A MIDDLEWARE ARCHITECTURE FOR
INTEGRATING SERVICES ON THE GRID

BY VIRAJ N. BHAT

A thesis submitted to the
Graduate School-—New Brunswick
Rutgers, The State University of New Jersey
in partial fulfillment of the requirements
for the degree of
Master of Science

Graduate Program in Electrical and Computer Engineering

Written under the direction of
Professor Manish Parashar

and approved by

New Brunswick, New Jersey

May, 2003

ABSTRACT OF THE THESIS

A Middleware Architecture for Integrating

Services on the Grid

by VIRAJ N. BHAT

Thesis Director: Professor Manish Parashar

The growth of the Internet and the advent of the computational “Grid” have made
it possible to develop and deploy advanced services to support the infrastructure
and applications on the Grid. Recent years have also seen the development and de-
ployment of a number of application/domain specific problem solving environments
(PSEs) and collaboratories. These systems have evolved in parallel with the Grid
and have been built on customized architectures and specialized technologies to meet
unique user requirements and support specific user communities. While enabling
these systems to share services and capabilities has many advantages, enabling such
interoperability presents many challenges. These services typically have customized
architectures and implementation, and build on different enabling technologies. In
this thesis we present the design, implementation and evaluation of the Grid-enabled
“Discover” middleware substrate that enables Grid infrastructure services provided
by the Globus Toolkit (security, information, resource management, storage) to inter-
operate with collaboratory services provided by Discover (collaborative application

access, monitoring, and steering). Furthermore, it enables users to seamlessly access

1

and integrate local and remote services to synthesize customized middleware config-

urations on demand.

1l

Acknowledgements

I would like to like to acknowledge my Family in India who have been supportive of
my efforts. I would like to thank my research advisor Dr. Manish Parashar for his
invaluable guidance, support and encouragement during the course of this work and
throughout my graduate studies at Rutgers. I particularly draw my inspiration from
his hardwork and enthusiasm with which he goes about this work. I am thankful to
Dr. Deborah Silver and Dr. Ivan Marsic for being on my thesis committee and
for their advice and suggestions regarding the thesis. I also acknowledge the sugges-
tions of the committee in developing my technical understanding, research aptitude,
thesis writing and presentation skills. I thank my colleagues at TASSL Lab, partic-
ularly Manish Agarwal and Vincent Matossian for valuable research discussions,
cooperation and collaboration related to this work. I thank the CAIP staff consisting
of Bill Kish, Steve Vaccaro and James Chun who would readily help me during

times of emergency.

v

Dedication

To my Parents

Table of Contents

[Abstractl ii
[Acknowledgements| iv
Dedicationl o o v
[List of Tables| viii
[List of Figures| ix
M. Introduction|. 1
(L1, Contributionsl o 2
[1.2. Organization| 3
2. Prior Work| 4
[2.1. Computational Collaboratories and Problem Solving Environments| . 4
[2.2. Middleware Technologies| 6
3. The Grid Enabled Middleware Architecture/. 7
B.1. Grid Servicesl 8
[3.2. Collaboratory Services| 9

1.1. Discover Middleware Host (Server)| 11
4.2, Discover Middleware Services 12
4.3, Discover Portalsl oo 14

vi

(5. Operation of the DISCOVER Grid Enabled Middleware| 17

[>.1. Security and Authentication| L. 18
[5.2. Registration and Discovery ot Services| 19
[5.3. Discovery of Servers, Applications and Resources 19
[5.4. Accessing Globus Grid Services: Job Submission and Remote Data |
| ACCESS . . . e 20
.5, Distributed Collaborationlo 20

[5.6. Distributed Locking and Logging for Interactive Steering and Collab- |

[orationl 21

[>.7. Services Interoperation|o 21

6. Application Scenario : Oil Reservoir Optimization Using the Grid- |

[Enabled Discover Middlewarel 23
6.1 Endto EndScenariol oo 25
(. Evaluationl 27
[7.1. Performance Evaluation| 28
[.2. Evaluation of the DiscoverMDS Service 28
[.3. Evaluation of the DiscoverGRAM Servicel 29
[[.4. Evaluation of the DiscoverGASS Servicel 32
[.5. Fvalutation of the DiscoverCollab Serviedf. 33
B. Conclusions| 35
8.1. Future Workl. 35
References| 38

vil

List of Tables

[2.1. Services Provided by Computational Collaboratories/.)
[4.1. Sequence ot Events Followed by the User during Interaction with the

Discover Portallo 16
[7.1. Steps Involved in Starting and Terminating Jobs using the Discover-

GRAM Servicel

viil

List of Figures

[3.1. Grid Enabled Middleware for Interoperable Collaboratories| 7
[4.1. Design of the Grid Enabled Middlewarel. 12
[4.2. Snapshot of the Discover Portall 15
[>.1. Operation of the Discover Grid Enabled Middlewarel. 17
[5.2. Delegation Model Across Services in the Grid Enabled Discover Mid- |
dlewarel 22
[6.1. Sample Application Scenario: Oil Reservoir Optimization| 23
[7.1. Experimental Setup of the Grid Enabled Discover middleware| 28
[7.2. gridl.rutgers.edu 1s Queried| 29
[7.3. discover.rutgers.edu 1s Queried|. 29
(7.4. DiscoverGRAM Launches the tportamr Application Using Steps a, b, |
c and d. It Terminates the Same Application Using Steps f, g, h and 1 |
on gridl.rutgers.edu. L 31
[7.5. DiscoverGRAM Launches the tportamr Application Using Steps a, b |
c and d. It Terminates the Same Application Using Steps f, g, h and 1 |
on discover.rutgers.edw.).o 32
[7.6. Log-Log Plot of Transter Times for Various File Sizes Using the Dis- |
coverGASS Service (P case)| o oL 33

X

Chapter 1

Introduction

“Grid Computing” [18] is rapidly emerging as the dominant paradigm of wide area
distributed computing. Its goal is to realize a persistent, standards-based service
infrastructure that enables coordinated sharing of autonomous and geographically
distributed hardware, software, and information resources [16]. The emergence of
such Grid environments has made it possible to conceive a new generation of ap-
plications based on seamless aggregations, integrations and interactions of resources,
services/components and data. These Grid applications will be built on a range
of services including multipurpose domain services for authentication, authorization,
discovery, messaging, data input/output, and application/domain specific services
such as application monitoring and steering, application adaptation, visualization,
and collaboration. Recent years have also seen the development and deployment
of a number of application/domain specific problem solving environments (PSEs)
and collaboratories (e.g. Upper Atmospheric Research Collaboratory (UARC) [35],
Discover [30, 44] and Astrophysics Simulation Collaboratory (ASC) [41]). These sys-
tems provide specialized services to their user communities and/or address specific
issues in wide area resource sharing and Grid computing. However, emerging Grid
applications require combining these services in a seamless manner. For example,
the execution of an application on the Grid requires security services to authenti-
cate users and the application, information services for resource discovery, resource
management services for resource allocation, data transfer services for staging, and
scheduling services for application execution. Once the application is executing on the

Grid, interaction, steering, and collaboration services allow geographically distributed

users to collectively monitor and control the application allowing the application to
be a true research or instructional modality. Once the application terminates data
storage and clean up services come into play. While enabling collaboratories/PSEs to
share services and capabilities has many advantages, enabling such interoperability
presents many challenges. The PSEs have evolved in parallel with the Grid comput-
ing effort and have been developed to meet unique requirements and support specific
user communities.As a result, these systems have customized architectures and im-
plementations, and build on specialized enabling technologies. Furthermore, there
are organizational constraints that may prevent such interaction as it involves mod-
ifying existing software. A key challenge then, is the design and development of a
robust and scalable middleware that addresses interoperability, and provides essential
enabling services such as security and access control, discovery, and interaction and
collaboration management. Such a middleware should provide loose coupling among
systems to accommodate organizational constraints and an option to join or leave this
interaction at any time. It should define a minimal set of interfaces and protocols to
enable the PSEs to share resources, services, data and applications on the Grid while
being able to maintain their architectures and implementations of choice. A key goal
of the Global Grid Forum [2I] and the Open Grid Services Architecture (OGSA) [19]

is to address these challenges by defining community standards and protocols.

1.1 Contributions

The thesis makes these key contributions:

e To investigate the design and evaluation of a prototype middleware that will en-
able interoperability between PSE/collaboratory and Grid services and support

the overall execution of computational applications on the Grid.

e In this thesis we present the design, implementation and evaluation of the Grid-

enabled Discover middleware substrate that enables Grid infrastructure services

provided by Globus Tookit [I7] (security, information, resource management,
storage) to interoperate with collaboratory services provided by the DISCOVER
computational collaboratory (collaborative application access, monitoring, and

steering).

e We demonstrate how users can seamlessly access and integrate local and remote
services to synthesize customized middleware configurations on demand. This
thesis builds on our previous work on the CORBA Community Grid (CoG)
Kit [46] and the Discover middleware [31].

e We evaluate the performance of this middleware during the computational ap-
plications lifecyle and argue that the concept of using borrowing service does

not affect the performance of the middleware significantly.

1.2 Organization

The thesis is organized as follows. Chapter [l] presents background on Computa-
tional Collaboratories and Problem Solving environments.It also talks about the ser-
vices and capabilites they provide. Chapter [2| talks about middleware technologies
which are critical for achieving this interoperability as presented in this thesis. Chap-
ter [3 presents our architecture of the Grid enabled middleware substrate. Chapter [4]
presents the design and implementation of the Discover Grid enabled middleware sub-
strate. Chapter [p| discusses the operation of the Discover Grid enabled middleware
substrate. Chapter [0] discusses the use of the Discover Grid enabled middleware in
the process of online Oil Reservoir Optimization. Chapter [7] presents an experimen-
tation evaluation and analysis of of Discover Grid enabled middleware framework.

Chapter [8| presents a summary of this thesis and comments on the future work.

Chapter 2
Prior Work

In recent years, there has been considerable research in problem solving environments,
computational collaboratories and middleware technologies. In this chapter we sum-
marize recent efforts and the services/capabilities they provide. Our overall goal is
to highlight the need for and benefits of integration and interoperability between the
services provided by each of these systems. Section summarizes the various ser-
vices provided by computational collaboratories and motivates the need for the Grid
enabled middleware. Section lists the various technologies required for building

this middleware.

2.1 Computational Collaboratories and Problem Solving En-

vironments

Recent efforts aimed at developing and deploying computational collaboratories and
problem solving environments to support applications on the Grid include Discover,
Astrophysics Simulation Collaboratory (ASC), NPACI HoTPage [45], Upper Atmo-
spheric Research Collaboratory (UARC), Environmental Molecular Sciences Collab-
oratory (ESML) [28], Diesel Combustion Collaboratory (DCC) [13], Space Physics
Aeronomy Research Collaboratory (SPARC) [42] and Narrative-based, Immersive,
Constructionist/Collaborative Environments for children (NICE) [39]. Each of these
systems provides a set of services to support application development, execution

and/or management to their user communities, as summarized in Table 2.1l For

Collaboratories

- UARC | NICE | DCC | ESML | ASC Portal | Discover
Services Offered

Discovery of Services X X X X X Vv
Resource Access X X X X Vi X
Resource Notification X X X X X X
Data Movement * * * * X X
Authentication Authorization Vi v Vi Vi Vi Vi
Application Monitoring Vi * Vi Vi Vi Vi
Steering v v TV N N N
WhiteBoard v v V v Vv v

v v v v v v

Concurency Control

/= services which are present
X = services which are absent
*= not clear may not be supported

Table 2.1: Services Provided by Computational Collaboratories

example, Discover provides services for remote application access, collaborative ap-
plication monitoring, and controlled application steering. It however lacks services
for resource management and allocation and data movement. NICE provides a
shared virtual design space for tele-immersive applications but lacks services for re-
source/information discovery. Clearly, the services required during the lifetime of a
Grid application will span multiple such systems, making the interoperability and
integration of these systems and their services a desirable feature. The Discover com-
putational collaboratory, which is one of the building blocks for this work, is a virtual
meta-laboratory that enables geographically distributed scientists and engineers to
collaboratively access, monitor, interact with and control distributed applications
using computational portals. The Discover middleware substrate is a peer-to-peer
network of Discover interaction and collaboration servers and enables pervasive and
collaborative access to geographically distributed applications. Although Discover
provides a rich set of services, it clearly needs to interoperate with systems providing
Grid services for resource management, application configuration and deployment,
data movement, etc. This thesis extends the Discover middleware substrate to be

Grid-aware and to enable this interoperability.

2.2 Middleware Technologies

Standardized middleware technologies are critical for achieving the interoperability
addressed in this thesis.Several research efforts have emerged to address this issue.
Open Grid Services Architecture (OGSA) is a distributed interaction and comput-
ing infrastructure providing uniform exposed service semantics (called Grid Services)
for creating, naming and discovering transient service instances. Commodity Grid
Kits (CoG Kits) [48] are a combination of commodity and Grid technologies to en-
hance the functionality, maintenance, and deployment of Grid services. These include
Java CoG [47], CORBACoG [46] and PythonCoG [38]. CORBACo0G (which is also
a building block for this work) provides CORBA applications access to the Globus
Grid services and support rapid development on the Grid. The use of standard
protocols such as IIOP [40] allows interoperability between CORBA [36] based ap-
plications and services across operating systems and programming languages. The
commercial community is similarly working to enable interoperability between Web
Services [9] through the use of standards such as Web Services Definition Language
(WSDL) [10], Web Services Flow Language (WSFL) [29], Simple Object Access Proto-
col (SOAP) [6], Universal Description, Discovery and Integration (UDDI) [3] registry,
and XML [7] messaging, to create a platform-independent, open framework for de-
scribing, discovering, and integrating services using the Internet. These technologies
are rapidly evolving and there is a conscious effort towards integrating business and

Grid services and developing a Business Grid [26].

Chapter 3
The Grid Enabled Middleware Architecture

/Ser\uces requested by the Client

m authentlcanon + e\"e@me

éollaboratlon tool§ lockmg steenng
chat,whiteboard \ 1 event \ Collaboration Services
A ‘ collaborafive access service
visualization] C—D

service "~ e control

discavery,) =) -
HAirecto authorization> ~ notlfication service
services s

d LAN or WAN |~ L ~—
Ylohal . " s resource -, s S
updates~ job scheduling: authentication discovery Grid Services

Pool of Middleware services

Grid Collaborative Portals

-~

" Middleware

Computers = Databases
Services available Computation Power Computation Power
Grid Resuurcgs for Applications

f_‘_-:\ Borrowed services @ High Speed Networks—'—/)

O Selected Services ’d’i—" Sensors "_L-"

J

Grid Infrastructure

Figure 3.1: Grid Enabled Middleware for Interoperable Collaboratories

The overall goal of the Grid-enabled Discover middleware substrate is to define in-
terfaces and mechanisms for integration and interoperation of the services provided by
Discover and the Globus Toolkit. A schematic overview of the middleware substrate
is presented in Figure [3.1] and consists of a network of peer hosts that export a se-
lection of services. The middleware essentially provides a “repository of services”
view to clients and controlled access to local and remote services. It can be thought
of as consisting of two service layers distributed across on the Grid-the Grid Service

Layer and the Collaboratory Service Layer(see Figure . The collaboration

service layer includes services for remote application access, collaborative application
monitoring and steering, locking, and concurrency control. The Grid service layer
includes infrastructure services such as resource discovery, authentication, security,
directory services, resource management and scheduling. Some services, such as the
event service, span both layers. Note that all services in both service layers can be
accessed by all clients (local and remote) connected to the middleware as long as they
have appropriate access privileges that is if certain services are not present at the local
host they can be borrowed from a remote host. For example in Figure 3.1} the client is
connected to host A(local host) and uses the event and notification services provided
by host B (remote host) along with authentication service available locally at host
A. The middleware host A borrows services from B and presents a virtual view of
these services to the client. The two service layers are explained in Sections [3.1] and

Sections 3.2]

3.1 Grid Services

The Grid services layer is composed of key Grid infrastructure services including
authorization, authentication, job scheduling, remote job submission, and directory
services, which builds on the Globus Toolkit. In addition to these core services,
the Grid service layer also provides an event and notification service. The authen-
tication and authorization Grid service is based on the Grid Security Infrastructure
(GSI) [20]. It enables services (local and remote) to mutually authenticate with each
other. It also enables a service to create and delegate a proxy object on a remote
host. The resource naming and directory service is based on Metacomputing Direc-
tory Service (MDS) [11],15] and queries the resource on behalf of a client/service. The
job scheduling and submission service is based on Grid Resource Allocation Manager
(GRAM) [12]. Job Status can be monitored using the event and notification ser-

vices. Finally data access/storage service is based on the Global Access to Secondary

Storage (GASS) [4]. The Grid services layer builds on our previous work on the COR-
BACoG kit [46]. The CORBACoG provides access to CORBA server objects, which
are wrappers around Globus Grid services. It also provides access to the CORBA
Security Service and the CORBA Event Service. The CORBA Security service au-
thenticates clients/remote hosts and enables them to securely interact with server
objects. The CORBA event service is used to implement the event service provided

by the Grid enabled Discover middleware.

3.2 Collaboratory Services

The Collaboratory services layer enables clients to collaboratively access Grid applica-
tions and to interactively monitor and steer them. It provides services for application
discovery and access, access control, collaboration, locking and concurrency control,
and logging. It also provides collaboration tools such as whiteboard and chat. Access
control services ensure that clients can only access application to which they access
privileges and can only interact with them in an authorized way. Locking and concur-
rency control services ensure that the collaboration proceeds in a controlled way and
that the application state is always consistent. The logging service logs all user-user
and user-applications interactions. It enables users to replay theirs interactions and
enables latecomers to catch up on a collaboration session. Finally, global notification
services enable users to obtain real-time updates about the status of an application.
The collaboratory services build on the Discover computational collaboratory. The
Discover middleware consists of a peer-to-peer network of Discover interaction and
collaboration servers and defines collaboratory services across these servers. Discover

servers build on commodity web technologies and protocols.

10

Chapter 4

Design of the DISCOVER Grid Enabled
Middleware Substrate

An implementation overview of the Grid-enabled Discover middleware is presented
in Figure [4.1] It consists of collaborative client portals at the front end, compu-
tational resources, services and applications at the backend and a network of peer
hosts (servers) providing services in the middle. As mentioned above, the middle tier
provides a repository of services view to the client and controlled access to Grid re-
sources, services and applications. It also enables users to synthesize customized mid-
dleware configurations by combining local and remote services that they have access
to.Clients are kept as simple as possible to ensure pervasive access. A client connects
to its closest host and has access to all (local and remote) services based on its privi-
leges and capabilities. The prototype middleware substrate builds on CORBA/IIOP
and provides peer-to-peer connectivity between hosts within and across domains.
Server /service discovery mechanisms are built using the CORBA Naming [23] and
CORBA Trader [34] services, which allows a server to locate remote servers and
to access applications/services connected to the remote servers. Although CORBA
does introduce some overheads, it enables scalability and high availability and pro-
vides the services necessary to implement the middleware substrate. It also allows
interoperability between servers, while allowing them to maintain their individual ar-
chitectures and implementations. Moreover, servers are typically connected via link
with reasonable bandwidth (= 1 Mbps). As no assumptions can be made about
client-server connections, having the client connect to the “nearest server®, and use

CORBA/IIOP to connect the server and the desired application may actually reduce

11

client latencies in some cases. This is because clients (implemented as Java applets)
communicate with their “home server” using HT'TP and their home server communi-
cates with remote servers on the clients behalf using IIOP. Since IIOP (unlike HTTP),
reuses connections and hence reduces connection overheads, it’s use over the larger
network path helps in reducing client latencies when a large geographical distance
separates the two communicating servers, and small chunks of data are transferred
(~ 20Kbytes). This is experimentally demonstrated in [31]. Note that XML based
protocols (e.g. SOAP) are popular technologies for service based distributed systems,
the choice between CORBA IDL and XML in our prototype is a trade-off between
speed and loose coupling. XML is self-describing and can provide a greater level of in-
teroperability. However, XML parsing is still an overhead and is slower than CORBA
IDL based object marshalling. CORBA also provides sophisticated services such as
security, discovery and naming. In the sections to follow we will discuss each com-
ponent of the Discover in detail. This includes the “Discover Middleware Host”
Section which is referred to as the “Server” the services they provide Section

and the “DiscoverPortals” Section [4.3] also known as “Clients”.

4.1 Discover Middleware Host (Server)

Discover interaction/collaboration servers build on commodity web servers, and ex-
tend their functionality (using Java Servlets [25]) to provide specialized services for
real-time application interaction and steering and for collaboration between client
groups. Clients are Java applets and communicate with the server over HTTP[I4]
using a series HT'TP GET and POST requests. Application-to-server communication
either uses standard distributed object protocols such as CORBA or a more optimized,
custom protocol over TCP [37] sockets. An ApplicationProxy object is created for each
active application/service at the server, and is given a unique identifier. This object

encapsulates the entire context for the application. Three communication channels

12

s
- [ates

BRI o
E.-«- |
Dis cover Portal ::]
Discoyercollainabspiiies Grid Enabled Discover Middleware
Steering |WhiteboardfChat

¥isualization | Logging Serviet Interface

DiscoverCorbaServer

==
L] v Ay .y
Mo ey |y DiscoverCollab

L———L_ DiscoverGRAM DiscoverGASS |Di5cuuerGSI

DiscoverMDS | DiscoverEvent

Figure 4.1: Design of the Grid Enabled Middleware

are established between a server and an application:(1) MainChannel for application
registration and periodic updates, (2) CommandChannel for forwarding client interac-
tion requests to the application, (3)ResponseChannel for communicating application
responses to interaction requests. At the other end, clients differentiate between the
various messages (i.e. Response, Error or Update) using Java’s reflection mechanism.
Core service handlers provided by each server include the MasterHandler, Collabo-
rationHandler, CommandHandler, Security/Authentication , Grid Service Handlers
(GSI, MDS, GRAM, GASS) and the Daemon servlet that listens for application con-
nections. Details about the design and implementation of the Discover Interaction

and Collaboration servers can be found in [31], 32].

4.2 Discover Middleware Services

The Discover Grid enabled middleware substrate defines interfaces for three classes of

services. The first is the DiscoverCorbaServer service interface, which can be generally

13

termed as the service discovery service. This service inherits from the CORBA Trader
service and allows hosts to locate services on demand. The second is the DiscoverCol-
lab service interface, which provides uniform access to local or remote collaboratory
services. Finally, the third class consists of interfaces to the Grid infrastructure ser-
vices and provides uniform access to underlying Grid resources. This class includes
the DiscoverGSI, DiscoverMDS DiscoverGRAM, DiscoverGASS and DiscoverFEvent
service interfaces. Each host that is a part of the middleware substrate instantiates
CORBA objects that implement these interfaces and are essentially wrappers around
the corresponding services. Each host implements the DiscoverCorbaServer interface
and may implement one of more of the other interfaces. We will explain each of the

services provided by the middleware in detail

A.) DiscoverCorbaServer: The DiscoverCorbaServer interface is implemented
by each host and exports all available services at the host to the Discover mid-
dleware through the Trader service. Local services must register their presence
with the DiscoverCorbaServer service to be discovered. A service description

typically contains its name, location (i.e. address of its host) and its availability.

B.) DiscoverEvent: The DiscoverEvent interface is also implemented by each
host. The DiscoverEvent service extends the CORBA Event Service [33] and
enables users/services to monitor the status of applications and resources. The
service defines an event channel at each host and clients/services can publish

and subscribe to local as well as remote channels.

C.) DiscoverGSI: The DiscoverGSI interface represents the Globus GSI autho-
rization and authentication service. It provides the basic security framework
for the middleware substrate, and is used to create and delegate secure proxy
objects on remote hosts and to enable secure access to local and remote (Col-
laboratory and Grid) services. DiscoverGSI uses Grid credentials provided by

the user at login, and uses these credentials to delegate proxy objects.

14

D.) DiscoverMDS: The DiscoverMDS interface represents an instance of the
Globus MDS service and provides access to information about Grid resources.
The DiscoverMDS CORBA object accesses MDS information using the Java
Naming and Directory Interfaces (JNDI) [27] libraries. DiscoverMDS uses the

DiscoverEvent service to publish updates to users and other services.

E.) DiscoverGRAM : The DiscoverGRAM service represents the Globus GRAM
service and allows clients to submit jobs on local and remote hosts. Discover-
GRAM objects works in coordination with the DiscoverGSI service for autho-
rization and authentication with Grid resources. It also uses the DiscoverEvent

service to receive updates regarding the status of jobs.

F.) DiscoverGASS: The DiscoverGASS interface represents the Globus GASS
service and enables users/services to access remote data and transfer data, ap-
plication logs and applications executables. This enables applications to pre-
stage data on remote machines, cache data, and log remote application outputs,
and stage executables on remote computers. The DiscoverGASS service also al-
lows clients to securely transfer files between source and destination pairs using

the GridFTP [2] protocol, which also uses the DiscoverGSI service.

G.) DiscoverCollab: The DiscoverCollab interface represents the collaboratory
services provided by a host. This includes services for monitoring application
status, application steering, locking and concurrency control, collaboration and

visualization.

4.3 Discover Portals

The Discover Portal consists of a virtual desktop with local and shared areas. The

shared areas implement a replicated shared workspace and enable collaboration among

aCCess.

List of Applications Currently Connected

15

Objects List
I Objects
@ 3 (A0)2-D Transport Application
@ EViews
[AppDerails
[Aepstatus
[AmrParameters
© [Commands
@ 3 (DO]CridHierarchy
@ [views
[GlobaiBoundingBoxDesc

Requests Results

DiscoverGRAM ||§lld1.mlgels.ndt
DiscoverGS| ||§M1Anngels.ed|.
DiscoverMDS _|[grid1. utgers.edy
Dls:welchLAﬂEndl.nngﬂs.:dL
DiscoverEVENT ||§M1.mlgels.ed|.

AppDetails ;
e 2-D Transport Application T
e Grid Properties "
nx=33ny =33

*min = 0 xmax = 1

ymin =0 ymax =1

dx = 0.03125 dt = 0.015625

v 4 MR Propertics mreeee

[GrigHierarchyPiot
[Refinementinformation
@ [Commands
@ O (LPIFO:Myd
© [Views
[} commands
@ 3 [L¥)PO:MyTmpld
@ 3 (DO]CridFunction2d:u
©] Views
€ [Commands
[sersiicexvaiueqdouble)
[sersiicervalue(double)

- grid1.nutgers.edu =

Absolute MaxLey =3
Current MaxLev =3
| Tiunnbeaii — 0 a0E

SUBMIT

* MdsCpu-speedMHz = 1694

* Mds-Memory-Ram-Total-freeMB =

a7

e MdsFsfreeMB =377 60199 64

* Mds-Cp 100 =080

. Md I a2

* Mdsvalidfrom =
200304172342522

* Mds-Cpu-Totalcount =1

Steer Existing Application

[Launch and Steer New and Existing i S|

Global Updates

* Mds-Memory-Vm-sizeMB = 1027

FineLevel : 2

« Mds-Cpu-vendor = Genuinelntel
« Mds-Netname = eth0 lo
* Mdsvalidio = 20030417234252Z

» Mds-Cpu-version =15.0.10
* Mds-Cpu-features = fpu vme de

s |

Local Status Messages

| Steer pse tsc msr pae mce cx8 apic sep
Exit | | signin | I mtir pge mca cmov pat pse36 clfiush
Make View Persistent

5. Your request. siicevvaiue nas b|=|

New US:{@

|| Enable Collaboration

Name of the Application to be started by GRAM

[Ausibutes] /o-nare=10ca1 , 0=grid

Submit Query

|Specify the hostname to query using DiscoverMDS _ | et ninpor iR SRR |
Pertains to parameters which are retumed as a result _| gridl.ruigers.edu
l—l 3 |

This specifies the host name which the Application
connect to.

Launch the Application |

Figure 4.2: Snapshot of the Discover Portal

dynamically formed user groups. Locking mechanisms are used to maintain consis-

tency. The base Portal is presented to the user after authentication and access verifi-

cation using Grid credentials. This provides the user with a list of available Grid and

Collaboratory services that the user is authorized to access. The clients select the

set of local or remote services, including resource discovery, application execution,

application interrogation, interaction, collaboration, or application/session archival

After that they would be able to launch the application on their desired

choice of resource. The control panel which is downloaded during the process of ap-

plication interaction provides the user pervasive access to a pool services available on

the Grid. For application access, the desktop consists of:

A.) a list of interaction objects and their exported interaction interfaces (views

and/or commands). Refer Figure [4.2]

B.) an information pane that displays global updates (current time step of a simu-

lation) from the application,

C.) a status bar that displays the current mode of the application (computing,

interacting) and the status of issued command/view requests.

16

The list of interaction objects is once again customized to match the client’s access
privileges. Chat and whiteboard tools can be launched from the desktop to support
collaboration. View requests generate separate (possibly shared) panes using the
corresponding view plug-in. All users choosing to steer a particular application form
a collaboration group by default with a corresponding shared area on the virtual
desktop. We have explained the Sequence of Events the User/Client would have to
follow in order to “Launch”, “Collaborate” and “Terminate” an Application on the

“Grid” using our Discover Portal in Table

Steps Sequence of Events
Client Logs in with his “Grid Credentials”
Chooses the Appropriate Method of Interaction
Selects his “Choice” of Grid and Collaboratory Services
Queries for the Resource of his Choice
Presented with an Elaborate List of Resources
Launches the Application on the Resource Selected in “Step 5”
Presented with an “Interact” Button to Start Interacting with the Application

“Control Panel” is “Downloaded” and Application Interaction with the User Begins

OO O | W |-

Table 4.1: Sequence of Events Followed by the User during Interaction with the
Discover Portal

17

Chapter 5

Operation of the DISCOVER Grid Enabled
Middleware

Step 8 :Remote Clients log on and collaborates with the
running applicatinn

:Client submites job on
cifed resource

the

DiscoverCorbaServer ~ L
S Pl o e o o e ol e AN
DiscoverCollab %_ DiscoverCollab 11

DiscoverEvent I DiscoverGsI | /
s e . ek AN /
W DiscoverGRAM ” DiscoverGASS ” DiscoverMDS I.
~ Ed
s s - Step 0 : Register , g
s ") rvices with th s & o -
~ s Trader R
|:| Actual Services \\ i Pl - Skep 6 :Application is deployed
i \\ _\ Trader \ r-———« - -—"——"—————
| | Borrowed Services Bty [-~ |
PR p— - e | |
e 5N I
—_— Client to Middleware Interaction B - |
Step 7 :Steerand-monitar. | — vid Resourced
—_——_— Middleware to Client Interaction job through _the Discaver. | J
Collaboration Service —————————————

Figure 5.1: Operation of the Discover Grid Enabled Middleware

The overall operation of the Grid enabled middleware is illustrated in Figure [5.1]
Each host joins the middleware and registers its services with the CORBA Trader
service (via the local DiscoverCorbaSever service). Each service is uniquely identified
at the trader by its name and the machine address of its host. A client logging on to
the middleware through the Discover Portal first authenticates with the DiscoverCol-
lab service. The client is then presented with a list of all services and applications,
local and remote, to which the client has access privileges. The client can now in-

teractively compose and configure its middleware stack using these services, and can

18

use this customized stack and associated local and remote Grid as well as Collabo-
ratory services to acquire resources, configure and launch applications, connect to,
monitor and steer the applications, terminate applications and collaborate with other
users. Note the client has to perform a second level of authentication with the Dis-
coverGSI service before accessing available resources, services or applications. The
credentials presented by the client during this authentication are used to delegate the
required client proxies. Through these proxies, clients can discover local and remote
resources using the DiscoverMDS service, allocate resources and run applications us-
ing DiscoverGRAM service, monitor the status of applications and resources using
the DiscoverEvent service and perform data/file transfer using the DiscoverGASS
service. DiscoverGRAM also allows authorized users to terminate an application.
The DiscoverCollab services enable the client to monitor, interact with and steer (lo-
cal and remote) applications and to collaborate with other users connected to the

middleware. Key middleware operations are briefly described below.

5.1 Security and Authentication

The Discover security model is based on the Globus GSI protocol and builds on the
CORBA Security Service. The GSI delegation model is used to create and delegate
an intermediary object (the CORBA GSI Server Object) between the client and the

service. The process consists of three steps:

A.) Client and server objects mutually authenticate using the CORBA Security

Service [5].

B.) The client delegates the DiscoverGSI server object to create a proxy object that

is authorized to communicate with other Grid Services.

C.) The client can use this secure proxy object to securely invoke the services.

19

Each Discover server supports a two-level access control for collaboratory services:
the first level manages access to the server while the second level manages access to
a particular application. Applications are required to be registered with a server and
to provide a list of users and their access privileges (e.g. read-only, read-write). This

information is used to create customized access control lists.

5.2 Registration and Discovery of Services

Services are registered to the CORBA Trader Service at startup. A sample scenario
from our example in the Figure. the middleware on the left is devoid of the
Grid framework and will not have the Grid services registered to the trader entity.
All Discover services are identified by their service name and the machine on which
they exist thus forming a unique id for each service. The client is presented with an
interactive screen to choose the services required for resource discovery, collaboration,
job monitoring. Suppose the user decides to use these services remotely the server
enables this usage transparently by using commodity distributed technologies like
CORBA . The user can then use services available at another middleware to steer

and monitor a job.

5.3 Discovery of Servers, Applications and Resources

Peer Discover servers locate each other using the CORBA Trader services. The
CORBA Trader service maintains server references as “service-offer pairs”. All Dis-
cover servers are identified by the service-id “Discover”. The service offer contains
the CORBA object reference and a list of properties defined as name-value pairs.
Thus the object can be identified based on the service it provides or its properties.
Applications are located using their globally unique identifiers, which are dynamically

assigned by the Discover server and are a combination of the server’s IP address and a

20

local count at the server. Resources are discovered using the Globus MDS Grid infor-
mation service, which is accessed via the MDSHandler servlet and the DiscoverMDS

service interface.

5.4 Accessing Globus Grid Services: Job Submission and Re-

mote Data Access

Discover middleware allows users to launch applications on remote resources using
the DiscoverGRAM service. Clients invoke the GRAMHandler servlet to submit
jobs. The DiscoverGRAM service submits jobs to the Globus gatekeeper after au-
thenticating using the DiscoverGSI service. The user can then monitor jobs using
the DiscoverFvent service. Similarly, clients can store and access remote data using
the DiscoverGASS service. The GASSHandler servlet invokes the delegated Discov-

erGASS service to transfer files using a client specified protocol.

5.5 Distributed Collaboration

The Discover collaboratory enables multiple clients to collaboratively interact with
and steer local and remote applications. The CollaborationHandler servlet at each
middleware host handles the collaboration on its side, while a dedicated polling thread
is used on the client side. All clients connected to an application instance form a
collaboration group by default. However, as clients can connect to an application
through a remote host, collaboration groups can span multiple hosts. In this case,
the DiscoverCollab objects at the middleware host poll each other for updates and
responses. The peer-to-peer middleware architecture offers two significant advantages
for collaboration. First, it reduces the network traffic generated. This is because, in-
stead of sending individual collaboration messages to all the clients connected through
a remote middleware host, only one message is sent to that remote host, which then

updates its locally connected clients. Since clients always interact through the host

21

closest to them and the broadcast messages for collaboration are generated at this
host, these messages don’t have to travel large distances across the network. This
reduces overall network traffic as well as client latencies, especially when the hosts
are geographically far away. It also leads to better scalability in terms of the number
of clients that can participate in a collaboration session without overloading a host,

as the session load now spans multiple hosts.

5.6 Distributed Locking and Logging for Interactive Steering

and Collaboration

Session management and concurrency control is based on capabilities granted by
the middleware. A simple locking mechanism is used to ensure that the applica-
tion remains in a consistent state during collaborative interactions. This ensures
that only one client “drives” (issues commands) to the application at any time. In
the distributed middleware case, locking information is only maintained at the ap-
plication’s middleware host i.e. the Discover middleware to which the application
connects directly. The session archival handler maintains two types of logs. The first
log maintains all interactions between a client and an application. For remote appli-
cations, the client logs are maintained at the middleware host where the clients are
connected. The second log maintains all requests, responses, and status messages for
each application throughout its execution. This log is maintained at the application’s

middleware host (the middleware to which the application is directly connected).

5.7 Services Interoperation

As noted in the previous sections the Grid-enabled Discover middleware enables local
and remote services to be combined in an ad hoc way and collectively used to achieve
desired behaviors. For example, consider the scenario as illustrated in Figure [5.2] In

this example, a client copies log files generated by the application during a run using

22

users grid credentials

m Srid domain
x, 3 . a
o Logging Serwvice @i

Disoowver GS| Disoowver G A Applications

SecllOP
grid enabled middleware

grid enabled middleware

Figure 5.2: Delegation Model Across Services in the Grid Enabled Discover Middle-
ware

a remote DiscoverGASS service.
A.) The client logs on to the middleware using the Grid credentials
B.) It accesses the logging collaboratory sub-service (part of DiscoverCollab).

C.) The logging service uses the client’s credentials and the DiscoverGSI service to

create and delegate a proxy logging service.

D.) This proxy logging services interacts with the DiscoverGASS service to transfer

the log files to the local host.

Note that these interactions are over a secure IIOP channel.

23

Chapter 6

Application Scenario : Oil Reservoir Optimization
Using the Grid-Enabled Discover Middleware

IPARS connects to VESA
Optimization Services and
Ppresents revenue

" ScientistsEngineers
collahoratively
interact with IPARS

313 NBIS 1IFLIBUL
“o1ad o NRALMD

IPARS Factory
Optimization discovers and
Service initializes VFSA

Optimization Service

One optimal well
placement is
determined, TPARS
Factory launches
IPARS run

IPARS Factory gets initial
guess from VFSA
J Optimization Service

launches IPARS instance on

VFSA Optimization

Service generates new resource of choice

well placement _.-‘
% - , S :
Client configures and ‘ ~ \‘ .é
launches IPARS Factory ‘
and VFSA Optimization IPARS Factory

Service(s) on resource of
choice

Figure 6.1: Sample Application Scenario: Oil Reservoir Optimization

In this chapter we present a practical utility of our Grid enabled Discover middle-
ware. This sample scenario enables autonomic oil reservoir optimization process on
the Grid. The goal of this process is to dynamically optimize the placement and con-
figuration of oil wells to maximize revenue. The overall operation of our middleware

in this scenario is illustrated in [6.1] The various entities in this optimization process

24

include:

e Integrated Parallel Accurate Reservoir Simulator (IPARS) [49] pro-
viding sophisticated simulation entities that encapsulate complex mathematical
models of the physical interaction in the subsurface. These applications execute

on distributed heterogeneous systems such as the Grid.

e TPARS Factory responsible for configuring and managing multiple instances

of IPARS simulations.

e Very Fast Simulated Annealing (VFSA) [43] optimization service which
is based on statistical physics and the analogy between the model parameters

of an optimization problem and particles in an idealized physical system.

e Grid Enabled Discover middleware providing Grid and Collaboratory ser-
vices and enabling resource discovery, resource allocation, job scheduling, job

interaction and user collaboration on the Grid.

e Economic Modeling Service that uses IPARS simulation outputs and cur-
rent market parameters (oil prices, costs, etc.) to compute estimated revenues

for a particular reservoir configuration.

e Grid enabled Discover Middleware providing services for collaboration,

resource discovery, resource allocation, job scheduling, and job interaction on

the Grid.

e Discover Collaborative Portals providing experts with collaborative access
to these components. Using these portals, experts can discover and allocate re-
sources, configure and launch peers, and monitor, interact with, and steer peer
executions. The portals provide a shared workspace and encapsulate collabora-

tion tools such as Chat and Whiteboard.

6.1

25

End to End Scenario

The entities involved in the optimization process need to dynamically discover and

interact with one another as peers to achieve the overall application objectives. Using

the Grid enabled Discover middleware; experts can select desired Grid and Collabo-

ratory services. The Grid services help them (experts) to discover resources on the

Grid and launch TPARS, VFSA and Economy Modeling entities on these resources.

Then using the DiscoverCollab services they (experts) can monitor, interact and steer

these entities. We explain in detail the steps required for the optimization process.

Al)

Experts/users logon to the Discover middleware using the Grid credentials.
Once they have logged onto the Portal they can choose the list of services
they require. If certain services are not present at the current middleware they
are borrowed from the nearest middleware in the domain. This enables the
users to have a pervasive access to a pool of Grid and Collaboratory services.
They (users) use the DiscoverMDS service to first locate the resource on a
particular host. After querying for resources on a particular host they deploy
the TPARS Factory using the DiscoverGRAM service which is delegated using
the DiscoverGSI service. The IPARS Factory discovers and interacts with the

VFSA entity to configure and initialize it

The users interact with the IPARS Factory and VESA using the DiscoverCollab

service to define application configuration parameters

IPARS Factory utilizes the DiscoverMDS service to discover resources on which
it can configure and execute IPARS instances. The factory then uses the Discov-
erGRAM service on the local or remote middleware to execute various instances
of the IPARS application. The user can monitor the status of spawned IPARS
applications by subscribing to the event channel created by the DiscoverFEuvent

service.

D.)

H.)

26

The Economic model entity is likewise deployed on the choice of resource se-
lected by the user. This entity interacts with the IPARS simulations to deter-

mine current economic values.

The VFSA service which was previously deployed provides the IPARS Factory

with optimized well information.

New IPARS simulations are iteratively deployed using the DiscoverGRAM ser-

vice with the optimized well information obtained from the VFSA entity.

These instances of IPARS simulations are collaboratively monitored using the
DiscoverCollab service. The user has updates of the application using the Dis-
coverEvent service. The user can also transfer log files using the DiscoverGASS
service. Various sub-services of the DiscoverCollab service like chatting, logging
and locking are used to steer and manipulate application parameters. Once the
optimal well parameters are determined the IPARS Factory configures and de-

ploys a production IPARS run.

The IPARS simulations are terminated using the DiscoverGRAM service and

the log files are transferred to the local machines for further analysis by experts.

The Discover Grid services is the key to enable the experts to authenticate them-

selves, establish Grid credentials and appropriately delegate proxies, discover services

and resources on the Grid launch the IPARS Factory, IPARS simulations instances,

VFSA Optimization service and the Economic Model on these resources, and transfer

data and execution logs. The Discover Collaboratory services enable the experts to

interactively configure the different entities, to consistently monitor, interact with

and steer these entities, and to collaborate with other experts.

27

Chapter 7

Evaluation

The Grid-enabled Discover middleware is presently deployed at TASSL (The Applied
Software Systems Laboratory), Rutgers University and at the Center for Subsurface
Modeling (CSM) and Institute for Geophysics (IG), University of Texas at Austin,
and is used to enable multiple applications on the Grid from varied disciplines in-
cluding reservoir engineering/subsurface modeling, seismic modeling, computational
fluid dynamics, numerical relativity and astrophysics. We are currently expanding
the network to include a deployment at University of Maryland and the Center for
Advanced Computational Research (CARC), California Institute of Technology. The
middleware implementation builds on commodity technologies including the Apache
Tomcat [22] Servlet engine and the JacORB [§] an open source implementation of
the CORBA ORB.The user signs on to the portal with his userid and password and
is presented with a web interface to select services of his interest. The user then
searches for the host in the particular domain and the resources available at that
point of time using the DiscoverMDS service. The portal provides the user with
the option to launch an application on a particular host queried in the previous step
using the DiscoverGRAM service. The user specifies the path of the executable, com-
mand line parameters of the application and the host to submit the application. The
user receives interactive job updates on the portal using the CORBA event service.
The user can also copy files by specifying the source and destination URL using the

DiscoverGASS service and finally he can terminate the application.

28

7.1 Performance Evaluation

Linux

g g SRR 350 Mhz Pentium Il
ajax.ices.utexas.eduy

[DiscoverCorhaServer]

| DiscoverCollab |

|DiscoverGRAM || DiscoverGASE || DiscoverGSl " DizcoverMDs ” DizcoverEvent |

Red Hat Linux 8.0

Globus 2._I] Grid Enabled DISCOVER Middleware Windows NT m
17 GHz Pentiuma o 800 Mhz Pentium Il
______ gidf;mﬁefeﬂ e e e it it il tasskpe-2. rutgers.edy
I Servlets interface to Clients l I ?emegima%ce ‘ngng ‘|

e ' e e ' e .

| DiscoverCorhaServer | Ethernet [DiscoverCorbaServer |
[DiscoverCollab | [DiscoverCollah |

|DiscoverGRAM " DiscoverGASS ” DiscoverGs] ” DiscoverhDs ” DiscoverEvent D

| Globus Toolkit 2.0 | Globus Toolkit2.2 |

discover.rutgers.edu

Figure 7.1: Experimental Setup of the Grid Enabled Discover middleware

The overall setup for these experiments is show in Figure [7.1 It consisted of
deployments at gridi.rutgers.edu, discover.rutgers.edu and tassl-pc-2.rutgers.edu at
Rutgers University and ajaz.ices.utexas.edu at University of Texas. Deployments
at gridl.rutgers.edu and ajax.ices.utexas.edu had complete installations (Grid and
Collaboratory services) while discover.rutgers.edu had only Grid services and tassl-
pe-2.rutgers.edu had only Collaboratory services. We used the transport equation
application kernel with adaptive mesh refinement (tportamr) for our experiments.
The application was run on Beowulf clusters at Rutgers. The evaluations consisted of
evaluating the latencies in accessing local and remote services over local and wide area
networks and are presented below.Local domain in our experiments was the Rutgers
University domain and remote and the wide area network consists of services accessed

at University of Texas at Austin or visa-versa.

7.2 Evaluation of the DiscoverMDS Service

The evaluation of the DiscoverMDS service is divided into three cases. In the first
case the DiscoverMDS service is locally present (case P). In the second case the

DiscoverMDS service is borrowed from a remote host over the LAN (case B-LAN).

29

2000 2000

I P{Present) I P{Present)
= B(Borrowed) -LAN B B(Borrowed)-LAN
BiBormowsd) WAN S B (Borrowed)-WAN

1500 1500 4

Time in msec
Timein msec
-

3
=]

-

1000 E
500 4 I 500 4
0 0 T ! T r 0 .__,__.
a b Total Time a b Total Time
DiscoverMDS Steps:Resource on gridf.rutgers.edu DiscoverMDS Steps:Resource on discover.rutgers.edu

Figure 7.2: gridl.rutgers.edu is Queried Figure 7.3: discover.rutgers.edu is Queried

In the third case the DiscoverMDS service is borrowed from a remote host over the
WAN (case B-WAN). In all three cases clients used the DiscoverMDS service to
discover resources in Rutgers domain. In each case, the experiment consists of two

steps:
(a) discovering the DiscoverMDS service using the CORBA Trader service
(b) invoking the service to discover resources.

The times for steps (a) and (b) for discovering resources on gridl.rutgers.edu and
discover.rutgers.edu are plotted in Figure and respectively. As seen in the
plots, the time for discovering the service (step a) is small compared to the time for
querying for resources (step b). This is primarily because of the overheads of querying
MDS and packing, transporting and unpacking the large amount of returned resource
information. Note that the average time for querying resources on discover.rutgers.edu
is larger than that for gridi.rutgers.edu as discover.rutgers.edu is a 16 node cluster

while grid1.rutgers.edu is a single processor machine.

7.3 Evaluation of the DiscoverGRAM Service

The evaluation of DiscoverGRAM consisted of using the service to launch and ter-

minate the tportamr application on gridl.rutgers.edu.

30

Resolving Services: DiscoverCollab
Delegation: DiscoverGSI
Event Channel Creation:DiscoverEvent
Job Start time ongridi.rutgers.edu
Total time to start job: a+b-+c+d
Resolving Services: DiscoverGRAM
Delegation: DiscoverGSI
Event Channel Creation:DiscoverFEvent
Job Cancellation Time:DiscoverGRAM
Total time to cancel job: f4+g+h-+ti

el SR | 00T

Table 7.1: Steps Involved in Starting and Terminating Jobs using the DiscoverGRAM
Service

Application deployment consisted of the following steps:
(a) discovering the DiscoverGRAM service
(b) using DiscoverGSI to delegate a service proxy
(c) create an event channel for application monitoring

(d) launch the application on the selected host e.g. gridi.rutgers.edu. Application

termination similarly consisted of the following steps:
(e) discovering the DiscoverGRAM service,
(f) using DiscoverGSI to delegate a service proxy,
(g) create an event channel for application monitoring,
(h) terminate the application selected.

Note that the resource for launching the application and the application to be termi-
nated are discovered and selected using the DiscoverMDS service. The times required
for each step are plotted in Figure and each step is explained in Table [7.1 As
in the previous experiment, we consider three cases: in case P, the required ser-

vices are local, in case B-LAN, the required services are borrowed over LAN, and

31

in case B-WAN;, the required services are borrowed over a WAN. Note that the
times for lauching and terminating the application are quite comparable for the three

cases. The large termination time is due to the cleanup performed by GRAM. We

14000 |- SN P{Present)]

BiBorrowed)-LAN

17000 . T B{Borrowed)-WAN

10000

8000

6000

Time in msec

4000

2000

a h C d e f q h i j
DiscoverGRAM steps:Resource on gridf.ruigers.edu

Figure 7.4: DiscoverGRAM Launches the tportamr Application Using Steps a,
b, ¢ and d. It Terminates the Same Application Using Steps f, g, h and i on
grid1.rutgers. edu.

evaluated the DiscoverGRAM service by measuring latencies involved in starting
and terminating the tportamr application on discover.rutgers.edu refer Figure [7.5]
discover.rutgers.edu was connected to gridl.rutgers.edu through a local area net-
work(LAN).discover.rutgers.edu had Globus Toolkit 2.0 installed. We observe that
the latencies involved in starting a job on discover.rutgers.edu is quite comparable in
the 3 cases mentioned. We were not able to measure the latency for terminating the

application in all the three cases due to configuration problems.

32

1["][“] 1 I 1 1 1 1 1 | 1 1

I FiPresent)
[@ B{Bomowed)-LAN
goop 4 M B{Bomowed)-WAN

g000 |

1000 {

Timein msec

2000 4

a h c d e f g h i j
DiscoverGRAM steps:Resource on discover.rutgers.edu

Figure 7.5: DiscoverGRAM Launches the tportamr Application Using Steps a, b,
¢ and d. It Terminates the Same Application Using Steps f, g, h and i on dis-
cover.rutgers. edu.

7.4 Evaluation of the DiscoverGASS Service

The evaluation of the DiscoverGASS service consisted of using the service to trans-
fer files of different sizes. We measured the time required to transfer files between
gridl.rutgers.edu and discover.rutgers.edu. In this experiment we considered the case
P where the DiscoverGASS service was locally present. The measured transfer time
and the file sizes in bytes are plotted in Figure using a log-log scale. The file sizes
and the transfer times varied exponentially and ranged from 2 bytes to ~10 MB and
the corresponding transfers times varied from 9 msec to 637 msec respectively. It
can be seen that the DiscoverGASS performed well for small and medium file sizes
(9 msec. for ~2 bytes and 47 msec. for ~1 MB). However the performance rapidly

deteriorated (637 msec.) as file sizes approached 10 MB. Note that the typical size of

33

- i ka K 5}
o [4] [=] (4] [=]
T L L L LI | T 1

log (Tranfer time in msec)

=]
h

[@ P{Present) | Z
0.0 L I I I I |]

log (Flle sizein bytes}.Resouce oh gndf.rutgers.edu

Figure 7.6: Log-Log Plot of Transfer Times for Various File Sizes Using the Discov-
erGASS Service (P case)

a log files generated during the DiscoverGRAM experiment was around 100 KB. We
are currently evaluating cases where the service is borrowed over LAN (case B-LAN)

and over WAN (case B-WAN).

7.5 Evalutation of the DiscoverCollab Service

The evaluation for Collaboratory services (access latency over local area and wide
area networks, effect of multiple clients on access latencies and server memory over-
heads due to local and remote applications) was presented in [31]. This evaluation
consisted of measuring scalability, response times and latencies when multiple clients
collaboratively interact with an application. These measurements were conducted
for cases where the DiscoverCollab service is local (case P), borrowed over a LAN

(case B-LAN) and borrowed over a WAN (case B-WAN). The results showed that

34

although response times were larger when using borrowed services, the overhead was
constant for large response sizes. Furthermore, when using the WAN, the results
showed the benefits of the hybrid P2P design and the use of IIOP. The results also
demonstrated that the middleware scaled to over 20 (distributed) collaborating clients

simultaneously interacting with an application.

35

Chapter 8

Conclusions

This work presented the design, implementation, operation and evaluation of the Dis-
cover Grid-enabled middleware substrate. The middleware substrate enables Grid in-
frastructure services provided by the Globus Toolkit (security, information, resource
management, storage) to interoperate with collaboratory services provided by Dis-
cover (collaborative application access, monitoring, and steering). Furthermore, it
enables users to seamlessly access and integrates local and remote services to syn-
thesize customized middleware configurations on demand. Clients can use the Grid
as well as Collaboratory services integrated by the middleware to acquire resources,
configure and launch applications, connect to monitor and steer the applications, ter-
minate applications and collaborate with other users. A sample application scenario,
oil reservoir optimization on the Grid, enabled by the middleware substrate was pre-
sented. An experimental evaluation of access latencies for local and remote (over
LAN and WAN) Grid services using the middleware substrate was presented. These
results show that overheads for using remote services are acceptable.We are in the
process of testing the DiscoverGASS services in the B(Borrowed)-LAN case and
B(Borrowed)-WAN case

8.1 Future Work

The Grid enabled Discover middleware is presently built using the services provided by
the Globus Toolkit-2. In a related research work [1] we are in the process of enhancing

this middleware for supporting “Autonomic” [24] Grid applications.This middleware

36

will be developed on the OGSA (Open Grid Services Architecture) framework which
is currently implemented by the Globus Toolkit-3. This next generation middle-
ware will be aligned with the Service Oriented Architecture. The middleware will
intelligently manage and execute autonomic applications with huge computational
requirements over Grid resources.This middleware will implement key enhancements
to the existing Grid middleware and provide services to support Autonomic Grid
Applications. This layer uses application context(“Context Awareness”), high level
policies associated with it,information behavior of the application and resource re-
quirements specified by the user. The main components of the this middleware will

consist of

e Autonomic Grid Infrastructure This infrastructure will build on our Grid
enabled middleware which provides Grid and Collaboratory services and en-
hance these services and align them with the OGSA standards.To enable this
behavior our first step will be to build “context awareness”, into the middleware

which will allow the systems to sense and react to environment /systems.

e Autonomic Runtime Management which sets up and configures the ap-
plication execution environment.This manages and controls all the autonomic
requirements (self-optimizing, self healing, self configuring, self protecting).
This layer uses the context information provided by the infrastructure layer to

analyze, execute, plan and monitor the application components.

e Autonomic Applications. consists of a new generation of realistic, scientific
and engineering simulations of complex physical phenomenon.These Autonomic
applications will symbiotically and opportunistically combine computations, ex-
periments and real-time data and will provide important insights to complex
physical phenomena. Few of these include “Thermonuclear combustion” | “Sim-
ulation of active flow control of turbulent flows”, “Forest fire simulation model”

ete.

37

We would like to allow interoperability between other collaboratories like the “ASC
Portal”, “UARC” and evaluate their performances in real world scenarios. We be-
lieve that such an interoperabilty would allow the reuse and wide usage of already
existing sevices, since colaboratories would not be able to implement all the available
services to the user community. This would be a great benefit to the user community

who could customize their middleware stack on demand.

1]

38

References

M. Agarwal, V. Bhat, Z. Li, H. Liu, V. Matossian, V. Putty, C. Schmidt,
G. Zhang, M. Parashar, B. Khargharia, and S. Hariri. AutoMate: Enabling
Autonomic Applications on the Grid. In Proceedings of Autonomic Comput-
ing Workshop The Fifth Annual International Workshop on Active Middleware
Services(AMS 2003), Seattle, WA (accepted), June 25 2003.

W. Allcock, J. Bester, J. Bresnahan, A. Chervenak, L. Liming, S. Meder, and
S. Tuecke. GridFTP Protocol Specification. GridF'TP Working Group Docu-
ment, GGF, September 2002.

T. Bellwood. UDDI (Universal Description Discovery and Integration) Ver-
sion 2.04 API Specification. http://uddi.org/pubs/ProgrammersAPI-V2.04-
Published-20020719.htm, July 19, 2002.

J. Bester, 1. Foster, C. Kesselman, J. Tedesco, and S. Tuecke. GASS: A Data
Movement and Access Service for Wide Area Computing Systems. In Proceedings
of the Sizth Workshop on 1/0 in Parallel and Distributed Systems, pages 365—
375, Atlanta, GA, May 5 1999.

B. Blakley. CORBA Security An Introduction to Safe Computing with Objects.
Addison-Wesley Object Technology Series. Addison Wesley Longman Inc, One
Jacob Way, Reading, Massachusetts, 1999.

D. Box, D. Ehnebuske, G. Kakivaya, A. Layman, N. Mendelsohn, H. F.
Nielsen, S. Thatte, and D. Winer. Simple Object Access Protocol (SOAP) 1.1.
http://www.w3.org/TR/SOAP/, May 08, 2000. W3C.

T. Bray, J. Paoli, and C. Sperberg-McQueen. FExtensible Markup Language
(XML). REC-xml-19980210, World Wide Web Consortium Recommendation,
February 1998.

G. Brose. JacORB: Implementation and Design of a Java ORB. In Proceeings. of
DAIS’97, IFIP WG 6.1 International Working Conference on Distributed Apli-
cations and Interoperable Systems,Chapman & Hall,, pages 143—-154, Cottbus,
Germany, September 30 - October 2 1997.

M. Champion, C. Ferris, E. Newcomer, and E. Newcomer. Web Services Archi-
tecture. http://www.w3.org/TR/ws-arch/, November 14, 2002.

http://uddi.org/pubs/ProgrammersAPI-V2.04-Published-20020719.htm
http://www.w3.org/TR/SOAP/
http://www.w3.org/TR/ws-arch/

[10]

[11]

[13]

[16]

[17]

[18]

[19]

[20]

39

E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana. Web Services
Description Language (WSDL) 1.1. http://www.w3.org/TR/wsdl, March 15,
2001.

K. Czajkowski, S. Fitzgerald, I. Foster, and C. Kesselman. Grid Information
Services for Distributed Resource Sharing. In Proceedings of the Tenth IEEE
International Symposium on High-Performance Distributed Computing (HPDC-
10) IEEFE Press, pages 181-194, San Francisco, CA, August 7-9 2001.

K. Czajkowski, I. Foster, N. Karonis, C. Kesselman, S. Martin, W. Smith, and
S. Tuecke. A Resource Management Architecture for Metacomputing Systems.
In Proc. IPPS/SPDP 98 Workshop on Job Scheduling Strategies for Parallel
Processing, pages 62-82, Orlando, Florida, March 30 1998.

D. Diachin, L. Freitag, D. Heath, J. Herzog, W. Michels, and P. Plassmann.
Remote Engineering Tools for the Design of Pollution Control Systems for Com-
mercial Boilers. International Journal of Supercomputer Applications, 10(2):208—
218, 1996.

R. T. Fielding, J. Gettys, J. C. Mogul, H. F. Nielsen, L. Masinter, P. Leach, and
T. B. Lee. Hypertext Transfer Protocol HT'TP 1.1. RFC 2616, HTTP Working
Group, University of California, Irvine, CA 92717-3425, June 1999.

S. Fitzgerald, 1 .Foster, C. Kesselman, G. von Laszewski, W. Smith, and
S. Tuecke. A Directory Service for Configuring High-Performance Distributed
Computations. In Proceedings of the 6th IEEE Symposium on High-Performance
Distributed Computing, pages 365-375, Portland, OR, 5-8 August 1997.

I. Foster and A. Iamnitchi. On Death, Taxes, and the Convergence of Peer-to-
Peer and Grid Computing. In Proceedings of the 2nd International Workshop
on Peer-to-Peer Systems (IPTPS’03), Berkeley, CA, February 20-21 2003.

I. Foster and C. Kesselman. Globus:A Metcomputing Infrastructure Toolkit.
International Journal of Supercomputer Applications, 11(2):115-128, 1997.

I. Foster and C. Kesselman. The Grid: Blueprint for a Future Computing In-
frastructure. Morgan Kaufmann Publishers, San Francisco, CA, 1998.

I. Foster, C. Kesselman, J. Nick, and S. Tuecke. The Physiology of the Grid:An
Open Grid Services Architecture for Distributed Systems Integration. In Pro-

ceedings of the Open Grid Service Infrastructure WG, Global Grid Forum, June
22 2002.

I. Foster, C. Kesselman, G. Tsudik, and S. Tuecke. A Security Architecture for
Computational Grids. In Proc. 5th ACM Conference on Computer and Commu-

nications Security Conference, pages 83-92, San Francisco, CA, November 2-5
1998.

http://www.w3.org/TR/wsdl

[21]
[22]

[23]

[24]

[25]

[26]

[27]

28]

[29]

[30]

[31]

40

Global Grid Forum. http://www.gridforum.org.

Apache Tomcat Group. Apache Tomcat. http://jakarta.apache.org/tomcat/.
The Apache Jakarta Project.

OMG (Object Management Group). Naming Service Specification Version 1.2.
http://www.omg.org/cgi-bin/doc?formal /02-09-02.pdf, September 2002.

P. Horn. Autonomic Computing:IBM’s perspective on the State of Information
Technology. http://www.research.ibm.com/autonomic/, Oct 2001. IBM Corp.

J. Hunter and W. Crawford. JAVA Servlet Programming. O’Reilly & Asso-
ciates,Inc, Sebastopol, CA-95472, USA., 1998.

IBM. The Era of Grid Computing:Enabling New Possibilities For Your Busi-
ness. http://www-1.ibm.com/grid/pdf/business_exec_grid.pdf, January 2003.
IBM Corp.

Sun Microsystems Inc. Java Naming and Directory Interface(JNDI) 1.2.
ftp://ftp.javasoft.com/docs/jndi/1.2/jndi.pdf, July 14,1999.

R. T. Kouzes, J. D. Myers, and W. A. Wulf. Doing Science on the Inter-
net. In IEEE Computer August 1996,IEEE Fifth Workshops on Enabling Tech-
nology:InfraStructure for Collaorative Enterprises(WET ICE 96), pages 40—46,
Stanford CA, June 19-21 1996.

F. Leymann. Web Services Flow Language (WSFL) 1.0. |http://www-
3.ibm.com/software/solutions/webservices/pdf/WSFL.pdf, May,2001. IBM
Academy of Technology, IBM Software Group.

V Mann, V. Matossian, R. Muralidhar, and M. Parashar. DISCOVER: An Envi-
ronment for Web-based Interaction and Steering of High-Performance Scientific
Applications. Concurrency and Computation: Practice and Ezperience, John

Wiley and Sons, 13(8-9):737-754, 2001.

V. Mann and M. Parashar. Middleware Support for Global Access to Integrated
Computational Collaboratories. In Proceedings of the 10th IEEE International
Symposium on High Performance Distributed Computing, IEEE Computer Soci-
ety Press, pages 3546, San Francisco, CA, August 2001.

R. Muralidhar and M. Parashar. An Interactive Object Infrastructure for Com-
putational Steering of Distributed Simulations. In Proceedings of the Ninth Inter-
national Symposium on High Performance Distributed Computing (HPDC' 2000),
IEEE Computer Society Press, pages 304-305, Pittsburgh, PA, August 2000.

OMG (Object Management Group). Event Service Specification Version 1.1.
http://www.omg.org/cgi-bin/doc?formal /01-03-01.pdf, March 2001.

http://www.gridforum.org
http://jakarta.apache.org/tomcat/
http://www.omg.org/cgi-bin/doc?formal/02-09-02.pdf
http://www.research.ibm.com/autonomic/
http://www-1.ibm.com/grid/pdf/business_exec_brief.pdf
http://www-3.ibm.com/software/solutions/webservices/pdf/WSFL.pdf
http://www.omg.org/cgi-bin/doc?formal/01-03-01.pdf

[34]

[35]

[36]

[46]

41

OMG (Object Management Group). Trading Object Service Specification Ver-
sion 1.0. http://www.omg.org/cgi-bin/doc?formal /00-06-27.pdf, May 2000.

G. Olson, D. E. Atkins, T. Finholt, and R. Clauer. The Upper Atmospheric
Research Collaboratory. ACM Interactions, 5(3):48-55, May-June 1998.

A. Pope. The CORBA Reference Guide Understanding the Common Object
Request Broker Architecture. Addison-Wesley Corporate & Professional. Addison
Wesley Longman Inc, One Jacob Way, Reading, Massachusetts, 1999.

J. Postel. Transmission Control Protocol. Std 7,RFC 793, IETF Secretariat c/o
Corporation for National Research Initiatives, 1895 Preston White Drive, Suite
100 Reston, VA 20191-5434, September 1981.

Python Globus (pyglobus). http://www-itg.lbl.gov/gtg/projects/pyGlobus.

M. Roussos, A. Johnson, C. Barnes J. Leigh, C. Vasilakis, and T. Moher.
The NICE Project: Narrative, Immersive, Constructionist/Collaborative En-
vironments for Learning in Virtual Reality. In Proceedings of ED-MEDIA/ED-
TELECOM 97, pages 917-922, Calgary, Canada, June 1997.

W. Ruh, T. Herron, and P. Klinker. IIOP Complete Understanding CORBA and
Middleware Interoperability. Addison-Wesley Object Technology Series. Addison
Wesley Longman Inc, One Jacob Way, Reading, Massachusetts, 1999.

M. Russell, G. Allen, G. Daues, and G. von Laszewski. The Astrophysics Sim-
ulation Collaboratory A Science Portal for Enabling Community Software De-
velopment. In Proceedings of the Tenth IEEFE International Symposium on High
Performance Distributed Computing, pages 207-215, San Francisco, CA, August

2001.

University of Michigan School of Information. SPARC Space Physics and Aeron-
omy Research Collaboratory. http://intel.si.umich.edu/sparc, June 2002.

M. K. Sen and P. L. Stoffa. Global Optimization Methods in Geophysical Inver-
sion. Advances in Exploration Geophysics 4. Elsevier Science, New York, NY,
1995.

Rutgers University TASSL (The Applied Software Systems Laboratory). Dis-
cover Portal. http://www.discoverportal.org.

M. Thomas, S. Mock, and J. Boisseau. Development of the Web Toolkits for
Computational Science Portals: The NPACI HotPage. In Proceedings of the

9th IEEE International Symposium on High Performance Distributed Comput-
ing(HPDC 2000), pages 308-309, Pittsburgh,PA, Aug 14 2000.

S. Verma, M. Parashar, J. Gawor, and G. von Laszewski. Design and Im-
plementation of a CORBA Community Grid Kit. In Proceedings of the 2nd

http://www.omg.org/cgi-bin/doc?formal/00-06-27.pdf
http://www-itg.lbl.gov/gtg/projects/pyGlobus
http://intel.si.umich.edu/sparc
http://www.discoverportal.org

[49]

42

International Workshop on Grid Computing, Lecture Notes in Computer Sci-
ence, Editors:C. A. Lee, Springer-Verlag, pages 2-13, Denver, CO, November
2001.

G. von Laszewski, I. Foster, J. Gawor, and P. Lane. A Java Community Grid
Kit. Concurrency and Computation: Practice and Ezperience, 13(8-9):643-662,
2001.

G. von Laszewski, 1. Foster, J. Gawor, W. Smith, and S. Tuecke. CoG Kits:
A Bridge between Commodity Distributed Computing and High-Performance
Grids. In Proceedings of the ACM Java Grande 2000 Conference, pages 97-106,
San Francisco, CA, June 3-5 2000.

J. A. Wheeler and M. Peszynska. IPARS: Integrated Parallel Reservoir Sim-
ulator. http://www.ticam.utexas.edu/CSM. Center for Subsurface Modeling,
University of Texas at Austin.

http://www.ticam.utexas.edu/CSM

	Abstract
	Acknowledgements
	Dedication
	List of Tables
	List of Figures
	Introduction
	Contributions
	Organization

	Prior Work
	Computational Collaboratories and Problem Solving Environments
	Middleware Technologies

	The Grid Enabled Middleware Architecture
	Grid Services
	Collaboratory Services

	Design of the DISCOVER Grid Enabled Middleware Substrate
	Discover Middleware Host (Server)
	Discover Middleware Services
	Discover Portals

	Operation of the DISCOVER Grid Enabled Middleware
	Security and Authentication
	Registration and Discovery of Services
	Discovery of Servers, Applications and Resources
	Accessing Globus Grid Services: Job Submission and Remote Data Access
	Distributed Collaboration
	Distributed Locking and Logging for Interactive Steering and Collaboration
	Services Interoperation

	Application Scenario : Oil Reservoir Optimization Using the Grid-Enabled Discover Middleware
	End to End Scenario

	Evaluation
	Performance Evaluation
	Evaluation of the DiscoverMDS Service
	Evaluation of the DiscoverGRAM Service
	Evaluation of the DiscoverGASS Service
	Evalutation of the DiscoverCollab Service

	Conclusions
	Future Work

	References

