ADAPTIVE RUNTIME MANAGEMENT OF
SPATIAL AND TEMPORAL
HETEROGENEITY OF DYNAMIC SAMR
APPLICATIONS

BY XIAOLIN LI

A dissertation submitted to the
Graduate School—New Brunswick
Rutgers, The State University of New Jersey
in partial fulfillment of the requirements
for the degree of
Doctor of Philosophy

Graduate Program in Electrical and Computer Engineering

Written under the direction of
Professor Manish Parashar

and approved by

New Brunswick, New Jersey

October, 2005

ABSTRACT OF THE DISSERTATION

Adaptive Runtime Management of Spatial and
Temporal Heterogeneity of Dynamic SAMR
Applications

by Xiaolin Li

Dissertation Director: Professor Manish Parashar

Structured adaptive mesh refinement (SAMR) techniques provide an effective
means for dynamically concentrating computational effort and resources to ap-
propriate regions in the application domain and have the potential for enabling
highly accurate solutions to simulations of complex systems. However, due to
the dynamism and space-time heterogeneity exhibited by these techniques, their
scalable parallel implementation continues to present significant challenges.

This thesis aims at designing and evaluating an adaptive runtime management
system for parallel SAMR applications by explicitly considering their spatial and
temporal heterogeneity on large systems. The key idea is to identify relatively
homogenous regions in the computational domain at runtime and apply the most
appropriate algorithms that address local requirements of these regions. A hybrid

space-time runtime management strategy based on this idea has been developed,

i

which consists of three components. First, adaptive hierarchical strategies dynam-
ically apply multiple partitioners to different regions of the application domain,
in a hierarchical manner, to match the local requirements. Novel clustering and
partitioning algorithms are developed. The strategy allows incremental reparti-
tioning and rescheduling and concurrent operations. The second component is an
application-level pipelining strategy, which trades space for time when resources
are sufficiently large and under-utilized. The third component is an application-
level out-of-core strategy, which trades time for space when resources are scarce in
order to improve the performance and enhance the survivability of applications.

The proposed solutions have been implemented and experimentally evaluated
on large-scale systems including the IBM SP4 cluster at San Diego Supercomputer
Center with up to 1280 processors. These experiments demonstrate the perfor-
mance benefits of the developed strategies. Finally, the GridMate simulator is

developed to investigate applicability of theses strategies in Grid environments.

111

Acknowledgements

I would like to express my sincere gratitude to my advisor Prof. Manish Parashar
for his invaluable guidance, insightful ideas, and continuous encouragement during
the course of this work and throughout my study at Rutgers. I am very thankful to
Prof. Ivan Marsic, Prof. Hoang Pham, Prof. Deborah Silver, and Prof. Yanyong
Zhang for being on my thesis committee and for their advice and suggestions
regarding the thesis and beyond. I would like to thank Sumir Chandra and
Johan Steensland for valuable research discussions and collaboration. I would
like to thank Julian Cummings, Jaideep Ray, Ravi Samtaney, and Mary Wheeler
for collaboration on the real-world SAMR applications, and Victors Berstis and
Luba Cherbakov for collaboration on the Grid simulator. Moreover, I would like
to thank my colleagues at The Applied Software Systems Laboratory (TASSL)
and other friends at Rutgers for their friendship and help, which makes my study
at Rutgers enjoyable and fruitful. I am also thankful to staff at the Center
for Advanced Information Processing (CAIP) and Department of Electrical &
Computer Engineering for their assistance and support.

I am grateful to Paul & Diana, Rick & Lorie, Jerry & Lucia, Zhengyi &
Yingxiu, Zhengzhong & Xiuchun for their warmhearted help and guidance. My
special thanks go to my family for their endless love and spiritual support.

The work presented in this thesis was supported in part by NSF via grants ACI
9984357, EIA 0103674, EIA 0120934, ANI 0335244, CNS 0305495, CNS 0426354
and IIS 0430826, and by DOE ASCI/ASAP (Caltech) via grant PC295251. I

thank these funding agencies for their generous financial support.

v

Table of Contents

Abstract ii
Acknowledgements L iv
List of Tables ix
List of Figures X
1. Introductiono 1
1.1. Motivation L 1
1.1.1. Problem Statement, 2
1.2. Research Overview 3
1.3. Contributions 5
1.4. Outline of the Thesis 6
2. Problem Description and Related Work 7
2.1. Structured Adaptive Mesh Refinement 7
2.1.1. SAMR Algorithm 9
2.2. Spatial and Temporal Heterogeneity of SAMR Applications 11
2.3. Computation and Communication Patterns for Parallel SAMR Ap-
plications 13
2.3.1. Communication Overheads for Distributed SAMR Applica-
tions 14
2.4. Computation and Communication Workload Analysis 15
2.4.1. Computation Workload 16

2.4.2. Communication Workload 18
2.5. Requirement Analysis for Partitioning and Scheduling Strategies . 19
2.6. Taxonomy for Runtime Management of SAMR Applications . . . 20
2.6.1. Related Work on Managing Distributed SAMR Applications 25

2.7. Concluding Remarks 28

. Hybrid Space-Time Runtime Management Strategy 29
3.1. Conceptual Overview of HRMS 30
3.2. Operations of HRMS 32
3.3. SAMR Application Kernels for Experimental Evaluation 34
3.4. Concluding Remarks 34

. Hierarchical Partitioning Algorithms 36
4.1. Hierarchical Partitioning Algorithm 38
4.1.1. General HPA 38

4.1.2. Static HPA 42

4.1.3. Adaptive HPA 45

4.2. Level-based Partitioning Algorithm 48
4.3. Concluding Remarks, 52

. Adaptive Hierarchical Multi-Partitioner Strategy 53
5.1. Adaptive Hierarchical Multi-Partitioner Strategy 54
5.2. Requirement Analysis of Clustering Schemes 57
5.3. Segmentation-based Clustering (SBC) 58
5.4. Application-level Pipelining Strategy 62
5.5. Application-level Out-of-Core Strategy 65
5.6. Experimental Evaluation 68
5.6.1. Clustering Quality Metric 68

vi

5.7.

5.6.2. Evaluating the Effectiveness of SBC Scheme 69
5.6.3. Performance Evaluation 72

Concluding Remarks 7

6. GridMate: Simulation of Dynamic Applications on Multi-Site

Grid Systems 79
6.1. Motivationo 80
6.2. Related Work 81
6.3. Conceptual Architecture 82
6.4. Scheduling Architecture and Operations 84
6.5. Experimental Evaluation 88

6.5.1. System Setup 88
6.5.2. Evaluation Metric L. 89
6.5.3. Simulation Results 90
6.6. Concluding Remarks 91

7. Summary, Conclusions and Future Work 93
7.1. Summary and Conclusions 93
7.2. Contributions Lo 95

7.2.1. Addressing the Synchronization Costs 96
7.2.2. Addressing the Space-Time Heterogeneity 96
7.2.3. Handling Different Resource Situations 97

7.3.

7.2.4. Investigating the Applicability of HRMS in Grid Environ-

ments . ..o 97
7.2.5. Impact of the Research 97
Future Work 98
7.3.1. Extension to Partitioning and Clustering Schemes 99
7.3.2. Extension to Adaptive Hierarchical Schemes 99

Vil

7.3.3. Extension to SAMR Techniques

References

Appendix A. Glossary oo

Curriculum Vita s

viil

2.1.
2.2.
2.3.
2.4.
3.1.
4.1.
4.2.
4.3.
4.4.
5.1.
5.2.
5.3.
5.4.

List of Tables

The Berger-Oliger AMR Algorithm
Classification of Application Characteristics
Classification of Application Partitioners
Parallel and Distributed AMR Infrastructures
SAMR Application Kernels
Load balancing phase in the general HPA
Hierarchical Partitioning Algorithm
Load Partitioning and Assignment in Adaptive HPA
Level-based Partitioning Algorithm (LPA)
Adaptive Hierarchical Multi-Partitioner
Segmentation-Based Clustering Algorithm
Average Refinement Homogeneity H(l) for 6 SAMR Applications

Homogeneity Improvements using SBC for 6 SAMR Applications

1X

1.1.
2.1.

2.2,
2.3.

2.4.

2.5.

2.6.

2.7.

2.8.
2.9.

2.10.

3.1.
3.2.
4.1.
4.2.
4.3.

List of Figures

An Illustrative Runtime Management System 3
Adaptive Grid Hierarchy - 2D (Berger-Oliger AMR scheme), Cour-
tesy: M. Parashar 8
SAMR Example: 1-D Wave Equation 10
SAMR Example: Richtmyer-Meshkov Instability Flows in a 2D
Slice of RM3D, Courtesy: R. Samtaney 11
Flames simulation: ignition of Hs-Air mixture in a non-uniform
temperature field. Courtesy: J. Ray, etal. 12

Spatial and Temporal Heterogeneity and Workload Dynamism of

a 3D Richtmyer-Meshkov Simulation using SAMR 13
Timing Diagram for Distributed SAMR Algorithm 14
Computation Load Versus Refinement Levels 17

Patch-based Decomposition of 1D Application, Courtesy: M. Parashar 23

Domain-based Decomposition of 1D Application, Courtesy: M.
Parasharo 24

Space Filling Curves - Self-Similarity Property. Courtesy: M.

Parasharo 26
Conceptual Architecture of HRMS 30
Workflow of HRMS 32
Sequence Diagram for the Non-HPA Scheme 39
A General Hierarchical Structure of Processor Groups 40
Sequence Diagram for the HPA Scheme 43

4.4.
4.5.

4.6.
4.7.
4.8.
4.9.
5.1.
5.2.
5.3.
5.4.
9.5.
5.6.
5.7.
5.8.
5.9.

5.10.

5.11.

5.12.
5.13.
5.14.
5.15.
5.16.
5.17.
5.18.

Execution time: Static HPA versus Non-HPA Schemes 45

Communication Cost: Comparison of Non-HPA, Static HPA and

Adaptive HPA Schemes. 47
Execution Time: Static HPA versus Adaptive HPA Schemes . . . 47
Partitions of a 1-D Grid Hierarchy (a) GPA (b) LPA 49
Timing Diagrams of the Example (a) GPA (b) LPA 50
Execution and Communication Time o1

A Flowchart for the Adaptive Clustering and Partitioning Strategy 55

AHMP Operations - An Illustrative Example 56
Clustering Results of LBC Algorithm 59
Clustering Results for the SBC Scheme 61
Load Density Distribution and Histogram for SBC 62
Application-level Pipelining Strategy 63
Number of Page Faults versus Allocated Memory 65
Processing Time versus Allocated Memory 66
Application-level Out-of-core Strategy 67
Refinement Homogeneity for the Transport2D Application Kernel

(4 levels of refinement) oL 69
Refinement Homogeneity for RM2D (4 levels) and RM3D Appli-

cations (2 levels)o 70
Homogeneity Improvements using SBC for TP2D 71
Maximum Total Communication for RM3D on 64 Processors . . . 72
Clustering Costs for the 6 SAMR Application Kernels 73
Impact of Load Imbalance Threshold for RM3D on 128 Processors 74
Overall Performance for RM3D 75
Experimental Results: AHMP with and without ALP 76
Number of Page Faults: NonALOC versus ALOC 7

x1

6.1.
6.2.
6.3.
6.4.
6.5.
6.6.
6.7.

Spatial and Temporal Heterogeneity of Resources on Two Sites . .
System Architecture of GridMate
Conceptual Architecture of HRMS on a Multi-Site Grid
Class Diagram of GridMate Entities
Sequence Diagram for Interaction among GridMate Entities
Waiting Time and Response Time: HRMS and Baseline Schemes

Processor Efficiency Factor and Mean Number of Processors Used:

HRMS and Baseline Schemes

xii

81
83
84
86
38
90

Chapter 1

Introduction

1.1 Motivation

The last decade has witnessed a dramatic technology boost in computing, net-
working and storage. A personal computer today is as fast as a supercomputer
in 1990 and can be installed with more than 100 GB storage, which is as much
as an entire supercomputer center in 1990 [28]. The rapid advance of technolo-
gies, driven by Moore’s law [66] for CPUs, storage systems, as well as Gilder’s
law [49] for networks, has led to parallel and distributed systems of unprecedented
scales. Harnessing resources of such scale requires efficient runtime management
strategies.

At the same time, a new generation of large-scale scientific and engineering
simulations that require an increasing amount of computing and storage resources
to provide new insights into complex systems, such as interacting black holes and
neutron stars, formations of galaxies, combustion simulation, subsurface modeling
and oil reservoir simulation [41, 51, 70]. Dynamically adaptive techniques, such
as the dynamic structured adaptive mesh refinement (SAMR) technique [26], are
emerging as attractive formulations of these simulations. Compared to numerical
techniques based on static uniform discretization, SAMR can yield highly ad-
vantageous ratios for cost/accuracy by adaptively concentrating computational
effort and resources to appropriate regions of the domain at runtime. Large-scale
parallel implementations of SAMR-based applications have the potential for ac-

curately modeling complex physical phenomena and providing dramatic insights.

However, due to the dynamism and space-time heterogeneity, the scalable parallel
implementation remains a significant challenge. Specifically, SAMR-based appli-
cations are inherently dynamic because the physical phenomena being modeled
and the corresponding adaptive computational domain change as the simulation
evolves. Further, adaptation naturally leads to a computational domain that is
spatially heterogeneous, i.e., different regions in the computational domain and
different levels of refinements have different computational and communication re-
quirements. Finally, the SAMR algorithm periodically regrids the computational
domain causing regions of refinement to be created/deleted /moved to match the
physics being modeled, i.e., it exhibits temporal heterogeneity.

The exponential growth in computing, networking and storage technologies
has also ushered in a new distributed computing paradigm, Grid computing, for
solving grand challenge problems in varied domains of science, engineering and
business [46, 47, 45]. A number of major Grid infrastructures are being developed
and deployed [6, 11, 18] and many grand challenge problems are being tackled
by exploiting the power of the Grid [1, 5, 9, 12, 15, 16]. Migrating dynamic and
heterogeneous SAMR applications to Grid environments introduces another level

of complexity and challenges.

1.1.1 Problem Statement

As mentioned above, SAMR applications exhibit dynamism and space-time het-
erogeneity, making their scalable implementation a significant challenge. To ad-
dress the scalability and performance issues, this thesis aims at designing, im-
plementing and evaluating an adaptive runtime management system for parallel
SAMR applications by explicitly considering their dynamism and space-time het-

erogeneity on large-scale systems. The specific objectives are as follows.

e To explore the characteristics of parallel SAMR applications: to investigate

their communication/computation behavior and to analyze the localized

features of the computational domain.

e To explicitly address the synchronization costs caused by the dynamism of
parallel SAMR applications, by identifying the sources of these costs and

designing efficient strategies to reduce their impact on performance.

e To explicitly address the spatial and temporal heterogeneity exhibited in
SAMR applications. Specifically, to characterize the heterogeneity, iden-
tify and isolate subproblems, and design a divide-and-conquer strategy to
address it. Further, to design strategies to enhance survivability of the

application when the available resource is not sufficient.

e To investigate the applicability of the proposed strategies in Grid environ-
ments. In particular, to consider the coordination of application partitioning

and resource scheduling strategies.

1.2 Research Overview

Dynamic Applications

Monitor Runtime Management System
Analyze

=
Partition applications

= Allocate resources
Balance load

l 1 ‘ ~l\/la\nage communication

Parallel and Distributed Systems

Figure 1.1: An Illustrative Runtime Management System

A runtime management system (RMS) is in charge of partitioning applica-
tions at runtime and distributing each partition to available resources in order
to efficiently utilize resources and minimize the execution time of applications.
Figure 1.1 shows an RMS as a middleware system that bridges the gap between
applications and operating systems and provides efficient runtime support, pri-
marily including dynamic partitioning, resource allocation, coordination, and load
balancing. In the figure, the input application is a combustion simulation of
hydrogen-air mixture with three initial ignition spots [70]. As shown in the fig-
ure, a RMS monitors the runtime states of applications and resources, analyzes
requirements, and delivers a plan for partitioning, scheduling and executing the
application on parallel and distributed systems to maximize their performance,
efficiency and utilization. In case of SAMR applications, the RMS must address
their dynamism and space-time heterogeneity.

The overall goal of this thesis is to design, implement and evaluate an adap-
tive runtime management system for parallel SAMR applications on parallel and
distributed systems. To address the spatial and temporal heterogeneity, the key
idea is to identify relatively homogenous regions in the computational domain at
runtime and apply the most appropriate algorithms that address local require-
ments of these regions. A hybrid space-time runtime management strategy based
on this idea has been developed, which consists of three components. First, adap-
tive hierarchical strategies dynamically apply multiple partitioners to different
regions of the application domain, in a hierarchical manner, to match the local
requirements. Novel clustering and partitioning algorithms are developed. The
strategy allows incremental repartitioning and rescheduling and concurrent oper-
ations. The second component is an application-level pipelining strategy, which
trades space for time when resources are sufficiently large and under-utilized.
The third component is an application-level out-of-core strategy, which trades

time for space when resources are scarce in order to improve the performance

and enhance the survivability of applications. To investigate the applicability

of theses strategies in Grid environments, GridMate, a Grid simulator, has been

developed.

1.3 Contributions

The main contributions of this thesis are as follows.

e A hybrid space-time runtime management strategy and system (HRMS).

HRMS has been implemented and experimentally evaluated on large-scale

systems with up to 1280 processors. These experiments demonstrate that

HRMS successfully improves the overall performance and scalability by ex-

plicitly addressing the dynamism and heterogeneity of SAMR applications.

The contributions of HRMS are elaborated as follows:

HRMS addresses the dynamism of SAMR applications by identifying
and minimizing two kinds of synchronization costs: one is due to the
flat organization of processors, and the other is due to the load im-
balance at each refinement level. Hierarchical partitioning strategies
organize processors in a hierarchical manner to match the hierarchy of
the computational domain and enable incremental redistribution and
concurrent communication to reduce the first kind of synchronization
costs. Moreover, the level-based partitioning strategy explicitly ad-
dresses the second kind of synchronization costs by balancing both the

overall workload and the workload at each refinement level.

HRMS addresses the space-time heterogeneity of SAMR applications
by identifying and characterizing the localized requirements of the com-
putational domain, and further applying multiple partitioners to match
these localized requirements. In particular, the segmentation-based

clustering scheme is developed to formulate well-structured subregions

and characterize their local requirements. These subregions are ex-
ploited by the adaptive hierarchical multi-partitioner to enable multi-

ple partitioners to concurrently operate on different subregions.

— HRMS is also able to handle different resource situations. When the
resources are under-utilized, the application-level pipelining scheme
leverages domain-based schemes to reduce communication overheads
and patch-based schemes to reduce load imbalance. In contrast, when
the available physical memory capacity is not sufficient to support the
application, an application-level out-of-core scheme has been developed
to exploit the memory access pattern of SAMR applications and enable
incremental operation on patches at different refinement levels. As a

result, it enhances the survivability.

e The design and evaluation of GridMate, a Grid simulator for distributed
scientific applications on multi-site clusters. GridMate is able to model a
multi-site heterogeneous Grid computing environment. It adopts a super-
scheduler and local-scheduler scheduling paradigm and integrates partition-
ing and scheduling schemes in HRMS. As a result, it enables the perfor-

mance evaluation of HRMS schemes on multi-site Grid environments.

1.4 Outline of the Thesis

The rest of the thesis is organized as follows. Chapter 2 presents the problem
description and related work. Chapter 3 presents the conceptual framework of
HRMS. Chapter 4 presents the hierarchical partitioning algorithm. Chapter 5
presents the adaptive hierarchical multi-partitioner approach. GridMate, a Grid
simulator for distributed scientific applications, is presented in Chapter 5. Chap-

ter 6 concludes the thesis and presents some future research directions.

Chapter 2
Problem Description and Related Work

As mentioned in the previous chapter, SAMR applications exhibit dynamism
and spatial and temporal heterogeneity. As a result, it is a challenging problem
to dynamically partition applications and distribute them on dynamic resources
at runtime to maximize performance, efficiency and resource utilization. This
chapter first describes the target applications, which are based on the SAMR
technique. It then investigates the spatial and temporal heterogeneity of SAMR
applications and the computation and communication patterns for parallel SAMR,
implementations. Further, it analyzes the computation and communication work-
load. After that, this chapter presents a taxonomy for runtime management for

SAMR applications and describes related research efforts and systems.

2.1 Structured Adaptive Mesh Refinement

The applications targeted in this thesis are large-scale dynamic scientific and engi-
neering applications, such as scientific simulations that solve sophisticated partial
differential equations (PDEs) using Adaptive Mesh Refinement (AMR) [26] tech-
niques. Partial differential equations are widely used for mathematically modeling
and studying physical phenomena in science and engineering, such as heat trans-
fer in solids, interacting black holes and neutron stars, electrostatics of conductive
media, formations of galaxies, combustion simulation, wave propagation, and sub-
surface flows in oil reservoirs [41, 51, 70]. One numerical method to solve PDEs

is to compute approximate solutions for discrete points by uniformly discretizing

the physical domain. This approach results in a homogeneous grid system with
a uniform resolution over the entire physical domain. However, many physical
phenomena exhibit shocks, discontinuities or steep gradients in localized regions
of the physical domain. In these cases, to achieve acceptable resolution in these
small regions, uniform resolution methods will result in a very fine discretization
of the entire domain. Consequently, it requires a significant amount of unneces-

sary computation and storage.

l—c,—
—
ke,
i
] e

Figure 2.1: Adaptive Grid Hierarchy - 2D (Berger-Oliger AMR scheme), Cour-
tesy: M. Parashar

Instead of using uniform discretization or refinement to obtain finer resolution,
SAMR techniques dynamically apply non-uniform refinement on different regions
according to their local resolution requirements. SAMR techniques track regions
in the domain that require additional resolution and dynamically overlay finer
grids over these regions. This technique concentrates computational efforts (finer
grids with finer integration time steps) on regions that exhibit higher numerical
errors. These methods start with a base coarse grid with minimum acceptable
resolution that covers the entire computational domain. As the solution pro-
gresses, regions in the domain requiring additional resolution are tagged and finer
grids are over laid on these tagged regions of the coarse grid. Refinement pro-

ceeds recursively so that regions on the finer grid requiring more resolution are

similarly tagged and even finer grids are overlaid on these regions. The resulting
grid structure for the Structured Berger-Oliger AMR is a dynamic adaptive grid

hierarchy [26] as shown in Figure 2.1.

2.1.1 SAMR Algorithm

The primary steps involving in the SAMR algorithm are presented in Table 2.1.

Table 2.1: The Berger-Oliger AMR, Algorithm

1. Recursive Procedure Integrate(level)
If (isRegridTime)
Regrid()
Endlf

Boundary update (including ghost region communication)

2
3
4
5
6. Evolve one time step (At) on all patches on level level
7 If (level 4 1 exists)

8 Recursive Integrate(level + 1)

9 Update(level, level + 1)

10. EndIf
11. EndIntegrate

To better understand the SAMR algorithm, we show a simple example. Con-

sider a 1-dimensional wave equation,
ur + auy =0 (2.1)
with

u(z,0) = wup(z) (initial condition) (2.2)

u(0,t) = wur(t) (boundary condition) (2.3)

10

where a is a constant and a > 0.
Using the first-order difference approximation, we obtain the numerical solu-
tion as follows,

ultt = (1 - c)ul + cul (2.4)

(2

where ¢ is the courant number, ¢ = aAt/Ax.

To achieve higher accuracy using conventional uniform discretization numer-
ical techniques, we have two options: one is to apply higher order numerical
solution, and the other is to apply finer space and time resolution. Note that

these approaches are applied uniformly on the entire space and time domain.

us e Accurate solution
t=100 dt = SAMR solution
= = Uniform numerical solution

FILLITTTITIT Y] .
s

Figure 2.2: SAMR Example: 1-D Wave Equation

The better solution is to apply adaptive mesh refinement technique as illus-
trated in Figure 2.2. From this figure, we observe that the SAMR technique
applies finer resolution merely in the small subdomains that require finer resolu-
tion, i.e., regions with high truncation errors. Compared to the static uniform
discretization approach, SAMR method can achieve one to two orders of mag-
nitude of savings in computation and storage costs for many applications with
localized features.

Figure 2.3 shows a real-world application, the Richtmyer-Meshkov instability
flows in a 2D slice of a 3D application (RM3D) using the SAMR technique [72].
We observe that, to accurately capture the intensive activities in those narrow re-
gions around the shock-wave front, much finer resolution is applied, while coarser

refinement is applied in the relatively homogenous and inactive regions.

11

Figure 2.3: SAMR Example: Richtmyer-Meshkov Instability Flows in a 2D Slice
of RM3D, Courtesy: R. Samtaney

2.2 Spatial and Temporal Heterogeneity of SAMR Appli-

cations

SAMR techniques can yield highly advantageous ratios for cost/accuracy when
compared to methods based upon static uniform approximations [67]. Parallel
implementations of these methods offer the potential for accurate solutions of
physically realistic models of complex physical phenomena. However, the dy-
namism and spatial and temporal heterogeneity of the adaptive grid hierarchy
underlying SAMR algorithms makes their efficient distributed implementation a
significant challenge. To illustrate the irregular and complex behaviors of SAMR,
applications, two examples are presented below.

Figure 2.4 shows a series of snapshots of a 2D SAMR-based combustion simu-
lation of hydrogen-air mixture [69]. The simulation starts with the initial ignition
at 3 spots. As seen in the figure, the application exhibits high dynamics and spa-
tial and temporal heterogeneity. Specifically, the triple flame structure requires
higher resolution and thus more computational resources, while the rest of the
domain does not. Further, as the simulation proceeds, the triple hot-spots expand
and relocate, and cause the regions of refinement created, deleted and relocated.

This behavior of the SAMR application reveals the temporal heterogeneity.

12

Temperature (K)

Spatial
Heterogent

w

Temporal
Heterogeneity

0.4 ms

Figure 2.4: Flames simulation: ignition of Hy-Air mixture in a non-uniform tem-
perature field. Courtesy: J. Ray, et al.

The 3-D compressible turbulence simulation kernel solving the Richtmyer-
Meshkov (RM3D) instability [41] also demonstrates the space-time heterogeneity
of SAMR applications. Figure 2.5 shows a selection of snapshots of the RM3D
adaptive grid hierarchy as well as a plot of its load dynamics at different re-
grid steps. Since the adaptive grid hierarchy remains unchanged between two
regrid steps, we plot workload dynamics in terms of regrid steps. The work-
load in this figure represents the computational/storage requirement, which is
computed based on the number of grid points in the grid hierarchy. Applica-
tion variables are typically defined at these grid points and are updated at each
iteration of the simulation, and consequently, the computational /storage require-
ments are proportional to the number of grid points. The snapshots in this fig-
ure clearly demonstrate the dynamics and spatial and temporal heterogeneity of
SAMR, applications - different subregions in the computational domain have dif-
ferent computational and communication requirements and regions of refinement

are created, deleted, relocated, and grow/shrink at runtime.

13

-

Total Load (100k)

20
10 r

regrid step 200

e L e e L e e e e e e e
0 20 40 60 80 100 120 140 160 180 20
Regrid Steps

Figure 2.5: Spatial and Temporal Heterogeneity and Workload Dynamism of a
3D Richtmyer-Meshkov Simulation using SAMR

2.3 Computation and Communication Patterns for Paral-

lel SAMR Applications

The overall performance of parallel SAMR implementations is limited by the abil-
ity to partition the underlying grid hierarchies at runtime to expose all inherent
parallelism, minimize communication and synchronization overheads, and bal-
ance load. A critical requirement for the load partitioner is to maintain logical
locality across partitions at different levels of the hierarchy and at the same level
when they are decomposed and mapped across processors. Preserving locality
minimizes the total communication and synchronization overheads.

The timing diagram (note that the timing is not drawn to scale) in Figure 2.6
illustrates the operation of the SAMR algorithm with a 3 level grid hierarchy. For
simplicity, the computation and communication behaviors of only two processors,
P1 and P2, are shown. The three components of SAMR communication overheads
(listed in Section 2.3.1) are illustrated in the enlarged portion of the time line.
This figure shows the exact computation and communication patterns for parallel

SAMR implementations. The timing diagram shows that there is one time step

14

- > \ communication
0 1 2 / 2 |1 1 2 2]1]o time
P1 n >
LT T LT TR ITL 2 I T L2 T T T nmputa
= \ I computation
|
] o | |1
v " v } « ¥ (4 - v ¢ ¢ Communication
0 1 2 NIEAREAE 2 2]1]o time
0 1 2 2 P~~--11 2 2 0
|| pd —lcomputation
/ iﬂnlarged with more details
A communication
2 sync I 2 intra-level I 2 and 1 inter-level I 2 sync I 1 intra-level >time
pi| ... 2 ‘\ ‘\ 1 ... g
— e computation
z ¥ communication
2 intra-level I 2 and 1 inter-level I 1 intra-level time
P2 2 1 >
Tl """ computation

* The number in the time slot box denotes the refinement level of the load under processing
* In this case, the number of refinement levels is 3 and the refinement factor is 2.
* The communication time consists of three types, intra-level, iter-level and synchronization cost

Figure 2.6: Timing Diagram for Distributed SAMR, Algorithm

on the coarsest level (level 0) of the grid hierarchy followed by two time steps on
the first refinement level and four time steps on the second level, before the second
time step on level 0 can start. Further, the computation and communication steps
for each refinement level are interleaved. This behavior makes partitioning the
dynamic SAMR grid hierarchy to both balance load and minimize communication

overheads a significant challenge.

2.3.1 Communication Overheads for Distributed SAMR

Applications

As shown in Figure 2.6, the communication overheads of parallel SAMR, appli-
cations primarily consist of four components: (1) Inter-level communications,
defined between component grids at different levels of the grid hierarchy and
consist of prolongations (coarse to fine transfer and interpolation) and restric-
tions (fine to coarse transfer and interpolation); (2) Intra-level communications,
required to update the grid-elements along the boundaries of local portions of a

distributed grid, consisting of near-neighbor exchanges; (3) Synchronization cost,

15

which occurs when the workload is not well balanced among all processors; (4)
Data migration, which occurs between two successive regridding and re-mapping
steps. These costs occur at all time steps and at all refinement levels due to the

hierarchical refinement of space and time in the SAMR formulation.

2.4 Computation and Communication Workload Analysis

The previous section illustrates the computation and communication patterns
in distributed SAMR applications. This section further analyzes the computa-
tion and communication requirements. In this discussion, we use the following

notations.

CP©): denotes the computation cost for a region with bounding box (lbx, Iby, lbz,
ubzx, uby, ubz) on the coarsest level (level 0), where, (lbx, lby, (bz) denote the
coordinates of the lower bound and (ubz, uby,ubz) denote the coordinates

of the upper bound.
CPW: denotes the computation cost for a patch at refinement level I.

CM©: denotes the communication cost for a region with the bounding box
(lbz, by, lbz, ubx, uby, ubz) on the coarsest level (level 0), where, (lbx, lby, [bz)
denote the coordinates of the lower bound and (ubx,uby,ubz) denote the

coordinates of the upper bound.
CM®: denotes the communication cost for a patch at refinement level /.

a: denotes the computation cost on a single grid point. It is assumed that all

grid points at all levels carry the same workload.
(: denotes the communication cost for exchanging a unit size of message.

0: denotes the communication overhead such as the synchronization and startup

cost.

16

r: denotes the refinement factor.
d: denotes the dimension of the application domain.

Ax, Ay, Az: denote the step sizes in each of the 3 dimensions for the region on
the coarsest level. The coarsest level without refinements is also referred to

as the base-level.

nx,ny,nz: denote the number of grid points in z,y, 2 dimensions respectively.

2.4.1 Computation Workload

Using notations defined in the previous section, we calculate the computation

cost on the base level of grid hierarchy as follows,

CPY = axnzxnyxnz (2.5)
B ubx — lbx uby — lby ubz — lbz

The Berger-Oliger’'s SAMR algorithm refines in time as well as in space. We
assume the refinement factor r remains same for all levels of refinement and is
used to refine in both time and space. Thus, the grids on the fine level [+ 1
will be advanced r time steps for every coarse time step on the level [. Thus,
the computation cost for the same region as the base domain on the level [,

l=1,2,...,n, is given by,

CPY = pitl s cpll (2.7)

= (r*YHlx op© (2.8)

We define a composite grid as a sub-domain with multiple refinement levels

starting with the base level. Thus, the computation cost for a composite grid can

17

be computed as, by,

mazxlev

CPcomposite - Z CP(l) (29)
=0

mazxlev
=) xcp? (2.10)

1=0

To obtain the relationship between patches with equivalent computation cost,
we assume two cubic regions R; and R;. The base level patch in the region R; is
of size nx; X ny; X nz; (nx; = ny; = ny;), and the base level patch in the region R;
is of size nx; X ny; X nz; (nx; = ny; = ny;), respectively. From the equation (2.5),
the patch at refinement level m in the region R; and the patch at refinement level
n in the region R, are of equivalent computation cost if the following equations

are satisfied.

cpP®Y = cpW (2.11)
(rH1) x CP© = (pdH1Y ij(o) (2.12)
Ti(d'f'l) X a X nxf’ — rj(d"’l) X a X ng}? (213)

nxi e TLZE] X \3/ T(d+1)(j_i) (214)

each level (log)
=
5

h

~
=
S,

Computation load for each level
“~

Computation load for
S

sl L L L L L L L L
0 200 400 600 800 1000 1200 0 200 300 400 600 800 1000 1200

The size of the dimension The size of the dimension

Figure 2.7: Computation Load Versus Refinement Levels

Figure 2.7 shows the workload distribution for different refinement levels in

terms of the size of the domain. Note that the right figure uses the log of the

18

workload size. An important observation is that the highest refinement level
dominates the computation cost. The right figure shows that the patch of size =
800 x 800 x 800 at the base level (level 0) requires the same computation workload

as the patch of size = 300 x 300 x 300 at the refinement level 1 .

2.4.2 Communication Workload

The communication in SAMR applications mainly includes intra-level and inter-
level communication.

Consider a 3 dimension domain assuming uniform refinement, the inter-level
communication cost from the base level to the refinement level 1 of grid hierarchy

is given by,

MO = B xnxxnyxnz
_ Bx <ube—xlbx N 1) " (ubyA—ylby N 1) 8 (ubzA—Zlbz N 1)

The inter-level communication for the same region from a level [patch to the

corresponding level [4+ 1 patch is given by,

CMIHD = pdtt o opg 10 (2.15)

inter inter

The intra-level communication (also called ghost communication) occurs dur-
ing the exchange of the solution at the boundary based on the stencil used by
the forward difference operation, including the edge, face and corner stencil. Sim-
ilarly, assuming uniform refinement, the intra-level communication on the base

level of the grid hierarchy is given by,

cm©

ntra

= [x (edge + face + corner) (2.16)

The intra-level communication for the same region on the level [+ 1 and the

level [has the following relationship,

CMITY = pitt o oM

intra ntra

(2.17)

19

Thus the total communication cost is given by,
CM - CMinter + CMint?“a + 9 (218)

where C' M., and CM,,.r, include all communication costs at all refinement

levels.

2.5 Requirement Analysis for Partitioning and Scheduling

Strategies

In order to achieve the desired performance, an optimal partitioning of the SAMR,
grid hierarchy and scalable implementations of SAMR applications require careful
consideration of the timing pattern shown in Figure 2.6. From above analysis and

observations, the desired properties of an SAMR partitioner include:

1. Balance load. The objective of load balancing is to ensure that the same
amount of load is assigned to each processor in homogeneous systems, or
the amount of load that is assigned to a processor is proportional to the

processor’s capacity in heterogeneous systems.

2. Preserve locality. Preserving locality requires that communication are local-
ized and possibly on the same processor when the workload is distributed.
In the case of SAMR applications, this implies (a) maintaining the parent-
child locality to minimize the inter-level communication overhead; (b) as-
signing the proximate application subregions to closely-networked resources
or resource groups to minimize the intra-level and inter-level communica-
tion overheads; (c¢) maintaining locality between two repartition steps to

minimize the data migration overheads.

3. Be fast and efficient. Parallel SAMR requires regular regridding and repar-

titioning. A good partitioner should be fast and efficient.

20

Note that these three properties may contradict each other. For example, to
achieve perfect load balancing, fine granularity is preferred. However, fine gran-
ularity may affect the locality property and incur more partitioning and commu-

nication overheads. A good strategy strives to achieve the best overall trade-off.

2.6 Taxonomy for Runtime Management of SAMR Ap-

plications

In this section, we present a taxonomy for dynamic application management, par-
ticularly for partitioning SAMR applications. The taxonomy is based on the char-
acteristics of applications and application-level partitioners as shown in tables 2.2
and 2.3. We decouple the classification of applications and their partitioners. In
this way, we can obtain a better understanding of both aspects. The decoupling
also implicitly indicates that we can potentially apply different partitioners for
different application characteristics in a flexible manner.

Table 2.2: Classification of Application Characteristics
Application Characteristics] Categories

Execution Mode Computation-Intensive, Communication-
Intensive, IO-Intensive

Activity Dynamic (Localized Adaptivity, Scattered
Adaptivity), Static

Granularity Fine-Grained, Coarse-Grained, Indivisible

Dependency Independent, Workflow, Hybrid

In Table 2.2, applications are characterized based on their execution mode,
activity, granularity and dependency. The execution mode can be computation-
intensive, communication-intensive or IO-intensive [39, 80]. Most SAMR applica-
tions are computation-intensive, belonging to high performance scientific comput-
ing category. Due to deep levels of adaptive refinements, SAMR applications can
also be communication-intensive. In some cases, when dealing with large amounts

of data, SAMR applications can fall into IO-intensive category. Experiments show

21

that, during the entire course of execution, SAMR applications may run in dif-
ferent execution modes as the simulated physical phenomena evolve [39, 80]. The
activities of applications are classified as dynamic or static. Many embarrass-
ingly parallel applications belong to the static application category, for example,
parallel geometrical transformations of images and Monte Carlo simulations [84].
SAMR applications are dynamic in nature because of their high adaptivity. Dy-
namic behaviors of SAMR applications may demonstrate localized adaptivity
pattern or scattered adaptivity pattern in different execution phases. From the
perspective of divisibility, some applications are fine-grained [83], some are coarse-
grained [20], while others are not divisible at all [31, 75]. Workloads in the divisible
load scheduling paradigm are assumed to be homogeneous and arbitrarily divis-
ible in the sense that, each portion of the load can be independently processed
on any processor on the network. Coarse-grained divisible applications typically
involve dependencies among subtasks. Indivisible tasks are atomic and cannot be
further divided into smaller sub-tasks, and have to be completely processed on a
single processor. SAMR applications fall into the fine-grained or coarse-grained
divisible categories. When the underlying physical domain exhibits more homo-
geneity, the load associated with this domain belongs to the fine-grained divisible
category. When the physical domain exhibits scattered heterogeneity with deep
refinements, however, the load may be classified as coarse-grained divisible. Note
that SAMR applications involve iterative operations and frequent communica-
tions. Therefore, they do not belong to the embarrassingly parallel category. The
last criterion is the dependency. Independent applications are common in the
divisible load scheduling category, such as parallel low level image processing and
distributed database query processing [83]. Workflow applications are composed
of several modules or subtasks that must run in order, for example, data-driven
parallel applications, scientific simulations, and visualization applications. For

SAMR applications, although load partitions can be processed independently,

22

they need communications iteratively. If dynamic load balancing strategies are
adopted, repartitioning may result in load movement or process migration, thus
exhibiting a hybrid dependency.

Table 2.3: Classification of Application Partitioners
Partitioner Characteristics ‘ Categories

Organization static single-partitioner, adaptive single-
partitioner (meta-partitioner), adaptive hier-
archical multiple-partitioner
Decomposition Data Decomposition (Domain-based, Patch-
based, Hybrid), Functional Decomposition
Partitioning Method Binary dissection, Multilevel, SFC-based,
etc.

Dynamic | Repartitioning policy (Periodic,
Operations Event Driven), System Sensitive
Static

As shown in Table 2.3, application-level partitioners/schedulers are classified
with respect to their organization, decomposition method and operations. The
organization of partitioners falls into three categories: static single partitioner,
adaptive single partitioner, adaptive multiple partitioner. For static single par-
titioner approaches, one predefined partitioning and repartitioning strategy is
adopted throughout the entire lifecycle of SAMR applications. For adaptive sin-
gle partitioner approaches, also termed meta-partitioner in the literature [80], the
most appropriate partitioning routine is selected based on the runtime behavior
of SAMR applications. Adaptive multiple partitioner approaches not only select
appropriate partitioning strategies based on the runtime state of the SAMR ap-
plication but also apply multiple partitioners simultaneously to local relatively
homogeneous regions of the domain based on the local requirements. In this
thesis, we propose such an adaptive hierarchical multiple partitioning strategy.
Decomposition methods can be classified as data decomposition and functional
decomposition. Functional decomposition exploits functional parallelism by di-

viding problems into a series of subtasks. Pipelining techniques can be employed

23

to speedup applications with functional parallelism.

Data decomposition is commonly applied to achieve data parallelism for ap-
plications that require the same operations to be performed on different data
elements, for example, SPMD (Single Program Multiple Data) applications. In
the case of SAMR applications, data decomposition methods can be further clas-

sified as patch-based and domain-based.

2 2 2
G G G
1 2 3
- —— -
PO P1P2P3 L PO P1 p2 P3
POP1P2P3
1
G —t+—+—+—— G, —+——+——+—— g, —+——+—+—
< PO=t= P1>t< P2>< p3= f< PO>i< P1>}< P2>f< p3> < PO=f= P1=< P2=t= p3=
0
G, ¢t t t t t t t t {
1
= PO =< P1 >f< P2 >i< P3 >

Figure 2.8: Patch-based Decomposition of 1D Application, Courtesy: M. Parashar

Patch-based decomposition methods make partitioning decisions for each patch
at different refinement levels independently [36, 57, 67, 77]. An example of patch-
based decomposition for a 1-dimensional domain is illustrated in Figure 2.8.
Patch-based technique results in well-balanced load distribution as long as each
patch is sufficiently large. Since workload is balanced for each patch, an implicit
feature of this scheme is that it does not need redistribution when a patch is
deleted at runtime. However, it does not preserve locality and result in con-
siderable inter-level communication overheads. Moreover, these communications
may lead to serializing of the computation and severe performance bottleneck.
Inter-level communications occur during restriction and prolongation data trans-
fer operations between parent children (coarser-finer) patches. For instance, in
Figure 2.8, a restriction operation from the patch G} to the patch GY requires all
other processors to communicate with the processor F.

In contrast, domain-based approaches partition the physical domain rather

than the individual patches at each refinement level [36, 67, 77]. A subdomain

24

G’ G’ G’
1 2 3
:1 1 1 1 1 1 1 1 i 1 1 1 1 1 i 1 1 1
Gl r T T T 1 G2 I ! T T 1 G3 I T T T 1
0 ; 1 1 1 1 1 1 1 1
Gl | T T T T T T T 1
FPO * P1 * P2 * P3 ﬁ\

Figure 2.9: Domain-based Decomposition of 1D Application, Courtesy: M.
Parashar
includes all patches on all refinement levels in that region. An example for a
1-dimensional application is illustrated in Figure 2.9. From this figure, we ob-
serve that domain-based schemes maintain the parent-child locality while striving
to balance overall workload distribution. As a result, these techniques substan-
tially eliminate inter-level communication overheads and the associated commu-
nication bottleneck. However, due to their strict domain-based partitioning, they
may incur considerable load imbalance when the application has deep refinements
on very narrow regions with strongly localized features. In these cases, hybrid
schemes that combine patch-based and domain-based techniques are required.
Partitioning methods for SAMR applications include dissection-based meth-
ods, multilevel methods, and space filling curve (SFC) based methods [71]. These
methods are described in detail in the next section. Further, partitioning can
be static or dynamic. Static schemes use one or possibly multiple predefined
partitioning methods and remain same partitions of the domain for the entire
execution process. Dynamic schemes apply partitioning and repartitioning meth-
ods at runtime and dynamically change the partitions of the domain to match
the requirements of the application. Specifically, dynamic schemes can be fur-
ther classified as periodic , event-driven or system-sensitive according to their

repartitioning policies. Since SAMR applications typically execute in an iterative

25

manner, the natural repartitioning policies are periodic. For example, reparti-
tioning is invoked every n iterations. Event-driven repartitioning policies is more
flexible in the sense that repartitioning is triggered only when it is needed. Fur-
thermore, system-sensitive dynamic schemes adapt to system availability, capacity

and changing patterns.

2.6.1 Related Work on Managing Distributed SAMR Ap-

plications

Efficiently managing distributed SAMR, applications and minimizing their overall
execution time requires load balance and minimumal communication overheads.
To achieve these two objectives, most partitioners take advantages of the geom-
etry of the application, its locality and load dynamics, to partition and balance
the workload among processors. The underlying partitioning algorithms include
binary dissection algorithms [32], multilevel algorithms [52, 74] and space-filling
curve (SFC) based algorithms [67, 68]. The binary dissection algorithm pro-
ceeds by recursively partitioning the physical domain into two parts such that it
equalizes the computational load in each part, naturally generating a binary tree
structure. Its variants, such as parametric binary dissection, extend the basic
binary dissection method to minimize communication cost between the two par-
titions. Multilevel algorithms usually consist of the following steps: coarsening
the graph that represents the domain, partitioning the coarse graph, and refining
the partitions step by step. Their primary objectives are to minimize the cut
edge weight, which approximates the total communication cost in the underlying
solver. Due to the complexity of multilevel algorithms, however, they are more
suitable for static partitioning schemes.

SFC has been widely used in domain-based partitioning schemes [67, 68,

26

Level 1 Level 2 Level 3

L~ L N
N <
\)

Level 1 Level 2

Figure 2.10: Space Filling Curves - Self-Similarity Property. Courtesy: M.
Parashar
71, 77]. SFCs are locality-preserving recursive self-similar mappings from n-
dimensional space to 1-dimensional space. Specifically, locality preserving im-
plies that points that are close together in the 1-dimensional space (the curve)
are mapped from points that are close together in the n-dimensional space. Self-
similarity implies that, as a d-dimensional region is refined, the refined subregions
can be recursively filled by curves having the same structure as the curve filling
the original (unrefined) region, but possibly a different orientation. Figure 2.10
illustrates this property for a 2-dimensional region with refinements by factors of
2 and 3. In the case of SAMR grid hierarchies, the locality-preserving and self-
similar properties of SFC mappings are exploited to represent the hierarchical
structure and to maintain locality across different hierarchy levels. Furthermore,
these techniques are computationally efficient.

There exist a number of infrastructures that support parallel and distributed
implementations of structured and unstructured AMR applications. Each of these

systems represents a combination of design choices. Table 2.4 summarizes these

27

Table 2.4: Parallel and Distributed AMR, Infrastructures

Execution . Partitioner . .
System Mode Granularity Organization Decomposition Institute
CHARM Compu - Coarse - Static single - | oo based uIucC
intensive grained partitioner
Fine -grained, .
Chombo _Comp- coarse - Static single = | i based LBNL
intensive . parti tioner
grained
Fine -erained Adaptive multi -
HRMS/ Comp - cofrse o parti tioner, Domain -based, Rutgers
GrACE intensive ; Hybrid hybrid gers
grained .
strategies
Nature+ Comp - Coarse - Single meta - Domain -based, .
. Sandia
Fable intensive grained parti tioner hybrid
Fine -grained, ..
ParaMesh Comp- coarse - Staticsingle - | i based NASA
intensive . partitioner
grained
Comp -
ParMetis Intensive, Fine -grained Statlc‘s‘mgle } Graph -based Minnesota
comm - partitioner
intensive
PART Comp- Coarse - Static single - | in -based | Northwestern
intensive grained partitioner
in(geonr?ilz/é Fine -grained, Static single -
SAMRAI : coarse - e Patch -based LLNL
comm - . parti tioner
. . grained
intensive

systems and their features according to our taxonomy.

Charm-++ [55] is a comprehensive parallel C++ library that supports proces-
sor virtualization and provides an intelligent runtime system. Its AMR module
offers flexible representation and communication for implementing the AMR algo-
rithm. It uses the domain-based decomposition method and a quad-tree structure
to partition and index the computational domain and supports coarse-grained
partitioning. Chombo [3] consists of four core modules: BoxTools, AMRTools,
AMRTimeDependent, AMRElliptic. Its load balance strategy follows Kernighan-
Lin multilevel partitioning algorithm. GrACE [8] is an object-oriented adap-
tive computational engine with pluggable domain-based partitioners. HRMS
built on GrACE consists of an adaptive hierarchical multi-partitioner scheme
and other hybrid schemes proposed in this thesis. Nature4Fable formulates a
meta-partitioner approach by characterizing both partitioners and application do-

mains [77]. ParaMesh [65] uses octree representation of the adaptive grid structure

28

with predefined blocksizes and uses this representation to partition the SAMR do-
main. ParMetis [56] applies multilevel hypergraph partitioning and repartitioning
techniques to balance the load. PART [40] considers heterogeneities in the ap-
plication and the distributed system. It uses simulated annealing to perform
the backtracking search for desired partitions. Nevertheless, simplistic partition-
ing schemes are used in the PART system. SAMRAI [57] is an object oriented

framework (based on LPARX) It uses a patch-based decomposition scheme.

2.7 Concluding Remarks

This chapter presented the background and related work for parallel SAMR imple-
mentations and gave an overview of the proposed strategies. First, the dynamism
and space-time heterogeneity of parallel SAMR applications was described and
the computation/communication patterns were identified and analyzed. To have
a common context for comparison and evaluation, the taxonomy for runtime man-
agement of SAMR applications was then presented. Related work on managing

SAMR applications was surveyed and discussed using our taxonomy.

29

Chapter 3

Hybrid Space-Time Runtime Management
Strategy

The overarching goal of this thesis is to design adaptive runtime management
strategies for complex SAMR-based scientific applications to minimize their over-
all execution time on large-scale parallel and distributed systems (PDS). The key
challenge is how to efficiently manage the dynamism and space-time heterogeneity
exhibited in SAMR applications. Confronted with these multi-dimensional chal-
lenges, we propose a solution framework, hybrid space-time runtime management
strategy and system (HRMS), which adapts to the requirements of applications
at runtime. It also takes advantage of a number of schemes by combining and
integrating their strengths for varied scenarios at runtime.

Large-scale parallel implementations of SAMR-based applications have the
potential to accurately model complex physical phenomena and provide dra-
matic insights. However, while there have been some large-scale implemen-
tations [43, 55, 54, 56, 65, 67], these implementations are typically based on
application-specific customizations and the general scalable implementation of
SAMR applications continues to present significant challenges. This is primarily
due to the dynamism and space-time heterogeneity exhibited by these applica-
tions as described in previous sections. SAMR-based applications are inherently
dynamic because the physical phenomena being modeled and the correspond-
ing adaptive computational domain change as the simulation evolves. Further,
adaptation naturally leads to a computational domain that is spatially heteroge-

neous, i.e., different regions in the computational domain and different levels of

30

refinements have different computational and communication requirements. Fi-
nally, the SAMR algorithm periodically regrids the computational domain caus-
ing regions of refinement to be created /deleted /moved to match the physics being
modeled, i.e., it exhibits temporal heterogeneity.

To address the dynamism and space-time heterogeneity in SAMR applications,
this chapter presents an overview of the proposed solution - hybrid space-time
runtime management strategy and system (HRMS). In addition, a set of SAMR

application kernels used in this thesis is summarized.

3.1 Conceptual Overview of HRMS

N | HPA | | AHMP |
&] moc

| LPA | [pBDISP | | SBC |

| GPA | [G-MISP+SP| | LBC |

(=) OIONN |
(a) Runtime Manager Hierarchy (b) Partitioning and Hybrid Strategies within a Runtime Manager

* Algorithms proposed in this thesis are highlighted

Figure 3.1: Conceptual Architecture of HRMS

To address the dynamism and space-time heterogeneity in SAMR applications,
this thesis proposes the hybrid space-time runtime management system (HRMS)
framework. Its conceptual architecture is presented in Figure 3.1. In the figure,
runtime managers are organized in a hierarchical manner. Runtime managers
reside in each resource group and communicate with each other using messages
in a hierarchical manner. Further, they make management decisions concurrently
based on the runtime states of the resource and the application.

Each runtime manager is equipped with a set of partitioning, clustering,
scheduling and hybrid strategies organized in three layers as shown in Figure 3.1

(b). These strategies are all based on the space-filling curve technique (SFC) [71].

31

A set of domain-based partitioning and clustering schemes have been proposed,
namely, LPA (level-based partitioning algorithm) [60], SBC (segmentation-based
clustering algorithm), GPA (greedy partitioning algorithm, LBC (level-based clus-
tering algorithm), G-MISP+SP (geometric multilevel + sequence partitioning),
and pBD-ISP (p-way binary dissection algorithm) [39, 38, 67, 77] . Note that
the algorithms proposed in this thesis are highlighted. These strategies decom-
pose the application domain hierarchy using SFC. Based on these schemes, we
have developed ALP (application-level pipelining) and ALOC (application-level
out-of-core) algorithms. In the top layer, we have HPA (hierarchical partitioning
algorithm) [61] and AHMP (adaptive hierarchical multiple partitioner) schemes.

Strategies proposed in this thesis are summarized as follows.

e Hierarchical Partitioning Algorithm (HPA): HPA seeks to match the adap-
tive grid hierarchy to the hierarchically organized processor groups. Specif-
ically, HPA divides resources into hierarchical processor groups and then
partitions the domain accordingly in a hierarchical manner. Note that HPA
uses one partitioning scheme over the entire domain for initial partitioning

and for later repartitionings.

e Level-based Partitioning Algorithm (LPA): LPA is a simple but elegant
partitioning method. It significantly reduces synchronization cost by bal-

anacing the overall load as well as the load at every refinement level.

e Adaptive Hierarchical Multi-Partitioner Scheme (AHMP): AHMP extends
HPA. It first hierarchically clusters the domain into several coarse subregions
with similar properties, called cliques. It then recursively applies the most
appropriate partitioning methods to each clique recursively. In this way, it

enables multiple partitioners to concurrently operate on different subregions.

32

e Segmentation-based Clustering Algorithm (SBC): The SBC scheme gen-
erates the clique hierarchy to support the AHMP scheme by clustering to-
gether subregions exhibiting similar properties. SBC extends the level-based
clustering scheme (LBC) that clusters the subregions simply by refinement

levels.

e Application-level Pipelining Algorithm (ALP): When the resource is under-
utilized, the domain-based partitioning schemes can no longer speed up
execution. ALP comes to rescue in this situation by integrating patch-based

and domain-based schemes and applying them within a local resource group.

e Application-level Out-of-Core Algorithm (ALOC): When the available re-
sources are insufficient, the ALOC scheme leverages the out-of-core scheme

to enhance the survivability of SAMR applications.

3.2 Operations of HRMS

Dynamic Driver Application
~~~~~~~~ w0 === .= | Application

Runtime States .

Segmentation -based Clustering Scheme

Repartitioning and
Rescheduling Select a Scheme Clique Hierarchy
Space-Time Hybrid Schemes for Each Clique Clique Characteristics
- Application -level Pipelining
- Application -level Out -of-core Hierarchical Partitioning Algorithm (HPA)
Adaptive Hierarchical
Partitioning Schemes Multi -Partitioner Scheme (AHMP)
- Level-based Partitioning
- Greedy partitioning &source States'
- Others

Figure 3.2: Workflow of HRMS



33

The basic operation of HRMS is illustrated in Figure 3.2. At runtime, HRMS
monitors the application status and represents it as the adaptive grid hierarchy
as illustrated in Figure 2.1. Clustering algorithms are then used to identify clique
hierarchies from the structure of the current grid hierarchy. A clique region is
a cluster of subregions that have relatively homogeneous requirements. We have
two options to work on the clique hierarchy: HPA and AHMP. The HPA ap-
proach selects a single partitioner for the entire domain for the whole execution
period. Alternatively, based on the characteristic of a clique and the current
resource states, AHMP selects an appropriate partitioner for each clique from
the partitioner repository. Essentially, AHMP extends HPA by enabling multiple
partitioners concurrently on different subregions of the application domain. Fi-
nally, the clique is partitioned and mapped to processors in a processor group.
These steps are recursively applied to each clique. When the application states
change significantly, the repartitioning process is then triggered among local pro-
cessor group hierarchically and incrementally. HRMS has two clustering algo-
rithms: level-based clustering (LBC) and segmentation-based clustering (SBC)
schemes. The available partitioners in the GrACE, an object-oriented infrastruc-
ture for enabling parallel SAMR applications [8], include GPA, LPA, BPA, and
others [79]. The selection policies are defined according to the characteristics of
each clique, including refinement homogeneity, communication/computation re-
quirements, scattered adaptation, activity dynamics [79]. This thesis specifically
focuses on developing policies based on refinement homogeneity, which will be
defined in the next chapter.

Overall, the operations of HRMS follow two main workflows: the hierarchical
partitioning scheme (HPA) and the adaptive hierarchical multi-partitioner scheme

(AHMP), which are presented in the next two chapters.



34

3.3 SAMR Application Kernels for Experimental Evalua-

tion

Table 3.1 summarizes the SAMR application kernels used for experimental eval-
uation in this thesis. These application kernels span multiple domains including
computational fluid dynamics (compressible turbulence: RM2D and RM3D, su-
personic flows: ENO2D), oil reservoir simulations (oil-water flow: BL2D and
BL3D), numerical relativity (Wave2D and Wave3D), and the transport equation
(TP2D). We characterize the partitioning requirements of these applications in
terms of load balancing, communication, data migration, and partitioning over-
heads [36, 79]. In this thesis, we use RM3D as the representative application for
most experiments because it is highly dynamic and its partitioning requirements

are challenging.

3.4 Concluding Remarks

The dynamism and space-time heterogeneity exhibited in SAMR applications
make it challenging to efficiently partition and manage these applications on large
systems. This chapter presented a hybrid space-time runtime management strat-
egy and system (HRMS) that seeks to explicitly address these issues. The con-
ceptual overview and operations of HRMS have been presented. In addition, a set
of SAMR application kernels used in this thesis for the experimental evaluation

were summarized.



Table 3.1: SAMR Application Kernels

35

‘Apps‘ Dim ‘ Description ‘ Characteristics

TP 2D A benchmark kernel for solving trans- | Intense activity in
port equation, included in the GrACE | very narrowly con-
toolkit [8]. centrated regions.

Key partition re-
quirement: minimize
partitioning over-
heads.

RM | 2D/3D | A compressible turbulence application | Intense activity in rel-
solving the Richtmyer-Meshkov instabil- | atively larger regions,
ity. It is a fingering instability which | which are scattered.
occurs at a material interface acceler- | Key partition require-
ated by a shock wave. This instabil- | ment: minimize com-
ity plays an important role in studies of | munication and bal-
supernova and inertial confinement fu- | ance load on each re-
sion. It is a part of the virtual shock | finement level.
physics test facility (VTF) developed by
the ASCI/ASAP Center at Caltech [41].

ENO 2D A computational fluid dynamics applica- | Intense activ-
tion for studying supersonic flows. The | ity in  relatively
application has several features includ- | larger regions.
ing bow shock, Mach stem, contact dis- | Key partition require-
continuity, and a numerical boundary. | ment: minimize load
ENO2D is also a part of the VTF, a suite | imbalance.
of computational applications [41].

BL | 2D/3D | An application for studying oil-water | Intense activity in
flow simulation (OWFS) following the | very narrow regions
Buckley-Leverette model. It is used for | sparsely, which are
simulation of hydrocarbon pollution in | highly scattered.
aquifers. This kernel is a part of the | Key partition re-
IPARS reservoir simulation toolkit (Inte- | quirement: minimize
grated Parallel Accurate Reservoir Sim- | communication and
ulator) developed by the University of | data migration
Texas at Austin [13].

Wave | 2D/3D | A numerical relativity kernel for solv- | Intense activity in
ing Enstein’s and gravitational equations | narrow regions.
used in Cactus toolkit [2, 20]. Key partition re-

quirement: minimize
communication.




36

Chapter 4

Hierarchical Partitioning Algorithms

Traditional distributed implementation of SAMR applications [3, 57, 65, 67| have
used dynamic partitioning/load-balancing algorithms that view the system as a
flat pool of processors. These approaches are typically based on a global knowl-
edge of the state of the adaptive grid hierarchy, and partition the grid hierarchy
across the set of processors. Global synchronization and communication is re-
quired to maintain this global knowledge and can lead to significant overheads
on large systems. Furthermore, these approaches do not exploit the hierarchical
nature of the grid structure and the distribution of communication and synchro-
nization in this structure.

The overall goal of the hierarchical partitioning algorithms (HPA) presented
in this chapter is to allow the distribution to reflect the state of the adaptive grid
hierarchy and exploit it to reduce synchronization requirements, improve load-
balance, and enable concurrent communications and incremental redistribution.
These techniques partition the computational domain into subdomains and as-
sign these subdomains to dynamically configured hierarchical processor groups.
Processor hierarchies and groups are formed to match natural hierarchies in the
grid structure. In addition to providing good load-balance, this approach al-
lows a large fraction of the communications required by the adaptive algorithms
to be localized within a group. Furthermore, communications within different
groups can proceed concurrently. Hierarchical partitioning also reduces the dy-
namic partitioning and data migration overheads by allowing these operations to

be performed concurrently within different groups and incrementally across the



37

domain.

Two variants of HPA are presented in this chapter: static hierarchical parti-
tioning algorithm (SHPA) and adaptive hierarchical partitioning algorithm (AHPA).
The SHPA scheme assigns portions of overall load to processor groups. In SHPA,
the group size and the number of processors in each group is set in advance and
remains unchanged during the execution. While SHPA is static in the sense that
its group topology is unchanged during the execution, it does perform dynamic
load balancing. To overcome the static nature of SHPA, we propose an AHPA
scheme that dynamically partitions the processor pool into hierarchical groups
that match the structure of the adaptive grid hierarchy. AHPA naturally adapts
to the runtime behavior of SAMR applications. To further reduce the synchro-
nization cost, a level-based partitioning algorithm (LPA) has been developed by
explicitly balancing the workload at each refinement level. Experimental evalu-
ation of HPA, LPA and the combined schemes shows performance improvement
over the existing solutions.

The HPA and LPA schemes are based on the composite grid distribution strat-
egy (CGDS) and the greedy partitioning algorithm (GPA) [37, 67]. CGDS aims
at partitioning the grid hierarchy such that all inter-level communication is local
to a processor. Using the SFC technique, which is described in the last chapter,
the n-dimensional computational domain is mapped to a 1-dimensional list of
blocks and the partitioning task is thus reduced to partition this 1-dimensional
representation. Based on the SFC technique, CGDS partitions the computational
domain and results in a global grid unit list (GUL). Each grid unit represents a
composite subdomain that includes all refinement levels, also termed the com-
posite grid. Further, based on the concept of CGDS, the GPA scheme scans
the global GUL only once to attempt to equally distribute workload among all
processors. The key motivation for using the GPA scheme is that it is fast and

efficient. This is important as the number of composite grid units can be large



38

and regrid steps can be quite frequent. Essentially, HPA and LPA schemes pre-
process the global GUL and apply GPA on the re-organized global GUL. Hence,
they take advantages of the composite grid decomposition technique to reduce
intra-level communications and localize inter-level communication. Note that the
GPA scheme is also referred to as the Non-HPA scheme when compared to HPA

schemes.

4.1 Hierarchical Partitioning Algorithm

This section first presents the general HPA scheme and describes its operation.

Two variants of the scheme, i.e., Static and Adaptive HPA, are then presented.

4.1.1 General HPA

In most parallel implementations of SAMR [8, 19, 54, 65|, load distribution and
balancing is done collectively by all the processors in the system and all the
processors maintain a global knowledge of the state of the system and the total
workload. These schemes, referred to as Non-HPA schemes, have the advantage
of achieving a better load balance. However, they require the collection and
maintenance of global load information, which makes them expensive, specially
on large systems. Partitioning in such Non-HPA schemes consists of the following

steps:

e Global load information exchange and synchronization phase: All the pro-
cessors are engaged in this information exchange phase. After this phase,

all the processors have a global view of the grid hierarchy.

e Load partitioning phase: All the processors calculate the average load per
processor and partition the grid hierarchy. This operation is replicated on

each processor in the system.



39

Processor 1 Processor 2 Processor 3
< 1 Initial domain known. Initial domain known. Pe—
Initial partition and = Initial partition and
schedule ghost schedule ghost
T communication communication
T

Ghost communications ; _
Ghost communications

1

L]
M C i [ C i
omputation P omputation =
=
: I 1
| \ 1
< 1 Global Global synchronization and
synchronization T exchange of local information to get
= global view
Patitioning the —= 1 Partitioning the I
< global domain global domain =

Data migration based on
the new partition =

—
]

< 1 Schedule ghost m
communication. —= 1 Schedule ghost PR

B Computation. Communi(;ation.
Computation. f‘

Figure 4.1: Sequence Diagram for the Non-HPA Scheme

The sequence diagram in Figure 4.1 shows the operations of the Non-HPA
scheme for partitioning the domain and scheduling ghost communications is il-
lustrated in the sequence diagram in Figure 4.1. At the startup, all processors
have the initial computational domain. Each processor partitions the domain
into subregions and assigns a subregions to itself. During the load balancing
phase, all the processors synchronize and exchange their local domain informa-
tion. At the end of this phase, every processor has a consistent global view of

the domain. The partitioning algorithm then partitions the domain among the



40

processors. After partitioning is complete, the processors migrate data that no
longer belong to their local subregions. Each processor then schedules intra/inter
level communications based on its new local subregions.

In large parallel/distributed systems, the global information exchange and
synchronization phase becomes a performance bottleneck. The HPA scheme does
not propose a new partitioner, but a hierarchical partitioning strategy. The un-

derlying partitioning schemes can be GPA, BPA, or LPA [37, 60, 67].

G2,2 GZ,Z,Z

Figure 4.2: A General Hierarchical Structure of Processor Groups

Figure 4.2 illustrates a general hierarchical tree structure of processor groups,
where, Gy is the root level group (group level=0) containing all the processors,
G; is the i-th group at group level 1. Note that individual processors form the
leaves of the tree. The communication between processors is conducted through
their closest common ancestor group which is their coordinator or master. For
example, processors Pjp and P4 have common ancestor groups Gy, G2 and G .
However their closest common ancestor group is Gy2. Consequently their com-

munication is via the group Gg 9 which is their coordinator or master. Similarly,



41

communications between processors Fy and Py, are via the group Gy. Further-
more, Partitioning within different processor groups is performed in parallel based
on load information local to the processor groups. Workload is periodically prop-
agated up the processor group hierarchy in an incremental manner. As a result,
these localized operations in parallel reduce the global communication and syn-
chronization overheads.

In HPA, the partitioning phase is divided into two sub-phases as follows.

e Local partitioning phase: The processors belonging to a processor group
partition the group load based on a local load threshold and a portion of
the workload is assigned to each processor within the group . Parent groups
perform the partitioning among their children groups in a hierarchical man-

ner.

e Global partitioning phase: The root group coordinator (group level 0) de-
cides if a global repartitioning has to be performed among its children groups

at the group level 1 according to the group threshold.

The pseudo-code for the load balancing phase in the general HPA is given in
Table 4.1.

The HPA scheme attempts to exploit the fact that given a group with adequate
number of processors, and an appropriately defined number of groups, the number
of global partitioning phases can be reduced. The operation of the general HPA
is illustrated by the sequence diagram in Figure 4.3.

In this figure, we show a two level group hierarchy including the root group
(Gp. The hierarchical scheme first creates processor groups. After these groups are
created and the initial grid hierarchy is setup, the group coordinators/masters par-
tition the initial domain in the global partitioning phase. At the end of this phase

the coordinators have a portion of the domain that is then partitioned among the



42

Table 4.1: Load balancing phase in the general HPA

1. In the highest level group, if(my_load greater than local threshold), per-
form the local partition in each group.

2. Loop from group level lev=num _group_level to 1

3. If(group_load greater than group_threshold), perform the group parti-
tion among children groups at lev, broadcast new composite list through
parent group. If(lev==1) it is a global partition among groups at level 1.

4. End of the loop

5. Begin computation ...

processors in the group subtrees. Recursively, portions of the computational do-
main are partitioned further and finally assigned to individual processors at the

leaves of the processor group hierarchy. This is the local partitioning phase.

4.1.2 Static HPA

In the Static HPA strategy, the group size and the group topology is defined at
startup based on the available processors and the size of the problem domain.
It is static in the sense that once the group configuration is setup it will be
fixed for the entire execution of the application. Even though it is static, SHPA
does possess the basic advantages of the general HPA strategy. It localizes the
load redistribution and balancing within processor groups and enables concurrent
communication among processor groups. Note that, SHPA is still a dynamic load
balancing algorithm [75], as load is dynamically redistributed within and across
processor groups — only the processor group hierarchy remains static.

The load partitioning and assignment procedure is presented in Table 4.2. As
described in the table, the number of groups, Nistaigroups, 15 defined at application

startup. The load balancing phase in SHPA is similar to the steps in Table 4.1.



43

Processor 1 Processor 2 Processor 3 Processor 4
(Group 1 Master) (Group 1) (Group 2 Master) (Group 2)
Computation Zl 2
T Computation
! Synchronzation in group i i
S— to g% global view in 1
group e
T J
N L]
Zl Synchronjzation among mastersto exghange
local domainsto get global domain
7% Partition among mastersto get il
local domain

Broadcast local domain \Jo group
L Broadcast local domajn to group
u 4; u u

5 Partition in group 5
T Partition in group

1 T T

N N Jr— N

é é Computation

T Computation T

Figure 4.3: Sequence Diagram for the HPA Scheme

The Static HPA is implemented as part of the GrACE toolkit [8]. The groups

are created using communicators provided by the MPI library. Communication

within groups is through intracommunicators while communication between pro-

cessors belonging to different groups is through intercommunicators.

The Static HPA scheme is evaluated on BlueHorizon, the IBM SP3 cluster at

San Diego Supercomputer Center, which consists of 1152 processors. Each SP3

node has 8 processors running at 375 MHz and 4GB RAM, and CPU peak per-

formance is 1.5 GFlops. Overall, BlueHorizon delivers a peak performance of 1.7

TeraFlops. The application used in these experiments is the RM3D as described



44

Table 4.2: Hierarchical Partitioning Algorithm

1. Setup the processor group hierarchy according to group size and group
levels. Apply SFC to obtain the composite grid unit list (GUL).

2. Loop from group level lev=1 to num_group_level

3. Partition the global GUL into N, subdomains, where N, is the num-
ber of processor groups at this level.

4. Assign the load L; on subdomain R; to a group of processors GG; such
that the number of processors N P; in the group G; is proportional to
the load L;, i.e., NP, = L;/Lgym X N Py, where Ly, is the total size
of load and N Py, is the total number of processors in the parent group
level.

5. Loop until the leaves of the group tree hierarchy are reached. Partition
the load portion L; and assign the appropriate portion to the individual
processor in the group G;, for i = 0,1,..., NP; — 1, where NP; is the
number of processors in the lowest group level.

in Chapter 3. RM3D is a representative application that exhibits substantial
spatial and temporal heterogeneity. The experiments measure the total execu-
tion time of RM3D using Static HPA and Non-HPA schemes. To evaluate the
benefits of incremental load balancing, we performed two experiments for Static
HPA scheme: SHPA without incremental balancing (labeled as SHPA Nonlnc in
the figure), and SHPA with incremental load balancing (labeled as SHPA Inc in
the figure). In Figure 4.4, we observe that the SHPA scheme improves the overall
execution time. The maximum performance gain is obtained for 192 processors
using SHPA Inc scheme - about 59% reduction in the overal execution time as
compared to Non-HPA scheme. We also observe that, for relatively small number
of processors, the SHPA Nonlnc scheme outperforms the SHPA Inc scheme. The
reason is that SHPA NonlInc scheme has the advantage of better load balance than
the SHPA Inc scheme since it redistributes the load more frequently. However, for

larger number of processors, due to significant reduction of the synchronization



45

Execution Time of RM3D application
(100 steps, size=128x32x32)

8000

7000+

6000

O Non-HPA
O SHPA Nonlnc
B SHPA Inc

4000

Execution Time (secs)

3000

2000

1000

Number of Processors

Figure 4.4: Execution time: Static HPA versus Non-HPA Schemes

and global communication overheads with incremental load balancing, the SHPA
Inc scheme outperforms the SHPA NonlInc scheme in the long run. As shown by
the evaluation, the benefits of SHPA depends on the appropriate setup of proces-
sor group hierarchies, which in turn depends on the system and the application.
The adaptive HPA scheme attempts to address this limitation by dynamically

managing processor groups.

4.1.3 Adaptive HPA

In the Static HPA strategy, the total number of groups is predefined and remains
unchanged throughout the execution of the application. In order to account
for the application’s runtime dynamics, the AHPA proposes an adaptive strat-
egy. AHPA dynamically partitions the computational domain into subdomains
to match current adaptations. The subdomains created may have unequal loads.
The algorithm then assigns the subdomains to corresponding nonuniform hier-
archical processor groups. The detailed steps are presented in Table 4.3. Note
that the definition of processor groups may take into consideration the system
architecture - for example, group size can be chosen to match the size of a SMP

node in a SMP cluster.



46

Table 4.3: Load Partitioning and Assignment in Adaptive HPA

1. Use SFC to obtain the composite grid unit list (GUL).

2. Partition the GUL into subdomains such that subdomains R; (i is odd)
consists of subdomains whose refinement level is not greater than i/2
and R; (j is even) consists of subdomains whose refinement level is not
less than j/2. Ry consists of whole domain.

3. Assign the load L; on subdomain R; to a group of processors (G; such
that the number of processors NP, in the group G; is proportional to
the load L;, i.e., NP, = L;/Lgym X N Py, where Lg,, is the total size
of load and N P,,,, is the total number of processors.

4. Partition the load portion L; and assign the appropriate portion to the
individual processor in the group G;, for i = 0,1, ..., N Piotaigroups — 1.

As shown in Table 4.3, the AHPA scheme partitions the computational domain
according to its refinement level. This partitioning scheme naturally matches the
state of the grid hierarchy. The partitioning and assignment procedure presented
in the table is repeated at each regrid as the SAMR applications progress. Note
that, when the number of processors assigned to one group is large, SHPA can be
applied in this group. The load balancing phase in AHPA is similar to the steps
in Table 4.1 with dynamic group sizes and a dynamic number of group levels.

The communication cost of AHPA scheme is evaluated using trace-driven sim-
ulations. The simulations are conducted as follows. First, we obtain the refine-
ment trace for an SAMR application by running the application for a single pro-
cessor. Then the trace file is fed into HPA partitioners to partition and produce a
new trace file for multiple processors. Finally, the new trace file is input into the

SAMR simulator! to obtain the runtime performance measurements on multiple

'SAMR simulator was developed by Manish Parashar at Rutgers University as a part of
ARMaDA project (http://www.caip.rutgers.edu/TASSL/Projects/ARMaDA/performance_
simulator.html)



47

processors. The simulation results for the 2D Transport Equation and Wave3D

applications are shown in Figure 4.5.

2D Transport Equation

(100 steps, size = 128x128)

8000

7000
6000
5000
4000
3000
2000
1000

Message size (kbytes)

16 24

32
Number of Processors

——— | OStatic HPA

64

@ Non-HPA

o Adaptive HPA

bytes

Message size (k

8000
7000
6000
5000
4000
3000
2000
1000

Wave3D Application
(100 steps, size = 32x32x32)

16 24 32
Number of Processors

8 64

O Non-HPA
O Static HPA
W Adaptive HPA

Figure 4.5: Communication Cost: Comparison of Non-HPA, Static HPA and

Adaptive HPA Schemes

In Figure 4.5, we observe that the communication cost (measured as the total

message size for intra-level and inter-level communication) is greatly reduced using

HPA schemes as compared to the Non-HPA scheme. Compared to the SHPA

scheme, AHPA scheme further reduces communication costs. As shown in the

figure, the reduction in communication cost is up to 70%, for the AHPA scheme

over the Non-HPA scheme. These simulation results validate that the Adaptive

HPA scheme is potentially an efficient solution to gain better system performance.

Execution Time (sec)

Execution Time of RM3D application
(100 steps, size=128x32x32)

8000

7000

6000

5000

4000

3000

2000

1000

16

ONon-HPA
E@SHPA Inc
B AHPA

32 64
Number of Processors

Figure

4.6: Execution Time: Static HPA versus Adaptive HPA Schemes

The experimental evaluation of AHPA is further conducted on BlueHorizon



48

using the RM3D application with the same configuration as in the previous sec-
tion. Figure 4.6 shows the execution time for Non-HPA, SHPA Inc, and AHPA
schemes. From the figure, we observe that the AHPA scheme further improves the
overall performance compared to the SHPA scheme. An important observation is
that AHPA marginally outperforms SHPA in larger systems. This motivates us
to seek new strategies, which results in the adaptive hierarchical multi-partitioner

strategy to be presented in the next chapter.

4.2 Level-based Partitioning Algorithm

As described in the last chapter, the computation and communication pattern
of parallel SAMR applications requires partitioning schemes to balance load and
preserve locality. One critical observation from the timing diagram in Figure 2.6
is that, in addition to balancing the total load assigned to each processor and
maintaining parent child locality, we also need to balance the load on each re-
finement level and address the communication and synchronization costs within
a level. The LPA scheme works towards this goal. GPA works very well for
homogeneous computational domain. However, for heterogeneous computational
domains, it may cause large intra-level synchronization cost due to load imbal-
ance for each refinement level. To further improve the performance, essentially,
LPA preprocesses a portion of the global GUL by disassembling it according to
refinement levels, and feeds the resulting homogeneous GUL to GPA. The GPA
then partitions this list to balance load. As a result of the preprocessing, the load
on each refinement level is also balanced.

The procedure of LPA scheme is presented in Table 4.4. We observe that
the LPA scheme partitions deep composite grid units before shallow grid units.
Since we cannot guarantee perfect load balance during the partitioning at each

iteration, to compensate the possible imbalance introduced in higher level and



49

Table 4.4: Level-based Partitioning Algorithm (LPA)

1. Get the maximum refinement level MaxLev. Disassemble the global
GUL into homogeneous GUL’s according to grid unit’s refinement
depth, denoted by gul_array[lev]. The load assigned in the previous
iteration is denoted by load_array[np].

2. Loop for refinement level lev = MaxLev to 0 reversely

3. Passing gul array|lev] and load array[np] to GPA to obtain local assign-
ment.

4. In GPA, it will partition the load such that each processor get equal
distribution on each refinement level.

equally partition the GUL on the lower level, we need to keep track of the load
on lower levels that is previously assigned. This is done using load_array[np].
LPA takes full advantages of CGDS by keeping parent-children relationships in
the composite grid and localizing inter-level communications. Furthermore, it
balances the load on each refinement level which reduces the synchronization

cost.

| | | | | | | | | | |
level 0 I | | | | | | | I I I

|
[t—P()— - P1 »
' (a)
| |
| [ i
level 1 | | | |
I | | | | I | | | |
level 0 | T I T I | I T I T
<P0><P1>; <—P0—>;<—Pl—>

(b)

Figure 4.7: Partitions of a 1-D Grid Hierarchy (a) GPA (b) LPA



20

communication

synchronization cost | 0 1 1 I 0 ‘e time

.

0 T ! ! T L o comVputation

PO

communication

0 I synchronization cost I 0 <e. o time

P1 L

0 ...
— computation

(a)

communication

[
Lol

computation

.
=
<
—
-

- ==
Ll
E

communication

[

computation

P1

(b)

Figure 4.8: Timing Diagrams of the Example (a) GPA (b) LPA

To compare the partitioning effect of GPA and LPA, we show a simple exam-
ple. Consider partitioning a one dimensional grid hierarchy with two refinement
levels, as shown in Figure 4.7. For this 1-D example, GPA partitions the compos-
ite grid unit list into two subdomains. These two parts contain exactly same load:
the workload assigned to P0 is 2 + 2 x 4 = 10 units while the workload assigned
to P1 is also 10 units. From the viewpoint of GPA scheme, the partition result is
perfectly balanced. However, due to the heterogeneity of SAMR algorithm, this
distribution leads to large synchronization costs as shown in the timing diagram
of Figure 4.8 (a). The LPA scheme takes these synchronization costs at each
refinement level into consideration. For this simple example, LPA will produce a
partition as shown in Figure 4.7 (b) which results in the computation and com-
munication behavior as shown in Figure 4.8 (b). As a result, LPA improves the
overall performance and reduces communication and synchronization time.

The experimental evaluation of LPA is conducted on BlueHorizon, the IBM
SP3 cluster at San Diego Supercomputer Center. The RM3D application [41] is
also used for the experiments. The input configurations are as follow: the base
grid size is 128 x 32 x 32, maximum 3 refinement levels, refinement factor is 2,

granularity is 4, regrid every 4 time steps on each level, the total base level time



51

Execution Time of RM3D application Communication Time of RM3D application
(100 steps, size=128x32x32) (100 steps, size=128x32x32)
100 100
90 H OGPA L 90 U OGPA
0 U HLPA L X HELPA
9 @HPA < %7 GHP A M
5 O EIHPA+LPA [ E 70 H EHPA+LPA [
£ 60 s M
F s
c 50 v, = 50
'% 40 ZS‘ g 40
-
§ 30 g%l 7 g 30 [
Y ?sl ?§ § 20 [ 1
7R
10 1 4\ ¢§ ’§ 7N I 7N 10 h
o H é§l / 4\ é%l Z& o H AN
16 32 64 96 128 16 32 64 96 128
Number of Processors Number of Processors

Figure 4.9: Execution and Communication Time

steps are 100. Four partitioning schemes are used in the experiments, namely,
GPA, LPA, HPA and HPA+LPA. The number of processors used is between 16
and 128.

Figure 4.9 shows the execution times for GPA, LPA, HPA and HPA+LPA
schemes. In this figure, the execution time for the different parameters are nor-
malized against GPA on 16 processors (100%). We observe that execution time
reduction using LPA scheme compared to GPA is about 48.8% on the average for
these five system configurations. HPA scheme alone reduces the execution time by
about 52.9% on the average. Applying HPA scheme along with the LPA scheme,
we gain further improvement reducing overall execution time by about 56% for 16
processors, 60% for 128 processors, and 57.3% on the average. These reductions
in the overall execution times are due to a reduction in communication times as
shown in Figure 4.9. The figure also shows that, HPA greatly reduces the global
communication time. For all cases, HPA+LPA delivers the best performance

since it takes full advantages of HPA and LPA.



52

4.3 Concluding Remarks

This chapter presented the hierarchical partitioning algorithms (HPA) and the
level-based partitioning algorithm (LPA). HPA schemes allow the distribution to
reflect the state of the adaptive grid hierarchy and dynamically match the com-
putational domain hierarchy with the processor group hierarchy. By enabling
incremental redistribution and concurrent communication, HPA schemes reduce
the global communication and synchronization costs due to the dynamics of par-
allel SAMR applications. Further, the LPA scheme was presented to explicitly
address the load balance issues for each refinement level, which is largely ignored
in existing solutions. Combining HPA and LPA was experimentally evaluated

and demonstrated performance improvement over the existing scheme.



23

Chapter 5

Adaptive Hierarchical Multi-Partitioner
Strategy

SAMR dynamism/heterogeneity has been traditionally addressed using a dynamic
partitioning and load-balancing algorithm that partitions and load-balances the
domain when it changes, for example, the mechanism presented in [54, 67]. More
recently, it was observed in [79], that, for parallel SAMR applications, the ap-
propriate choice and configuration of the partitioning/load-balancing algorithm
depends on the application, its runtime state and its execution context. This
leads to development of meta-partitioners [81], which select and configure parti-
tioners at runtime, from a pool of partitioners, to match the application’s current
requirements. However, due to the spatial heterogeneity of the SAMR domain,
the computation/communication requirements can vary significantly across the
domain, and as a result, using single partitioner for the entire domain can lead to
decompositions that are locally inefficient. This is especially true for large-scale
simulations that run on systems with many 1000’s of processors.

The objective of the research presented in this chapter is to address this issue.
Specifically, we investigate an adaptive multi-partitioner approach that dynami-
cally applies multiple partitioners to different regions of the domain, in a hierar-
chical manner, to match the local requirements of the regions. In this chapter, we
first present a segmentation-based clustering algorithm (SBC) that can efficiently
identify regions in the domain at runtime, called cliques, that have relatively
homogeneous requirements. Note that cliques are similar in concept to natural

regions proposed by Steensland [77]. However, unlike natural regions, cliques are



o4

not restricted to strict geometric shapes but are more flexible and take advantage
of the locality-preserving property of SFCs. We then characterize the partitioning
requirements of these clique regions and select the most appropriate partitioner
for each clique. This research builds on the work on meta-partitioning [81] and
adaptive hierarchical partitioning [60] to define an adaptive hierarchical multi-
partitioner approach (AHMP). The experimental evaluation demonstrates the
performance gains using AHMP. Further, to handle different resource situations,
application-level pipelining (ALP) scheme has been developed to improve the
performance when resources are under-utilized, and application-level out-of-core

(ALOC) scheme has been developed to handle the case of inadequate resources.

5.1 Adaptive Hierarchical Multi-Partitioner Strategy

AHMP extends the hierarchical partitioning algorithm (HPA) presented in the
last chapter and also enables incremental repartitioning and rescheduling to re-
duce global communication and synchronization costs. Furthermore, AHMP ad-
dresses spatial heterogeneity by applying the most appropriate partitioner to each
clique based on its characteristics and requirements. As a result, multiple par-
titioners can concurrently operate on different subregions of the computational
domain.

The basic operation of the AHMP strategy is presented in Figure 5.1. The
input is the structure of the current grid hierarchy (an example is illustrated in
Figure 2.1), which represents the runtime state of the SAMR application. The
strategy consists of the following steps (see Table 5.1). First, the clustering algo-
rithm is used to identify clique hierarchies. Second, each clique is characterized
and its partitioning requirements identified and the available resources are par-
titioned into resource groups based on the relative requirements of the cliques.

Third, these requirements are used by the adaptive hierarchical multi-partitioner



95

Start
grid -
; -
Clustering

clique Recursively SBC
hierarchy v for each clique

Characterize clique

Partitioner ‘
Repository Adaptive Hierarchical Multi-

Partitioner Scheme (AHMP)

Selection ‘
Policies

Partition clique

\ -
+ Repartitioning

End

Figure 5.1: A Flowchart for the Adaptive Clustering and Partitioning Strategy

to select and configure an appropriate partitioner for each clique. The partitioner
is selected from a partitioner repository using selection policies. Finally, each

clique is partitioned and mapped to processors in a resource group.

Table 5.1: Adaptive Hierarchical Multi-Partitioner

1. Identify clique regions and characterize their states and requirements.
2. Characterize properties of partitioners.
3. Select the appropriate partitioner for each clique.

4. Repartition and reschedule incrementally and hierarchically within local
resource group.

The strategy is triggered locally when the application states change signifi-
cantly (determined using the load-imbalance metric described below), and par-
titioning proceeds hierarchically and incrementally. Two clustering algorithms,
level-based clustering (LBC) and segmentation-based clustering (SBC) schemes,

are developed. Partitioning schemes in the partitioner repository include GPA,



26

LPA, BPA, GMISP+SP, and pBD+ISP [37, 60, 79]. Partitioner selection poli-
cies are based on clique partitioning requirements defined in terms of refinement
homogeneity, communication/computation requirements, scattered adaptation,
activity dynamics [79]. This thesis specifically focuses on developing partitioning
policies based on refinement homogeneity, which is defined in Section 5.6.1.

The load imbalance factor (LIF) metric is used as the criteria for triggering
repartitioning and rescheduling within a local resource group, and is defined as

follows:
max:", T; — mini, T;
An
> TifAn

where A,, is the total number of processors in resource group A, and 7; is the

LIF, =

estimated execution time for the processor i, which is proportional to its load.
The local load imbalance threshold is v4. When LIF4 > 74, the repartitioning is
triggered inside the local group. Note that the imbalance factor can be recursively

calculated for larger groups as well.

“ ALOC

AHMP
RG4

.:‘ RG: Resource Group

GPA: Greedy Partitioning Algorithm LPA: Level-based Partitioning Algorithm
ALP: Application-level Pipelining Scheme ALOC: Application -level Out-of-Core Scheme

Partition
schedule

Repartition
reschedule

Figure 5.2: AHMP Operations - An [llustrative Example

The AHMP concept is illustrated in Figure 5.2 using a combustion simulation
of hydrogen-air mixture with three initial ignition spots [70]. As shown in the
figure, AHMP first applies SBC to obtain partitions of cliques and maps a re-

source group to each clique using the appropriate partitioning algorithm. When



o7

the application requirements change significantly within a resource group, repar-
titioning is triggered and only affects the load assignment among processors in
the resource group. As a result, AHMP facilitates localized data movement and
communication, and enables concurrent operations across different cliques and

resource groups.

5.2 Requirement Analysis of Clustering Schemes

The objective of clustering is to identify well-structured subregions in the SAMR,
grid hierarchy, called cliques. A clique is a quasi-homogeneous computational sub-
domain with relatively homogeneous partitioning requirements. By formulating
well-structured cliques, clustering schemes attempt to ease the partitioning task
since most partitioners are good at partitioning uniform/homogeneous regions.
Towards this end, we identify several desired properties of an efficient and effective
clustering scheme.

Subregions in a clique exhibit similar properties, such as similar refinement
level structure, similar load density or similar dynamics. To minimize communica-
tion overheads presented in Chapter 2, we list the following guidelines for formu-
lating these clique regions. (1) Clique structures should naturally reflect the state
and characteristics of the current computational domain and provide an abstrac-
tion of the current computation, communication and storage requirements. (2) A
clique should be connected and well structured. Well-structured cliques have sim-
ple interfaces or boundaries between them so that inter-clique communication is
minimized. (3) Cliques defined in consecutive time steps should preserve locality.
A clique abstracts and clusters some localized activity features in a sub-region.
It strives to track the dynamics of computational domains. Locality-preserving
feature is critical at reducing the data migration cost between two successive re-

partitioning and re-distribution steps. (4) Cliques should be of coarse granularity.



o8

A clique is a high-level abstraction and defines a quasi-homogeneous sub-region.
A fine-granularity clique will diminish the effect of clustering. (5) A clustering
algorithm itself should be efficient. As mentioned before, parallel SAMR applica-
tions require regular and frequent re-partitioning and re-balancing. As a result,

a clustering algorithm should be effective and efficient to minimize its overheads.

5.3 Segmentation-based Clustering (SBC)

Typical SAMR applications exhibit localized features, and thus result in local-
ized refinements. Moveover, refinement levels and the resulting adaptive grid
hierarchy reflect the application runtime state. Therefore, we attempt to cluster
subregions with similar refinement levels. An immediate solution is to cluster sub-
regions purely based on refinement levels. We name this scheme as the level-based
clustering algorithm (LBC). SFCs feature self-similarity, locality-preserving and
efficiency, which provides a basis for formulating clustering algorithms for creat-
ing clique regions. Basically, LBC operates on the SFC-indexed subregion list.
Following the SFC sequence, LBC simply groups subregions of similar refinements
together.

A simple example of LBC operations on a 2-D space is illustrated in Figure 5.3.
This figure shows a grid hierarchy with 0 to 3 refinement levels. The SFC traverses
through the entire domain and transform the 2-D space into a 1-D sequence. Note
that the SFC index in the figure is based on the base level only. The figure shows
the resulting cliques, totally 11 subregions.

Based on the intuitive interpretation of refinement levels, LBC scheme is sim-
ple and efficient. However, it results in many small and irregularly-structured
cliques as shown in Figure 5.3. A better solution is to employ a scheme that

smoothes out small subregions and maintains spatial proximity. To this end,



29

1o 2. 15  _|-—-16
\ //
\ /
\ |R11 |
|
R1 !
//
P Sl 3 13
l/ ‘“~\\
[ N
| \
I BN \
| \\ \
i \ )
15 ! 12
1
/
; / | R8| R9!
I - B=d / ,’ |
! /< |R3 ( ] |
| / P N ! l
! - : o II ll g
\ / i /
\ 4 \ 4 0 ==
o7 S~ -‘R4| - -

* R1 to R11 are resulting cliques by LBC

Figure 5.3: Clustering Results of LBC Algorithm

we borrow some ideas from image segmentation [50] to formulate a segmentation-
based clustering algorithm (SBC), which is based on space-filling curves (SFC) [71].
The algorithm is motivated by the locality-preserving property of SFCs and the
localized nature of the physical features in SAMR applications.

The segmentation-based clustering algorithm is based on ideas in image seg-

mentation [50]. The algorithm first defines load density factor (LDF) as follows:

associated load on the subdomain
LDF(rl = 5.1
(riev) volume of the subdomain at rlev (5-1)

where rlev denotes the refinement level and the volume (area and length in case
of 2 and 1 D domains) for the subregion of interest. Note that LDF can be
computed for the entire domain or for an individual clique.

The SBC algorithm is listed in Table 5.2. SBC strives to cluster domains with
similar load density together to form clique regions. The algorithm first smooths
out subregions that are smaller than a predefined threshold (the template size).

To achieve this, SBC follows the SFC indices and extracts subregions (defined



60

Table 5.2: Segmentation-Based Clustering Algorithm

1. SBC(refinement-level rlev, SFC-indexed-subregion-list sfc_list)

2. Calculate the load density of the sfc_list based on the rlev and the
template size, and record its frequency.

3. Find a threshold # using the histogram of load density.

4. Partition and group subregions into several clusters based on the thresh-
old 6.

5. For each cluster, if it contains higher refinements than rlev, recursively
call SBC(rlev+1, SFC-indexed-list of this cluster including higher re-
fined subregions).

by rectangular bounding boxes) from the list until the size of the accumulated
subregion set reaches the template size. SBC then calculates the load density
for this set of subregions and records the frequency according to the load den-
sity. It continues to scan through the entire subregion list, and repeat the above
process, calculating the load density and recording its frequency. At the third
step, it finds a threshold # based on the histogram of the load density obtained.
The histogram represents the frequency/number of subregions with certain load
density values. A simple intermeans thresholding algorithm [50] is used to find
an appropriate threshold. Basically, the intermeans algorithm selects an initial
threshold, partitions the histogram into two parts using the threshold, calcu-
lates the mean values in two parts, then uses the average of these two values
as the new threshold to repeat the process until the threshold does not change
significantly in successive iterations. While there are many more sophisticated
approaches for identifying good thresholds for segmentation and edge detection
in image processing [50], this method is sufficient for our purpose. Using the
threshold obtained, SBC then partitions the domain into several clique regions.
Finally, a hierarchical structure of clique regions is created by recursively call-

ing the SBC algorithm for finer refinements. The maximum number of cliques



61

created can be adjusted to the number of processors available. Note that this
algorithm has similarities to the point clustering algorithms proposed by Berger
and Regoutsos in [27]. However, the SBC scheme differs from this scheme in two
aspects. Unlike the Berger-Regoutsos scheme, which creates fine grained cluster,
the SBS scheme targets coarser granularity cliques. SBC also takes advantage
of the locality-preserving property of SFCs to potentially reduce data movement

costs between consecutive repartitioning phases.

\ I
\
i J
|
/ //_’/
/
P SR ¢ t 14 13
\ S S
[ - \\
| \
t Sy N
| db — 7 { AN \
~ —
| \ (1, L1 \ \
\
| 5 PR STy ] 12)
[ \ L —_7 |
7 T Ve =
I N2/ |/ / |
Il //—‘“\ \ I’ |
| L | /,’ | [ /I
b 1 10 11,
) \ v
\\_// \_// \\‘_———______//

L] cCliquet [ Clique2 [ Clique3

Figure 5.4: Clustering Results for the SBC Scheme

The SBC algorithm is illustrated using a simple 2-D example in Figure 5.4.
In this figure, SBC results in three cliques, which are shaded in the figure.

Figure 5.5 shows the load density distribution and histogram for an SFC-
indexed subdomain list. For this example, the SBC algorithm creates three cliques
defined by the regions separated by the vertical lines in the figure on the left. The
template size in this example is two boxes on the base level. The figure on the

right shows a histogram of the load density. For this example, based on the



62

80 Histogram
12

o

threshold

Load Density

Number of Subregions
[}

1 2 3 4 5 6 7 8 9810 11 12 13 14 15 16 0 10 20 30 40 50 60 I

SFC Index on the Base-level Load Density

Figure 5.5: Load Density Distribution and Histogram for SBC

histogram, the threshold is identified in between 1 and 9 using the intermeans
thresholding algorithm. Note that we assume a predefined minimum size for a
clique region. In this example, the subregion with index 14 in Figure 5.4 does not
form a clique as its size is less then the template size. It is instead clustered with
another subregion in its proximity.

Also note that SBC automatically smoothes out the boundary between cliques.
As mentioned in a recent paper [78], using buffer zones between partitions can
eliminate significant synchronization cost. Buffer zones are coarser subregions
that surround finer subregions in order to reduce communication and synchro-
nization costs. Using smoothing, SBC implicitly creates buffer zones between
cliques and hence reduces synchronization costs.

Comparing Figure 5.4 and 5.3, we observe that SBC creates better structured
cliques than LBC. Experimental evaluation also confirms that SBC considerably

outperforms LBC. Thus, we will focus on SBC in the rest of this chapter.

5.4 Application-level Pipelining Strategy

Due to the granularity constraint, domain-based partitioning schemes can explore

only limited parallelism. In some cases when the deep refinements are located



63

Communication

PO 0 1 1 0 T=ime

Computation

idle Communication

P1 ‘ Time
‘ Computation
‘ idle Communication
P2 Jime
‘ Computation
(a) domain-based strategy when resource is excessively sufficient
Communication
PO 0 [ 1] [ 1 0] Time
0 | 1 | | 1 | 0 e
Computation
Communication
P1 1 [ 1] [ 1] Time
‘ 1 ‘ ‘ 1 ‘ / oee Computation
Communication
P2 1 1] 1] Time
‘ 1 | ‘ 1 | e Computation
(b) ALP -
Communication
po 9] [ 0 | [ ] [ 1 ]0] Time
Lo | L] L] Lo | ..
Computation
Communication
pi L0 [0 ] [ 1 ] [ 1 0 Time
‘ 0 ‘ ‘ 1 ‘ ‘ 1 ‘ 0 oo Computation
Communication
py [0 [ o ] [ 1] [T Jo Time
‘ 0 ‘ ‘ 1 ‘ ‘ 1 ‘ \L tee Computation
(c) ALPWR

Figure 5.6: Application-level Pipelining Strategy

in a very narrow region, domain-based partitioning schemes will inevitably re-
sult in significant load imbalance when partitioning and scheduling an SAMR
application onto a large-scale system. For example, assume the predefined min-
imum dimension of a 3D block/grid on the base level is 4 grid points. In this
case, the minimum workload of a composite grid unit with 3 refinement levels is
434+ 2x834+2x2x16% = 17472, i.e., the granularity constraint is § > 17472 units.
Such a composite block can result in significant load imbalance if only domain-
based partitioning schemes are used. To expose more parallelism in these cases,
a patch-based partitioning approach must be used. The ALP strategy combines
domain-based and patch-based schemes. To reduce communication overheads, we
restrict the application of the ALP scheme to a clique region that is allocated to a
resource group when certain conditions are met. These conditions include: (1) re-

sources are sufficient; (2) resources are under-utilized; (3) the gain by using ALP



64

outweighs the extra communication cost incurred. For simplicity, we illustrate a
situation with three processors in a resource group in Figure 5.6. The clique has
only two refinement levels.

ALP has two options: one is pure pipelining (ALP); the other is the pipelin-
ing with redundant computation (ALPwR). ALP splits the smallest domain-based
partitions into patches of different refinement levels, partitions the finer patch into
n portions and schedules each portion to each processor. Since the smallest load
unit on the base-level can not be further partitioned, the pure pipelining scheme
processes the level 0 patch at Py while ALPwR scheme redundantly processes
the level 0 patch at all participating processors. Although ALP saves redundant
computation, it needs the inter-level communication between P, and other pro-
cessors, which can be expensive. In contrast, ALPwR trades computing resource
for less inter-level communication overheads. To avoid significant overheads, ALP
schemes are applied only in a small and closely-networked resource group. The
basic operations of ALP consist of pairing two refinement levels, duplicating the
computation on the coarser patch and partitioning the finer patch among a small
resource group. Thus, it creates a complicated hybrid partition hierarchy.

To specify the criteria for choosing ALP, we define the resource sufficiency
factor (RSF) as follows.

N,

I (5.2)

RSF =
L,/Ls

where L, denotes the total load for a clique region, N,, denotes the total number
of processors in a resource group, and Ls, the granularity, denotes the load on
the smallest base-level subregion with the maximum refinement level. In the case
of deep refinements, Ls is significantly large. When RSF > p and resources
are under-utilized, where p is the threshold, we can apply ALP to explore more

parallelism.



65

5.5 Application-level Out-of-Core Strategy

When the available physical memory of resources is not sufficient to execute the
application, one option is to rely on the virtual memory mechanism of the op-
erating system (OS). The OS will then handle page faults and replace the less
frequently used pages by loading data from disks. Using this approach, OS has
little knowledge of the application characteristics and its memory access pattern.
Consequently, it will result in many unnecessary swap-in and swap-out operations
which are very expensive. The data rates from the disk are approximately two
orders of magnitude less than from the memory [53]. In many systems, OS sets
a default maximum physical and virtual memory allocation. When the applica-
tion uses up the preset quota of memory, it cannot proceed but crash. To show
the influence of memory availability on the performance, we show two simple

experiments.

Number of Page Faults During Memory Allocation
3600

——1 mega

3200 —=—5 mega
10 mega
20 mega
—¥—30 mega
—e— 40 mega
——50 mega

2800

2400

2000

1600

14

1200 l
800 l

400 i

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400
Memory Allocation

Page Faults #

Figure 5.7: Number of Page Faults versus Allocated Memory

The experiments on the effects of allocated memory are performed on an In-
tel Pentium 4 machine with the following specifications: 1.70GHz CPU, 256 KB

cache, 512 MB physical memory, 1 GB swap space, Linux 2.4 kernel. The first



66

ing Time versus Memory Processing Time versus Allocated Memory

g Time (ms/operation)
° o -
®

g Time (ms/operation)

? £

2 @

2 04 H T
g g 0.002

b

1 51 101 151 201 251 301 351 401 451 501 551 601 0

101 151 201 251 301 351 401
Memory Allocation (MB)

Memory Allocation (MB)

Figure 5.8: Processing Time versus Allocated Memory

experiment measures the number of page faults when we allocate memory incre-
mentally. Seven cases with different incremental steps, 1 MB to 50 MB every
loop, are shown in Figure 5.7. We clearly observe the dramatic increase of the
number of page faults when we allocate memory up to about 400-500 M B, which is
close to the physical memory capacity. To measure the performance degradation
due to excessive memory allocation, we conduct another experiment to measure
the computing speed. The operations are one floating-point multiplication and
division on randomly selected memory addresses. Figure 5.8 shows serious per-
formance degradation when we use up to about 400-500 MB memory. From these
experiments, we observe that, as expected, the amount of the allocated memory
plays a critical role at affecting the overall system performance. Thus we need a
strategy that judiciously avoids this performance degradation.

Instead of blindly resorting to the OS, our solution is to design an application-
level out-of-core scheme by exploiting the application memory access patterns to
guide the paging process and explicitly keep the working-set of application patches
while swapping out the unused patches.

We approach the solution through the application-level out-of-core (ALOC)
mechanism to execute the application incrementally by proactively managing
application-level pages. Using the ALOC strategy, we aim to not only improve

the performance but also enhance the survivability under the severe shortage of



67

swap out lower level patches swap out higher level patches
swap in higher level patches swap in lower level patches
Communication
B O O IR 0 O
Ol o) 1] (2] (= F20 [ I Y
» < Computation
>« \ S5 A S 4SS 4 Y V¥ ® Ay,
T-veu 'y, T-VCU %, Tveu 2,, T-VCU 2, T-veU 2,, T-VCU 2, | '

R m e M Gl EE0E [ tme
Ol D) o] L] 2] s ] L2 ][] [of L

» < Computation
> <« “ Y _VvVv v Y ¥ » Ay
T-veu ' T-VCU 2 2 2 2 2 03

01 12 T-VCU 2,, T-VCU ?,, T-vCu 2,,T-VCU 2, |

Figure 5.9: Application-level Out-of-core Strategy

resources. For instance, as shown in Figure 2.5, the RM3D application presented
requires 4 times more memory during the peak time than the average while the
peak time lasts for less than 10% of the total execution time. In this case, if
the pre-allocated resources are sufficient to meet only the requirement of a very
long running SAMR application for 90% of its execution time but not sufficient
to accommodate the peak requirements of the application, without using ALOC
strategy, it will result in a significant slow down or a crash (being killed by OS).

As illustrated in Figure 5.9, ALOC scheme incrementally partitions the local
grid hierarchy into T-VCU (temporal virtual computational unit) according to
refinement levels and runtime iterations. In the figure, the notation T-VCUy
denotes the temporal VCU, where a denotes the time step at the base level, b
for the current refinement level and ¢ for the time step at the current level. To
avoid undesired page-swapping, ALOC automatically releases the memory held by
lower-level patches and swaps them out to the disk. The condition to trigger the
ALOC mechanism is that the ratio between the amount of the allocated memory

and the amount of the physical memory is over a predefined threshold ¢.



68

5.6 Experimental Evaluation

5.6.1 Clustering Quality Metric

To aid the evaluation of the effectiveness of the SBC clustering scheme, a clus-
tering quality metric is defined. The metric consists of two components, the
static quality and the dynamic quality of the clique regions generated. The static
quality of a clique is measured in terms of its refinement homogeneity and the
efficiency of the clustering algorithm. The dynamic quality of the clique hierarchy
is measured in terms of its communication costs (intra-level, inter-level, and data

migration). These criteria are defined as follows.

(1) Refinement Homogeneity: This measures the quality of the structure of
a clique. Partitioning algorithms typically work very well on highly homoge-
neous grid structures and can generate scalable partitions with desired load
balance. Let |R{°*(l)| denote the total size of a subregion or a clique at
refinement level I, which is composed of RI“/ (1), the size of refined regions,
and R“"/(1), the size of un-refined regions at refinement level [. Refine-

ment homogeneity is recursively defined between two refinement levels as

follows:
IR (1)
Hy() = ——i /L
O TR
1 n
Hau) = =N H,),if |[R (1
all) = 3 HW. RIO]£0

where n is the total number of subregions that have refinement level [ + 1.

(2) Communication Cost: This measures the communication overheads of a
clique and includes inter-level communication, intra-level communication,
synchronization cost, and data migration cost as described in the previous

chapter.



69

(3) Clustering Cost: This measures the efficiency of the clustering algo-
rithm itself. As mentioned above, SAMR applications require regular re-
partitioning and re-balancing, and as a result clustering cost become im-

portant.

5.6.2 Evaluating the Effectiveness of SBC Scheme

This section evaluates the effectiveness of SBC-based clustering using the metrics
defined above. First, it compares the refinement homogeneity of 6 SAMR appli-
cation kernels with and without clustering. These applications are summarized

in Table 3.1.

Refined Homogeneity for TP2D

1.2

¢ Level0
o Levell

H(l)

A Level2

x Level3

Regridding Steps

Figure 5.10: Refinement Homogeneity for the Transport2D Application Kernel (4
levels of refinement)

Figure 5.10 shows the refinement homogeneity at different regrid steps for the
TP2D application with 4 refinement levels and without clustering. The refinement
homogeneity is smooth for level 0 and very dynamic and irregular for levels 1,
2 and 3. The refinement homogeneity for RM3D and RM2D is illustrated in

Figure 5.11. We observe similar irregular and dynamic refinement behavior.



70

Refined Homogeneity for RM2D Refined Homogeneity for RM3D
08
07 . " b I'w
3 0.6 1 '
B | —— Level0 05
= = Levelt £ o4 ,—Z_ "-& :
T Level2 T
—a— Level o T—‘ 3—‘ —=—Levell
0.4 —x— Level3 F  JSVST——
. - 02
0.2 —
0.1
[ e e I LA m e e e e e e NS e o—TTT—T——T—T—T—T—T——
0 50 100 150 200 250 300 350 400 450 500 0 20 40 60 8 100 120 140 160 180 200
Regridding Steps Regridding Steps

Figure 5.11: Refinement Homogeneity for RM2D (4 levels) and RM3D Applica-
tions (2 levels)

Table 5.3: Average Refinement Homogeneity H () for 6 SAMR Applications
‘ Application ‘ LevelO ‘ Levell ‘ Level2 ‘ Level3 ‘

TP2D 0.067 | 0.498 | 0.598 | 0.6680
RM2D 0.220 | 0.680 | 0.830 | 0.901
RM3D 0.427 | 0.618

ENO2D 0.137 ] 0.597 | 0.649 | 0.761
BL3D 0.044 | 0.267

BL2D 0.020 | 0.438 | 0.406 | 0.316

The average refinement homogeneity for 6 SAMR applications without cluster-
ing is presented in Table 5.3. The table shows that the refinement homogeneity
H(l) increases as the refinement level [ increases. Typical ranges of H(l) are:
H(0) € [0.02,0.22], H(1) € [0.26,0.68], H(2) € [0.59,0.83] and H(3) € [0.66,0.9].
Since the refinement homogeneity on level 3 and above is typically over 0.6 and
refined subregions on deeper refinement levels tend to be more scattered, the
clustering schemes will focus efforts on clustering level 0, 1 and 2. Furthermore,
based on these statistics, we set the threshold 6 for switching between different
lower-level partitioners as follows: 6y = 0.4, #; = 0.6, and 6, = 0.8, where the sub-
scripts denote the refinement level. Based on the experiments presented in [79],
policies are defined to select the partitioners GPA and G-MISP+SP for cliques

with refinement homogeneity less than the threshold 8, and the partitioners LPA



71

and pBD-ISP for cliques with refinement homogeneity greater than the threshold.
The objective of this policy is to obtain better load balance for less refined cliques,

and to reduce communication and synchronization costs for highly refined cliques.

Clustering Effects for Transport2D

0.9 +—{ —e—SBC Clustered
0.8 1| —x—Original

H(0)

0 20 40 60 80 100 120 140 160 180

Regridding Steps

Figure 5.12: Homogeneity Improvements using SBC for TP2D

Figure 5.12 and Table 5.4 demonstrate the improvements in refinement homo-
geneity by using the SBC algorithm. Figure 5.12 shows the effects of using SBC
on level 0 for the Transport2D application. The original homogeneity H(0) is in
the range [0, 0.15], while the improved homogeneity using SBC is in the range
(0.5, 0.8].

Table 5.4: Homogeneity Improvements using SBC for 6 SAMR Applications
‘ Application ‘ LevelO ‘ Levell ‘ Gain on LevelO ‘ Gain on Levell ‘

TP2D 0.565 | 0.989 | 8.433 1.986
RM2D 0.671 | 0.996 | 3.050 1.465
RM3D 0.802 | 0.980 | 1.878 1.586
ENO2D 0.851 | 0.995 |6.212 1.667
BL3D 0.450 | 0.583 | 10.227 2.184
BL2D 0.563 | 0.794 | 28.150 1.813

The effects of clustering using SBC for the 6 SAMR applications are presented



72

in Table 5.4. In this table, gain is defined as the ratio of the improved homogeneity
over the original homogeneity at each level. The gains for TP2D, ENO2D, BL3D,
and BL2D on level 0 are quite large. The gains for RM3D and RM2D applications
are smaller because these applications already exhibit high refinement homogene-
ity starting from level 0 as shown in Table 5.3. These results demonstrate the
effectiveness of the clustering scheme. Moreover, clustering significantly increases
the effectiveness of partitioners and improves overall performance as shown in the

next chapter.

5.6.3 Performance Evaluation

This section presents an evaluation of the AHMP scheme using the clustering

quality metrics defined above.

Maximum Total Communication Cost (RM3D on 64 Processors)
2500

—e— SBC+AHMP
—a—GPA

4

2000 7
alfim
1000 qw T-J o

bund Pl

Communication Message Size

500

1 21 4 61 81 101 121 141 161 181 201
Regridding Steps

Figure 5.13: Maximum Total Communication for RM3D on 64 Processors

Communication Costs: The evaluation of communication cost uses a trace-
driven simulation. Figure 5.13 shows the total communication cost for the RM3D
application on 64 processors for GPA and AHMP (using SBC) schemes. The figure

shows that the overall communication cost is lower for SBC+AHMP. However,



73

in the interval between regrid steps 60 and 100, SBC+AHMP exhibits higher
communication costs. This is because the application is highly dynamic with
scattered refinements in this period. The snapshot at the regrid step 96 in Fig-
ure 2.5 demonstrates the scattered refinements. This in turn causes significant
clique movement during re-clustering. Note that the simulator does not measure
synchronization costs. Since LPA has been shown to significantly reduce synchro-
nization costs [60], selecting LPA within AHMP should further reduce these costs

and improve performance.

Clustering Time for SBC

10000

9000

8000

7000

6000

5000

4000 -
3000 -
2000
1000 -
0 - T T T T T

rm3d rm2d bl3d tp2d bl2d eno2d
SAMR Applications

Time (microsecond)

Figure 5.14: Clustering Costs for the 6 SAMR Application Kernels

Clustering Costs: The cost of the SBC clustering algorithm is experimen-
tally evaluated using the 6 different SAMR application kernels on Frea, a Beowulf
cluster at Rutgers University. The cluster consists of 64 processors and each pro-
cessor has a 1.7 GHz Pentium IV CPU, 512 MB physical memory, 1 GB swap
space, and a Linux 2.4 kernel. The costs are plotted in Figure 5.14. As seen in this
figure, the overall clustering time on average is less than 0.01 second. Note that
the computational time between successive repartitioning/rescheduling phases is

typically in the order of 10’s of seconds, and as a result, the clustering costs are



74

not significant.

The overall performance benefit of the AHMP scheme is evaluated on DataS-
tar, the IBM SP4 cluster at San Diego Supercomputer Center. DataStar has 176
(8-way) P655+ nodes (SP4). Each node has 8 (1.5 GHz) processors, 16 GB mem-
ory, and CPU peak performance is 6.0 GFlops. The evaluation uses the RM3D
application kernel with a base grid of size 256x64x64, up to 3 refinement levels,
and 1000 base level time steps. As described in Chapter 3, RM3D is highly dy-
namic, and exhibits scattered refinement activity and space-time heterogeneity.
These characteristics make approaches that use single partitioner inadequate. As
a result, RM3D is an appropriate application that can demonstrate the benefits

using the AHMP scheme. In the experiment, the number of processors used was

between 64 and 1280.

7500
—e— min_groupsize=4 f
7000 +— _m— min_groupsize=6
—— Mmin_groupsize=8 A//i
__ 6500
(3]
& \ //
@ 6000 LN
E
= ’\\\l\ //
c
2 5500
=3
(%]
3 sono §>¢{/
4500
4000 T T T T T j

5% 10% 20% 30% 40% 50% 60%

Load Imbalance Threshold

Figure 5.15: Impact of Load Imbalance Threshold for RM3D on 128 Processors

Impact of Load Imbalance Threshold and Resource Group Size: As
mentioned in Section 3, the load imbalance threshold v is used to trigger repar-
titioning and redistribution within a resource group. This threshold plays an

important role because it affects the frequency of redistribution and hence the



75

overall performance. The impact of this threshold for different sizes of resource
groups for the RM3D application is plotted in Figure 5.15. When ~ increases from
5% to around 20% to 30%, the execution time decreases. On the other hand, when
~ increases from 30% to 60%, the execution time increases significantly. Smaller
values of v result in more frequent repartitioning within a resource group, while
larger thresholds may lead to increased load imbalance. The best performance is
obtained for v = 20% and min_group_size = 4. Due to the increased load im-
balance, larger group sizes do not enhance performance. The overall performance

evaluation below uses v = 20% and min_group_size = 4.

Execution Time for RM3D Application
(1000 time steps, size=256x64x64)

10000

9000 ]

8000 -—{

7000 ——

6000 —— —

- _ o GPA
OLPA
4000 +— — 0O SBC+AHMP

5000 —

Execution Time (sec)

3000 —

2000 +— T ]

~ 5 | Y TS

64 128 256 512 1024 1280

Number of Processors

Figure 5.16: Overall Performance for RM3D

Overall Performance: The overall execution time is plotted in Figure 5.16.
The figure plots execution times for static GPA, static LPA and the AHMP
scheme with clustering, i.e., SBC+AHMP in the plot. The plot shows that
SBC+AHMP delivers the best performance. Compared to GPA, the performance
improvement is between 30% to 42%. These improvements can be attributed to
the following factors: (1) the AHMP scheme takes advantage of the strength of dif-
ferent partitioning schemes matching them to the requirements of each clique; (2)

the SBC scheme creates well-structured cliques that reduce the communication



76

traffic between cliques; (3) the AHMP scheme enables incremental repartition-

ing/redistribution and concurrent communication between resource groups.

Execution Time for RM3D Application
(1000 time steps, size=128x32x32)
4500

4000
K\ == AHMP without ALP

3500 —0— AHMP with ALP

3000 \\

2500

2000 ?X—a\

1500

1000 w
500

16 32 48 64 96 128 256 384 512
Number of Processors

Execution Time (sec)

Figure 5.17: Experimental Results: AHMP with and without ALP

Impact of Pipelining: To show the impact of application-level pipelining
scheme (ALP), we conduct the experiment using RM3D with a smaller domain,
128x32x32. All the other parameters are same as in the previous experiment.
Due to the smaller computational domain, without ALP, the overall performance
degrades when we deploy it on a cluster with over 256 processors. The main
reason is that, without ALP, the granularity constraint and the increasing com-
munication overheads overshadow the increased computing resources. However,
with ALP, AHMP can further scale up to 512 processors with performance gains
up to 40% compared to the scheme without ALP. Note that the maximum per-
formance gain (40%) is achieved when using 512 processors, wherein the scheme
without ALP results in the degraded performance.

Impact of Out-of-Core: The ALOC scheme has been implemented using
the HDF5 library [10], which is particularly suited to store scientific data. The
effect of the out-of-core scheme is evaluated using RM3D on the Frea Beowulf
cluster. The configuration of RM3D consists of a base grid of size 128 x 32 x 32, 4

refinement levels, and 100 base-level time steps (totally 99 regridding steps). The



77

Number of Page Faults for RM3D Application Execution Time for RM3D Application
(100 time steps, size=128x32x32, 4 refinement levels) (100 time steps, size=128x32x32, 4 refinement levels)

6000 | - 18000
r-.-—-.o-—J crash point
1
5000 16000 #
14000
4000 —+—NonALOC 12000 / /r
_a_ALOC / /" —+—NonALO!

10000 J/ f’ —=—ALOC

8000 / /
6000

rash point

3000

Execution Time

Number of Page Faults

m
]
g
g

E—
—el |

1000 PR 4000 f};f"r/
\ f”_ zuo;) 4 {

1 " 21 31 4 51 61 ! 81 91 1 1 21 31 41 51 61 71 81 91
Regridding Steps Regridding Steps

Figure 5.18: Number of Page Faults: NonALOC versus ALOC

number of processors used is 64. Without ALOC, it took about 13507 seconds to
complete 63 regridding steps at which point the application crashed. With ALOC,
the application successfully completed the execution of 99 regridding steps. The
execution time for the same 63 regridding steps was 9573 seconds, which includes
938 seconds for explicit out-of-core I/O operations. Figure 5.18 shows the page
faults distribution and the execution time for experiments using NonALOC and
ALOC schemes. As seen in the figure, without ALOC, the application incurs
significant page faults due to memory thrashing. With ALOC, the number of
page faults is reduced. As a result, the ALOC scheme improves the performance

and enhances the survivability.

5.7 Concluding Remarks

This chapter presented the adaptive hierarchical multi-partitioner (AHMP) scheme
to address the space-time heterogeneity in dynamic SAMR applications. The
AHMP scheme applies multiple partitioners to different regions of the domain,
in a hierarchical manner, to match the local requirements of the regions. The
chapter first presented a segmentation-based clustering algorithm (SBC) that
can efficiently identify clique regions in the domain at runtime, which have rela-
tively homogeneous requirements. The partitioning requirements of these clique

regions are then characterized, and the most appropriate partitioner for each



78

clique is selected. To handle different resource situations, two hybrid schemes
have been developed. The application-level pipelining scheme (ALP) combines
the domain-based and patch-based decomposition techniques when resources are
under-utilized. In contrast, when resources are inadequate, the application-level
out-of-core scheme (ALOC) has been developed to operate on the computational
domain incrementally and enhance the survivability. This AHMP approach and
its components have been implemented and experimentally evaluated using 6
SAMR application kernels. The evaluations demonstrated the effectiveness of the

clustering and the performance improvements using AHMP strategies.



79

Chapter 6

GridMate: Simulation of Dynamic Applications
on Multi-Site Grid Systems

The exponential growth in computing, networking and storage technologies has
also ushered in a new computing era for harnessing the potential of heteroge-
neous and distributed resources on an unprecedented scale. Inspired by the per-
vasiveness, convenience, economics and open standards of the electrical power
grid, Grid computing is rapidly emerging as the new computing paradigm of the
215 century for solving grand challenge problems in varied domains of science,
engineering and business [46, 47, 45]. Its goal is to provide a service-oriented
infrastructure that leverages open standard protocols and services to enable co-
ordinated resource sharing and problem solving in dynamic multi-institutional
virtual organizations [45]. A number of major Grid infrastructures are being de-
veloped and deployed [6, 11, 18] and many grand challenge problems are being
tackled by exploiting the power of the Grid [1, 5, 9, 12, 15]. Furthermore, re-
sources on the Grid, including geographically distributed computers and storage
systems, are also inherently heterogeneous and dynamic. The coupled hetero-
geneity and dynamism of resources and applications make runtime management
of SAMR-based dynamic Grid applications a significant challenge.

The previous chapters experimentally demonstrate the performance of the
proposed schemes. However, these experiments are restricted to a single-site
supercomputer cluster. To aid the evaluation of the viability of the proposed
strategies in Grid environments, we build a simulation environment that is suited

to our needs. Grid-based SAMR applications exhibit three key distinguishing



80

characteristics: (1) They are inherently large and require large amount of com-
putational resources, typically spanning multiple sites on the Grid. Furthermore,
the exact resource requirements are often not known a priori and depend on the
application runtime behavior. (2) They may execute for days, weeks or months
and often the exact execution time is not known a priori. For instance, it is not
always known how long a scientific and engineering simulation will have to run
before it provides meaningful insights into the phenomenon being modelled. (3)
They are highly dynamic and heterogeneous in space and time. In addition, their
dynamics and heterogeneity patterns are not known a priori.

Thus, the desired simulator needs to model the systems and applications such
that these realistic characteristics are well reflected. This chapter presents the

design, operations and evaluation of the GridMate simulator.

6.1 Motivation

As described in the previous chapters, SAMR applications are highly dynamic and
exhibit space-time heterogeneity. In Grid environments, we are confronted with a
new dimension of complexity. Particularly, Grid systems consists of largely differ-
ent software and hardware resources with changing capacity and availability and
are inherently dynamic and heterogeneous. To demonstrate these characteristics,
we show a typical scenario with two resource sites in Figure 6.1. The tempo-
ral heterogeneity is represented by the variation of available capacity (number of
available processors) of a single resource site over time. The spatial heterogene-
ity is represented by the variation in the available resources across sites. In this
chapter, we consider the heterogeneity at a coarse-granularity. Specifically, we
focus on space-sharing scenarios and leave the time-sharing cases for future work.
The resource usage patterns presented are derived from synthesized traces based

on the real traces from supercomputer centers [64]. More details will be presented



81

Resource Usage Pattern on Site 1 Resource Usage Pattern on Site 2
130 130
120 J fl 120 / [
110 | 110 / |
» 100 | » 100 /
s 9 [ | s 90 / |
2 80 I | 2 80 1
S 70 ' | S 70 L f
2 i | I' < 60 |
3 60 2
3 50 ,,:m | ” 8 50
S 40 H I S 40 |
& 30 E~h’ I " g 30
E 20 || Y E 20
z 10,M I “ | Z 1 A
o A - 9 ) IS B VA
0 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140

Time (hour) Time (hour)

Figure 6.1: Spatial and Temporal Heterogeneity of Resources on Two Sites

in the experimental evaluation section.

6.2 Related Work

Grid computing is emerging as an important new distributed computing paradigm.
Grid environments are inherently heterogeneous and highly dynamic. Further,
the ever-increasing system complexity, scale and diversity of software and hard-
ware make system management a significant challenge. To attack this chal-
lenge, a number of resource management systems have been developed, such as
Globus [7, 42, 48], Condor [4, 62], AppLeS [29, 85] and Legion [14].
Performance evaluation plays a critical role in studying, calibrating, and com-
paring various resource management techniques and systems for Grids. How-
ever, in Grid environments, the capacity and availability of resources change with
time, along with a wide spectrum of dynamic applications. Due to the inherent
dynamism and heterogeneity in Grid environments, it is quite difficult to obtain
repeatable and comparable performance evaluation under identical system setups.
Hence, simulation techniques are adopted. Simulation has been widely used for
modeling and studying real-world systems and phenomena. To enable simula-

tion, researchers have proposed some general simulation languages (Parsec [21])



82

and specifications (DEVS and HLA [86]). Moreover, a large number of simula-
tion tool kits and libraries have been developed, including NS2 [33], OpenNet,
Ptolemy [63], SimJava [17]. However, because Grid computing involves complex
interacting components, there are only a few simulators that can model Grid
environments. These include MicroGrid [76], SimGrid [58], and GridSim [34].

MicroGrid, a prominent Grid emulator developed in UCSD, is based on the
Globus Toolkit [7]. It offers a virtual Grid environment for simulating the exe-
cution of real applications. As an emulator, MicroGrid produces quite accurate
simulation results. However, the simulation modelling and configuration pro-
cess is quite demanding. In addition, due to its emulation nature, simulation
based on MicroGrid is quite time-consuming. The SimGrid toolkit, developed in
UCSD, features flexible application scheduling mechanisms. It supports model-
ing of time-shared resources and applications from realistic traces. The GridSim
toolkit, developed in University of Melbourne, is a Java-based simulation tool.
It supports modeling of space-shared and time-shared large-scale resources in
Grid environments. It also supports the simulation of economy-based resource
scheduling policies in the Grid.

The Grid simulators described above enable simulating a wide spectrum of sce-
narios in Grid environments. However, they consider only resource heterogeneity
and do not address the coupled space-time heterogeneity of both resources and
SAMR applications. As a result, using these simulation toolkits, one needs to
manually create the graph representing the SAMR domain, manually partition

it, and assign the partitions to the heterogeneous resources.

6.3 Conceptual Architecture

To explicitly address the coupled heterogeneity of both applications and resources,

we design the simulator to leverage both application partitioning techniques and



83

resource scheduling techniques. Thus, our main tasks are to model systems, ap-
plications, application partitioning and resource scheduling heuristics. Following
this rationale, we build a Grid simulator called GridMate. The multi-layer system

architecture of GridMate is illustrated in Figure 6.2. The bomottom layer is the

Application traces Performance
Resource configuration results

User Interface

JobGenerator InformationServices SuperScheduler Performance
Analyzer

VirtualOrganization LocalScheduler

SimJava | Java3D

Java Native Interface

Java Virtual Machine HRMS/GrAbE

Operating System

Figure 6.2: System Architecture of GridMate

operating system. On the top of the operating system, we have three components,
Java Virtual Machine (JVM), GrACE and Java Native Interface (JNI). JVM pro-
vides the portable runtime support for Java bytecoded files. Because our specific
application/job partitioners are implemented using the GrACE toolkit which is
implemented in C+4, we add a JNI wrapper layer to expose partitioning and
other services to the simulator. On top of the JVM, we use the discrete-event
simulation tool SimJava [17]. GridMate is built based on SimJava and GrACE
(via JNI) [8]. It consists of the following major components: job generators,
information services, virtual organization (machines, clusters, networks), local
scheduler, super scheduler and performance monitor and analyzer. The input to
the GridMate are a set of application traces including local jobs and SAMR jobs,

resource configuration and scheduling policies. The output from the GridMate



84

are various performance results based on the performance metrics defined in the

next section.

6.4 Scheduling Architecture and Operations

SAMR Job
—m [ Super Scheduler Scheduling
Policy

£t /\\I\

Site n-2,

Local Job Site n1

| (38 somon)

Runtime Manager Runtime Manager

PE: Processing Element AP: Application Partitioner LS: Local Scheduler
RM: Runtime Manager GIS: Grid Information Service AIS: Application Information Service

Figure 6.3: Conceptual Architecture of HRMS on a Multi-Site Grid

Handling the coupled heterogeneity of SAMR applications in complex grid
computing environments is challenging. Figure 6.3 shows the scheduling architec-
ture of GridMate. It attempts to incorporate mechanisms to enable hierarchical
runtime management and self-adaptivity. In particular, the conceptual architec-
ture consists of three different levels: the overall system level (Grid), local site

level (VO) and individual machine level. Key components are:

e Super Scheduler (SS): The target SAMR job is submitted to the super
scheduler. SS makes scheduling decisions according to scheduling policies
and current runtime states of SAMR jobs and resources. SS is in charge of
dynamic co-allocation of the SAMR job to different resource sites through

their local schedulers. In the Grid, there can be a variety of SSs for different



85

classes of big jobs. In this thesis, we only consider the case when there is

only one SS for the SAMR job.

Local Scheduler (LS): There is a local job queue associated with each lo-
cal scheduler. These local jobs could be batch or interactive with various
job specifications, such as number of processors required, execution time,
deadline etc. We differentiate these local jobs with SAMR jobs. LS makes
scheduling decisions according to its local scheduling policies for local jobs

and SAMR jobs.

Runtime Manager (RM): Runtime managers are organized in a hierarchi-
cal fashion as shown in Figure 3.1. An RM is composed of application

partitioners and sensors.

Application Partitioner (AP): These are adaptive application-centric parti-
tioners specialized for SAMR jobs. An AP resides in each processor in order
to monitor the runtime requirements of applications and strives to improve
performance by repartitioning and balancing for the target dynamic ap-
plications. APs take into account the application runtime characteristics
to make partitioning or repartitioning decisions on behalf of SAMR jobs.

Several partitioning strategies have been presented in the previous chapters.

Sensors: These sensors monitor both resource and application runtime sta-
tus. Grid information service (GIS) pulls the resource information from
these sensors. Application information service (AIS) gathers the applica-
tion runtime information from these sensors also. Resource sensors can be
implemented using NWS [85], while application sensors are embedded into

each application sub-task.

Application Information Service (AIS): AIS collects the updated informa-

tion of application runtime states from application sensors. AIS resides in



86

each local site and thus enables the aggregation of application states in a

hierarchical fashion.

e Grid Information Service (GIS): GIS collects the updated information of
resource states from resource sensors. It provides resource information to
super scheduler and application partitioners so that they can make schedul-

ing and partitioning decisions according to policies and current resource

status.
Thread
llifirun
SimEntity
liiibody()
GridEntity Network
LocalJobGeneratorw /Dﬂliﬁiwork() 1/[llifloody ()
o
lifiwork() 4’4 \ Collector
BigJobGenerator
/ liiwork()
|
iiwork() | SyncGroup
SuperScheduler LocalScheduler Machine
lidiwork()
lidiwork() lidiwork() lidtwork()

Figure 6.4: Class Diagram of GridMate Entities

As required by SimJava, all the simulation entities are derived from the
“Sim_entity” class. Figure 6.4 plots a class diagram describing the inheritance
hierarchy of major simulation entities. In the figure, GridEntity defines an ab-
stract method work() to wrap the body() method as required by SimJava. Fur-
ther, all these entities are derived from Thread of Java runtime library. When

the simulation starts, all these entities will be instantiated and will execute in



87

parallel as independent threads. This multi-thread feature is crucial to simulate
parallel applications. Every GridEntity object and its derived object is equipped
with a Network communication channel, which enables flexible and transparent
communication modeling. In the simulation model, the communication cost is
associated with the sender’s messaging overhead, which is proportional to the
message size plus a small constant overhead. The non-blocked send approach is
adopted such that a sender will not be blocked even though the corresponding
receiver is not ready receiving. On the receiver’s side, if the message is available,
there is no communication delay for the receiver; if the message is not available,
the receiver has options to process other tasks or to be blocked until the message
arrives. This communication model simulates the non-blocking message passing
paradigm (such as MPI Isend() and MPI_Irecv() ), which is a common practice
in Sparallel applications.

The sequence diagram in Figure 6.5 illustrates the primary interactions among
GridMate entities. Note that the local job generators and global job generator
execute in parallel. Their job arrivals can be overlapped and result in resource
contention and jobs queued at local schedulers or super scheduler. For local jobs,
we assume that the parallel execution times obtained from application traces in-
clude all processing time, communication time and other overheads. Since we
intend to model the exact computation and communication patterns in parallel
SAMR applications, for SAMR jobs, we explicitly consider the communication
cost incurred during synchronization after each iteration due to resource hetero-

geneity and load imbalance.



88

: BigJob : Super : BigJob : LocalJob : Local PE1 : Machine PE2 : Machine : SyncGroup : Collector
Generator Scheduler Partitioner Generatorw Scheduler
| | | | | | | | |
| | | | | | | | |
| | | | submit | schedule ! | | |
| submit | ! !
]
wait for mpre resources 1 L‘J
i |
7 ! ! submit ! process process ! !
| ;
} } queued
| | :l |
} } L } done for stats }
| | | | /U
| | | T | | done for stats |
| | | | | T
| | | | 1
} } } } done local job }
! ! update resource | done Tpdal job i
} Partition() } u
| | | | |
} partition results ! T | | |
| | | | | | |
| | | | | | |
| | | | | | |
} 7 submit to local a‘cheduler 1 } schedule } } } }
| I | | |
| | | | | |
} subrpil to local schedulgr 2 schepule } } }
| I I T | | | | |
| | | Lprcess | |
| | | L process | |
| | | | ; | |
| H | | | H <1 |
| | | | ! ! synchrghization ! !
| | | | | |
| | | | | i ) u |
| | I I I H synchronization I
| | | | | |
| | | | submit | I > |
i i i i i i
i i i \ i | _ commdone | i
I | —
| | comm done D
| T
| u |
| process |
| proce: i
| | | | | | |
| | | | | :l ; | |
| |
1 | sme il 1
! H 0 sync 1
|
|
} } } } submit } } comm done j }
ﬁ | I
| |
} comm done }
|
L ‘
| |
| |
} } done for stats
|
U |
|
| |
| |
| |
| |
| |

Figure 6.5: Sequence Diagram for Interaction among GridMate Entities

6.5 Experimental Evaluation

6.5.1 System Setup

In GridMate, the Grid system is composed of several computer/resource sites.

Totally, we set up 4 resource sites.

On each site, there are 128 homogeneous

processors. On different sites, computers are heterogeneous in computing speed,

communication bandwidth and memory capacity. Each site has its local sched-

uler and its local job arrivals follow the workload model presented in [64]. This



89

workload model is based on workload logs from three sites, San Diego Super-
computer Center (SDSC), Los Alamos National Lab (LANL) and Swedish Royal
Institute of Technology. In this model, the job sizes follow a two-stage uniform
distribution, job execution times follow the hyper-Gamma distribution and job
arrivals follow two Gamma distributions. In this thesis, we will focus our study
mainly on partitioning and scheduling SAMR jobs. For local job scheduling, a
substantial research effort already exists [44].

The target application is RM3D [41]. Its execution trace is submitted to
the super-scheduler and executed across sites. The performance evaluation of
HRMS strategies is compared with the baseline scheme. The baseline scheme
statically allocates resources such that they meet the peak requirement of the

SAMR application.

6.5.2 FEvaluation Metric

The performance evaluation metrics used are waiting time, execution time and
response time for the SAMR job. Additionally, to compare with the baseline
scheme, we define a processor efficiency factor n and processor-time factor ¢ as

follows.

n S

¢ = Z (NC] X Ni,j X 7'1'7]') (61)

=1 j=1

where, n is the total number of application iterations/phases, s is the total number
of sites, NC; is the normalized capacity of one processor on site j, N, ; is the
number of allocated processors, 7; ; is the length of the i-th time interval and the
subscript (7,7) denotes in the i-th time interval on the site j. ¢ is denoted for
the HRMS scheme and ¢° for the baseline scheme. This equation represents the
normalized total computational resource consumption. The physical meaning of

¢ could be interpreted as the total execution time if the application is assigned to



90

a single standard processor (its NC' = 1).

Thus the mean number of processors used is defined by,

S

N =
TBCL’G

(6.2)

where, T,,. is the total execution time.
Using the processor-time factor ¢, we define the processor efficiency factor n

by the following equation.

b NP b
S N x Tea:e
s N xTh,
6.5.3 Simulation Results
Waiting Time Total Response Time

1400000 2000000
1200000
1000000

800000 o HRMS
600000
400000
200000 -
0 04
5% 16%  22% 35%  46%  65% 5% 16%  22% 35%  46%  65%

Average Resource Utilization Average Resource Utilization

1500000

HRM
1000000 B HRMS
m Baseline

500000 -

Waiting Time (sec)
Response Time (sec)

Figure 6.6: Waiting Time and Response Time: HRMS and Baseline Schemes

Figure 6.6 shows the waiting time and response time of the SAMR, job with
respect to the resource utilization using HRMS and baseline schemes respectively.
The average resource utilization is measured for all resource sites with local job ar-
rivals only. The simulation results show that the simple baseline scheme results in
large waiting time due to its high requirement for large number of processors. The
waiting time increases significantly as the resource utilization increases. While
using HRMS scheme, we observe a significant performance boost for the SAMR
job due to its adaptive policies taking full advantages of resource-centric and
application-centric approaches. Compared to the baseline scheme, HRMS scheme

achieves significant speedups.



91

Processor Efficiency Factor Mean Number of Processors Used

18 300

1 250
150 W Baseline

A 100

. . . . 0

14
5% 16% 22% 35% 46% 65% 5% 16% 22% 35% 46% 65%

12

Efficiency Factor
®

Mean Number of Processors

[SECIFNIN-Y

Average Resource Utilization Average Resource Utilization

Figure 6.7: Processor Efficiency Factor and Mean Number of Processors Used:
HRMS and Baseline Schemes

To demonstrate the resource usage of HRMS and baseline schemes, Figure
6.7 shows the processor efficiency factor and mean number of processors used,
which are defined in equations (6.3) and (6.2) respectively. For the baseline
scheme, its mean number of processors used is constant, 256 processors, due
to its static resource allocation. Compared to the baseline scheme, the mean
number of processors used for HRMS scheme is in the range from 70 to 190. One
interesting observation is that the mean number of processors used for HRMS does
not monotonically increase or decrease with respect to the resource utilization.
This is because of the definition of N in the equation (6.2). Compared to the
baseline scheme, HRMS scheme results in reduction on both the numerator and
the denominator of the equation (6.2). As a comparison of these two schemes,
the processor efficiency factor ranges from 6 to 17. These simulation results
demonstrate the benefits of using HRMS strategies compared to the baseline

scheme.

6.6 Concluding Remarks

This chapter complements the previous chapters by presenting a performance
evaluation on multiple-site supercomputer clusters using the GridMate simulator.
The conceptual architecture, scheduling architecture, and detailed operations of

GridMate are described. Simulation results confirm our observations from the



92

real experiments on a single supercomputer cluster: HRMS strategies outper-
form the baseline scheme by judiciously taking into consideration the space-time

heterogeneity.



93

Chapter 7

Summary, Conclusions and Future Work

7.1 Summary and Conclusions

This thesis presented the design and evaluation of an adaptive runtime man-
agement system and strategy for structured adaptive mesh refinement (SAMR)
applications. Because of its ability to reduce computation and storage require-
ments, the SAMR technique is playing an increasingly important role in modeling
and studying complex scientific and engineering phenomena. However, emerging
applications keep saturating the available large-scale systems in order to gain in-
sights on complex systems. Parallel and distributed implementations of SAMR
have the potential to keep up with the increasing requirements. However, the
space-time heterogeneity and dynamism due to adaptation make efficient run-
time management of parallel SAMR, applications a significant challenge.

To address challenges of managing these dynamic applications, a hybrid space
time runtime management strategy (HRMS) framework has been developed. HRMS
consists of a number of components: clustering, partitioning, scheduling and
hybrid partitiioning strategies. These strategies work synergistically to address
SAMR dynamics and heterogeneity. Specifically, the synchronization issues due
to the dynamics in parallel SAMR applications have been addressed by the hi-
erarchical partitioning algorithm (HPA) and level-based partitioning algorithm
(LPA). Further, the adaptive hierarchical multi-partitioner (AHMP) strategy ad-
dresses space-time heterogeneity by identifying and characterizing a hierarchy of

clique regions for SAMR applications, selecting the most appropriate partitioner



94

to partition each clique region, and mapping the clique hierarchy to resources in
a hierarchical manner.

The hierarchical partitioning algorithm (HPA) enables the load distribution to
reflect the state of the adaptive grid hierarchy. Its goal is to reduce synchroniza-
tion costs, and enable incremental redistribution and concurrent communication.
HPA partitions the computational domain into subdomains and assigns them to
hierarchically organized processor groups. To further reduce the synchronization
cost, a novel level-based partitioning algorithm (LPA) has been proposed. Most
partitioning heuristics merely consider balancing the overall workload among all
processors, which can incur significant synchronization cost due to load imbal-
ance at each refinement level. Instead, LPA strives to balance both the overall
workload and the workload on each refinement level. As a result, LPA outper-
forms other partitioning heuristics by reducing the synchronization cost. The
combined scheme of HPA and LPA offers performance gains as demonstrated by
the experiments presented.

A segmentation-based clustering scheme has been developed to identify and
characterize regions (clique regions) with similar requirements. Segmentation-
based clustering scheme (SBC) applies segmentation techniques to create well-
structured cliques. Since SBC follows the space-filling curve approach, it preserves
the locality while maintaining the structure of clique regions.

To exploit the identified clique hierarchy, hierarchical strategies have been de-
veloped to partition the clique hierarchy and map partitions to resource groups
in a hierarchical manner. It has been observed that there is no single partitioner
works well for all cases [79]. Motivated by this observation, an adaptive hierarchi-
cal multi-partitioner scheme (AHMP) has been developed to exploit the identified
clique hierarchy and dynamically select the most appropriate partitioning algo-
rithm for each clique region. The AHMP scheme extends the HPA scheme and

thus also enables incremental redistribution and concurrent communication. As



95

a result, the overall performance has been improved. It has been experimentally
demonstrated that AHMP improves the overall performance on large systems
with up to 1280 processors in a supercomputer cluster.

To handle different resource situations, two hybrid strategies have been de-
veloped: one is the application-level pipelining scheme (ALP) and the other the
application-level out-of-core scheme (ALOC). ALP is applied when resources are
sufficient and under-utilized. Basically, ALP scheme combines the domain-based
and patch-based partitioning schemes and attempts to overlap the operation on
patches of different refinement levels. Experiments show that ALP improves
the scalability of SAMR applications. When the available resource (particularly
memory) capacity is not sufficient to support the application runtime, an ALOC
scheme is used to enhance the survivability. To avoid the immature crash due to
peak memory requirement for a short period, ALOC scheme enables incremental
operation by keeping only active data patches in the memory and swapping out
inactive patches into the disk.

To investigate the applicability of the proposed strategies in Grid environ-
ments, GridMate, a Grid simulator for distributed SAMR applications on multi-
site clusters, has been designed and implemented following the discrete-event
simulation technique. GridMate adopts a super-scheduler and local-scheduler
scheduling paradigm and integrates partitioning and scheduling schemes in HRMS.
It hence enables the performance evaluation of HRMS strategies in multi-site
Grid environments. Simulation results showed promising performance gains us-

ing HRMS strategies in Grid environments.

7.2 Contributions

Due to the dynamism and space-time heterogeneity of SAMR applications and

their complicated communication behavior, it remains a challenging problem to



96

improve their performance on large systems. This thesis presented a novel strat-
egy, HRMS, that explicitly and successfully addresses the dynamism and hetero-

geneity.

7.2.1 Addressing the Synchronization Costs

By examining the irregular multiple level adaptation and dynamism of SAMR, ap-
plications, this thesis identified two major sources of synchronization costs that
can be the performance bottleneck on large systems. One source of synchro-
nization costs is caused by the organization of the runtime management system.
If processors are organized as a flat pool, the required global synchronization
will cause significant overheads. To tackle this issue, hierarchical partitioning
strategies were presented to organize these processors in a hierarchical manner
to match the runtime requirements of SAMR applications. The other source of
synchronization costs is due to the irregular locations of refinements at differ-
ent levels. Most existing solutions seek to balance overall workload assignments
among processors, which can cause load imbalance at each refinement level. This
thesis proposed LPA seeking to balance both overall workload and workload at
each refinement level. It has been experimentally demonstrated that the proposed

solutions effectively improve the overall performance.

7.2.2 Addressing the Space-Time Heterogeneity

By examining the heterogeneity of SAMR applications, this thesis presented a
strategy that explores the localized structures of the domain and matches the most
appropriate partitioners to the localized requirements. Due to the heterogeneity,
the computation/communication requirements can vary significantly across the
domain, and as a result, using a single partitioner for the entire domain can lead

to decompositions that are locally inefficient. Extending the basic hierarchical



97

scheme, the proposed AHMP scheme dynamically employs multiple partitioners
to different regions of the domain in a hierarchical manner. As a result, AHMP
not only enables the incremental redistribution and concurrent communication,
but also exploits the best strategy for each local region. In addition, SBC has

been proposed to formulate well-structured cliques.

7.2.3 Handling Different Resource Situations

The dynamism of SAMR applications can also lead to under-utilized or inade-
quate resource situations. This thesis presented ALP to handle under-utilized
resources and ALOC to handle the situation when resources are insufficient. It
experimentally demonstrated ALP improves the performance and scalability. By
exploring the memory access pattern of SAMR applications, ALOC meets the

requirement to enhance the survivability.

7.2.4 Investigating the Applicability of HRMS in Grid En-

vironments

The applicability of the proposed strategies in Grid environments was demon-
strated by simulation using the GridMate simulator. Different from other Grid
simulators, GridMate considers the coupled requirements of application partition-
ing and resource scheduling. The simulation demonstrated the performance gain

using the proposed strategies.

7.2.5 Impact of the Research

The proposed strategies have experimentally demonstrated that adaptive strate-
gies that match the appropriate partitioners with the adaptive grid hierarchy of
the computational domain in a hierarchical manner successfully improved the

performance and scalability of parallel SAMR applications. The methodology



98

used in the process of designing HRMS has broad impacts on the design of run-
time management strategies for general dynamics applications. Essentially, the
methodology first investigates the sources of performance bottleneck, character-
izes the computational domain in a finer level, and employs appropriate strategies
to attack identified subproblems. This methodology can be readily extended to
design run time management strategies for other dynamic parallel applications,
such as scientific applications based on adaptive finite-element methods, desktop
Grid applications, and parallel cellular automata [35, 59, 73, 82]. Furthermore,
since the SAMR technique has been adopted by a large class of scientific and
engineering simulations, the improved performance using HRMS ushers in new
opportunities for scientists to explore more challenging physical phenomena and
reduce the turn-around time of their simulations. The enhanced survivability
also enable scientists to zoom in finer details of the underlying physical simula-
tion using limited resources. In addition, the design of GridMate by coupling the
application partitioning and resource scheduling introduced a new approach for
runtime management. The extension to GridMate supporting wide spectrum of

applications is also promising.

7.3 Future Work

Based on the demonstrated performance improvement using HRMS strategies,
there are enormous opportunities to explore based on and beyond HRMS. We
envision three key potential research directions to extend the research presented

in this thesis:

e Extension to the proposed partitioning and clustering schemes.

e Extension to the proposed adaptive hierarchical schemes.



99

e Extension to SAMR techniques by relaxing the synchronization require-

ments.

7.3.1 Extension to Partitioning and Clustering Schemes

This thesis has explored some critical characteristics of SAMR applications. It is
intresting to discover other novel partitioning and clustering strategies to further
pinpoint the application runtime requirements and enhance the performance. A
possible extension to the work on LPA is to design an adaptive LPA scheme that
adjusts partitioning policies according to the current requirements of SAMR ap-
plications. Specifically, for a SAMR application with the deeply refined domain,
the adaptive LPA scheme can apply purely level-based partitioning, bi-level par-
titioning, or hybrid partitioning that uses LPA for the finest refinement levels and
bi-level or triple-level schemes for lower levels. Another potential research direc-
tion is to devise judicious prediction strategies that not only predict the resource
states but also application requirements based on the fundamental physical in-
terpretation of applications. To support prediction, an interesting research is to
explore the feasibility and efficiency of some machine learning techniques, such
as artificial neural network and genetic algorithm to enable the guided adapta-
tion through self-learning. Combining the prediction techniques and the proposed
clustering schemes can potentially reduce the data migration cost and other com-

munication overheads.

7.3.2 Extension to Adaptive Hierarchical Schemes

This thesis presented hierarchical partitioning algorithm (HPA) and adaptive hier-
archical multi-partitioner scheme (AHMP). HPA and AHMP improve the overall
performance by enabling incremental repartitioning and redistribution and con-

current communication. However, experimental evaluation in this thesis has been



100

conducted only on a single supercomputer cluster with homogeneous resources.
To meet the insatiable computing requirements of the emerging large-scale appli-
cations, the Grid systems provide a sustained computing resource. Moreover, Grid
systems are naturally organized in a hierarchical manner, which makes adaptive
hierarchical schemes very suited to be extended to Grid environments. A poten-
tial strategy is to add a group of processors dedicated to handle communication
and coordination. As a result, it can reduce the significant overheads involved
in the across-site communication by caching, prefetching, and replication tech-
niques, or by enlarging the ghost regions. The research on the application-level
out-of-core (ALOC) has been implemented for a single cluster environment using
the HDF5 library [10], which supports efficient data compression. To support
migration in Grid environments, it is interesting to design an adaptive strategy
to select to compress or not compress the data before migration based on the
tradeoffs between the communication and computation costs. By relaxing the
strict synchronization requirements in SAMR techniques as presented in the next
section, the proposed adaptive hierarchical strategies can further improve the

performance for the emerging applications.

7.3.3 Extension to SAMR Techniques

Parallel SAMR implementations have the potential to accurately model complex
physical phenomena [67]. As shown in previous chapters, however, they involve
complicated computation and communication patterns and exhibit space-time
heterogeneity. Particularly, the requirement of strict synchronization at each re-
finement level for every iteration causes the performance bottleneck. Although
existing research efforts, including the research presented in this thesis, have been
committed to improve the performance and scalability of parallel SAMR applica-
tions, we believe that a fundamental extension of the original SAMR, algorithms

is necessary to achieve further substantial improvement. One potential research



101

direction is to combine SAMR and ATAC (asynchronous iterations-asynchronous
communications) [23, 24, 25, 30] algorithms.

Parallel iterative algorithms has been classified into three categories: syn-
chronous iterations-synchronous communications (SISC), synchronous iterations-
asynchronous communications (SIAC), and asynchronous iterations-asynchronous
communication (AIAC) [22]. In terms of this classification, the SAMR algorithms
used in this thesis belong to the STAC category. Using AIAC algorithms, all pro-
cessors perform their iterations without considering the progress of other proces-
sors. Specifically, at the i-th iteration, a processor does not need to wait for the
exact solution of the (i — 1)-th iteration in the ghost regions from its neighbors
but proceeds using whatever data available. As a result, the expensive synchro-
nization costs exhibited in SISC and STAC algorithms are completely eliminated.
This unique feature of the AIAC technique makes it very suited to large-scale
parallel and distributed implementations. It has been shown that AIAC tech-
niques demonstrate great potential to improve the overall performance of parallel
iterative applications in Grid and P2P environments [22, 73]. However, current
research using ATAC algorithms focuses on applications based on conventional
uniform-discretization numerical methods.

Combining adaptive numerical techniques (e.x. SAMR) and AIAC algorithms
offers tremendous potential to further improve the overall performance. In this
combined formulation, two challenging issues need to be addressed. One is the
theoretical verification or extensive experimental verification of the feasibility of
the combined algorithm. And the other is to build an infrastructure to efficiently
support such new algorithms in terms of performance and usability. The key issues
for the implementation include the following: (1) To support a decentralized
convergence detection; (2) To handle decentralized repartitioning and dynamic
load balancing; (3) To consider the dynamism, heterogeneity, and fault-tolerance

in the large-scale Grid systems. In this new context, the proposed schemes in this



102

thesis need to be substantially modified to match the new requirements. However,
we believe this new research direction provides many opportunities to explore the

innovative extension of the proposed schemes and other novel heuristics.



1]

103

References

BIRN, Biomedical Informatics Research Network project. URL: http://
www.nbirn.net.

Cactus computation toolkit. URL: http://www.cactuscode.org/.
Chombo. URL: http://seesar.1bl.gov/anag/chombo/.

Condor. URL: http://www.cs.wisc.edu/condor.

Earth System Grid. URL: https://www.earthsystemgrid.org/.

European DataGrid. URL: http://eu-datagrid.web.cern.ch/
eu-datagrid/.

Globus. URL: http://www.globus.org.

Grace. URL: http://www.caip.rutgers.edu/TASSL/Projects/GrACE/.
GriPhyN, Grid Physics Network project. URL: http://www.griphyn.org/.
Hdf5. URL: http://hdf .ncsa.uiuc.edu/HDF5/.

Information Power Grid. URL: http://www.ipg.nasa.gov/.

International Virtual Observatory Alliance. URL: http://www.ivoa.net/.
IPARS. URL: http://wuw.cpge.utexas.edu/new_generation/.

Legion. URL: http://legion.virginia.edu/.

PPDG, Particle Physics Data Grid. URL: http://www.ppdg.net.
Seti@home. URL: http://setiathome.ssl.berkeley.edu.

Simjava. URL: http://www.dcs.ed.ac.uk/home/hase/simjava/.
TeraGrid. URL: http://www.teragrid.org/.

Vampire. URL: http://www.tdb.uu.se/~johans/research/vampire/
vampirel.html.



[20]

[22]

[30]

[31]

104

G. Allen, T. Dramlitsch, I. Foster, N. T. Karonis, M. Ripeanu, E. Seidel,
and B. Toonen. Supporting efficient execution in heterogeneous distributed
computing environments with cactus and globus. In The 2001 ACM/IEEE
Conference on Supercomputing (CDROM), pages 52 — 52, Denver, Colorado,
2001.

R. Bagrodia, R. Meyer, M. Takai, Y. Chen, X. Zeng, J. Martin, B. Park,
and H. Song. Parsec: A parallel simulation environment for complex sys-
tems. [EEE Computer, 31(10):77-85, 1998. URL: http://pcl.cs.ucla.
edu/projects/parsec/.

J. M. Bahi, S. Contassot-Vivier, and R. Couturier. Coupling dynamic load
balancing with asynchronism in iterative algorithms on the computational
grid. In Parallel and Distributed Processing Symposium, 2003. Proceedings.
International, pages 4— 13, 2003.

J. M. Bahi, S. Contassot-Vivier, and R. Couturier. Dynamic load balancing
and efficient load estimators for asynchronous iterative algorithms. Parallel
and Distributed Systems, IEEE Transactions on, 16(4):289-299, 2005.

J. M. Bahi, S. Contassot-Vivier, R. Couturier, and F. Vernier. A decentral-
ized convergence detection algorithm for asynchronous parallel iterative algo-
rithms. Parallel and Distributed Systems, IEEE Transactions on, 16(1):4-13,
2005.

G. M. Baudet. Asynchronous iterative methods for multiprocessors. Journal
of ACM, 25:226-244, 1978.

M. Berger and J. Oliger. Adaptive mesh refinement for hyperbolic partial
differential equations. Journal of Computational Physics, 53:484-512, 1984.

M. Berger and I. Regoutsos. An algorithm for point clustering and grid gen-
eration. , 21(5):, 1991. IEEE Transactions on Systems, Man and Cybernetics,
21(5):1278-1286, 1991.

F. Berman, G. Fox, and A. J. G. Hey, editors. Grid Computing: Making the
Global Infrastructure a Reality. Wiley Publisher, April 2003.

F. Berman, R. Wolski, H. Casanova, W. Cirne, H. Dail, M. Faerman,
S. Figueira, J. Hayes, G. Obertelli, J. Schopf, G. Shao, S. Smallen, S. Spring,
A. Su, and D. Zagorodnov. Adaptive Computing on the Grid Using Ap-
pLeS. IEEE Transactions on Parallel and Distributed Systems, 14(5):369—
382, 2003.

D. P. Bertsekas and J. N. Tsitsiklis. Parallel and Distributed Computation:
Numerical Methods. Prentice Hall, 1989.

S. Bokhari. Assignment Problems in Parallel and Distributed Computing.
Kluwer Academic Publishers, Boston, Massachusetts, 1987.



[32]

[33]

[34]

[38]

[39]

[40]

[41]

[42]

105

S. Bokhari, T. W. Crockett, and D. M. Nicol. Binary dissection: Variants
and applications. Technical Report TR-97-29, 1997. URL: "citeseer.nj.
nec.com/bokhari97binary.html".

L. Breslau, D. Estrin, K Fall, S Floyd, J Heidermann, A Helmy, P Huang,
S McCanne, K Varadhan, Y Xu, and H. Yu. Advances in network simulation.
IEEE Computer, 33(5):5967, 2000.

R. Buyya and M. Murshed. Gridsim: A toolkit for the modeling and sim-
ulation of distributed resource management and scheduling for grid com-

puting. Concurrency and Computation: Practice and Ezperience, 14(13-
15):11751220, 2002.

C. R. Calidonna, C. D. Napoli, M. Giordano, M. M. Furnari, and S. D.
Gregorio. A network of cellular automata for a landslide simulation. In

15th International Conference on Supercomputing, pages 419 — 426, Sorrento,
Italy, 2001.

S. Chandra. Armada: A framework for adaptive application-sensitive run-
time management of dynamic applications. Technical report, Rutgers Uni-
versity, 2002.

S. Chandra, X. Li, and M. Parashar. Engineering an autonomic partitioning
framework for grid-based samr applications. In L. T. Yang, editor, Hard-
ware/Software Support for Parallel and Distributed Scientific and Engineer-
img Computing. Kluwer Academic Publishers, September 2003.

S. Chandra and M. Parashar. Armada: An adaptive application-sensitive
partitioning framework for structured adaptive mesh refinement applications.
In TASTED International Conference on Parallel and Distributed Computing
Systems (PDCS 02), pages 446 — 451, Cambridge, MA, 2002. ACTA Press.

S. Chandra, J. Steensland, M. Parashar, and J. Cummings. An experimental
study of adaptive application sensitive partitioning strategies for samr ap-
plications. In 2nd Los Alamos Computer Science Institute Symposium (also
Best Research Poster at Supercomputing Conference 2001), 2001.

J. Chen and V. Taylor. Mesh partitioning for efficient use of distributed
systems. IEEE Transactions on Parallel and Distributed Systems, 13(1):67—
79, 2002.

J. Cummings, M. Aivazis, R. Samtaney, R. Radovitzky, S. Mauch, and
D. Meiron. A virtual test facility for the simulation of dynamic response
in materials. Journal of Supercomputing, 23:39-50, 2002.

K. Czajkowski, I. Foster, N. Karonis, C. Kesselman, S. Martin, W. Smith,
and S. Tuecke. A resource management architecture for metacomputing
systems. In Lecture Notes in Computer Science, volume 1459, 1998.



[43]

[44]

[45]

[47]

[48]

106

K. Devine, E. Boman, R. Heaphy, B. Hendrickson, and C. Vaughan. Zoltan
data management services for parallel dynamic applications. Computing in
Science and Engineering, 4(2):90-97, 2002.

D. G. Feitelson. A survey of scheduling in multiprogrammed parallel systems.
Technical report, IBM Research Report RC19790(87657), 1995.

I. Foster and C. Kesselman. The Grid: Blueprint for a New Computing
Infrastructure. Morgan Kaufmann, 2nd edition, 2004.

I. Foster, C. Kesselman, J. Nick, and S. Tuecke. The physiology of the grid:
An open grid services architecture for distributed systems integration, open
grid service infrastructure wg, global grid forum, June 2002.

I. Foster, C. Kesselman, and S. Tuecke. The anatomy of the grid: Enabling
scalable virtual organizations. International Journal of High Performance
Computing Applications, 15(3):200-222, 2001.

I. Foster, Z. Kesselman, C. Lee, B. Lindqll, K. Nahrstedt, and A. Roy. A
distributed resource management architecture that supports advance reser-
vations and co-allocation. In Seventh International Workshop on Quality of

Service (IWQoS ’99), 1999.

G. Gilder, editor. Gilders law on network performance. Telecosm: The World
After Bandwidth Abundance. Touchstone Books, 2002.

R. C. Gonzalez and R. E. Woods. Digital Image Processing. Prentice Hall,
Upper Saddle River, NJ, 2nd edition, 2002.

S. Hawley and M. Choptuik. Boson stars driven to the brink of black hole
formation. Physical Review D, 62:10(104024), 2000.

B. Hendrickson and R. Leland. A multilevel algorithm for partitioning
graphs. In Supercomputing, San Diego, 1995.

J. L. Hennessy, D. A. Patterson, and D. Goldberg. Computer Architecture:
A Quantitative Approach. Morgan Kaufmann, 2002.

R. D. Hornung and S. R. Kohn. Managing application complexity in the
samrai object-oriented framework. Concurrency and Computation - Practice
& Experience, 14(5):347-368, 2002.

L. V. Kale. Charm. URL: http://charm.cs.uiuc.edu/research/charm/.

G. Karypis. Parmetis, 2003. URL: http://www-users.cs.umn.edu/
~karypis/metis/parmetis/index.html.

S. Kohn. SAMRAI: Structured adaptive mesh refinement applications in-
frastructure. Technical report, Lawrence Livermore National Laboratory,
1999.



[58]

[61]

[62]

[63]

[64]

[65]

[66]

107

A. Legrand, L. Marchal, and H. Casanova. Scheduling distributed applica-
tions: The simgrid simulation framework. In the 3rd IEEE/ACM Interna-
tional Symposium on Cluster Computing and the Grid (CCGrid2003), Tokyo,
Japan, May, 2003. IEEE Computer Society Press.

T. J. Lehman and J. H. Kaufman. Optimalgrid: middleware for automatic
deployment of distributed fem problems on an internet-based computing grid.
In IEEE International Conference on Cluster Computing, pages 164171,
2003.

X. Li and M. Parashar. Dynamic load partitioning strategies for managing
data of space and time heterogeneity in parallel samr applications. In The 9th
International Euro-Par Conference (Euro-Par 2003), Klagenfurt, Austria,
2003.

X. Li and M. Parashar. Hierarchical partitioning techniques for structured

adaptive mesh refinement applications. The Journal of Supercomputing,
28(3):265 — 278, 2004.

C. Liu, L. Yang, I. Foster, and D. Angulo. Design and evaluation of a
resource selection framework for grid applications. In 11 th IEEE Interna-
tional Symposium on High Performance Distributed Computing HPDC-11
20002 (HPDC’02), 2002.

X. Liu, J. Liu, J. Eker, and E. A. Lee. Heterogeneous modeling and design
of control systems. In T. Samad and G. Balas, editors, Software-Enabled
Control: Information Technology for Dynamical Systems. IEEE Press, New
York, 2003.

U. Lublin and D. G. Feitelson. The workload on parallel supercomputers:
Modeling the characteristics of rigid jobs. Journal of Parallel and Distributed
Computing, 63(11):1105-1122, 2003.

P. MacNeice. Paramesh, 1999. URL: http://esdcd.gsfc.nasa.gov/ESS/
macneice/paramesh/paramesh.html.

G. Moore. Moores Law, 1965. URL: http://www.intel.com/research/
silicon/mooreslaw.htm.

M. Parashar and J. Browne. On partitioning dynamic adaptive grid hierar-
chies. In 29th Annual Hawair International Conference on System Sciences,
pages 604-613, 1996.

J. Pilkington and S. Baden. Dynamic partitioning of non-uniform structured
workloads with spacefilling curves. IEEE Transactions on Parallel and Dis-
tributed Systems, 7(3), 1996.



[69]

[74]

[75]

[76]

[79]

[30]

108

J. Ray, H. N. Najm, R. B. Milne, K. D. Devine, and S. Kempka. Triple flame
structure and dynamics at the stabilization point of an unsteady lifted jet
diffusion flame. In (to be published in) Proc. Combust. Inst.

J. Ray, H. N. Najm, R. B. Milne, K. D. Devine, and S. Kempka. Triple flame
structure and dynamics at the stabilization point of an unsteady lifted jet
diffusion flame. Proceedings of Combust. Inst. 2000, 25(1):219-226, 2000.

H. Sagan. Space Filling Curves. Springer-Verlag, 1994.

R. Samtaney. Rm2d. URL: http://www.galcit.caltech.edu/~ravi/rm.
html.

K. Sankaralingam, S. Sethumadhavan, and J.C. Browne. Distributed pager-
ank for p2p systems. In 12th IEEE International Symposium on High Per-
formance Distributed Computing, pages 5868, 2003.

K. Schloegel, G. Karypis, and V. Kumar. A unified algorithm for load-
balancing adaptive scientific simulations. In Supercomputing, 2000.

B. A. Shirazi, A. R. Hurson, and K. M. Kavi. Scheduling and load balanc-
ing in parallel and distributed systems. IEEE Computer Society Press, Los
Alamitos, 1995.

H.J. Song, X. Liu, D. Jakobsen, R. Bhagwan, X. Zhang, K. Taura, and
A. Chien. The microgrid: A scientific tool for modeling computational grids.
In IEEE Supercomputing (SC2000), Dallas, TX, November 2000. IEEE Com-
puter Society Press.

J. Steensland. FEfficient Partitioning of Structured Dynamic Grid Hierar-
chies. PhD thesis, Uppsala University, 2002.

J. Steensland. Irregular buffer zone partitioning reducing synchronization
cost in samr. In The 6th Workshop on Parallel and Distributed Scientific
and Engineering Computing (PDSEC-05) held in conjunction with The 19th
International Parallel and Distributed Processing Symposium (IPDPS-05),
2005.

J. Steensland, S. Chandra, and M. Parashar. An application-centric charac-
terization of domain-based sfc partitioners for parallel samr. leee Transac-
tions on Parallel and Distributed Systems, 13(12):1275-1289, 2002.

J. Steensland, M. Thune, S. Chandra, and M. Parashar. Towards an adaptive
meta-partitioner for parallel samr applications. In TASTED PDCS 2000,
2000.

J. Steensland, M. Thune, S. Chandra, and M. Parashar. Towards an adaptive
meta-partitioner for parallel samr applications. In TASTED PDCS 2000,
2000.



[82]

[33]

[84]

[85]

109

D. Talia. Parallel cellular programming for developing massively parallel
emergent systems. In International Parallel and Distributed Processing Sym-
posium, pages 22-26, 2003.

B. Veeravalli, D. Ghose, V. Mani, and T.G. Robertazzi. Scheduling Divisible
Loads in Parallel and Distributed Systems. IEEE Computer Society Press,
Los Almitos, California, 1996.

B. Wilkinson and M. Allen. Parallel Programming: Techniques and Ap-
plications Using Networked Workstations and Parallel Computers. Pearson
Education, first edition, 1999.

R. Wolski, N. T. Spring, and J. Hayes. The network weather service: a dis-
tributed resource performance forecasting service for metacomputing. Future
Generation Computer Systems, 15(5-6):757-768, 1999.

B. P. Zeigler, S. B. Hall, and H. S. Sarjoughian. Exploiting hla and devs
to promote interoperability and reuse in lockheed’s corporate environment.
SIMULATION, Special Issue on The High Level Architecture., 73(5):288—
295, 1999.



110

Appendix A
Glossary

AHMP: Adaptive hierarchical multi-partitioner

AHPA: Adaptive hierarchical partitioning algorithm
AIS: Application information service

ALOC: Application-level out-of-core

ALP: Application-level pipelining

BPA: Bin-packing partitioning algorithm

CGDS: Composite grid distribution strategy

GIS: Grid information service

GMISP+SP: geometric multilevel 4+ sequence partitioning
GPA: Greedy partitioning algorithm

GUL: Grid unit list

HPA: Hierarchical partitioning algorithm

HRMS: Hybrid space-time runtime management strategy
LBC: Level-based clustering algorithm,

pBD+ISP: p-way binary dissection algorithm

PDE: Partial differential equation



PDS: Parallel and distributed system

RM: Runtime manager

RMS: Runtime management system

SAMR: Structured adaptive mesh refinement
SBC: Segmentation-based clustering

SEFC: Space-filling curve

SHPA: Static hierarchical partitioning algorithm
SPMD: Single program multiple data

T-VCU: Temporal virtual computational unit

111



2005

2001

1998

1995

112

Curriculum Vita

Xiaolin Li

PhD, Electrical & Computer Engineering, Rutgers University, USA.

PhD, Electrical & Computer Engineering, National University of Sin-
gapore, Singapore

MEng, Mechanical & Automation Engineering, Zhejiang University,
PRC

BEng, Mechanical & Electronic Engineering, Qingdao University, PRC

2001-2005 Graduate Research Assistant, The Applied Software Systems Lab,

Center for Advance Information Processing, Rutgers University, USA

2003-2003 Extreme Blue Intern, Extreme Blue Program, IBM Austin, USA

2001-2001 Staff R&D Engineer, Mobile Computing and Protocols Group, Center

for Wireless Communications, Singapore

1999-2000 Teaching Assistant, Department of Electrical & Computer Engineer-

ing, National University of Singapore

1998-2001 Research Scholar, Open Source Software Lab and Digital Systems &

Applications Lab, National University of Singapore, Singapore

1995-1998 Research Assistant, National Key Lab of CAD & CG and Modern

Design Methodology Lab, Zhejiang University, PRC

Publications

X. Li and M. Parashar, “Using Clustering to Address the Heterogeneity
and Dynamism in Parallel SAMR Application”, (accepted) 12th An-
nual IEEE International Conference on High Performance Computing

(HiPC-2005).



113

S. Chandra, X. Li, T. Saif and M. Parashar, “Enabling Scalable Paral-
lel Implementations of Structured Adaptive Mesh Refinement Applica-

tions”, (under revision) Journal of Supercomputing, Kluwer Academic
Publishers.

S. Chandra, X. Li, T. Saif and M. Parashar, “Addressing the Scalability
of Distributed Structured Adaptive Mesh Refinement”, (submitted to)
Computing and Visualization in Science, Springer-Verlag.

X. Li and M. Parashar, “Adaptive Runtime Management of Spatial and
Temporal Heterogeneity for Dynamic Grid Applications”, Proceedings
of the 13th High Performance Computing Symposium (HPC-2005), San
Diego, California, pp. 223-228, Apr. 2005.

X. Li, B. Veeravalli, and C.C. Ko, “Distributed Image Processing in
a Network of Workstations”, International Journal of Computers and
Applications, ACTA Press, Vol. 25 (2), pp. 136-145, 2003.

X. Li, and M. Parashar , “Hierarchical Partitioning Techniques for
Structured Adaptive Mesh Refinement Applications”, Journal of Su-
percomputing, Kluwer Academic Publishers, Vol.28(3), pp.265-278, 2004.

S. Chandra, X. Li and M. Parashar, “Engineering an Autonomic Parti-
tioning Framework for Grid-based SAMR, Applications”, Book chapter
in “Hardware/Software Support for Parallel and Distributed Scientific
Engineering Computing”, Editor: L. T. Yang, Kluwer Academic Pub-
lishers, Sep. 2003.

X. Li and M. Parashar, “Dynamic Load Partitioning Strategies for
Managing Data of Space and Time Heterogeneity in Parallel SAMR
Applications”, Lecture Notes in Computer Science (EuroPar-2003),
Editors: H. Kosch, L. Boszormenyi, H. Hellwagner, Springer-Verlag,
Klagenfurt, Austria, Vol. 2790, pp.181-188, Aug. 2003.

X. Li, S. Ramanathan, and M. Parashar, “Hierarchical Partitioning
Techniques for Structured Adaptive Mesh Refinement (SAMR) Ap-
plications”, Proceedings of International Conference on Parallel Pro-
cessing (ICPP-2002), HPSECA Workshop, Vancouver, Canada, Aug.
2002.

X. Li, B. Veeravalli, and C.C. Ko, “Divisible Load Scheduling in a Hy-
percube Cluster with Finite-size Buffers and Granularity Constraints”,
Proceedings of the First IEEE/ACM International Symposium on Clus-
ter Computing and the Grid (CCGrid-2001), Brisbane, Australia, pp.
660-667, May 2001.

B. Veeravalli, X. Li, and C.C. Ko, “On the Influence of Start-up Costs
in Scheduling Divisible Loads on Bus Networks”, IEEFE Transactions



114

on Parallel and Distributed Systems, Vol.11 (12), pp.1288-1305, Dec.
2000.

X. Li, B. Veeravalli, and C.C. Ko, “Divisible Load Scheduling on Single-
level Tree Networks with Finite-size Buffers”, IEFEE Transactions on
Aerospace and Electronic Systems, Vol. 36 (4), pp. 1298-1308, Oct.

2000.



