
A MIDDLEWARE ARCHITECTURE FOR

INTEGRATING SERVICES ON THE GRID

BY VIRAJ N. BHAT

A thesis submitted to the

Graduate School—New Brunswick

Rutgers, The State University of New Jersey

in partial fulfillment of the requirements

for the degree of

Master of Science

Graduate Program in Electrical and Computer Engineering

Written under the direction of

Professor Manish Parashar

and approved by

New Brunswick, New Jersey

May, 2003

ABSTRACT OF THE THESIS

A Middleware Architecture for Integrating

Services on the Grid

by VIRAJ N. BHAT

Thesis Director: Professor Manish Parashar

The growth of the Internet and the advent of the computational “Grid” have made

it possible to develop and deploy advanced services to support the infrastructure

and applications on the Grid. Recent years have also seen the development and de-

ployment of a number of application/domain specific problem solving environments

(PSEs) and collaboratories. These systems have evolved in parallel with the Grid

and have been built on customized architectures and specialized technologies to meet

unique user requirements and support specific user communities. While enabling

these systems to share services and capabilities has many advantages, enabling such

interoperability presents many challenges. These services typically have customized

architectures and implementation, and build on different enabling technologies. In

this thesis we present the design, implementation and evaluation of the Grid-enabled

“Discover” middleware substrate that enables Grid infrastructure services provided

by the Globus Toolkit (security, information, resource management, storage) to inter-

operate with collaboratory services provided by Discover (collaborative application

access, monitoring, and steering). Furthermore, it enables users to seamlessly access

ii

and integrate local and remote services to synthesize customized middleware config-

urations on demand.

iii

Acknowledgements

I would like to like to acknowledge my Family in India who have been supportive of

my efforts. I would like to thank my research advisor Dr. Manish Parashar for his

invaluable guidance, support and encouragement during the course of this work and

throughout my graduate studies at Rutgers. I particularly draw my inspiration from

his hardwork and enthusiasm with which he goes about this work. I am thankful to

Dr. Deborah Silver and Dr. Ivan Marsic for being on my thesis committee and

for their advice and suggestions regarding the thesis. I also acknowledge the sugges-

tions of the committee in developing my technical understanding, research aptitude,

thesis writing and presentation skills. I thank my colleagues at TASSL Lab, partic-

ularly Manish Agarwal and Vincent Matossian for valuable research discussions,

cooperation and collaboration related to this work. I thank the CAIP staff consisting

of Bill Kish, Steve Vaccaro and James Chun who would readily help me during

times of emergency.

iv

Dedication

To my Parents

v

Table of Contents

Abstract . ii

Acknowledgements . iv

Dedication . v

List of Tables . viii

List of Figures . ix

1. Introduction . 1

1.1. Contributions . 2

1.2. Organization . 3

2. Prior Work . 4

2.1. Computational Collaboratories and Problem Solving Environments . 4

2.2. Middleware Technologies . 6

3. The Grid Enabled Middleware Architecture 7

3.1. Grid Services . 8

3.2. Collaboratory Services . 9

4. Design of the DISCOVER Grid Enabled Middleware Substrate . 10

4.1. Discover Middleware Host (Server) 11

4.2. Discover Middleware Services . 12

4.3. Discover Portals . 14

vi

5. Operation of the DISCOVER Grid Enabled Middleware 17

5.1. Security and Authentication . 18

5.2. Registration and Discovery of Services 19

5.3. Discovery of Servers, Applications and Resources 19

5.4. Accessing Globus Grid Services: Job Submission and Remote Data

Access . 20

5.5. Distributed Collaboration . 20

5.6. Distributed Locking and Logging for Interactive Steering and Collab-

oration . 21

5.7. Services Interoperation . 21

6. Application Scenario : Oil Reservoir Optimization Using the Grid-

Enabled Discover Middleware . 23

6.1. End to End Scenario . 25

7. Evaluation . 27

7.1. Performance Evaluation . 28

7.2. Evaluation of the DiscoverMDS Service 28

7.3. Evaluation of the DiscoverGRAM Service 29

7.4. Evaluation of the DiscoverGASS Service 32

7.5. Evalutation of the DiscoverCollab Service 33

8. Conclusions . 35

8.1. Future Work . 35

References . 38

vii

List of Tables

2.1. Services Provided by Computational Collaboratories 5

4.1. Sequence of Events Followed by the User during Interaction with the

Discover Portal . 16

7.1. Steps Involved in Starting and Terminating Jobs using the Discover-

GRAM Service . 30

viii

List of Figures

3.1. Grid Enabled Middleware for Interoperable Collaboratories 7

4.1. Design of the Grid Enabled Middleware 12

4.2. Snapshot of the Discover Portal . 15

5.1. Operation of the Discover Grid Enabled Middleware 17

5.2. Delegation Model Across Services in the Grid Enabled Discover Mid-

dleware . 22

6.1. Sample Application Scenario: Oil Reservoir Optimization 23

7.1. Experimental Setup of the Grid Enabled Discover middleware 28

7.2. grid1.rutgers.edu is Queried . 29

7.3. discover.rutgers.edu is Queried . 29

7.4. DiscoverGRAM Launches the tportamr Application Using Steps a, b,

c and d. It Terminates the Same Application Using Steps f, g, h and i

on grid1.rutgers.edu. 31

7.5. DiscoverGRAM Launches the tportamr Application Using Steps a, b,

c and d. It Terminates the Same Application Using Steps f, g, h and i

on discover.rutgers.edu. 32

7.6. Log-Log Plot of Transfer Times for Various File Sizes Using the Dis-

coverGASS Service (P case) . 33

ix

1

Chapter 1

Introduction

“Grid Computing” [18] is rapidly emerging as the dominant paradigm of wide area

distributed computing. Its goal is to realize a persistent, standards-based service

infrastructure that enables coordinated sharing of autonomous and geographically

distributed hardware, software, and information resources [16]. The emergence of

such Grid environments has made it possible to conceive a new generation of ap-

plications based on seamless aggregations, integrations and interactions of resources,

services/components and data. These Grid applications will be built on a range

of services including multipurpose domain services for authentication, authorization,

discovery, messaging, data input/output, and application/domain specific services

such as application monitoring and steering, application adaptation, visualization,

and collaboration. Recent years have also seen the development and deployment

of a number of application/domain specific problem solving environments (PSEs)

and collaboratories (e.g. Upper Atmospheric Research Collaboratory (UARC) [35],

Discover [30, 44] and Astrophysics Simulation Collaboratory (ASC) [41]). These sys-

tems provide specialized services to their user communities and/or address specific

issues in wide area resource sharing and Grid computing. However, emerging Grid

applications require combining these services in a seamless manner. For example,

the execution of an application on the Grid requires security services to authenti-

cate users and the application, information services for resource discovery, resource

management services for resource allocation, data transfer services for staging, and

scheduling services for application execution. Once the application is executing on the

Grid, interaction, steering, and collaboration services allow geographically distributed

2

users to collectively monitor and control the application allowing the application to

be a true research or instructional modality. Once the application terminates data

storage and clean up services come into play. While enabling collaboratories/PSEs to

share services and capabilities has many advantages, enabling such interoperability

presents many challenges. The PSEs have evolved in parallel with the Grid comput-

ing effort and have been developed to meet unique requirements and support specific

user communities.As a result, these systems have customized architectures and im-

plementations, and build on specialized enabling technologies. Furthermore, there

are organizational constraints that may prevent such interaction as it involves mod-

ifying existing software. A key challenge then, is the design and development of a

robust and scalable middleware that addresses interoperability, and provides essential

enabling services such as security and access control, discovery, and interaction and

collaboration management. Such a middleware should provide loose coupling among

systems to accommodate organizational constraints and an option to join or leave this

interaction at any time. It should define a minimal set of interfaces and protocols to

enable the PSEs to share resources, services, data and applications on the Grid while

being able to maintain their architectures and implementations of choice. A key goal

of the Global Grid Forum [21] and the Open Grid Services Architecture (OGSA) [19]

is to address these challenges by defining community standards and protocols.

1.1 Contributions

The thesis makes these key contributions:

• To investigate the design and evaluation of a prototype middleware that will en-

able interoperability between PSE/collaboratory and Grid services and support

the overall execution of computational applications on the Grid.

• In this thesis we present the design, implementation and evaluation of the Grid-

enabled Discover middleware substrate that enables Grid infrastructure services

3

provided by Globus Tookit [17] (security, information, resource management,

storage) to interoperate with collaboratory services provided by the DISCOVER

computational collaboratory (collaborative application access, monitoring, and

steering).

• We demonstrate how users can seamlessly access and integrate local and remote

services to synthesize customized middleware configurations on demand. This

thesis builds on our previous work on the CORBA Community Grid (CoG)

Kit [46] and the Discover middleware [31].

• We evaluate the performance of this middleware during the computational ap-

plications lifecyle and argue that the concept of using borrowing service does

not affect the performance of the middleware significantly.

1.2 Organization

The thesis is organized as follows. Chapter 1 presents background on Computa-

tional Collaboratories and Problem Solving environments.It also talks about the ser-

vices and capabilites they provide. Chapter 2 talks about middleware technologies

which are critical for achieving this interoperability as presented in this thesis. Chap-

ter 3 presents our architecture of the Grid enabled middleware substrate. Chapter 4

presents the design and implementation of the Discover Grid enabled middleware sub-

strate. Chapter 5 discusses the operation of the Discover Grid enabled middleware

substrate. Chapter 6 discusses the use of the Discover Grid enabled middleware in

the process of online Oil Reservoir Optimization. Chapter 7 presents an experimen-

tation evaluation and analysis of of Discover Grid enabled middleware framework.

Chapter 8 presents a summary of this thesis and comments on the future work.

4

Chapter 2

Prior Work

In recent years, there has been considerable research in problem solving environments,

computational collaboratories and middleware technologies. In this chapter we sum-

marize recent efforts and the services/capabilities they provide. Our overall goal is

to highlight the need for and benefits of integration and interoperability between the

services provided by each of these systems. Section 2.1 summarizes the various ser-

vices provided by computational collaboratories and motivates the need for the Grid

enabled middleware. Section 2.2 lists the various technologies required for building

this middleware.

2.1 Computational Collaboratories and Problem Solving En-

vironments

Recent efforts aimed at developing and deploying computational collaboratories and

problem solving environments to support applications on the Grid include Discover,

Astrophysics Simulation Collaboratory (ASC), NPACI HoTPage [45], Upper Atmo-

spheric Research Collaboratory (UARC), Environmental Molecular Sciences Collab-

oratory (ESML) [28], Diesel Combustion Collaboratory (DCC) [13], Space Physics

Aeronomy Research Collaboratory (SPARC) [42] and Narrative-based, Immersive,

Constructionist/Collaborative Environments for children (NICE) [39]. Each of these

systems provides a set of services to support application development, execution

and/or management to their user communities, as summarized in Table 2.1. For

5

Collaboratories
Services Offered

UARC NICE DCC ESML ASC Portal Discover

Discovery of Services X X X X X
√

Resource Access X X X X
√

X
Resource Notification X X X X X X

Data Movement ∗ ∗ ∗ ∗ X X
Authentication Authorization

√ √ √ √ √ √

Application Monitoring
√

∗
√ √ √ √

Steering
√ √ √ √ √ √

WhiteBoard
√ √ √ √ √ √

Concurency Control
√ √ √ √ √ √

√
= services which are present

X= services which are absent
∗= not clear may not be supported

Table 2.1: Services Provided by Computational Collaboratories

example, Discover provides services for remote application access, collaborative ap-

plication monitoring, and controlled application steering. It however lacks services

for resource management and allocation and data movement. NICE provides a

shared virtual design space for tele-immersive applications but lacks services for re-

source/information discovery. Clearly, the services required during the lifetime of a

Grid application will span multiple such systems, making the interoperability and

integration of these systems and their services a desirable feature. The Discover com-

putational collaboratory, which is one of the building blocks for this work, is a virtual

meta-laboratory that enables geographically distributed scientists and engineers to

collaboratively access, monitor, interact with and control distributed applications

using computational portals. The Discover middleware substrate is a peer-to-peer

network of Discover interaction and collaboration servers and enables pervasive and

collaborative access to geographically distributed applications. Although Discover

provides a rich set of services, it clearly needs to interoperate with systems providing

Grid services for resource management, application configuration and deployment,

data movement, etc. This thesis extends the Discover middleware substrate to be

Grid-aware and to enable this interoperability.

6

2.2 Middleware Technologies

Standardized middleware technologies are critical for achieving the interoperability

addressed in this thesis.Several research efforts have emerged to address this issue.

Open Grid Services Architecture (OGSA) is a distributed interaction and comput-

ing infrastructure providing uniform exposed service semantics (called Grid Services)

for creating, naming and discovering transient service instances. Commodity Grid

Kits (CoG Kits) [48] are a combination of commodity and Grid technologies to en-

hance the functionality, maintenance, and deployment of Grid services. These include

Java CoG [47], CORBACoG [46] and PythonCoG [38]. CORBACoG (which is also

a building block for this work) provides CORBA applications access to the Globus

Grid services and support rapid development on the Grid. The use of standard

protocols such as IIOP [40] allows interoperability between CORBA [36] based ap-

plications and services across operating systems and programming languages. The

commercial community is similarly working to enable interoperability between Web

Services [9] through the use of standards such as Web Services Definition Language

(WSDL) [10], Web Services Flow Language (WSFL) [29], Simple Object Access Proto-

col (SOAP) [6], Universal Description, Discovery and Integration (UDDI) [3] registry,

and XML [7] messaging, to create a platform-independent, open framework for de-

scribing, discovering, and integrating services using the Internet. These technologies

are rapidly evolving and there is a conscious effort towards integrating business and

Grid services and developing a Business Grid [26].

7

Chapter 3

The Grid Enabled Middleware Architecture

Figure 3.1: Grid Enabled Middleware for Interoperable Collaboratories

The overall goal of the Grid-enabled Discover middleware substrate is to define in-

terfaces and mechanisms for integration and interoperation of the services provided by

Discover and the Globus Toolkit. A schematic overview of the middleware substrate

is presented in Figure 3.1, and consists of a network of peer hosts that export a se-

lection of services. The middleware essentially provides a “repository of services”

view to clients and controlled access to local and remote services. It can be thought

of as consisting of two service layers distributed across on the Grid-the Grid Service

Layer and the Collaboratory Service Layer(see Figure 3.1). The collaboration

8

service layer includes services for remote application access, collaborative application

monitoring and steering, locking, and concurrency control. The Grid service layer

includes infrastructure services such as resource discovery, authentication, security,

directory services, resource management and scheduling. Some services, such as the

event service, span both layers. Note that all services in both service layers can be

accessed by all clients (local and remote) connected to the middleware as long as they

have appropriate access privileges that is if certain services are not present at the local

host they can be borrowed from a remote host. For example in Figure 3.1, the client is

connected to host A(local host) and uses the event and notification services provided

by host B (remote host) along with authentication service available locally at host

A. The middleware host A borrows services from B and presents a virtual view of

these services to the client. The two service layers are explained in Sections 3.1 and

Sections 3.2.

3.1 Grid Services

The Grid services layer is composed of key Grid infrastructure services including

authorization, authentication, job scheduling, remote job submission, and directory

services, which builds on the Globus Toolkit. In addition to these core services,

the Grid service layer also provides an event and notification service. The authen-

tication and authorization Grid service is based on the Grid Security Infrastructure

(GSI) [20]. It enables services (local and remote) to mutually authenticate with each

other. It also enables a service to create and delegate a proxy object on a remote

host. The resource naming and directory service is based on Metacomputing Direc-

tory Service (MDS) [11, 15] and queries the resource on behalf of a client/service. The

job scheduling and submission service is based on Grid Resource Allocation Manager

(GRAM) [12]. Job Status can be monitored using the event and notification ser-

vices. Finally data access/storage service is based on the Global Access to Secondary

9

Storage (GASS) [4]. The Grid services layer builds on our previous work on the COR-

BACoG kit [46]. The CORBACoG provides access to CORBA server objects, which

are wrappers around Globus Grid services. It also provides access to the CORBA

Security Service and the CORBA Event Service. The CORBA Security service au-

thenticates clients/remote hosts and enables them to securely interact with server

objects. The CORBA event service is used to implement the event service provided

by the Grid enabled Discover middleware.

3.2 Collaboratory Services

The Collaboratory services layer enables clients to collaboratively access Grid applica-

tions and to interactively monitor and steer them. It provides services for application

discovery and access, access control, collaboration, locking and concurrency control,

and logging. It also provides collaboration tools such as whiteboard and chat. Access

control services ensure that clients can only access application to which they access

privileges and can only interact with them in an authorized way. Locking and concur-

rency control services ensure that the collaboration proceeds in a controlled way and

that the application state is always consistent. The logging service logs all user-user

and user-applications interactions. It enables users to replay theirs interactions and

enables latecomers to catch up on a collaboration session. Finally, global notification

services enable users to obtain real-time updates about the status of an application.

The collaboratory services build on the Discover computational collaboratory. The

Discover middleware consists of a peer-to-peer network of Discover interaction and

collaboration servers and defines collaboratory services across these servers. Discover

servers build on commodity web technologies and protocols.

10

Chapter 4

Design of the DISCOVER Grid Enabled

Middleware Substrate

An implementation overview of the Grid-enabled Discover middleware is presented

in Figure 4.1. It consists of collaborative client portals at the front end, compu-

tational resources, services and applications at the backend and a network of peer

hosts (servers) providing services in the middle. As mentioned above, the middle tier

provides a repository of services view to the client and controlled access to Grid re-

sources, services and applications. It also enables users to synthesize customized mid-

dleware configurations by combining local and remote services that they have access

to.Clients are kept as simple as possible to ensure pervasive access. A client connects

to its closest host and has access to all (local and remote) services based on its privi-

leges and capabilities. The prototype middleware substrate builds on CORBA/IIOP

and provides peer-to-peer connectivity between hosts within and across domains.

Server/service discovery mechanisms are built using the CORBA Naming [23] and

CORBA Trader [34] services, which allows a server to locate remote servers and

to access applications/services connected to the remote servers. Although CORBA

does introduce some overheads, it enables scalability and high availability and pro-

vides the services necessary to implement the middleware substrate. It also allows

interoperability between servers, while allowing them to maintain their individual ar-

chitectures and implementations. Moreover, servers are typically connected via link

with reasonable bandwidth (≈ 1 Mbps). As no assumptions can be made about

client-server connections, having the client connect to the “nearest server“, and use

CORBA/IIOP to connect the server and the desired application may actually reduce

11

client latencies in some cases. This is because clients (implemented as Java applets)

communicate with their “home server” using HTTP and their home server communi-

cates with remote servers on the clients behalf using IIOP. Since IIOP (unlike HTTP),

reuses connections and hence reduces connection overheads, it’s use over the larger

network path helps in reducing client latencies when a large geographical distance

separates the two communicating servers, and small chunks of data are transferred

(≈ 20Kbytes). This is experimentally demonstrated in [31]. Note that XML based

protocols (e.g. SOAP) are popular technologies for service based distributed systems,

the choice between CORBA IDL and XML in our prototype is a trade-off between

speed and loose coupling. XML is self-describing and can provide a greater level of in-

teroperability. However, XML parsing is still an overhead and is slower than CORBA

IDL based object marshalling. CORBA also provides sophisticated services such as

security, discovery and naming. In the sections to follow we will discuss each com-

ponent of the Discover in detail.This includes the “Discover Middleware Host”

Section 4.1 which is referred to as the “Server”,the services they provide Section 4.2

and the “DiscoverPortals” Section 4.3 also known as “Clients”.

4.1 Discover Middleware Host (Server)

Discover interaction/collaboration servers build on commodity web servers, and ex-

tend their functionality (using Java Servlets [25]) to provide specialized services for

real-time application interaction and steering and for collaboration between client

groups. Clients are Java applets and communicate with the server over HTTP[14]

using a series HTTP GET and POST requests. Application-to-server communication

either uses standard distributed object protocols such as CORBA or a more optimized,

custom protocol over TCP [37] sockets. An ApplicationProxy object is created for each

active application/service at the server, and is given a unique identifier. This object

encapsulates the entire context for the application. Three communication channels

12

Figure 4.1: Design of the Grid Enabled Middleware

are established between a server and an application:(1) MainChannel for application

registration and periodic updates, (2)CommandChannel for forwarding client interac-

tion requests to the application, (3)ResponseChannel for communicating application

responses to interaction requests. At the other end, clients differentiate between the

various messages (i.e. Response, Error or Update) using Java’s reflection mechanism.

Core service handlers provided by each server include the MasterHandler, Collabo-

rationHandler, CommandHandler, Security/Authentication , Grid Service Handlers

(GSI, MDS, GRAM, GASS) and the Daemon servlet that listens for application con-

nections. Details about the design and implementation of the Discover Interaction

and Collaboration servers can be found in [31, 32].

4.2 Discover Middleware Services

The Discover Grid enabled middleware substrate defines interfaces for three classes of

services. The first is the DiscoverCorbaServer service interface, which can be generally

13

termed as the service discovery service. This service inherits from the CORBA Trader

service and allows hosts to locate services on demand. The second is the DiscoverCol-

lab service interface, which provides uniform access to local or remote collaboratory

services. Finally, the third class consists of interfaces to the Grid infrastructure ser-

vices and provides uniform access to underlying Grid resources. This class includes

the DiscoverGSI, DiscoverMDS DiscoverGRAM, DiscoverGASS and DiscoverEvent

service interfaces. Each host that is a part of the middleware substrate instantiates

CORBA objects that implement these interfaces and are essentially wrappers around

the corresponding services. Each host implements the DiscoverCorbaServer interface

and may implement one of more of the other interfaces. We will explain each of the

services provided by the middleware in detail

A.) DiscoverCorbaServer : The DiscoverCorbaServer interface is implemented

by each host and exports all available services at the host to the Discover mid-

dleware through the Trader service. Local services must register their presence

with the DiscoverCorbaServer service to be discovered. A service description

typically contains its name, location (i.e. address of its host) and its availability.

B.) DiscoverEvent : The DiscoverEvent interface is also implemented by each

host. The DiscoverEvent service extends the CORBA Event Service [33] and

enables users/services to monitor the status of applications and resources. The

service defines an event channel at each host and clients/services can publish

and subscribe to local as well as remote channels.

C.) DiscoverGSI : The DiscoverGSI interface represents the Globus GSI autho-

rization and authentication service. It provides the basic security framework

for the middleware substrate, and is used to create and delegate secure proxy

objects on remote hosts and to enable secure access to local and remote (Col-

laboratory and Grid) services. DiscoverGSI uses Grid credentials provided by

the user at login, and uses these credentials to delegate proxy objects.

14

D.) DiscoverMDS : The DiscoverMDS interface represents an instance of the

Globus MDS service and provides access to information about Grid resources.

The DiscoverMDS CORBA object accesses MDS information using the Java

Naming and Directory Interfaces (JNDI) [27] libraries. DiscoverMDS uses the

DiscoverEvent service to publish updates to users and other services.

E.) DiscoverGRAM : The DiscoverGRAM service represents the Globus GRAM

service and allows clients to submit jobs on local and remote hosts. Discover-

GRAM objects works in coordination with the DiscoverGSI service for autho-

rization and authentication with Grid resources. It also uses the DiscoverEvent

service to receive updates regarding the status of jobs.

F.) DiscoverGASS : The DiscoverGASS interface represents the Globus GASS

service and enables users/services to access remote data and transfer data, ap-

plication logs and applications executables. This enables applications to pre-

stage data on remote machines, cache data, and log remote application outputs,

and stage executables on remote computers. The DiscoverGASS service also al-

lows clients to securely transfer files between source and destination pairs using

the GridFTP [2] protocol, which also uses the DiscoverGSI service.

G.) DiscoverCollab: The DiscoverCollab interface represents the collaboratory

services provided by a host. This includes services for monitoring application

status, application steering, locking and concurrency control, collaboration and

visualization.

4.3 Discover Portals

The Discover Portal consists of a virtual desktop with local and shared areas. The

shared areas implement a replicated shared workspace and enable collaboration among

15

Figure 4.2: Snapshot of the Discover Portal

dynamically formed user groups. Locking mechanisms are used to maintain consis-

tency. The base Portal is presented to the user after authentication and access verifi-

cation using Grid credentials. This provides the user with a list of available Grid and

Collaboratory services that the user is authorized to access. The clients select the

set of local or remote services, including resource discovery, application execution,

application interrogation, interaction, collaboration, or application/session archival

access. After that they would be able to launch the application on their desired

choice of resource. The control panel which is downloaded during the process of ap-

plication interaction provides the user pervasive access to a pool services available on

the Grid. For application access, the desktop consists of:

A.) a list of interaction objects and their exported interaction interfaces (views

and/or commands). Refer Figure 4.2,

B.) an information pane that displays global updates (current time step of a simu-

lation) from the application,

C.) a status bar that displays the current mode of the application (computing,

interacting) and the status of issued command/view requests.

16

The list of interaction objects is once again customized to match the client’s access

privileges. Chat and whiteboard tools can be launched from the desktop to support

collaboration. View requests generate separate (possibly shared) panes using the

corresponding view plug-in. All users choosing to steer a particular application form

a collaboration group by default with a corresponding shared area on the virtual

desktop. We have explained the Sequence of Events the User/Client would have to

follow in order to “Launch”, “Collaborate” and “Terminate” an Application on the

“Grid” using our Discover Portal in Table 4.1.

Steps Sequence of Events
1 Client Logs in with his “Grid Credentials”
2 Chooses the Appropriate Method of Interaction
3 Selects his “Choice” of Grid and Collaboratory Services
4 Queries for the Resource of his Choice
5 Presented with an Elaborate List of Resources
6 Launches the Application on the Resource Selected in “Step 5”
7 Presented with an “Interact” Button to Start Interacting with the Application
8 “Control Panel” is “Downloaded” and Application Interaction with the User Begins

Table 4.1: Sequence of Events Followed by the User during Interaction with the
Discover Portal

17

Chapter 5

Operation of the DISCOVER Grid Enabled

Middleware

Figure 5.1: Operation of the Discover Grid Enabled Middleware

The overall operation of the Grid enabled middleware is illustrated in Figure 5.1.

Each host joins the middleware and registers its services with the CORBA Trader

service (via the local DiscoverCorbaSever service). Each service is uniquely identified

at the trader by its name and the machine address of its host. A client logging on to

the middleware through the Discover Portal first authenticates with the DiscoverCol-

lab service. The client is then presented with a list of all services and applications,

local and remote, to which the client has access privileges. The client can now in-

teractively compose and configure its middleware stack using these services, and can

18

use this customized stack and associated local and remote Grid as well as Collabo-

ratory services to acquire resources, configure and launch applications, connect to,

monitor and steer the applications, terminate applications and collaborate with other

users. Note the client has to perform a second level of authentication with the Dis-

coverGSI service before accessing available resources, services or applications. The

credentials presented by the client during this authentication are used to delegate the

required client proxies. Through these proxies, clients can discover local and remote

resources using the DiscoverMDS service, allocate resources and run applications us-

ing DiscoverGRAM service, monitor the status of applications and resources using

the DiscoverEvent service and perform data/file transfer using the DiscoverGASS

service. DiscoverGRAM also allows authorized users to terminate an application.

The DiscoverCollab services enable the client to monitor, interact with and steer (lo-

cal and remote) applications and to collaborate with other users connected to the

middleware. Key middleware operations are briefly described below.

5.1 Security and Authentication

The Discover security model is based on the Globus GSI protocol and builds on the

CORBA Security Service. The GSI delegation model is used to create and delegate

an intermediary object (the CORBA GSI Server Object) between the client and the

service. The process consists of three steps:

A.) Client and server objects mutually authenticate using the CORBA Security

Service [5].

B.) The client delegates the DiscoverGSI server object to create a proxy object that

is authorized to communicate with other Grid Services.

C.) The client can use this secure proxy object to securely invoke the services.

19

Each Discover server supports a two-level access control for collaboratory services:

the first level manages access to the server while the second level manages access to

a particular application. Applications are required to be registered with a server and

to provide a list of users and their access privileges (e.g. read-only, read-write). This

information is used to create customized access control lists.

5.2 Registration and Discovery of Services

Services are registered to the CORBA Trader Service at startup. A sample scenario

from our example in the Figure. 5.1 the middleware on the left is devoid of the

Grid framework and will not have the Grid services registered to the trader entity.

All Discover services are identified by their service name and the machine on which

they exist thus forming a unique id for each service. The client is presented with an

interactive screen to choose the services required for resource discovery, collaboration,

job monitoring. Suppose the user decides to use these services remotely the server

enables this usage transparently by using commodity distributed technologies like

CORBA . The user can then use services available at another middleware to steer

and monitor a job.

5.3 Discovery of Servers, Applications and Resources

Peer Discover servers locate each other using the CORBA Trader services. The

CORBA Trader service maintains server references as “service-offer pairs”. All Dis-

cover servers are identified by the service-id “Discover”. The service offer contains

the CORBA object reference and a list of properties defined as name-value pairs.

Thus the object can be identified based on the service it provides or its properties.

Applications are located using their globally unique identifiers, which are dynamically

assigned by the Discover server and are a combination of the server’s IP address and a

20

local count at the server. Resources are discovered using the Globus MDS Grid infor-

mation service, which is accessed via the MDSHandler servlet and the DiscoverMDS

service interface.

5.4 Accessing Globus Grid Services: Job Submission and Re-

mote Data Access

Discover middleware allows users to launch applications on remote resources using

the DiscoverGRAM service. Clients invoke the GRAMHandler servlet to submit

jobs. The DiscoverGRAM service submits jobs to the Globus gatekeeper after au-

thenticating using the DiscoverGSI service. The user can then monitor jobs using

the DiscoverEvent service. Similarly, clients can store and access remote data using

the DiscoverGASS service. The GASSHandler servlet invokes the delegated Discov-

erGASS service to transfer files using a client specified protocol.

5.5 Distributed Collaboration

The Discover collaboratory enables multiple clients to collaboratively interact with

and steer local and remote applications. The CollaborationHandler servlet at each

middleware host handles the collaboration on its side, while a dedicated polling thread

is used on the client side. All clients connected to an application instance form a

collaboration group by default. However, as clients can connect to an application

through a remote host, collaboration groups can span multiple hosts. In this case,

the DiscoverCollab objects at the middleware host poll each other for updates and

responses. The peer-to-peer middleware architecture offers two significant advantages

for collaboration. First, it reduces the network traffic generated. This is because, in-

stead of sending individual collaboration messages to all the clients connected through

a remote middleware host, only one message is sent to that remote host, which then

updates its locally connected clients. Since clients always interact through the host

21

closest to them and the broadcast messages for collaboration are generated at this

host, these messages don’t have to travel large distances across the network. This

reduces overall network traffic as well as client latencies, especially when the hosts

are geographically far away. It also leads to better scalability in terms of the number

of clients that can participate in a collaboration session without overloading a host,

as the session load now spans multiple hosts.

5.6 Distributed Locking and Logging for Interactive Steering

and Collaboration

Session management and concurrency control is based on capabilities granted by

the middleware. A simple locking mechanism is used to ensure that the applica-

tion remains in a consistent state during collaborative interactions. This ensures

that only one client “drives”(issues commands) to the application at any time. In

the distributed middleware case, locking information is only maintained at the ap-

plication’s middleware host i.e. the Discover middleware to which the application

connects directly. The session archival handler maintains two types of logs. The first

log maintains all interactions between a client and an application. For remote appli-

cations, the client logs are maintained at the middleware host where the clients are

connected. The second log maintains all requests, responses, and status messages for

each application throughout its execution. This log is maintained at the application’s

middleware host (the middleware to which the application is directly connected).

5.7 Services Interoperation

As noted in the previous sections the Grid-enabled Discover middleware enables local

and remote services to be combined in an ad hoc way and collectively used to achieve

desired behaviors. For example, consider the scenario as illustrated in Figure 5.2. In

this example, a client copies log files generated by the application during a run using

22

Figure 5.2: Delegation Model Across Services in the Grid Enabled Discover Middle-
ware

a remote DiscoverGASS service.

A.) The client logs on to the middleware using the Grid credentials

B.) It accesses the logging collaboratory sub-service (part of DiscoverCollab).

C.) The logging service uses the client’s credentials and the DiscoverGSI service to

create and delegate a proxy logging service.

D.) This proxy logging services interacts with the DiscoverGASS service to transfer

the log files to the local host.

Note that these interactions are over a secure IIOP channel.

23

Chapter 6

Application Scenario : Oil Reservoir Optimization

Using the Grid-Enabled Discover Middleware

Figure 6.1: Sample Application Scenario: Oil Reservoir Optimization

In this chapter we present a practical utility of our Grid enabled Discover middle-

ware. This sample scenario enables autonomic oil reservoir optimization process on

the Grid. The goal of this process is to dynamically optimize the placement and con-

figuration of oil wells to maximize revenue. The overall operation of our middleware

in this scenario is illustrated in 6.1. The various entities in this optimization process

24

include:

• Integrated Parallel Accurate Reservoir Simulator (IPARS) [49] pro-

viding sophisticated simulation entities that encapsulate complex mathematical

models of the physical interaction in the subsurface. These applications execute

on distributed heterogeneous systems such as the Grid.

• IPARS Factory responsible for configuring and managing multiple instances

of IPARS simulations.

• Very Fast Simulated Annealing (VFSA) [43] optimization service which

is based on statistical physics and the analogy between the model parameters

of an optimization problem and particles in an idealized physical system.

• Grid Enabled Discover middleware providing Grid and Collaboratory ser-

vices and enabling resource discovery, resource allocation, job scheduling, job

interaction and user collaboration on the Grid.

• Economic Modeling Service that uses IPARS simulation outputs and cur-

rent market parameters (oil prices, costs, etc.) to compute estimated revenues

for a particular reservoir configuration.

• Grid enabled Discover Middleware providing services for collaboration,

resource discovery, resource allocation, job scheduling, and job interaction on

the Grid.

• Discover Collaborative Portals providing experts with collaborative access

to these components. Using these portals, experts can discover and allocate re-

sources, configure and launch peers, and monitor, interact with, and steer peer

executions. The portals provide a shared workspace and encapsulate collabora-

tion tools such as Chat and Whiteboard.

25

6.1 End to End Scenario

The entities involved in the optimization process need to dynamically discover and

interact with one another as peers to achieve the overall application objectives. Using

the Grid enabled Discover middleware; experts can select desired Grid and Collabo-

ratory services. The Grid services help them (experts) to discover resources on the

Grid and launch IPARS, VFSA and Economy Modeling entities on these resources.

Then using the DiscoverCollab services they (experts) can monitor, interact and steer

these entities. We explain in detail the steps required for the optimization process.

A.) Experts/users logon to the Discover middleware using the Grid credentials.

Once they have logged onto the Portal they can choose the list of services

they require. If certain services are not present at the current middleware they

are borrowed from the nearest middleware in the domain. This enables the

users to have a pervasive access to a pool of Grid and Collaboratory services.

They (users) use the DiscoverMDS service to first locate the resource on a

particular host. After querying for resources on a particular host they deploy

the IPARS Factory using the DiscoverGRAM service which is delegated using

the DiscoverGSI service. The IPARS Factory discovers and interacts with the

VFSA entity to configure and initialize it

B.) The users interact with the IPARS Factory and VFSA using the DiscoverCollab

service to define application configuration parameters

C.) IPARS Factory utilizes the DiscoverMDS service to discover resources on which

it can configure and execute IPARS instances. The factory then uses the Discov-

erGRAM service on the local or remote middleware to execute various instances

of the IPARS application. The user can monitor the status of spawned IPARS

applications by subscribing to the event channel created by the DiscoverEvent

service.

26

D.) The Economic model entity is likewise deployed on the choice of resource se-

lected by the user. This entity interacts with the IPARS simulations to deter-

mine current economic values.

E.) The VFSA service which was previously deployed provides the IPARS Factory

with optimized well information.

F.) New IPARS simulations are iteratively deployed using the DiscoverGRAM ser-

vice with the optimized well information obtained from the VFSA entity.

G.) These instances of IPARS simulations are collaboratively monitored using the

DiscoverCollab service. The user has updates of the application using the Dis-

coverEvent service. The user can also transfer log files using the DiscoverGASS

service. Various sub-services of the DiscoverCollab service like chatting, logging

and locking are used to steer and manipulate application parameters. Once the

optimal well parameters are determined the IPARS Factory configures and de-

ploys a production IPARS run.

H.) The IPARS simulations are terminated using the DiscoverGRAM service and

the log files are transferred to the local machines for further analysis by experts.

The Discover Grid services is the key to enable the experts to authenticate them-

selves, establish Grid credentials and appropriately delegate proxies, discover services

and resources on the Grid launch the IPARS Factory, IPARS simulations instances,

VFSA Optimization service and the Economic Model on these resources, and transfer

data and execution logs. The Discover Collaboratory services enable the experts to

interactively configure the different entities, to consistently monitor, interact with

and steer these entities, and to collaborate with other experts.

27

Chapter 7

Evaluation

The Grid-enabled Discover middleware is presently deployed at TASSL (The Applied

Software Systems Laboratory), Rutgers University and at the Center for Subsurface

Modeling (CSM) and Institute for Geophysics (IG), University of Texas at Austin,

and is used to enable multiple applications on the Grid from varied disciplines in-

cluding reservoir engineering/subsurface modeling, seismic modeling, computational

fluid dynamics, numerical relativity and astrophysics. We are currently expanding

the network to include a deployment at University of Maryland and the Center for

Advanced Computational Research (CARC), California Institute of Technology. The

middleware implementation builds on commodity technologies including the Apache

Tomcat [22] Servlet engine and the JacORB [8] an open source implementation of

the CORBA ORB.The user signs on to the portal with his userid and password and

is presented with a web interface to select services of his interest. The user then

searches for the host in the particular domain and the resources available at that

point of time using the DiscoverMDS service. The portal provides the user with

the option to launch an application on a particular host queried in the previous step

using the DiscoverGRAM service. The user specifies the path of the executable, com-

mand line parameters of the application and the host to submit the application. The

user receives interactive job updates on the portal using the CORBA event service.

The user can also copy files by specifying the source and destination URL using the

DiscoverGASS service and finally he can terminate the application.

28

7.1 Performance Evaluation

Figure 7.1: Experimental Setup of the Grid Enabled Discover middleware

The overall setup for these experiments is show in Figure 7.1. It consisted of

deployments at grid1.rutgers.edu, discover.rutgers.edu and tassl-pc-2.rutgers.edu at

Rutgers University and ajax.ices.utexas.edu at University of Texas. Deployments

at grid1.rutgers.edu and ajax.ices.utexas.edu had complete installations (Grid and

Collaboratory services) while discover.rutgers.edu had only Grid services and tassl-

pc-2.rutgers.edu had only Collaboratory services. We used the transport equation

application kernel with adaptive mesh refinement (tportamr) for our experiments.

The application was run on Beowulf clusters at Rutgers. The evaluations consisted of

evaluating the latencies in accessing local and remote services over local and wide area

networks and are presented below.Local domain in our experiments was the Rutgers

University domain and remote and the wide area network consists of services accessed

at University of Texas at Austin or visa-versa.

7.2 Evaluation of the DiscoverMDS Service

The evaluation of the DiscoverMDS service is divided into three cases. In the first

case the DiscoverMDS service is locally present (case P). In the second case the

DiscoverMDS service is borrowed from a remote host over the LAN (case B-LAN).

29

Figure 7.2: grid1.rutgers.edu is Queried Figure 7.3: discover.rutgers.edu is Queried

In the third case the DiscoverMDS service is borrowed from a remote host over the

WAN (case B-WAN). In all three cases clients used the DiscoverMDS service to

discover resources in Rutgers domain. In each case, the experiment consists of two

steps:

(a) discovering the DiscoverMDS service using the CORBA Trader service

(b) invoking the service to discover resources.

The times for steps (a) and (b) for discovering resources on grid1.rutgers.edu and

discover.rutgers.edu are plotted in Figure 7.2 and 7.3 respectively. As seen in the

plots, the time for discovering the service (step a) is small compared to the time for

querying for resources (step b). This is primarily because of the overheads of querying

MDS and packing, transporting and unpacking the large amount of returned resource

information. Note that the average time for querying resources on discover.rutgers.edu

is larger than that for grid1.rutgers.edu as discover.rutgers.edu is a 16 node cluster

while grid1.rutgers.edu is a single processor machine.

7.3 Evaluation of the DiscoverGRAM Service

The evaluation of DiscoverGRAM consisted of using the service to launch and ter-

minate the tportamr application on grid1.rutgers.edu.

30

a Resolving Services:DiscoverCollab
b Delegation:DiscoverGSI
c Event Channel Creation:DiscoverEvent
d Job Start time ongrid1.rutgers.edu
e Total time to start job: a+b+c+d
f Resolving Services:DiscoverGRAM
g Delegation:DiscoverGSI
h Event Channel Creation:DiscoverEvent
i Job Cancellation Time:DiscoverGRAM
j Total time to cancel job: f+g+h+i

Table 7.1: Steps Involved in Starting and Terminating Jobs using the DiscoverGRAM
Service

Application deployment consisted of the following steps:

(a) discovering the DiscoverGRAM service

(b) using DiscoverGSI to delegate a service proxy

(c) create an event channel for application monitoring

(d) launch the application on the selected host e.g. grid1.rutgers.edu. Application

termination similarly consisted of the following steps:

(e) discovering the DiscoverGRAM service,

(f) using DiscoverGSI to delegate a service proxy,

(g) create an event channel for application monitoring,

(h) terminate the application selected.

Note that the resource for launching the application and the application to be termi-

nated are discovered and selected using the DiscoverMDS service. The times required

for each step are plotted in Figure 7.4 and each step is explained in Table 7.1. As

in the previous experiment, we consider three cases: in case P, the required ser-

vices are local, in case B-LAN, the required services are borrowed over LAN, and

31

in case B-WAN, the required services are borrowed over a WAN. Note that the

times for lauching and terminating the application are quite comparable for the three

cases. The large termination time is due to the cleanup performed by GRAM. We

Figure 7.4: DiscoverGRAM Launches the tportamr Application Using Steps a,
b, c and d. It Terminates the Same Application Using Steps f, g, h and i on
grid1.rutgers.edu.

evaluated the DiscoverGRAM service by measuring latencies involved in starting

and terminating the tportamr application on discover.rutgers.edu refer Figure 7.5.

discover.rutgers.edu was connected to grid1.rutgers.edu through a local area net-

work(LAN).discover.rutgers.edu had Globus Toolkit 2.0 installed. We observe that

the latencies involved in starting a job on discover.rutgers.edu is quite comparable in

the 3 cases mentioned. We were not able to measure the latency for terminating the

application in all the three cases due to configuration problems.

32

Figure 7.5: DiscoverGRAM Launches the tportamr Application Using Steps a, b,
c and d. It Terminates the Same Application Using Steps f, g, h and i on dis-
cover.rutgers.edu.

7.4 Evaluation of the DiscoverGASS Service

The evaluation of the DiscoverGASS service consisted of using the service to trans-

fer files of different sizes. We measured the time required to transfer files between

grid1.rutgers.edu and discover.rutgers.edu. In this experiment we considered the case

P where the DiscoverGASS service was locally present. The measured transfer time

and the file sizes in bytes are plotted in Figure 7.6 using a log-log scale. The file sizes

and the transfer times varied exponentially and ranged from 2 bytes to ≈10 MB and

the corresponding transfers times varied from 9 msec to 637 msec respectively. It

can be seen that the DiscoverGASS performed well for small and medium file sizes

(9 msec. for ≈2 bytes and 47 msec. for ≈1 MB). However the performance rapidly

deteriorated (637 msec.) as file sizes approached 10 MB. Note that the typical size of

33

Figure 7.6: Log-Log Plot of Transfer Times for Various File Sizes Using the Discov-
erGASS Service (P case)

a log files generated during the DiscoverGRAM experiment was around 100 KB. We

are currently evaluating cases where the service is borrowed over LAN (case B-LAN)

and over WAN (case B-WAN).

7.5 Evalutation of the DiscoverCollab Service

The evaluation for Collaboratory services (access latency over local area and wide

area networks, effect of multiple clients on access latencies and server memory over-

heads due to local and remote applications) was presented in [31]. This evaluation

consisted of measuring scalability, response times and latencies when multiple clients

collaboratively interact with an application. These measurements were conducted

for cases where the DiscoverCollab service is local (case P), borrowed over a LAN

(case B-LAN) and borrowed over a WAN (case B-WAN). The results showed that

34

although response times were larger when using borrowed services, the overhead was

constant for large response sizes. Furthermore, when using the WAN, the results

showed the benefits of the hybrid P2P design and the use of IIOP. The results also

demonstrated that the middleware scaled to over 20 (distributed) collaborating clients

simultaneously interacting with an application.

35

Chapter 8

Conclusions

This work presented the design, implementation, operation and evaluation of the Dis-

cover Grid-enabled middleware substrate. The middleware substrate enables Grid in-

frastructure services provided by the Globus Toolkit (security, information, resource

management, storage) to interoperate with collaboratory services provided by Dis-

cover (collaborative application access, monitoring, and steering). Furthermore, it

enables users to seamlessly access and integrates local and remote services to syn-

thesize customized middleware configurations on demand. Clients can use the Grid

as well as Collaboratory services integrated by the middleware to acquire resources,

configure and launch applications, connect to monitor and steer the applications, ter-

minate applications and collaborate with other users. A sample application scenario,

oil reservoir optimization on the Grid, enabled by the middleware substrate was pre-

sented. An experimental evaluation of access latencies for local and remote (over

LAN and WAN) Grid services using the middleware substrate was presented. These

results show that overheads for using remote services are acceptable.We are in the

process of testing the DiscoverGASS services in the B(Borrowed)-LAN case and

B(Borrowed)-WAN case

8.1 Future Work

The Grid enabled Discover middleware is presently built using the services provided by

the Globus Toolkit-2. In a related research work [1] we are in the process of enhancing

this middleware for supporting “Autonomic” [24] Grid applications.This middleware

36

will be developed on the OGSA (Open Grid Services Architecture) framework which

is currently implemented by the Globus Toolkit-3. This next generation middle-

ware will be aligned with the Service Oriented Architecture. The middleware will

intelligently manage and execute autonomic applications with huge computational

requirements over Grid resources.This middleware will implement key enhancements

to the existing Grid middleware and provide services to support Autonomic Grid

Applications.This layer uses application context(“Context Awareness”), high level

policies associated with it,information behavior of the application and resource re-

quirements specified by the user. The main components of the this middleware will

consist of

• Autonomic Grid Infrastructure This infrastructure will build on our Grid

enabled middleware which provides Grid and Collaboratory services and en-

hance these services and align them with the OGSA standards.To enable this

behavior our first step will be to build “context awareness”, into the middleware

which will allow the systems to sense and react to environment/systems.

• Autonomic Runtime Management which sets up and configures the ap-

plication execution environment.This manages and controls all the autonomic

requirements (self-optimizing, self healing, self configuring, self protecting).

This layer uses the context information provided by the infrastructure layer to

analyze, execute, plan and monitor the application components.

• Autonomic Applications. consists of a new generation of realistic, scientific

and engineering simulations of complex physical phenomenon.These Autonomic

applications will symbiotically and opportunistically combine computations, ex-

periments and real-time data and will provide important insights to complex

physical phenomena. Few of these include “Thermonuclear combustion” ,“Sim-

ulation of active flow control of turbulent flows”, “Forest fire simulation model”

etc.

37

We would like to allow interoperability between other collaboratories like the “ASC

Portal”,“UARC” and evaluate their performances in real world scenarios. We be-

lieve that such an interoperabilty would allow the reuse and wide usage of already

existing sevices, since colaboratories would not be able to implement all the available

services to the user community. This would be a great benefit to the user community

who could customize their middleware stack on demand.

38

References

[1] M. Agarwal, V. Bhat, Z. Li, H. Liu, V. Matossian, V. Putty, C. Schmidt,
G. Zhang, M. Parashar, B. Khargharia, and S. Hariri. AutoMate: Enabling
Autonomic Applications on the Grid. In Proceedings of Autonomic Comput-
ing Workshop The Fifth Annual International Workshop on Active Middleware
Services(AMS 2003), Seattle, WA (accepted), June 25 2003.

[2] W. Allcock, J. Bester, J. Bresnahan, A. Chervenak, L. Liming, S. Meder, and
S. Tuecke. GridFTP Protocol Specification. GridFTP Working Group Docu-
ment, GGF, September 2002.

[3] T. Bellwood. UDDI (Universal Description Discovery and Integration) Ver-
sion 2.04 API Specification. http://uddi.org/pubs/ProgrammersAPI-V2.04-
Published-20020719.htm, July 19, 2002.

[4] J. Bester, I. Foster, C. Kesselman, J. Tedesco, and S. Tuecke. GASS: A Data
Movement and Access Service for Wide Area Computing Systems. In Proceedings
of the Sixth Workshop on I/O in Parallel and Distributed Systems, pages 365–
375, Atlanta, GA, May 5 1999.

[5] B. Blakley. CORBA Security An Introduction to Safe Computing with Objects.
Addison-Wesley Object Technology Series. Addison Wesley Longman Inc, One
Jacob Way, Reading, Massachusetts, 1999.

[6] D. Box, D. Ehnebuske, G. Kakivaya, A. Layman, N. Mendelsohn, H. F.
Nielsen, S. Thatte, and D. Winer. Simple Object Access Protocol (SOAP) 1.1.
http://www.w3.org/TR/SOAP/, May 08, 2000. W3C.

[7] T. Bray, J. Paoli, and C. Sperberg-McQueen. Extensible Markup Language
(XML). REC-xml-19980210, World Wide Web Consortium Recommendation,
February 1998.

[8] G. Brose. JacORB: Implementation and Design of a Java ORB. In Proceeings. of
DAIS’97, IFIP WG 6.1 International Working Conference on Distributed Apli-
cations and Interoperable Systems,Chapman & Hall,, pages 143–154, Cottbus,
Germany, September 30 - October 2 1997.

[9] M. Champion, C. Ferris, E. Newcomer, and E. Newcomer. Web Services Archi-
tecture. http://www.w3.org/TR/ws-arch/, November 14, 2002.

http://uddi.org/pubs/ProgrammersAPI-V2.04-Published-20020719.htm
http://www.w3.org/TR/SOAP/
http://www.w3.org/TR/ws-arch/

39

[10] E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana. Web Services
Description Language (WSDL) 1.1. http://www.w3.org/TR/wsdl, March 15,
2001.

[11] K. Czajkowski, S. Fitzgerald, I. Foster, and C. Kesselman. Grid Information
Services for Distributed Resource Sharing. In Proceedings of the Tenth IEEE
International Symposium on High-Performance Distributed Computing (HPDC-
10) IEEE Press, pages 181–194, San Francisco, CA, August 7-9 2001.

[12] K. Czajkowski, I. Foster, N. Karonis, C. Kesselman, S. Martin, W. Smith, and
S. Tuecke. A Resource Management Architecture for Metacomputing Systems.
In Proc. IPPS/SPDP ’98 Workshop on Job Scheduling Strategies for Parallel
Processing, pages 62–82, Orlando, Florida, March 30 1998.

[13] D. Diachin, L. Freitag, D. Heath, J. Herzog, W. Michels, and P. Plassmann.
Remote Engineering Tools for the Design of Pollution Control Systems for Com-
mercial Boilers. International Journal of Supercomputer Applications, 10(2):208–
218, 1996.

[14] R. T. Fielding, J. Gettys, J. C. Mogul, H. F. Nielsen, L. Masinter, P. Leach, and
T. B. Lee. Hypertext Transfer Protocol HTTP 1.1. RFC 2616, HTTP Working
Group, University of California, Irvine, CA 92717-3425, June 1999.

[15] S. Fitzgerald, I .Foster, C. Kesselman, G. von Laszewski, W. Smith, and
S. Tuecke. A Directory Service for Configuring High-Performance Distributed
Computations. In Proceedings of the 6th IEEE Symposium on High-Performance
Distributed Computing, pages 365–375, Portland, OR, 5-8 August 1997.

[16] I. Foster and A. Iamnitchi. On Death, Taxes, and the Convergence of Peer-to-
Peer and Grid Computing. In Proceedings of the 2nd International Workshop
on Peer-to-Peer Systems (IPTPS’03), Berkeley, CA, February 20-21 2003.

[17] I. Foster and C. Kesselman. Globus:A Metcomputing Infrastructure Toolkit.
International Journal of Supercomputer Applications, 11(2):115–128, 1997.

[18] I. Foster and C. Kesselman. The Grid: Blueprint for a Future Computing In-
frastructure. Morgan Kaufmann Publishers, San Francisco, CA, 1998.

[19] I. Foster, C. Kesselman, J. Nick, and S. Tuecke. The Physiology of the Grid:An
Open Grid Services Architecture for Distributed Systems Integration. In Pro-
ceedings of the Open Grid Service Infrastructure WG, Global Grid Forum, June
22 2002.

[20] I. Foster, C. Kesselman, G. Tsudik, and S. Tuecke. A Security Architecture for
Computational Grids. In Proc. 5th ACM Conference on Computer and Commu-
nications Security Conference, pages 83–92, San Francisco, CA, November 2-5
1998.

http://www.w3.org/TR/wsdl

40

[21] Global Grid Forum. http://www.gridforum.org.

[22] Apache Tomcat Group. Apache Tomcat. http://jakarta.apache.org/tomcat/.
The Apache Jakarta Project.

[23] OMG (Object Management Group). Naming Service Specification Version 1.2.
http://www.omg.org/cgi-bin/doc?formal/02-09-02.pdf, September 2002.

[24] P. Horn. Autonomic Computing:IBM’s perspective on the State of Information
Technology. http://www.research.ibm.com/autonomic/, Oct 2001. IBM Corp.

[25] J. Hunter and W. Crawford. JAVA Servlet Programming. O’Reilly & Asso-
ciates,Inc, Sebastopol, CA-95472,USA., 1998.

[26] IBM. The Era of Grid Computing:Enabling New Possibilities For Your Busi-
ness. http://www-1.ibm.com/grid/pdf/business exec grid.pdf, January 2003.
IBM Corp.

[27] Sun Microsystems Inc. Java Naming and Directory Interface(JNDI) 1.2.
ftp://ftp.javasoft.com/docs/jndi/1.2/jndi.pdf, July 14,1999.

[28] R. T. Kouzes, J. D. Myers, and W. A. Wulf. Doing Science on the Inter-
net. In IEEE Computer August 1996,IEEE Fifth Workshops on Enabling Tech-
nology:InfraStructure for Collaorative Enterprises(WET ICE 96), pages 40–46,
Stanford CA, June 19-21 1996.

[29] F. Leymann. Web Services Flow Language (WSFL) 1.0. http://www-
3.ibm.com/software/solutions/webservices/pdf/WSFL.pdf, May,2001. IBM
Academy of Technology, IBM Software Group.

[30] V Mann, V. Matossian, R. Muralidhar, and M. Parashar. DISCOVER: An Envi-
ronment for Web-based Interaction and Steering of High-Performance Scientific
Applications. Concurrency and Computation: Practice and Experience, John
Wiley and Sons, 13(8-9):737–754, 2001.

[31] V. Mann and M. Parashar. Middleware Support for Global Access to Integrated
Computational Collaboratories. In Proceedings of the 10th IEEE International
Symposium on High Performance Distributed Computing,IEEE Computer Soci-
ety Press, pages 35–46, San Francisco, CA, August 2001.

[32] R. Muralidhar and M. Parashar. An Interactive Object Infrastructure for Com-
putational Steering of Distributed Simulations. In Proceedings of the Ninth Inter-
national Symposium on High Performance Distributed Computing (HPDC 2000),
IEEE Computer Society Press, pages 304–305, Pittsburgh, PA, August 2000.

[33] OMG (Object Management Group). Event Service Specification Version 1.1.
http://www.omg.org/cgi-bin/doc?formal/01-03-01.pdf, March 2001.

http://www.gridforum.org
http://jakarta.apache.org/tomcat/
http://www.omg.org/cgi-bin/doc?formal/02-09-02.pdf
http://www.research.ibm.com/autonomic/
http://www-1.ibm.com/grid/pdf/business_exec_brief.pdf
http://www-3.ibm.com/software/solutions/webservices/pdf/WSFL.pdf
http://www.omg.org/cgi-bin/doc?formal/01-03-01.pdf

41

[34] OMG (Object Management Group). Trading Object Service Specification Ver-
sion 1.0. http://www.omg.org/cgi-bin/doc?formal/00-06-27.pdf, May 2000.

[35] G. Olson, D. E. Atkins, T. Finholt, and R. Clauer. The Upper Atmospheric
Research Collaboratory. ACM Interactions, 5(3):48–55, May-June 1998.

[36] A. Pope. The CORBA Reference Guide Understanding the Common Object
Request Broker Architecture. Addison-Wesley Corporate & Professional. Addison
Wesley Longman Inc, One Jacob Way, Reading, Massachusetts, 1999.

[37] J. Postel. Transmission Control Protocol. Std 7,RFC 793, IETF Secretariat c/o
Corporation for National Research Initiatives, 1895 Preston White Drive, Suite
100 Reston, VA 20191-5434, September 1981.

[38] Python Globus (pyglobus). http://www-itg.lbl.gov/gtg/projects/pyGlobus.

[39] M. Roussos, A. Johnson, C. Barnes J. Leigh, C. Vasilakis, and T. Moher.
The NICE Project: Narrative, Immersive, Constructionist/Collaborative En-
vironments for Learning in Virtual Reality. In Proceedings of ED-MEDIA/ED-
TELECOM 97, pages 917–922, Calgary, Canada, June 1997.

[40] W. Ruh, T. Herron, and P. Klinker. IIOP Complete Understanding CORBA and
Middleware Interoperability. Addison-Wesley Object Technology Series. Addison
Wesley Longman Inc, One Jacob Way, Reading, Massachusetts, 1999.

[41] M. Russell, G. Allen, G. Daues, and G. von Laszewski. The Astrophysics Sim-
ulation Collaboratory A Science Portal for Enabling Community Software De-
velopment. In Proceedings of the Tenth IEEE International Symposium on High
Performance Distributed Computing, pages 207–215, San Francisco, CA, August
2001.

[42] University of Michigan School of Information. SPARC Space Physics and Aeron-
omy Research Collaboratory. http://intel.si.umich.edu/sparc, June 2002.

[43] M. K. Sen and P. L. Stoffa. Global Optimization Methods in Geophysical Inver-
sion. Advances in Exploration Geophysics 4. Elsevier Science, New York, NY,
1995.

[44] Rutgers University TASSL (The Applied Software Systems Laboratory). Dis-
cover Portal. http://www.discoverportal.org.

[45] M. Thomas, S. Mock, and J. Boisseau. Development of the Web Toolkits for
Computational Science Portals: The NPACI HotPage. In Proceedings of the
9th IEEE International Symposium on High Performance Distributed Comput-
ing(HPDC 2000), pages 308–309, Pittsburgh,PA, Aug 14 2000.

[46] S. Verma, M. Parashar, J. Gawor, and G. von Laszewski. Design and Im-
plementation of a CORBA Community Grid Kit. In Proceedings of the 2nd

http://www.omg.org/cgi-bin/doc?formal/00-06-27.pdf
http://www-itg.lbl.gov/gtg/projects/pyGlobus
http://intel.si.umich.edu/sparc
http://www.discoverportal.org

42

International Workshop on Grid Computing,Lecture Notes in Computer Sci-
ence,Editors:C. A. Lee, Springer-Verlag, pages 2–13, Denver, CO, November
2001.

[47] G. von Laszewski, I. Foster, J. Gawor, and P. Lane. A Java Community Grid
Kit. Concurrency and Computation: Practice and Experience, 13(8-9):643–662,
2001.

[48] G. von Laszewski, I. Foster, J. Gawor, W. Smith, and S. Tuecke. CoG Kits:
A Bridge between Commodity Distributed Computing and High-Performance
Grids. In Proceedings of the ACM Java Grande 2000 Conference, pages 97–106,
San Francisco, CA, June 3-5 2000.

[49] J. A. Wheeler and M. Peszyńska. IPARS: Integrated Parallel Reservoir Sim-
ulator. http://www.ticam.utexas.edu/CSM. Center for Subsurface Modeling,
University of Texas at Austin.

http://www.ticam.utexas.edu/CSM

	Abstract
	Acknowledgements
	Dedication
	List of Tables
	List of Figures
	Introduction
	Contributions
	Organization

	Prior Work
	Computational Collaboratories and Problem Solving Environments
	Middleware Technologies

	The Grid Enabled Middleware Architecture
	Grid Services
	Collaboratory Services

	Design of the DISCOVER Grid Enabled Middleware Substrate
	Discover Middleware Host (Server)
	Discover Middleware Services
	Discover Portals

	Operation of the DISCOVER Grid Enabled Middleware
	Security and Authentication
	Registration and Discovery of Services
	Discovery of Servers, Applications and Resources
	Accessing Globus Grid Services: Job Submission and Remote Data Access
	Distributed Collaboration
	Distributed Locking and Logging for Interactive Steering and Collaboration
	Services Interoperation

	Application Scenario : Oil Reservoir Optimization Using the Grid-Enabled Discover Middleware
	End to End Scenario

	Evaluation
	Performance Evaluation
	Evaluation of the DiscoverMDS Service
	Evaluation of the DiscoverGRAM Service
	Evaluation of the DiscoverGASS Service
	Evalutation of the DiscoverCollab Service

	Conclusions
	Future Work

	References

