous chapters by presenting a performance

evaluation on multiple-site supercomputer clusters using the GridMate simulator.

The conceptual architecture, scheduling architecture, and detailed operations of

GridMate are described. Simulation results confirm our observations from the

92

real experiments on a single supercomputer cluster: HRMS strategies outper-

form the baseline scheme by judiciously taking into consideration the space-time

heterogeneity.

93

Chapter 7

Summary, Conclusions and Future Work

7.1 Summary and Conclusions

This thesis presented the design and evaluation of an adaptive runtime man-

agement system and strategy for structured adaptive mesh refinement (SAMR)

applications. Because of its ability to reduce computation and storage require-

ments, the SAMR technique is playing an increasingly important role in modeling

and studying complex scientific and engineering phenomena. However, emerging

applications keep saturating the available large-scale systems in order to gain in-

sights on complex systems. Parallel and distributed implementations of SAMR

have the potential to keep up with the increasing requirements. However, the

space-time heterogeneity and dynamism due to adaptation make efficient run-

time management of parallel SAMR applications a significant challenge.

To address challenges of managing these dynamic applications, a hybrid space

time runtime management strategy (HRMS) framework has been developed. HRMS

consists of a number of components: clustering, partitioning, scheduling and

hybrid partitiioning strategies. These strategies work synergistically to address

SAMR dynamics and heterogeneity. Specifically, the synchronization issues due

to the dynamics in parallel SAMR applications have been addressed by the hi-

erarchical partitioning algorithm (HPA) and level-based partitioning algorithm

(LPA). Further, the adaptive hierarchical multi-partitioner (AHMP) strategy ad-

dresses space-time heterogeneity by identifying and characterizing a hierarchy of

clique regions for SAMR applications, selecting the most appropriate partitioner

94

to partition each clique region, and mapping the clique hierarchy to resources in

a hierarchical manner.

The hierarchical partitioning algorithm (HPA) enables the load distribution to

reflect the state of the adaptive grid hierarchy. Its goal is to reduce synchroniza-

tion costs, and enable incremental redistribution and concurrent communication.

HPA partitions the computational domain into subdomains and assigns them to

hierarchically organized processor groups. To further reduce the synchronization

cost, a novel level-based partitioning algorithm (LPA) has been proposed. Most

partitioning heuristics merely consider balancing the overall workload among all

processors, which can incur significant synchronization cost due to load imbal-

ance at each refinement level. Instead, LPA strives to balance both the overall

workload and the workload on each refinement level. As a result, LPA outper-

forms other partitioning heuristics by reducing the synchronization cost. The

combined scheme of HPA and LPA offers performance gains as demonstrated by

the experiments presented.

A segmentation-based clustering scheme has been developed to identify and

characterize regions (clique regions) with similar requirements. Segmentation-

based clustering scheme (SBC) applies segmentation techniques to create well-

structured cliques. Since SBC follows the space-filling curve approach, it preserves

the locality while maintaining the structure of clique regions.

To exploit the identified clique hierarchy, hierarchical strategies have been de-

veloped to partition the clique hierarchy and map partitions to resource groups

in a hierarchical manner. It has been observed that there is no single partitioner

works well for all cases [79]. Motivated by this observation, an adaptive hierarchi-

cal multi-partitioner scheme (AHMP) has been developed to exploit the identified

clique hierarchy and dynamically select the most appropriate partitioning algo-

rithm for each clique region. The AHMP scheme extends the HPA scheme and

thus also enables incremental redistribution and concurrent communication. As

95

a result, the overall performance has been improved. It has been experimentally

demonstrated that AHMP improves the overall performance on large systems

with up to 1280 processors in a supercomputer cluster.

To handle different resource situations, two hybrid strategies have been de-

veloped: one is the application-level pipelining scheme (ALP) and the other the

application-level out-of-core scheme (ALOC). ALP is applied when resources are

sufficient and under-utilized. Basically, ALP scheme combines the domain-based

and patch-based partitioning schemes and attempts to overlap the operation on

patches of different refinement levels. Experiments show that ALP improves

the scalability of SAMR applications. When the available resource (particularly

memory) capacity is not sufficient to support the application runtime, an ALOC

scheme is used to enhance the survivability. To avoid the immature crash due to

peak memory requirement for a short period, ALOC scheme enables incremental

operation by keeping only active data patches in the memory and swapping out

inactive patches into the disk.

To investigate the applicability of the proposed strategies in Grid environ-

ments, GridMate, a Grid simulator for distributed SAMR applications on multi-

site clusters, has been designed and implemented following the discrete-event

simulation technique. GridMate adopts a super-scheduler and local-scheduler

scheduling paradigm and integrates partitioning and scheduling schemes in HRMS.

It hence enables the performance evaluation of HRMS strategies in multi-site

Grid environments. Simulation results showed promising performance gains us-

ing HRMS strategies in Grid environments.

7.2 Contributions

Due to the dynamism and space-time heterogeneity of SAMR applications and

their complicated communication behavior, it remains a challenging problem to

96

improve their performance on large systems. This thesis presented a novel strat-

egy, HRMS, that explicitly and successfully addresses the dynamism and hetero-

geneity.

7.2.1 Addressing the Synchronization Costs

By examining the irregular multiple level adaptation and dynamism of SAMR ap-

plications, this thesis identified two major sources of synchronization costs that

can be the performance bottleneck on large systems. One source of synchro-

nization costs is caused by the organization of the runtime management system.

If processors are organized as a flat pool, the required global synchronization

will cause significant overheads. To tackle this issue, hierarchical partitioning

strategies were presented to organize these processors in a hierarchical manner

to match the runtime requirements of SAMR applications. The other source of

synchronization costs is due to the irregular locations of refinements at differ-

ent levels. Most existing solutions seek to balance overall workload assignments

among processors, which can cause load imbalance at each refinement level. This

thesis proposed LPA seeking to balance both overall workload and workload at

each refinement level. It has been experimentally demonstrated that the proposed

solutions effectively improve the overall performance.

7.2.2 Addressing the Space-Time Heterogeneity

By examining the heterogeneity of SAMR applications, this thesis presented a

strategy that explores the localized structures of the domain and matches the most

appropriate partitioners to the localized requirements. Due to the heterogeneity,

the computation/communication requirements can vary significantly across the

domain, and as a result, using a single partitioner for the entire domain can lead

to decompositions that are locally inefficient. Extending the basic hierarchical

97

scheme, the proposed AHMP scheme dynamically employs multiple partitioners

to different regions of the domain in a hierarchical manner. As a result, AHMP

not only enables the incremental redistribution and concurrent communication,

but also exploits the best strategy for each local region. In addition, SBC has

been proposed to formulate well-structured cliques.

7.2.3 Handling Different Resource Situations

The dynamism of SAMR applications can also lead to under-utilized or inade-

quate resource situations. This thesis presented ALP to handle under-utilized

resources and ALOC to handle the situation when resources are insufficient. It

experimentally demonstrated ALP improves the performance and scalability. By

exploring the memory access pattern of SAMR applications, ALOC meets the

requirement to enhance the survivability.

7.2.4 Investigating the Applicability of HRMS in Grid En-

vironments

The applicability of the proposed strategies in Grid environments was demon-

strated by simulation using the GridMate simulator. Different from other Grid

simulators, GridMate considers the coupled requirements of application partition-

ing and resource scheduling. The simulation demonstrated the performance gain

using the proposed strategies.

7.2.5 Impact of the Research

The proposed strategies have experimentally demonstrated that adaptive strate-

gies that match the appropriate partitioners with the adaptive grid hierarchy of

the computational domain in a hierarchical manner successfully improved the

performance and scalability of parallel SAMR applications. The methodology

98

used in the process of designing HRMS has broad impacts on the design of run-

time management strategies for general dynamics applications. Essentially, the

methodology first investigates the sources of performance bottleneck, character-

izes the computational domain in a finer level, and employs appropriate strategies

to attack identified subproblems. This methodology can be readily extended to

design run time management strategies for other dynamic parallel applications,

such as scientific applications based on adaptive finite-element methods, desktop

Grid applications, and parallel cellular automata [35, 59, 73, 82]. Furthermore,

since the SAMR technique has been adopted by a large class of scientific and

engineering simulations, the improved performance using HRMS ushers in new

opportunities for scientists to explore more challenging physical phenomena and

reduce the turn-around time of their simulations. The enhanced survivability

also enable scientists to zoom in finer details of the underlying physical simula-

tion using limited resources. In addition, the design of GridMate by coupling the

application partitioning and resource scheduling introduced a new approach for

runtime management. The extension to GridMate supporting wide spectrum of

applications is also promising.

7.3 Future Work

Based on the demonstrated performance improvement using HRMS strategies,

there are enormous opportunities to explore based on and beyond HRMS. We

envision three key potential research directions to extend the research presented

in this thesis:

• Extension to the proposed partitioning and clustering schemes.

• Extension to the proposed adaptive hierarchical schemes.

99

• Extension to SAMR techniques by relaxing the synchronization require-

ments.

7.3.1 Extension to Partitioning and Clustering Schemes

This thesis has explored some critical characteristics of SAMR applications. It is

intresting to discover other novel partitioning and clustering strategies to further

pinpoint the application runtime requirements and enhance the performance. A

possible extension to the work on LPA is to design an adaptive LPA scheme that

adjusts partitioning policies according to the current requirements of SAMR ap-

plications. Specifically, for a SAMR application with the deeply refined domain,

the adaptive LPA scheme can apply purely level-based partitioning, bi-level par-

titioning, or hybrid partitioning that uses LPA for the finest refinement levels and

bi-level or triple-level schemes for lower levels. Another potential research direc-

tion is to devise judicious prediction strategies that not only predict the resource

states but also application requirements based on the fundamental physical in-

terpretation of applications. To support prediction, an interesting research is to

explore the feasibility and efficiency of some machine learning techniques, such

as artificial neural network and genetic algorithm to enable the guided adapta-

tion through self-learning. Combining the prediction techniques and the proposed

clustering schemes can potentially reduce the data migration cost and other com-

munication overheads.

7.3.2 Extension to Adaptive Hierarchical Schemes

This thesis presented hierarchical partitioning algorithm (HPA) and adaptive hier-

archical multi-partitioner scheme (AHMP). HPA and AHMP improve the overall

performance by enabling incremental repartitioning and redistribution and con-

current communication. However, experimental evaluation in this thesis has been

100

conducted only on a single supercomputer cluster with homogeneous resources.

To meet the insatiable computing requirements of the emerging large-scale appli-

cations, the Grid systems provide a sustained computing resource. Moreover, Grid

systems are naturally organized in a hierarchical manner, which makes adaptive

hierarchical schemes very suited to be extended to Grid environments. A poten-

tial strategy is to add a group of processors dedicated to handle communication

and coordination. As a result, it can reduce the significant overheads involved

in the across-site communication by caching, prefetching, and replication tech-

niques, or by enlarging the ghost regions. The research on the application-level

out-of-core (ALOC) has been implemented for a single cluster environment using

the HDF5 library [10], which supports efficient data compression. To support

migration in Grid environments, it is interesting to design an adaptive strategy

to select to compress or not compress the data before migration based on the

tradeoffs between the communication and computation costs. By relaxing the

strict synchronization requirements in SAMR techniques as presented in the next

section, the proposed adaptive hierarchical strategies can further improve the

performance for the emerging applications.

7.3.3 Extension to SAMR Techniques

Parallel SAMR implementations have the potential to accurately model complex

physical phenomena [67]. As shown in previous chapters, however, they involve

complicated computation and communication patterns and exhibit space-time

heterogeneity. Particularly, the requirement of strict synchronization at each re-

finement level for every iteration causes the performance bottleneck. Although

existing research efforts, including the research presented in this thesis, have been

committed to improve the performance and scalability of parallel SAMR applica-

tions, we believe that a fundamental extension of the original SAMR algorithms

is necessary to achieve further substantial improvement. One potential research

101

direction is to combine SAMR and AIAC (asynchronous iterations-asynchronous

communications) [23, 24, 25, 30] algorithms.

Parallel iterative algorithms has been classified into three categories: syn-

chronous iterations-synchronous communications (SISC), synchronous iterations-

asynchronous communications (SIAC), and asynchronous iterations-asynchronous

communication (AIAC) [22]. In terms of this classification, the SAMR algorithms

used in this thesis belong to the SIAC category. Using AIAC algorithms, all pro-

cessors perform their iterations without considering the progress of other proces-

sors. Specifically, at the i-th iteration, a processor does not need to wait for the

exact solution of the (i − 1)-th iteration in the ghost regions from its neighbors

but proceeds using whatever data available. As a result, the expensive synchro-

nization costs exhibited in SISC and SIAC algorithms are completely eliminated.

This unique feature of the AIAC technique makes it very suited to large-scale

parallel and distributed implementations. It has been shown that AIAC tech-

niques demonstrate great potential to improve the overall performance of parallel

iterative applications in Grid and P2P environments [22, 73]. However, current

research using AIAC algorithms focuses on applications based on conventional

uniform-discretization numerical methods.

Combining adaptive numerical techniques (e.x. SAMR) and AIAC algorithms

offers tremendous potential to further improve the overall performance. In this

combined formulation, two challenging issues need to be addressed. One is the

theoretical verification or extensive experimental verification of the feasibility of

the combined algorithm. And the other is to build an infrastructure to efficiently

support such new algorithms in terms of performance and usability. The key issues

for the implementation include the following: (1) To support a decentralized

convergence detection; (2) To handle decentralized repartitioning and dynamic

load balancing; (3) To consider the dynamism, heterogeneity, and fault-tolerance

in the large-scale Grid systems. In this new context, the proposed schemes in this

102

thesis need to be substantially modified to match the new requirements. However,

we believe this new research direction provides many opportunities to explore the

innovative extension of the proposed schemes and other novel heuristics.

103

References

[1] BIRN, Biomedical Informatics Research Network project. URL: http://
www.nbirn.net.

[2] Cactus computation toolkit. URL: http://www.cactuscode.org/.

[3] Chombo. URL: http://seesar.lbl.gov/anag/chombo/.

[4] Condor. URL: http://www.cs.wisc.edu/condor.

[5] Earth System Grid. URL: https://www.earthsystemgrid.org/.

[6] European DataGrid. URL: http://eu-datagrid.web.cern.ch/

eu-datagrid/.

[7] Globus. URL: http://www.globus.org.

[8] Grace. URL: http://www.caip.rutgers.edu/TASSL/Projects/GrACE/.

[9] GriPhyN, Grid Physics Network project. URL: http://www.griphyn.org/.

[10] Hdf5. URL: http://hdf.ncsa.uiuc.edu/HDF5/.

[11] Information Power Grid. URL: http://www.ipg.nasa.gov/.

[12] International Virtual Observatory Alliance. URL: http://www.ivoa.net/.

[13] IPARS. URL: http://www.cpge.utexas.edu/new generation/.

[14] Legion. URL: http://legion.virginia.edu/.

[15] PPDG, Particle Physics Data Grid. URL: http://www.ppdg.net.

[16] Seti@home. URL: http://setiathome.ssl.berkeley.edu.

[17] Simjava. URL: http://www.dcs.ed.ac.uk/home/hase/simjava/.

[18] TeraGrid. URL: http://www.teragrid.org/.

[19] Vampire. URL: http://www.tdb.uu.se/∼johans/research/vampire/

vampire1.html.

104

[20] G. Allen, T. Dramlitsch, I. Foster, N. T. Karonis, M. Ripeanu, E. Seidel,
and B. Toonen. Supporting efficient execution in heterogeneous distributed
computing environments with cactus and globus. In The 2001 ACM/IEEE
Conference on Supercomputing (CDROM), pages 52 – 52, Denver, Colorado,
2001.

[21] R. Bagrodia, R. Meyer, M. Takai, Y. Chen, X. Zeng, J. Martin, B. Park,
and H. Song. Parsec: A parallel simulation environment for complex sys-
tems. IEEE Computer, 31(10):77–85, 1998. URL: http://pcl.cs.ucla.
edu/projects/parsec/.

[22] J. M. Bahi, S. Contassot-Vivier, and R. Couturier. Coupling dynamic load
balancing with asynchronism in iterative algorithms on the computational
grid. In Parallel and Distributed Processing Symposium, 2003. Proceedings.
International, pages 4– 13, 2003.

[23] J. M. Bahi, S. Contassot-Vivier, and R. Couturier. Dynamic load balancing
and efficient load estimators for asynchronous iterative algorithms. Parallel
and Distributed Systems, IEEE Transactions on, 16(4):289–299, 2005.

[24] J. M. Bahi, S. Contassot-Vivier, R. Couturier, and F. Vernier. A decentral-
ized convergence detection algorithm for asynchronous parallel iterative algo-
rithms. Parallel and Distributed Systems, IEEE Transactions on, 16(1):4–13,
2005.

[25] G. M. Baudet. Asynchronous iterative methods for multiprocessors. Journal
of ACM, 25:226–244, 1978.

[26] M. Berger and J. Oliger. Adaptive mesh refinement for hyperbolic partial
differential equations. Journal of Computational Physics, 53:484–512, 1984.

[27] M. Berger and I. Regoutsos. An algorithm for point clustering and grid gen-
eration. , 21(5):, 1991. IEEE Transactions on Systems, Man and Cybernetics,
21(5):1278–1286, 1991.

[28] F. Berman, G. Fox, and A. J. G. Hey, editors. Grid Computing: Making the
Global Infrastructure a Reality. Wiley Publisher, April 2003.

[29] F. Berman, R. Wolski, H. Casanova, W. Cirne, H. Dail, M. Faerman,
S. Figueira, J. Hayes, G. Obertelli, J. Schopf, G. Shao, S. Smallen, S. Spring,
A. Su, and D. Zagorodnov. Adaptive Computing on the Grid Using Ap-
pLeS. IEEE Transactions on Parallel and Distributed Systems, 14(5):369–
382, 2003.

[30] D. P. Bertsekas and J. N. Tsitsiklis. Parallel and Distributed Computation:
Numerical Methods. Prentice Hall, 1989.

[31] S. Bokhari. Assignment Problems in Parallel and Distributed Computing.
Kluwer Academic Publishers, Boston, Massachusetts, 1987.

105

[32] S. Bokhari, T. W. Crockett, and D. M. Nicol. Binary dissection: Variants
and applications. Technical Report TR-97-29, 1997. URL: "citeseer.nj.
nec.com/bokhari97binary.html".

[33] L. Breslau, D. Estrin, K Fall, S Floyd, J Heidermann, A Helmy, P Huang,
S McCanne, K Varadhan, Y Xu, and H. Yu. Advances in network simulation.
IEEE Computer, 33(5):5967, 2000.

[34] R. Buyya and M. Murshed. Gridsim: A toolkit for the modeling and sim-
ulation of distributed resource management and scheduling for grid com-
puting. Concurrency and Computation: Practice and Experience, 14(13-
15):11751220, 2002.

[35] C. R. Calidonna, C. D. Napoli, M. Giordano, M. M. Furnari, and S. D.
Gregorio. A network of cellular automata for a landslide simulation. In
15th International Conference on Supercomputing, pages 419 – 426, Sorrento,
Italy, 2001.

[36] S. Chandra. Armada: A framework for adaptive application-sensitive run-
time management of dynamic applications. Technical report, Rutgers Uni-
versity, 2002.

[37] S. Chandra, X. Li, and M. Parashar. Engineering an autonomic partitioning
framework for grid-based samr applications. In L. T. Yang, editor, Hard-
ware/Software Support for Parallel and Distributed Scientific and Engineer-
ing Computing. Kluwer Academic Publishers, September 2003.

[38] S. Chandra and M. Parashar. Armada: An adaptive application-sensitive
partitioning framework for structured adaptive mesh refinement applications.
In IASTED International Conference on Parallel and Distributed Computing
Systems (PDCS 02), pages 446 – 451, Cambridge, MA, 2002. ACTA Press.

[39] S. Chandra, J. Steensland, M. Parashar, and J. Cummings. An experimental
study of adaptive application sensitive partitioning strategies for samr ap-
plications. In 2nd Los Alamos Computer Science Institute Symposium (also
Best Research Poster at Supercomputing Conference 2001), 2001.

[40] J. Chen and V. Taylor. Mesh partitioning for efficient use of distributed
systems. IEEE Transactions on Parallel and Distributed Systems, 13(1):67–
79, 2002.

[41] J. Cummings, M. Aivazis, R. Samtaney, R. Radovitzky, S. Mauch, and
D. Meiron. A virtual test facility for the simulation of dynamic response
in materials. Journal of Supercomputing, 23:39–50, 2002.

[42] K. Czajkowski, I. Foster, N. Karonis, C. Kesselman, S. Martin, W. Smith,
and S. Tuecke. A resource management architecture for metacomputing
systems. In Lecture Notes in Computer Science, volume 1459, 1998.

106

[43] K. Devine, E. Boman, R. Heaphy, B. Hendrickson, and C. Vaughan. Zoltan
data management services for parallel dynamic applications. Computing in
Science and Engineering, 4(2):90–97, 2002.

[44] D. G. Feitelson. A survey of scheduling in multiprogrammed parallel systems.
Technical report, IBM Research Report RC19790(87657), 1995.

[45] I. Foster and C. Kesselman. The Grid: Blueprint for a New Computing
Infrastructure. Morgan Kaufmann, 2nd edition, 2004.

[46] I. Foster, C. Kesselman, J. Nick, and S. Tuecke. The physiology of the grid:
An open grid services architecture for distributed systems integration, open
grid service infrastructure wg, global grid forum, June 2002.

[47] I. Foster, C. Kesselman, and S. Tuecke. The anatomy of the grid: Enabling
scalable virtual organizations. International Journal of High Performance
Computing Applications, 15(3):200–222, 2001.

[48] I. Foster, Z. Kesselman, C. Lee, B. Lindqll, K. Nahrstedt, and A. Roy. A
distributed resource management architecture that supports advance reser-
vations and co-allocation. In Seventh International Workshop on Quality of
Service (IWQoS ’99), 1999.

[49] G. Gilder, editor. Gilders law on network performance. Telecosm: The World
After Bandwidth Abundance. Touchstone Books, 2002.

[50] R. C. Gonzalez and R. E. Woods. Digital Image Processing. Prentice Hall,
Upper Saddle River, NJ, 2nd edition, 2002.

[51] S. Hawley and M. Choptuik. Boson stars driven to the brink of black hole
formation. Physical Review D, 62:10(104024), 2000.

[52] B. Hendrickson and R. Leland. A multilevel algorithm for partitioning
graphs. In Supercomputing, San Diego, 1995.

[53] J. L. Hennessy, D. A. Patterson, and D. Goldberg. Computer Architecture:
A Quantitative Approach. Morgan Kaufmann, 2002.

[54] R. D. Hornung and S. R. Kohn. Managing application complexity in the
samrai object-oriented framework. Concurrency and Computation - Practice
& Experience, 14(5):347–368, 2002.

[55] L. V. Kale. Charm. URL: http://charm.cs.uiuc.edu/research/charm/.

[56] G. Karypis. Parmetis, 2003. URL: http://www-users.cs.umn.edu/
∼karypis/metis/parmetis/index.html.

[57] S. Kohn. SAMRAI: Structured adaptive mesh refinement applications in-
frastructure. Technical report, Lawrence Livermore National Laboratory,
1999.

107

[58] A. Legrand, L. Marchal, and H. Casanova. Scheduling distributed applica-
tions: The simgrid simulation framework. In the 3rd IEEE/ACM Interna-
tional Symposium on Cluster Computing and the Grid (CCGrid2003), Tokyo,
Japan, May, 2003. IEEE Computer Society Press.

[59] T. J. Lehman and J. H. Kaufman. Optimalgrid: middleware for automatic
deployment of distributed fem problems on an internet-based computing grid.
In IEEE International Conference on Cluster Computing, pages 164–171,
2003.

[60] X. Li and M. Parashar. Dynamic load partitioning strategies for managing
data of space and time heterogeneity in parallel samr applications. In The 9th
International Euro-Par Conference (Euro-Par 2003), Klagenfurt, Austria,
2003.

[61] X. Li and M. Parashar. Hierarchical partitioning techniques for structured
adaptive mesh refinement applications. The Journal of Supercomputing,
28(3):265 – 278, 2004.

[62] C. Liu, L. Yang, I. Foster, and D. Angulo. Design and evaluation of a
resource selection framework for grid applications. In 11 th IEEE Interna-
tional Symposium on High Performance Distributed Computing HPDC-11
20002 (HPDC’02), 2002.

[63] X. Liu, J. Liu, J. Eker, and E. A. Lee. Heterogeneous modeling and design
of control systems. In T. Samad and G. Balas, editors, Software-Enabled
Control: Information Technology for Dynamical Systems. IEEE Press, New
York, 2003.

[64] U. Lublin and D. G. Feitelson. The workload on parallel supercomputers:
Modeling the characteristics of rigid jobs. Journal of Parallel and Distributed
Computing, 63(11):1105–1122, 2003.

[65] P. MacNeice. Paramesh, 1999. URL: http://esdcd.gsfc.nasa.gov/ESS/
macneice/paramesh/paramesh.html.

[66] G. Moore. Moores Law, 1965. URL: http://www.intel.com/research/
silicon/mooreslaw.htm.

[67] M. Parashar and J. Browne. On partitioning dynamic adaptive grid hierar-
chies. In 29th Annual Hawaii International Conference on System Sciences,
pages 604–613, 1996.

[68] J. Pilkington and S. Baden. Dynamic partitioning of non-uniform structured
workloads with spacefilling curves. IEEE Transactions on Parallel and Dis-
tributed Systems, 7(3), 1996.

108

[69] J. Ray, H. N. Najm, R. B. Milne, K. D. Devine, and S. Kempka. Triple flame
structure and dynamics at the stabilization point of an unsteady lifted jet
diffusion flame. In (to be published in) Proc. Combust. Inst.

[70] J. Ray, H. N. Najm, R. B. Milne, K. D. Devine, and S. Kempka. Triple flame
structure and dynamics at the stabilization point of an unsteady lifted jet
diffusion flame. Proceedings of Combust. Inst. 2000, 25(1):219–226, 2000.

[71] H. Sagan. Space Filling Curves. Springer-Verlag, 1994.

[72] R. Samtaney. Rm2d. URL: http://www.galcit.caltech.edu/∼ravi/rm.
html.

[73] K. Sankaralingam, S. Sethumadhavan, and J.C. Browne. Distributed pager-
ank for p2p systems. In 12th IEEE International Symposium on High Per-
formance Distributed Computing, pages 58–68, 2003.

[74] K. Schloegel, G. Karypis, and V. Kumar. A unified algorithm for load-
balancing adaptive scientific simulations. In Supercomputing, 2000.

[75] B. A. Shirazi, A. R. Hurson, and K. M. Kavi. Scheduling and load balanc-
ing in parallel and distributed systems. IEEE Computer Society Press, Los
Alamitos, 1995.

[76] H.J. Song, X. Liu, D. Jakobsen, R. Bhagwan, X. Zhang, K. Taura, and
A. Chien. The microgrid: A scientific tool for modeling computational grids.
In IEEE Supercomputing (SC2000), Dallas, TX, November 2000. IEEE Com-
puter Society Press.

[77] J. Steensland. Efficient Partitioning of Structured Dynamic Grid Hierar-
chies. PhD thesis, Uppsala University, 2002.

[78] J. Steensland. Irregular buffer zone partitioning reducing synchronization
cost in samr. In The 6th Workshop on Parallel and Distributed Scientific
and Engineering Computing (PDSEC-05) held in conjunction with The 19th
International Parallel and Distributed Processing Symposium (IPDPS-05),
2005.

[79] J. Steensland, S. Chandra, and M. Parashar. An application-centric charac-
terization of domain-based sfc partitioners for parallel samr. Ieee Transac-
tions on Parallel and Distributed Systems, 13(12):1275–1289, 2002.

[80] J. Steensland, M. Thune, S. Chandra, and M. Parashar. Towards an adaptive
meta-partitioner for parallel samr applications. In IASTED PDCS 2000,
2000.

[81] J. Steensland, M. Thune, S. Chandra, and M. Parashar. Towards an adaptive
meta-partitioner for parallel samr applications. In IASTED PDCS 2000,
2000.

109

[82] D. Talia. Parallel cellular programming for developing massively parallel
emergent systems. In International Parallel and Distributed Processing Sym-
posium, pages 22–26, 2003.

[83] B. Veeravalli, D. Ghose, V. Mani, and T.G. Robertazzi. Scheduling Divisible
Loads in Parallel and Distributed Systems. IEEE Computer Society Press,
Los Almitos, California, 1996.

[84] B. Wilkinson and M. Allen. Parallel Programming: Techniques and Ap-
plications Using Networked Workstations and Parallel Computers. Pearson
Education, first edition, 1999.

[85] R. Wolski, N. T. Spring, and J. Hayes. The network weather service: a dis-
tributed resource performance forecasting service for metacomputing. Future
Generation Computer Systems, 15(5-6):757–768, 1999.

[86] B. P. Zeigler, S. B. Hall, and H. S. Sarjoughian. Exploiting hla and devs
to promote interoperability and reuse in lockheed’s corporate environment.
SIMULATION, Special Issue on The High Level Architecture., 73(5):288–
295, 1999.

110

Appendix A

Glossary

AHMP: Adaptive hierarchical multi-partitioner

AHPA: Adaptive hierarchical partitioning algorithm

AIS: Application information service

ALOC: Application-level out-of-core

ALP: Application-level pipelining

BPA: Bin-packing partitioning algorithm

CGDS: Composite grid distribution strategy

GIS: Grid information service

GMISP+SP: geometric multilevel + sequence partitioning

GPA: Greedy partitioning algorithm

GUL: Grid unit list

HPA: Hierarchical partitioning algorithm

HRMS: Hybrid space-time runtime management strategy

LBC: Level-based clustering algorithm,

pBD+ISP: p-way binary dissection algorithm

PDE: Partial differential equation

111

PDS: Parallel and distributed system

RM: Runtime manager

RMS: Runtime management system

SAMR: Structured adaptive mesh refinement

SBC: Segmentation-based clustering

SFC: Space-filling curve

SHPA: Static hierarchical partitioning algorithm

SPMD: Single program multiple data

T-VCU: Temporal virtual computational unit

112

Curriculum Vita

Xiaolin Li

2005 PhD, Electrical & Computer Engineering, Rutgers University, USA.

2001 PhD, Electrical & Computer Engineering, National University of Sin-
gapore, Singapore

1998 MEng, Mechanical & Automation Engineering, Zhejiang University,
PRC

1995 BEng, Mechanical & Electronic Engineering, Qingdao University, PRC

2001-2005 Graduate Research Assistant, The Applied Software Systems Lab,
Center for Advance Information Processing, Rutgers University, USA

2003-2003 Extreme Blue Intern, Extreme Blue Program, IBM Austin, USA

2001-2001 Staff R&D Engineer, Mobile Computing and Protocols Group, Center
for Wireless Communications, Singapore

1999-2000 Teaching Assistant, Department of Electrical & Computer Engineer-
ing, National University of Singapore

1998-2001 Research Scholar, Open Source Software Lab and Digital Systems &
Applications Lab, National University of Singapore, Singapore

1995-1998 Research Assistant, National Key Lab of CAD & CG and Modern
Design Methodology Lab, Zhejiang University, PRC

Publications

X. Li and M. Parashar, “Using Clustering to Address the Heterogeneity
and Dynamism in Parallel SAMR Application”, (accepted) 12th An-
nual IEEE International Conference on High Performance Computing
(HiPC-2005).

113

S. Chandra, X. Li, T. Saif and M. Parashar, “Enabling Scalable Paral-
lel Implementations of Structured Adaptive Mesh Refinement Applica-
tions”, (under revision) Journal of Supercomputing, Kluwer Academic
Publishers.

S. Chandra, X. Li, T. Saif and M. Parashar, “Addressing the Scalability
of Distributed Structured Adaptive Mesh Refinement”, (submitted to)
Computing and Visualization in Science, Springer-Verlag.

X. Li and M. Parashar, “Adaptive Runtime Management of Spatial and
Temporal Heterogeneity for Dynamic Grid Applications”, Proceedings
of the 13th High Performance Computing Symposium (HPC-2005), San
Diego, California, pp. 223-228, Apr. 2005.

X. Li, B. Veeravalli, and C.C. Ko, “Distributed Image Processing in
a Network of Workstations”, International Journal of Computers and
Applications, ACTA Press, Vol. 25 (2), pp. 136-145, 2003.

X. Li, and M. Parashar , “Hierarchical Partitioning Techniques for
Structured Adaptive Mesh Refinement Applications”, Journal of Su-
percomputing, Kluwer Academic Publishers, Vol.28(3), pp.265-278, 2004.

S. Chandra, X. Li and M. Parashar, “Engineering an Autonomic Parti-
tioning Framework for Grid-based SAMR Applications”, Book chapter
in “Hardware/Software Support for Parallel and Distributed Scientific
Engineering Computing”, Editor: L. T. Yang, Kluwer Academic Pub-
lishers, Sep. 2003.

X. Li and M. Parashar, “Dynamic Load Partitioning Strategies for
Managing Data of Space and Time Heterogeneity in Parallel SAMR
Applications”, Lecture Notes in Computer Science (EuroPar-2003),
Editors: H. Kosch, L. Boszormenyi, H. Hellwagner, Springer-Verlag,
Klagenfurt, Austria, Vol. 2790, pp.181-188, Aug. 2003.

X. Li, S. Ramanathan, and M. Parashar, “Hierarchical Partitioning
Techniques for Structured Adaptive Mesh Refinement (SAMR) Ap-
plications”, Proceedings of International Conference on Parallel Pro-
cessing (ICPP-2002), HPSECA Workshop, Vancouver, Canada, Aug.
2002.

X. Li, B. Veeravalli, and C.C. Ko, “Divisible Load Scheduling in a Hy-
percube Cluster with Finite-size Buffers and Granularity Constraints”,
Proceedings of the First IEEE/ACM International Symposium on Clus-
ter Computing and the Grid (CCGrid-2001), Brisbane, Australia, pp.
660-667, May 2001.

B. Veeravalli, X. Li, and C.C. Ko, “On the Influence of Start-up Costs
in Scheduling Divisible Loads on Bus Networks”, IEEE Transactions

114

on Parallel and Distributed Systems, Vol.11 (12), pp.1288-1305, Dec.
2000.

X. Li, B. Veeravalli, and C.C. Ko, “Divisible Load Scheduling on Single-
level Tree Networks with Finite-size Buffers”, IEEE Transactions on
Aerospace and Electronic Systems, Vol. 36 (4), pp. 1298-1308, Oct.
2000.

