

i

MIDDLEWARE ARCHITECTURE FOR INTEGRATED COMPUTATIONAL

COLLABORATORIES

by

VIJAY MANN

A thesis submitted to the

Graduate School-New Brunswick

Rutgers, The State University of New Jersey

in partial fulfillment of the requirements

for the degree of

Master of Science

Graduate Program in Electrical and Computer Engineering

written under the direction of

Prof. Manish Parashar

and approved by

New Brunswick, New Jersey

October, 2001

ii

ABSTRACT OF THE THESIS

Middleware Architecture for Integrated Computational Collaboratories

by Vijay Mann

Thesis Director: Professor Manish Parashar

A Collaboratory is defined as a place where scientists and researchers work together to solve

complex interdisciplinary problems, despite geographic and organizational boundaries.

Computational collaboratories provide uniform (collaborative) access to computational resources,

services and/or applications. The growth of the Internet and the advent of the computational

�Grid� have made it possible to develop and deploy advanced computational collaboratories.

These systems expand the resources available to researchers, enable multidisciplinary

collaborations and problem solving, increase the efficiency of research, and accelerate the

dissemination of knowledge.

 While combining these systems can lead to truly collaborative, multi-disciplinary and multi-

institutional problem solving, integrating these �focused� collaboratories presents significant

challenges. This is because each of these collaboratories has a unique architecture and

implementation, and builds on different enabling technologies. Key among these challenges is the

design and development of robust middleware support that addresses scalability, service

discovery, security and access control, and interaction and collaboration management for

consistent access. Such a middleware should define a minimal set of interfaces and protocols to

enable collaboratories to share resources, services, data and applications on the Grid while being

able to maintain their architectures and implementations of choice.

iii

This thesis investigates the requirements for achieving interoperability among collaboratories

operating on the Grid. It then presents the design of a middleware substrate that addresses

interoperability, and a prototype implementation of this middleware substrate, to enable a peer-to-

peer integration of and global collaborative access to multiple, geographically distributed

instances of the DISCOVER computational collaboratory. DISCOVER provides collaborative

access to high-performance parallel and distributed applications for interaction and steering using

a web-based portal. The middleware substrate enables DISCOVER interaction and steering

servers to dynamically discover and connect to one another to form a peer-to-peer network. This

allows clients connected to their local servers to have global access to all applications and

services across all the servers in the network based on their credentials, capabilities and

privileges. A retrospective evaluation of the design and an experimental evaluation of the

prototype middleware substrate are also presented.

iv

Acknowledgements

I am grateful to my advisor Prof. Manish Parashar for his invaluable guidance, immense

patience, encouragement and support throughout my stay at Rutgers. I am thankful to Prof.

Michael Hsiao and Prof. Ivan Marsic for their valuable advice and pertinent suggestions

regarding my thesis. Thanks are due to all the current and former team members of the

DISCOVER project for their invaluable suggestions. I would also like to thank the CAIP support

staff for their prompt and detailed responses to my queries and for the excellent facilities that they

provide in the various laboratories at CAIP and in particular at The Applied Software Systems

Laboratory (TASSL). I acknowledge the support and love of all my friends at TASSL and at

Rutgers University for making my studies at Rutgers an enjoyable phase of my life. Finally, this

work wouldn�t have been possible without the love, support and encouragement from my family

members here in the United States and back home in India.

v

Table of Contents

ABSTRACT OF THE THESIS..ii
Acknowledgements... iv

Table of Contents .. v

List of Figures ..vii
List of Tables...viii
Chapter 1.. 1

Introduction ... 1
1.1 Objective...1
1.2 Background...1
1.3 Problem Statement..3
1.4 Overview...4
1.5 Contributions ..6
1.6 Organization..7

Chapter 2.. 8

Background and Related Work ... 8
2.1 Current Status of Problem Solving Environments and Computational Collaboratories8
2.2 Motivation for Interoperable Collaboratories ...10
2.3 Related Work on Interoperable Collaboratories ...12
2.4 Enabling Technologies for Interoperability ..13

2.4.1 Peer-to-Peer Computing ...13
2.4.2 Enterprise Computing Technologies ..15

Chapter 3.. 16

Building Interoperable Collaboratories on the Grid ... 16
3.1 Approaches to Interoperability ...16
3.2 Architecture of a Grid-based Collaboratory..18

3.2.1 Interoperability through available Protocols ..20
3.3 Middleware Design for Grid-based Collaboratories..21

3.3.1 DISCOVER Middleware Approach ...21
3.3.2 DISCOVER Middleware Design..23

Chapter 4.. 26

DISCOVER: A Computational Collaboratory for Interaction and Steering............ 26
4.1 DISCOVER Interaction and Collaboration Servers..27

4.1.1 DISCOVER Model for Requests - Responses ...29
4.2 A Middleware Substrate for Peer-to-Peer Integration of DISCOVER Servers30

Chapter 5.. 34

vi

Implementation and Operation of the DISCOVER Middleware Substrate.............. 34
5.1 Middleware Implementation...34

5.1.1 The DiscoverCorbaServer Interface ...35
5.1.2 The CorbaProxy Interface ..36

5.2 Middleware Operation ..36
5.2.1 Servers and Applications Discovery...37
5.2.2 Security/Authentication across Servers ..37
5.2.3 Collaboration across Servers ..38
5.2.4 Distributed Locking..39
5.2.5 Distributed Logging..40

Chapter 6.. 41

Performance and Design Evaluation... 41
6.1 An Experimental Evalutation of the DISCOVER Middleware Substrate41

6.1.1 Experiment 1 � Access Latency over a Local Area Network (LAN) and a Wide
Area Network (WAN) ...41
6.1.2 Experiment 2 � Access Latency with Multiple Simultaneous Clients46
6.1.3 Experiment 3 � An Evaluation of Server Memory Requirements............................47

6.2 Retrospective Evaluation of the Design and Technologies Used49
6.3 Challenges and Open Issues in a Peer-to-Peer Computational Environment50

Chapter 7.. 53

Conclusion and Future Work .. 53

References .. 56

vii

List of Figures

Figure 1. Hierarchical architecture of a collaboratory on the Grid ..19
Figure 2. Middleware architecture for integrating web-based computational collaboratories 24
Figure 3. Architectural schematic of the DISCOVER computational collaboratory...............27
Figure 4. Asynchronous communication at the server for requests and responses..................30
Figure 5. A deployment of DISCOVER servers providing access to a repository of services 32
Figure 6. Interaction model between DISCOVER servers ..34
Figure 7. Collaborative group spanning multiple servers ..39
Figure 8. Setup for the experimental evaluation of the DISCOVER middleware42
Figure 9. Comparison of latencies for direct and indirect application accesses on a Local Area

Network (LAN) ...43
Figure 10. Comparison of latencies for direct and indirect application accesses on a Wide Area

Network (WAN)..45
Figure 11. Use of IIOP as the protocol for the World Wide Web ...46
Figure 12. Variation in access latencies with multiple, simultaneous clients over a LAN........47
Figure 13. Sever memory utilization for different configurations ...49

viii

List of Tables

Table 1. A Collaboratory for interaction and computational steering (e.g. DISCOVER)......19
Table 2. A Collaboratory for launching applications remotely (e.g. PUNCH)20

1

Chapter 1

Introduction

1.1 Objective

The objectives of this thesis are to:

• Investigate the requirements for achieving interoperability among collaboratories

operating on the computational Grid.

• Develop a middleware design for collaboratories operating on the Grid, which meets

the above requirements.

• Design, implement and evaluate a prototype middleware architecture, which

integrates multiple, geographically distributed instances of the DISCOVER

computational collaboratory to enable collaborative sharing and steering of

applications across such instances.

1.2 Background

A Collaboratory is defined as a place where scientists and researchers work together to solve

complex interdisciplinary problems, despite geographic and organizational boundaries [2].

Computational collaboratories provide uniform (collaborative) access to computational resources,

services and/or applications such as analytical tools, instruments and raw data, summaries and

analyses for multidisciplinary research, archival information and tools for synchronous and

asynchronous collaboration. These systems expand the resources available to researchers, enable

multidisciplinary collaborations and problem solving, increase the efficiency of research, and

accelerate the dissemination of knowledge.

2

The growth of the Internet and the advent of the computational �Grid� [3] have made it

possible to develop and deploy advanced computational collaboratories[4][5]. Recent efforts

include the following:

a) The Upper Atmospheric Research Collaboratory (UARC)[6][7] provides a virtual

shared workspace in which a geographically dispersed community of space scientists

perform real time experiments at remote facilities, in locations such as Greenland,

Puerto Rico, and Alaska.

b) The Diesel Combustion Collaboratory (DCC) [8][9] is a problem solving environment

(PSE) for combustion research providing tools such as a distributed execution

management system for running combustion models on widely distributed computers

(including supercomputers), web accessible data archiving capabilities; electronic

notebooks and shared workspaces; visualization of combustion data; and video

conferencing and data-conferencing tools.

c) Access Grid[10] is an ensemble of resources that can be used to support human

interaction across the grid, and consists of multimedia displays, presentation and

interactions environments, interfaces to grid middleware, and interfaces to

visualization environments.

d) Netsolve [11] is a client-server system that enables users to solve complex scientific

problems remotely and allows users to access both hardware and software

computational resources distributed across a network.

e) EMSL [12] is a symmetric collaboration between computer scientists, domain

scientists (physical and biological sciences), and sociologists and relies on the

development of new communications technologies - shared computer displays,

electronic notebooks, virtual reality collaboration spaces - and an integration of these

technologies with current videoconferencing and email capabilities.

3

f) The Astrophysics Simulation Collaboratory [13] involves a community of scientists,

researchers, and developers who wish to collaborate on the development of scientific

codes for the astrophysics community at large. It builds on Cactus [14], which is an

open source problem-solving environment designed for scientists and engineers in the

field of numerical relativity and astrophysics.

g) DISCOVER [1][15][16] provides a virtual shared workspace for scientists and

researchers to steer and collaboratively interact with large parallel and distributed

applications in diverse fields such as oil reservoir simulations, seismic whole-earth

simulations, computational fluid dynamics, and numerical relativity.

Each of these systems provides a high-level problem-solving environment (PSE) that builds

on the underlying Grid technologies to provide seamless access to domain specific resources,

services and applications. Together these systems have the potential for enabling truly global

scientific investigation through the creation of meta-laboratories spanning many research groups,

universities and countries, and transforming computational applications and simulations into

global modalities for research and instruction. However, seamlessly integrating these systems

presents many challenges.

1.3 Problem Statement

The collaboratories listed in section 1.2 provide specialized services to their user community

for their specific application domain. There is hardly any interaction across such collaboratories

and as a result, these services are restricted to their specific user domains. Combining these

�focused� collaboratories and allowing them to interoperate presents many advantages. The

services provided by the different collaboratories can be reused reducing duplication of effort. At

a higher level, the domain specific services provided by the collaboratories can be composed and

combined leading to truly collaborative, multi-disciplinary and multi-institutional problem

solving.

4

However, integrating these collaboratories presents significant challenges. These

collaboratories have evolved in parallel with the Grid Computing effort and have been developed

to meet unique requirements and support specific user communities. As a result, these systems

have customized architectures and implementations, and build on specialized enabling

technologies. The design of such systems has rarely focused on the issues of interoperability and

extensibility. Although, some systems like Ninf [34][40][41] and NetSolve [11] have been able to

interoperate with each other through a joint collaborative effort by their respective development

teams, it is still limited to bilateral sharing, as opposed to global sharing of resources

recommended by the Grid architecture. Such efforts have further identified the significance of

interoperability and the need for a general solution for interoperability among collaboratories.

Integration of such systems by making them interoperate with each other will definitely provide

scientists and researchers with an interesting opportunity for multi-disciplinary research.

While combining these systems can lead to truly collaborative, multi-disciplinary and multi-

institutional problem solving, integrating these �focused� collaboratories presents significant

challenges. Key among these challenges is the design and development of high-level services as

part of a robust middleware support that addresses interoperability, scalability, service discovery,

security and access control, and interaction and collaboration management for consistent access.

Such a middleware should define a minimal set of interfaces and protocols to enable

collaboratories to share resources, services, data and applications on the Grid while being able to

maintain their architectures and implementations of choice.

1.4 Overview

This thesis first investigates the requirements for achieving integration and interoperability

among collaboratories on the Grid and discusses how the Grid architecture proposed by Foster et

al. in [17] can be naturally extended to define an architecture for collaboratories on the Grid. It

5

then presents the design of a middleware substrate within this architecture that addresses the

interoperability issues discussed above.

A prototype implementation of a middleware substrate, based on the proposed design, is then

presented. This prototype enables a peer-to-peer integration of and global collaborative web-

based access to multiple, distributed instances of the DISCOVER computational collaboratory.

DISCOVER provides collaborative access to high-performance parallel and distributed

applications for interaction and steering using web-based portals [1][15][16]. The key design

challenge is enabling scalable, secure, consistent and controlled access to remote, highly dynamic

distributed applications for real-time monitoring, interaction and steering by geographically

distributed scientists and engineers in a collaborative environment. The middleware substrate

enables DISCOVER interaction and steering servers to dynamically discover and connect to one

another to form a peer-to-peer network. This allows clients connected to their local servers to

have global access to all applications and services across all the servers in the network based on

their credentials, capabilities and privileges. The design and implementation of the DISCOVER

middleware substrate builds on existing web servers and leverages commodity technologies and

protocols such as CORBA [18] and HTTP [19]. Its goal is to enable rapid deployment, ubiquitous

and pervasive access, and easy integration with 3rd party services, while evaluating the viability of

these technologies for advanced Grid applications.

The overall aim of Grid computing is to enable collaborative and coordinated problem

solving in dynamic, multi-institutional virtual organizations and it focuses on large-scale resource

sharing, innovative applications, and high performance computing [17]. The middleware

substrate presented in this thesis addresses one aspect of this general problem by providing global

collaborative access to grid applications and services. The middleware substrate presents a simple

implementation of a collaboration service, which handles collaboration among groups spanning

multiple domains or servers. The fact that the clients on all servers communicate over HTTP,

which is a stateless request-response protocol and thus not the ideal protocol for collaboration,

6

further illustrates the significance of this service. It also reflects on the various design issues that

come up while designing such a service for web clients (communicating over HTTP).

An experimental evaluation of the middleware substrate is also presented. It measures latency

overheads for indirect access over CORBA/IIOP as compared to direct access over HTTP (both

on a local area network as well as on a wide area network), latency overheads for multiple

simultaneous clients and memory overheads for different configurations of the middleware

substrate. The latency measurement results over a wide area network validate our design and

justify the use of IIOP as the inter-server communication protocol.

1.5 Contributions

This thesis makes the following contributions:

a) Formulation of the requirements for achieving interoperability among collaboratories

operating on the Grid.

b) Design and implementation of a middleware substrate that enables a peer-to-peer

integration of and global collaborative web-based access to multiple, distributed

instances of the DISCOVER computational collaboratory. It uses commodity

technologies and protocols such as CORBA [18] and HTTP [19] for middleware

development to enable rapid deployment, ubiquitous and pervasive access, and easy

integration with 3rd party services, while evaluating the viability of these technologies

for advanced Grid applications.

c) Implementation of a collaboration service, which handles collaboration among groups

spanning multiple domains or servers and reflects on the various design issues that

come up while designing such a service for web clients (communicating over HTTP).

d) An experimental evaluation of the middleware substrate comparing its performance on

a wide area network to that on a local area network.

7

1.6 Organization

This thesis is organized in 7 chapters. Chapter 2 provides some background and discusses

related work on interoperability among collaboratories. It also discusses recent efforts in

developing technologies that enable interoperability.

Chapter 3 outlines the requirements for achieving interoperability among collaboratories on

the Grid. It also presents a hierarchical architecture for collaboratories on the Grid and a

middleware design for such collaboratories.

Chapter 4 introduces the DISCOVER web based computational collaboratory for interaction

and steering, and describes the design, implementation, and operation of its interaction and

collaboration server. This chapter also introduces the middleware substrate for peer-to-peer

integration of a network of DISCOVER servers to provide global collaborative access to remote

applications.

Chapter 5 describes the implementation and operation of the DISCOVER middleware

substrate.

Chapter 6 presents an experimental evaluation of the middleware substrate and a

retrospective evaluation of the design and discusses its advantages and disadvantages. This

chapter also presents an evaluation of commodity distributed technologies and protocols and their

ability to support Grid applications, and briefly discusses open issues and challenges.

Chapter 7 presents some conclusions and outlines current and future work.

8

Chapter 2

Background and Related Work

2.1 Current Status of Problem Solving Environments and Computational

Collaboratories

The growth of the Internet and the advent of the computational �Grid� [3] have resulted in the

development and deployment of advanced problem solving environments and computational

collaboratories [4][5] such as the Upper Atmospheric Research Collaboratory (UARC)[6][7], the

Diesel Combustion Collaboratory (DCC) [8][9], Access Grid [10], Netsolve [11], EMSL [12], the

Astrophysics Simulation Collaboratory (ASC) [13][14], Punch [21][22], WebFlow [23],

Gateway [24], HotPage/GridPort [25][26][27], GPDK [28], Commodity CoG Kits [29][30][31],

Nimrod-G [32], JiPang [33], and DISCOVER [1][15][16]. These systems provide specialized

services to their user communities and address different issues in wide area resource sharing and

the overall Grid computing problem [17][20]. For example, UARC and ASC implement

applications specific PSEs, WebFlow provides support for composing, configuring and deploying

scientific applications on the Grid, and systems such as GridPort provide support for acquiring

and managing Grid resources. Some of these systems are briefly discussed below.

Punch (Purdue University Network Computing Hubs) provides the user with an illusion of a

wide area computer that appears as a computing portal. PUNCH provides a computing portal for

allocating resources, deploying and running applications, and provides a desktop view of that

application. Using Punch, users can select an application; specify the location where the data is

stored, and then run the application using that data. Punch first verifies if the user is authorized to

run the selected application, then uses its active yellow pages service to locate an appropriate

machine for the run and its virtual file system to mount the application and data disks on the

9

selected machine. Finally it invokes the application on the selected machine and routes the

display to the user�s browser via a remote display management technology such as VNC.

The NPACI HotPage and the Grid Port toolkit provide secure and customized access to grid

services through web portals. HotPage is a user portal that attempts to simplify access to HPC

resources distributed across member organizations, and allows them to be viewed either as an

integrated Grid system or as individual machines. GridPort generalizes the HotPage infrastructure

and develops a reusable portal toolkit. The two key components of GridPort are the web portal

services and the application APIs. The Web portal module runs on a Web server and provides

secure connectivity to the grid. The APIs provide a Web interface that enables the development of

customized science portals by end users. The GridPort modules are based on commodity Internet

and Web technologies as well as existing grid services and applications.

The Astrophysics Simulation Collaboratory (ASC Portal) provides an application specific

PSE for composing, configuring and deploying astrophysical simulations on the Grid. ASC uses

a N-tier application model and builds on commodity technologies such as HTTPS, servlets, and

RDBMS. The ASC server architecture leverages ongoing efforts aimed at providing high-level

access to grid services such as the Java CoG [29], and the Grid Portal Development Toolkit

(GPDK). The Java CoG kit is part of the Commodity Grid (CoG) project, which is working to

overcome the difficulties of accessing advanced grid services, such as authentication, remote

access to computers, resource management, and directory services by defining mappings and

interfaces between the Grid and commodity frameworks (e.g. Java, CORBA, Python) that are

familiar to PSE developers.

WebFlow provides a framework for publishing and reusing computational modules on the

web, so that end users, using a web browser, can visually compose distributed applications using

these modules. The overall WebFlow architecture is very similar to DISCOVER � however, it

addresses issues in composing, configuring and deploying scientific applications on the Grid,

whereas DISCOVER is primarily aimed at computational steering and collaborative interactive

10

visualization of large parallel and distributed scientific simulations. The WebFlow middle tier

also uses a network of Java enhanced web servers (although it does not exploit the peer-to-peer

nature of the servers). Furthermore, WebFlow, like DISCOVER, uses high level distributed

technologies like servlets and CORBA, and provides similar advantages such as portability and

extensibility.

The Salamander middleware substrate [35][36][37], which is used in the UARC and the

IPMA (Internet Performance Measurement and Analysis) project [38], is a wide area network

data dissemination substrate. The Salamander substrate provides support for both web casting and

groupware applications by providing virtual distribution channels through its channel subscription

service. The channel subscription service provides an abstraction for the distribution of data from

publishers to subscribers with both anonymous and negotiated push techniques. In contrast,

DISCOVER uses a poll and pull technique. Clients in DISCOVER poll their nearest server for

new data, and fetch it if it is available. Poll and pull is a natural choice for DISCOVER since the

clients use HTTP which is a request response protocol. Salamander supports a limited interaction

and steering capability through its negotiated push technology. The DISCOVER computational

collaboratory provides a richer control interface allowing users to collaboratively monitor and

control overall application execution, to access, interact with and steer individual computation

objects, to manage object dynamics and distribution, and to schedule automated periodic

interactions.

2.2 Motivation for Interoperable Collaboratories

There are several compelling reasons for allowing multiple types of collaboratories to co-

exist and interoperate on the Grid [34]. The systems mentioned above are customized to meet the

unique requirements of a specific user community, and provide specialized services and user

interfaces that best meet the needs of their users. For example, each system may have a different

requirement on how its clients should access its services. Some systems might require ubiquitous

11

web access through web browsers and therefore use HTTP for access. Other systems might

require rich collaboration services among clients and build on a multicast protocol for access.

Any effort aimed at building collaboratories on the Grid should accommodate all such

preferences.

Furthermore, the services provided by the different systems can be reused reducing

duplication of effort. For example the ASC [13] reuses the authentication services provided by

the Java CoG [29] rather than re-implement them. At a higher level, the domain specific services

provided by the collaboratories can be composed and combined leading to truly collaborative,

multi-disciplinary and multi-institutional problem solving. For example, one could combine the

physical models provided by ASC and UARC, visually compose and configure an application

using WebFlow, allocate resources, deploy and run the application using PUNCH, collaboratively

interact and steer the applications using DISCOVER, and if the application generates large

amounts of real time data, one could broadcast it to participating clients using the Salamander

data dissemination substrate [35][36][37] (used in the UARC and the IPMA project [38]).

Building each system to provide all required capabilities will not only lead to duplication but is

rapidly ceasing to be a viable option. However, most of these are standalone systems with

customized architectures, and combining them in the fashion outlined above can be a significant

challenge. For example, these systems use different underlying protocols and enabling

technologies - WebFlow and DISCOVER use CORBA and HTTP, PUNCH uses HTML and

CGI, while Salamander uses a customized API (application programming interface) written in

C/Java/Perl.

The need for an intermediate interoperability layer on top of the Grid has been emphasized

earlier [34]. Such a layer will provide basic concepts and mechanisms that can be shared by

collaboratories on the Grid, avoiding duplication of effort and core development, and allowing

individual systems to focus on domain specific issues and the needs of their user community.

Note that the access modes, client-server interaction protocols and user interface designs typically

12

need to be customized for specific domains. Therefore, such a common interoperability layer

should only be implemented at the middle tier of a typical 3-tier architecture.

2.3 Related Work on Interoperable Collaboratories

Although interoperability has been identified as a central issue for Grid based systems in

previous work [3][17][39][40], there has been limited progress towards achieving this goal. This

is particularly true in the case of computational collaboratories, which typically have a monolithic

design aimed at serving the domain specific needs of their user community. Although, there have

been efforts aimed at bilateral sharing and interoperability such as those between Ninf

[34][40][41] and NetSolve [11], these have been made possible because of joint development

efforts by their respective development teams. These efforts have further identified the

significance of interoperability and the need for having a general solution for interoperability.

The Collaboratory Interoperability Framework Project [39] proposes a common

communication API that can be used by collaboratory developers to build tools for collaboration

like videoconferencing, text based collaboration through chat, whiteboard and electronic

notebooks. Since these tools will use a common communication API that hides the details of the

underlying protocol used, they should be able to interoperate with each other. The API supports a

wide range of protocols like Unreliable Unordered Multicast (e.g IP Multicast), Unreliable

Ordered Multicast (IP Multicast with out of order packets filtered), Unreliable Datagram Protocol

(UDP), Transmission Control Protocol (TCP), Reliable Ordered Multicast (e.g the Totem

protocol) and Reliable Source Ordered Multicast (e.g the XTP protocol). However, this approach

is too low-level, which means that collaboratories will continue building customized services on

top of the common communication API.

Another approach for enabling interoperability has been presented in [42]. This apporach

characterizes portals as web based interfaces to applications. In particular it focuses on portals for

computational science and web based education. These portals will be based on technologies

13

developed for areas such as e-commerce and the large Enterprise Information Portal market. This

approach takes the view that interoperable portals should be based on interface standards, which

are essentially hierarchical frameworks in the Java approach but are probably best defined in

XML. These portal frameworks are based on a 3-tier architecture which uses two interface

definitions based on XML. These are the resource markup language (resourceML) that describes

the basic learning or computing objects and the portal markup language (portalML) that describes

the user view of the portal. The use of two interfaces separates the user and system view and

insulates both the user interface and repository resources from the changing server infrastructure.

2.4 Enabling Technologies for Interoperability

Recent efforts in peer-to-peer (P2P) computing and enterprise computing address problems

and issues, which are equally valid in a Grid environment.

2.4.1 Peer-to-Peer Computing

Collaboratories interoperating with each other on the Grid are essentially peers interacting in

a P2P network. Peer-to-peer computing, as implemented in Internet communication and file

sharing tools like Napster [43], Gnutella [44], and Freenet [45], and Internet computing as

implemented by systems such as SETI@home [46], Parabon [47], and Entropia [48], are

examples of more general sharing modalities and computational structures beyond traditional

client server systems. These characterize virtual organizations where information and resource

sharing can take place among any subset of participants. These technologies and systems present

a radical paradigm shift from client-server systems. These systems have so far focused entirely on

vertically integrated solutions, rather than seeking to define common protocols that would allow

for a shared infrastructure and interoperability. Also, the forms of sharing targeted by various

applications are quite limited; for example, file sharing with no access control, computational

sharing with a centralized server or multi-user text based collaboration.

14

Project JXTA [49] from Sun Microsystems, is a network programming and computing

platform designed to solve a number of problems in modern distributed computing, especially in

the area of peer-to-peer computing. The objective of the project is to build interoperable, platform

independent, and ubiquitous peer-to-peer systems. JXTA technology is still evolving and will

soon be open-sourced and co-developed by many contributors. At the highest abstraction level

JXTA technology is a set of protocols and currently defines protocols such as Peer Discovery

Protocol, Peer Resolver Protocol, Peer Information Protocol, Peer Membership Protocol, Pipe

Binding Protocol and Endpoint Routing Protocol. These protocols use XML-encoded messages.

JXTA stays away from APIs and remains independent of programming languages. More

importantly, JXTA is designed to be also independent of transport protocols. It can be

implemented on top of TCP/IP, HTTP, Bluetooth, HomePNA and many other protocols. Project

JXTA holds a lot of promise and it will be interesting to see how it evolves. Many of the

protocols and the objectives defined by JXTA, are equally valid and significant in Grid

environments.

A related proposal from Intel [50] presents an approach for peer-to-peer computing for

enterprise systems, where jobs are �split� into byte-sized tasks for individual PCs. Intel�s peer to

peer computing proposals categorize its use in four main categories:

Collaboration � empowering individuals and teams to create and administer real-time and off-

line collaboration areas in a variety of ways, whether administered, unadministered, across the

Internet, or behind the firewall.

Edge services - In essence, edge services move data closer to the point at which it is actually

consumed acting as a network caching mechanism.

Distributed computing and resources - Using a network of computers, peer-to-peer

technology can use idle CPU MIPS and disk space, allowing businesses to distribute large

computational jobs across multiple computers.

15

Intelligent agents - Agents reside on peer computers and communicate various kinds of

information back and forth. Agents may also initiate tasks on behalf of other peer systems.

These categories pretty much summarize the use of peer-to-peer technology. The

DISCOVER peer to peer server architecture has features representative of most of these

categories: it allows collaboration among users and servers, it allows clients to connect to their

nearest server and access remote resources through it, the servers maintain references to remote

resources which act as intelligent agents at the remote server, etc. Our current implementation

however, does not try to use idle cycles on peer servers.

2.4.2 Enterprise Computing Technologies

Enterprise computing technologies such as Universal Description Discovery and

Integration (UDDI) [51] and Microsoft�s .NET [52] are related efforts aimed at supporting

discovery of web services and interactions between them. UDDI specifications define a way to

publish and discover information about Web Services. The term �web service� describes specific

business functionality exposed by a company, usually through an Internet connection, to enable

another company or software program to use the service. UDDI registries are used to promote and

discover these distributed Web Services. The UDDI approach relies upon a distributed registry of

businesses with their service descriptions implemented in a common XML format. Another

related effort is WSDL (Web services Description Language) [53], which is a general purpose

XML language for describing the interface, protocol bindings and the deployment details of

network services. WSDL complements the UDDI standard by providing a uniform way of

describing the abstract interface and protocol bindings of arbitrary network services.

16

Chapter 3

Building Interoperable Collaboratories on the Grid

3.1 Approaches to Interoperability

As motivated earlier, interoperability among computational collaboratories can be achieved

through a middleware layer on top of the Grid. Such a middleware can be a set of interoperable

high-level services providing functionality that is common to these collaboratories and will

enable collaboratory developers to compose these services to develop new and specialized user

level services for their specific user community. We believe that without a standard set of high-

level services, collaboratories will continue to implement the same functionality in customized

ways, resulting in non-reusability and no interoperability. Following this approach, there are three

distinct ways to implement the higher-level services so as to ensure some level of interoperability

� same implementation everywhere, same interface and/or API everywhere, and same protocol

everywhere.

Shared Implementation: The first approach is to have these higher level services built into

one metacomputing toolkit and have each system use the same metacomputing toolkit. A real

world example of this approach is the use of different commercial instant messaging software

available from Yahoo, Microsoft, etc. Users using these systems can only share messages with

other users who have the same software. The scalability, extensibility and the level of

interoperability of such an approach for wide area resource sharing leaves much to be desired. It

is not reasonable to assume that everyone will use the same metacomputing toolkit to implement

these services.

Shared Interfaces and APIs: The second approach is to have each system publish a set of

APIs and interfaces for others to use. This is the approach taken by CORBA applications to

achieve interoperability. The API is specified through the IDL (Interface Definition Language)

17

and the IDLs are shared by all systems. This is a feasible solution and it will allow

interoperability between limited numbers of systems, but it requires all systems to have the same

IDL or at least know about its contents. Each system should also have an implementation that

conforms to the API specified in the IDL. Hence, it will not provide truly global and seamless

sharing of resources across systems on the Grid.

Shared Protocols: The third approach is to have each system communicate using the same

protocol. As identified by Foster et. al in [17], true interoperability in a networked environment

can only be achieved by using common protocols. A protocol definition specifies how distributed

elements interact with one another to achieve a specified behavior, and the structure of the

information exchanged during this interaction. It defines the format of the data that is sent

between two systems, including the syntax of messages, character sets, and sequencing of

messages. The most scalable and interoperable system today is the Internet and the World Wide

Web and the major forces behind their success are standard protocols like TCP/IP and HTTP.

The importance of common protocols in Grid environments has been emphasized for a long

time [17] and APIs and SDKs have been identified as auxiliary to protocols because without

standard protocols, interoperability can only be achieved at the API level either by using a single

implementation everywhere or by using IDL based approaches where every implementation

knows the interface supported by every other implementation. However, the process of

standardization is a time consuming one and many systems might prefer a quick solution.

Furthermore, any change in a standard protocol to make it adaptable in a dynamic environment

has to go through the same lengthy process.

True (protocol-based) interoperability can be achieved using CORBA by leveraging the fact

that CORBA uses the IIOP protocol for all communication. The service to be shared can be built

into the CORBA ORB as a standard CORBA service. As the service is now a standard CORBA

service, it is easier for all other systems to know its API. This is analogous to the sockets API

supported by various implementations of TCP/IP.

18

3.2 Architecture of a Grid-based Collaboratory

An overall architecture for the Grid has been defined using an hourglass model [17]. The

services defined at the Application layer and the Collective layer at the top of the hourglass are

used to construct a wide range of global services and application-specific behaviors. The neck of

the hourglass consists of the Resource and the Connectivity layer, which define protocols for

sharing of individual resources. Protocols at these layers should be designed so that they can be

implemented on top of a diverse range of resources types, defined at the Fabric layer at the base

of the hourglass. The hourglass model emphasizes that the number of protocols at the neck of the

hourglass (the Resource and the Connectivity layers) should be small, so as to encourage

widespread and easy deployment.

The hourglass Grid architecture model can be naturally extended to build interoperable

collaboratories on the Grid by formulating their requirements in terms of high-level infrastructure

services and building these services using the standard Grid protocols and services identified in

[17]. Figure 1 shows the hierarchical architecture for a collaboratory on the Grid. It consists of

user level services, infrastructure services and infrastructure protocols. The user level services

are the customized set of services that each system provides to its users, and are specific to each

collaboratory. However, each of these user services can be formulated as a combination of one or

more underlying infrastructure services. These services build on underlying infrastructure

protocols and are typically implemented as daemon processes running at the middle tier. It is

these infrastructure services that interoperate with each other on the Grid. Each service should

build on one of the infrastructure protocols and more than one service can use the same protocol.

The user services and the infrastructure services in this architecture can be thought of as specific

instances of the Application and the Collective layer at the top of the hourglass. The Infrastructure

protocol layers form the neck of the hourglass.

19

Figure 1. Hierarchical architecture of a collaboratory on the Grid

Table 1 and Table 2 illustrate the application of this architecture to two specific

collaboratories � a collaboratory for interaction and computational steering (e.g. DISCOVER)

and a collaboratory for executing applications remotely (e.g. PUNCH).

User Services
(Application

Layer)

List Available

Applications

Access an Active

application

Computational Steering Data Management Collaboration on output

data

Infrastructure
Services
(Collective

Layer)

Inter-domain

Auth. +

Resource

Discovery

Inter-domain Auth. +

Resource Discovery

+

Request Dispatcher +

Status Monitoring

Request Dispatcher +

Real-Time Data Transfer +

Status Monitoring

Request Dispatcher +

Database Access +

File Transfer

Request Dispatcher +

Real time Data Transfer

+

Status Monitoring

Layer 1

GSI, GIS, MDS, GRAM, SOAP, GridFTP, NWS, �

Infrastructure
Protocols
(Resource &

Connectivity

Layers)

Layer 2

SSL, LDAP, HTTP, FTP,RTP, SNMP, �

Table 1. A Collaboratory for interaction and computational steering (e.g. DISCOVER)

20

User Services
(Application

Layer)

List available

computing resources

Access to a

computing resource

for job submission

Deploying and

executing

an application

Data Management

(Optiponal)

Collaboration on output

data

(Optional)

Infrastructure
Services
(Collective

Layer)

Inter-domain Auth.

+

Resource Discovery

+

Network Monitoring

Inter-domain Auth. +

Resource Discovery

+

Request Dispatcher +

Status Monitoring

Request Dispatcher +

File Transfer +

Status Monitoring

Request Dispatcher +

Database Access +

File Transfer

Request Dispatcher +

Real time Data Transfer

+

Status Monitoring

Layer 1

GSI, GIS, MDS, GRAM, SOAP, GridFTP, NWS, �

Infrastructure
Protocols
(Resource &

Connectivity

Layers)

Layer 2

SSL, LDAP, HTTP, FTP,RTP, SNMP, �

Table 2. A Collaboratory for launching applications remotely (e.g. PUNCH)

3.2.1 Interoperability through available Protocols

Since the protocols defined for interoperability should be small in number, we should not

strive for new protocols for each of the above services. Generic request response protocols like

SOAP which build on HTTP hold a lot of promise and should be experimented with. However,

these HTTP based protocols largely use XML for message encoding and are therefore much

slower because of the associated parsing time. For efficient and fast transfer of real time large

data sets and of files, protocols like RTP, multicast, and GridFTP should be considered. Peer-to-

peer (P2P) initiatives address similar issues and problems as collaboratories interoperating with

each other on the Grid are similar to peers interacting with each other in a P2P network.

However, the state of the art in P2P technologies is still in its infancy and most of the solutions

are vertical solutions aimed at sharing of specific file formats rather than generic wide area

resource sharing. The peer-to-peer initiative JXTA is a promising technology as many of the

protocols and objectives defined by JXTA, are equally valid and significant in Grid

environments.

IIOP (Internet Inter-ORB Protocol), on the other hand, is perhaps the only protocol that

defines interoperability between peers. CORBA IDL based approaches (which use IIOP for all

21

communication) will achieve interoperability but each implementation should possess this IDL or

at least know about its contents (this is true in case of DII - Dynamic Invocation Interface, where

one has to query the interface for supported methods and make a call to the appropriate method,

which requires a previous notion of the functionality, that each method is supposed to provide). A

more generic approach will be to integrate these IDLs into the ORB itself as CORBA services

similar to the existing CORBA services like the Naming service, the Trading service, the Event

service, etc to form a Grid-base ORB. Open source ORBs can be used for this purpose.

The protocol description above is not exhaustive. This is just an effort to extract the

requirements for obtaining interoperability among the various systems in a Grid environment. We

have tried to list some of the protocols that are available today which can be used in the Grid

environment (some of them like the GSI protocols, the GRAM protocol and the GridFTP protocol

have been designed specifically for systems on the Grid) and the custom protocols that should be

designed on top of existing application level protocols like HTTP, SIP, IIOP, RTP, etc and on top

of TCP/IP directly for building the infrastructure services.

3.3 Middleware Design for Grid-based Collaboratories

3.3.1 DISCOVER Middleware Approach

The overall goal of the middleware substrate presented here (and the related CORBA CoG

effort [31]) is to define interfaces and mechanisms for integrating the services provided by

domain specific collaboratories. DISCOVER middleware uses the peer-to-peer computing

concepts to define the architecture for integrating computational collaboratories and thereby

achieving interoperability.

The DISCOVER design philosophy and architecture presents a hybrid approach as compared

to true peer-to-peer and client-server systems. While the middleware design has a client server

architecture from the users� point of view, the middle tier of servers has a peer-to-peer

architecture with each server functioning partially as a client and partially as a server for all the

22

other servers. This approach reduces the performance requirements of the server, and allows for

more secure and better-managed peers as compared to a system comprising only of peers. This is

because security and manageability are still open issues in true peer-to-peer systems, whereas one

of the reasons for the success of client server systems is the security and manageability associated

with having centralized servers. The DISCOVER hybrid approach of having peer-to-peer servers

drastically reduces the number of peers in the system and restricts the security and manageability

concerns to the middle tier of servers. Furthermore, this approach allows thin clients, as no

assumptions are made about the computing capabilities of the clients or the bandwidth available

to them.

DISCOVER middleware design builds on existing web servers and leverages commodity

technologies and protocols such as CORBA [18] and HTTP [19]. Its goal is to enable rapid

deployment, ubiquitous and pervasive access, and easy integration with 3rd party services, while

evaluating the viability of these technologies for advanced Grid applications. Interoperability is

achieved through a set of remote method invocations defined in IDLs, which are shared across

systems. True interoperability can be obtained by integrating these IDLs into the ORB as standard

CORBA services. The portalML and resourceML interfaces, mentioned in section 2.3 for

interoperable web portals, are similar in nature to the interfaces specified by the DISCOVER

middleware substrate. However, the DISCOVER interfaces, instead of defining a user view of a

portal like portalML, define a system view of a server which can be used by other servers in the

system to access its services. DISCOVER middleware substrate uses an interface to describe a

particular application or service at a server, which is similar to the resourceML. DISCOVER is

based on a pool of services model that makes use of this interface to provide services and

applications as a pool of distributed commodities. This service can be accessed by any other

server in the system. DISCOVER interfaces are defined in the CORBA IDL (Interface Definition

Language) instead of XML.

23

The servers in this model are lightweight, portable and easily deployable and manageable

instead of being heavy weight and difficult to manage. A server should be deployed anywhere

where there is a growing community of users, much like a HTTP Proxy server. This allows each

collaboratory to support a large user community as well as a large number of applications without

being overloaded and suffering degradation in performance.

3.3.2 DISCOVER Middleware Design

A schematic overview of the design is presented in Figure 2. It has a 3-tier architecture

consisting of collaborative client portals at the front end, the computational resource, services or

applications at the backend, and the server(s) in the middle. In order to enable ubiquitous web-

based access, clients are kept as simple as possible. The middle-tier has the responsibility for

providing controlled access to the backend, interacting with peer servers, providing a �repository

of services� view to the client, and collectively managing and coordinating collaboration. A client

always connects to its �closest� server and has access to all (local and remote) backend services

based on its privileges and capabilities. Backend services include resource access and

management toolkits, high-performance applications, and network-monitoring tools. The backend

services (resource, service or application) may be specific to a server or may form a pool of

services. In the former case, direct access to the service is restricted to the local server, typically

due to security, scalability or compatibility constraints. This is typically true of most scientific

resources, services and applications. In this case, the local server advertises the service and its

interface, through which clients and peer servers can discover and access the service. All

communication is done through the local server. The server can also wrap this service as a

distributed object and bind it to a naming service, registry or a trader service. In either case, the

servers as well as the backend services are accessed using standard distributed object

technologies such as CORBA, RMI/RMI-IIOP, DCOM, etc.

24

The various infrastructure services outlined in the previous section are implemented as

daemon processes or threads either as a part of the web server (as server side extensions, CGI

scripts or Java servlets) or as a part of the pool of services. Their functionality is invoked through

remote method calls defined in the IDL, which is shared across all systems or can be downloaded

at runtime (in case of Dynamic Invocation Interface or DII). The client-server interaction is

achieved through a custom protocol built on top of HTTP.

Figure 2. Middleware architecture for integrating web-based computational
collaboratories

The middleware architecture defines two levels of interfaces and interactions for each server.

The first level interfaces provide a means for peer servers to authenticate with the server and

query it for active services, applications and users. The second level interfaces define

interactions with the active services and/or applications at the server, and enable a peer server or

client to authenticate, interact with and invoke the service. For example, in the case of an

interactive application it would provide methods for monitoring application state,

requesting/releasing locks for steering accesses, querying and/or changing its parameters, etc. If a

25

server provides only a single instance of an application or a service, e.g. a server providing access

to grid services using Java/CORBA CoG and GPDSK, only the second level interfaces would be

required.

The DISCOVER middleware substrate presented in the following sections is a prototype

implementation of these interfaces to enable global discovery of, and provide access to,

distributed applications for interaction and steering.

26

Chapter 4

DISCOVER: A Computational Collaboratory for Interaction and

Steering

This chapter introduces the DISCOVER computational collaboratory and gives an overview

of the design and operation of its Interaction and Collaboration server. It also introduces the

DISCOVER middleware substrate that enables a peer-to-peer integration of multiple DISCOVER

Interaction and Collaboration servers to provide global collaborative web-based access to

multiple, distributed instances of the DISCOVER computational collaboratory.

DISCOVER is a virtual, interactive computational collaboratory that enables geographically

distributed scientists and engineers to collaboratively monitor, and control (new and existing)

high performance parallel/distributed applications. Its primary goal is to bring large (remote)

distributed simulations to the scientists�/engineers� desktop by providing collaborative web-based

portals for interrogation, interaction and steering. DISCOVER architecture (see Figure 3) is

composed of detachable client portals at the front-end, an interaction server in the middle, and a

control network of sensors, actuators, and interaction agents superimposed on the application at

the backend. Clients can connect to a server at any time using a web browser to receive

information about active applications. Furthermore, they can form or join collaboration groups

and can (collaboratively) interact with one or more applications based on their capabilities. The

middle tier consists of the Interaction and Collaboration server, which extends a commodity web-

server with interaction and collaboration capabilities. The backend consists of a control network

composed of sensors, actuators and interaction agents. Session management and concurrency

control is based on capabilities granted by the server. A locking mechanism is used to ensure that

the applications remain in a consistent state during collaborative interaction and steering. Security

27

and authentication services are provided using customizable access control lists built on the SSL-

based secure server. DISCOVER is currently operational1 and is being used to provide interaction

capabilities to a number of scientific and engineering applications, including oil reservoir

simulations, computational fluid dynamics, seismic modeling, and numerical relativity. Details

about the design and implementation of DISCOVER can be found in [16].

Figure 3. Architectural schematic of the DISCOVER computational collaboratory

4.1 DISCOVER Interaction and Collaboration Servers

The DISCOVER Interaction and Collaboration server builds on a commodity web server, and

extends its functionality using Java servlets [55][56], to provide specialized services for real-time

application interaction and steering and collaboration between client groups. Clients connect to

the server using standard HTTP communication using a series of HTTP GET and POST requests.

At the other end, application-to-server communication is achieved either using standard

1 See http://www.discoverportal.org

28

distributed object protocols such as CORBA [18] and Java RMI [57], or a more optimized,

custom protocol using TCP sockets.

The DISCOVER middleware creates 3 communication channels between a server and an

application: (1) a MainChannel for application registration and periodic updates, (2) a

CommandChannel for forwarding client interaction requests to the local or remote application,

and (3) a ResponseChannel for communicating application responses to the interaction requests.

Clients differentiate between the different messages (i.e. Response, Error or Update) using Java�s

reflection mechanism, by querying the received object for its class name. Messages are processed

differently at the client based on their type.

An ApplicationProxy object is created at the server for each active application, and is given a

unique identifier. This object encapsulates the entire context for the application.

The core service handlers provided by each server include the Master Handler, Collaboration

Handler, Command Handler, Security/Authentication Handler and the Daemon Servlet that

listens for application connections. In addition to these core handlers, there can be a number of

handlers providing auxiliary services such as session archival, database handling, visualization,

request redirection, and remote application proxy invocations (using CORBA). These services

are optional and need not be provided by every server. We briefly discuss some of the core

handlers below.

The master (accepter/controller) handler servlet is the client's gateway to the server. The

master servlet creates a session object for each connecting client and uses it to maintain

information about client-server-application sessions. It provides each client with a unique client-

id. The client-id along with an application-id (corresponding to the application to which the client

is connected) is used to identify each session.

The command handler servlet manages all client view/command requests. On receiving these

requests from the clients, this handler looks up the appropriate application proxy, and redirects

them to this proxy. The collaboration handler described below handles the responses to these

29

requests. All requests and responses are Java objects and take advantage of Java's object

serialization capability.

The collaboration handler enables multiple clients to collaboratively interact with and steer

applications. All clients connected to a particular application form a collaboration group by

default. Global updates (e.g. current application status) are automatically broadcast to this group.

Clients can form or join (or leave) collaboration sub-groups within the application group. Clients

can also disable all collaboration so that their requests/responses are not broadcast to the entire

collaboration group. Individual views can still be explicitly shared in this mode. In addition to

collaborative interaction/steering, the client portal is provided with chat and whiteboard tools to

further assist collaboration.

The Daemon servlet forms the bridge between the server and the applications. Each

application is authenticated at the server using a pre-assigned unique identifier. The daemon

servlet creates an Application Proxy for each new application that connects to it, and maintains a

handle to this proxy object. It also assigns the application a unique session identifier. It buffers

all client requests and sends them to the application when the application is in the �interaction�

phase. This ensures that requests are not lost while the application is busy computing.

4.1.1 DISCOVER Model for Requests - Responses

DISCOVER uses an asynchronous mode for sending client requests and getting the

respective responses. This is primarily due to the iterative nature of the applications currently

used as the applications alternate between cycles of computing and interaction. All client

commands are buffered at the server when the application is in the computing cycle and this

buffer is emptied sequentially during the interaction phase. The application responses are

received asynchronously at a later point of time. Because of this asynchronous mode, the server

has to keep track of all the clients who issued a particular request. The server maintains this in a

multi level hash table indexed by the command key, which is unique for each request. When a

30

response is received at the server from the application, a command key is extracted out of it, and

matched against the keys in the table. On a successful match, the corresponding list of clients who

issued this command is retrieved, and all those clients are updated with the new response. The

table also maintains the mode (Collaborative or non Collaborative) in which a particular request

was sent, and the server uses this mode to decide whether all clients should be updated (if it was

issued by a client in the collaborative mode) or only the client who issued it should be updated (if

that client was in a non collaborative mode).

Figure 4. Asynchronous communication at the server for requests and responses

4.2 A Middleware Substrate for Peer-to-Peer Integration of DISCOVER

Servers

The primary objective of the DISCOVER middleware substrate is to enable integration of

multiple instances of the DISCOVER computational collaboratory so that a client can access and

interact with all the applications for which it has access privileges, regardless of whether they are

local or remote. Having all the applications connect to a single DISCOVER server or having a

centralized repository of servers are not scalable options. Furthermore, security constraints often

prevent applications from connecting to remote servers outside their domain. This is true for

applications executing on most high-end resources. Finally, applications typically do not provide

31

standard access interfaces for interaction and steering, and need to be coupled to their server

using a proprietary protocol. The proposed peer-to-peer architecture with coupled

server/application(s) sets is a more appropriate architecture for such integration.

An overview of the DISCOVER network of peer-to-peer servers is presented in Figure 5. The

DISCOVER peer-to-peer architecture consists of multiple independent collaboratory domains,

each consisting of one or more DISCOVER servers, and applications connected to the server(s).

The middleware can be extended to include other servers and services using the �pool of

services� model described earlier. For example, the middleware can provide access to a

monitoring service, an archival service or grid services using Java/CORBA CoG Kits. A domain

will typically consist of different types of servers. Within a domain, all the servers share the same

database of users and applications. They may also share the same security mechanism. Note that

the availability of these servers is not guaranteed and must be determined at runtime using a

discovery mechanism. A client can connect to a server within its domain (using HTTP), and have

secure and authorized access to applications in all domains based on its access privileges and

credentials.

The middleware substrate builds on CORBA/IIOP, which provides peer-to-peer connectivity

between DISCOVER servers within and across domains. Server/service discovery mechanisms

are built using the CORBA Trader Service [58], which allows a server to locate remote servers

and to access applications connected to those remote servers. Although CORBA does introduce

some overheads, it enables scalability and high availability and provides the services required to

implement the middleware substrate. It allows interoperability between servers, while they can

still maintain their different individual architectures and implementations. Moreover, we believe

that the servers will be typically connected through reasonable bandwidth links (~1 Mbps). As no

assumptions can be made about client-server connections, having the client connect to the

�nearest server�, and using CORBA/IIOP to connect that server and the desired application may

actually reduce client latencies.

32

Figure 5. A deployment of DISCOVER servers providing access to a repository of

services

In order to enable this integration of DISCOVER Interaction and Collaboration servers, the

middleware substrate should support mechanisms such as:

• Authentication/Security across servers: Since clients will be accessing applications

connected to remote servers, the middleware substrate should be able to authenticate

a client with remote servers and/or remote applications.

33

• Collaboration and interaction across servers: In a network of servers, an application

might be connected to one server, and clients from different servers might want to

collaboratively interact with it. Clients interacting with the same application should

be able to form a collaborative group, even if they are interacting with it through

different servers.

• Data/State Consistency across servers: DISCOVER servers use a simple locking

mechanism to make sure that applications remain in a consistent state during

collaborative sessions. The middleware substrate should be able to extend this

locking mechanism, in order to handle multiple clients from multiple servers.

• Logging capabilities across servers: Since clients from any server can access an

application, the application and the client logs must be maintained separately.

The implementation and operation of these mechanisms is described in the following chapter.

34

Chapter 5

Implementation and Operation of the DISCOVER Middleware

Substrate

This chapter presents the implementation and operation of a CORBA-based prototype of the

DISCOVER middleware substrate.

Figure 6. Interaction model between DISCOVER servers

5.1 Middleware Implementation

The middleware substrate builds on the DISCOVER interaction/collaboration server

architecture described in Chapter 4. It implements the 2 interface levels described in Chapter 3.

The DiscoverCorbaServer interface is the level one interface and represents a server in the

system. This interface enables peer servers to discover, authenticate and interact with one another.

The CorbaProxy interface is the level two interface and represents an application at a server. This

35

interface defines the functionality provided by the application and allows remote servers to access

this functionality.

Sever to server communication in the DISCOVER middleware uses the same 3

communication channels set up for the application-server communication, i.e. Main Channel,

Command Channel and Response Channel (see Section 4.1). In addition, server-server

communication also uses a Control Channel for error messages and system events. The Control

Channel serves as a notification service similar to the one used in Salamander substrate

[35][36][37].

The ApplicationProxy object created at the server for each active application encapsulates the

entire context for the application including its CorbaProxy interfaces. The schematic of the

middleware implementation is presented in Figure 6. The two interfaces are described below.

5.1.1 The DiscoverCorbaServer Interface

The DiscoverCorbaServer interface is implemented by each server, and specifies methods for

interacting with the server. This includes methods for authenticating with the server, getting a list

of all active services on the server, and getting a list of users logged on to the server. A

DiscoverCorbaServer object is maintained by each server�s Daemon Servlet and represents the

server within the peer-to-peer system. DiscoverCorbaServer publishes its availability using the

CORBA trader service. It also maintains a table of references to the CorbaProxy objects (i.e.

CorbaProxyInterface) for remote applications. Using this reference, the DISCOVER Daemon

Servlet can provide transparent access to remote applications and support local clients�

interactions with those applications. Thus all requests for remote applications from locally

connected clients go through the DiscoverCorbaServer, which then forwards them to the

appropriate CorbaProxyInterface reference.

36

5.1.2 The CorbaProxy Interface

The CorbaProxy interface represents a service or an application that is active at a particular

server. This interface specifies all the methods that are required for accessing, interacting with

and steering the application. This includes methods for querying application status, querying and

changing application parameters, requesting steering controls (locks) and issuing commands. The

CorbaProxy interface is therefore an application�s gateway for all other servers. All servers that

have clients interacting with remote applications maintain a reference to the CorbaProxy objects

for those applications (as mentioned above, the DiscoverCorbaServer object maintains this table

of references). CorbaProxy also binds itself to the CORBA naming service using the

application�s unique identifier as the name. This allows the application to be remotely accessed

from any server.

A CorbaProxy object is contained within each DISCOVER ApplicationProxy object. The

ApplicationProxy object manages all communication with the application required during

application registration, or during interaction and steering with the application. In the case of

local applications, ApplicationProxy directly communicates with the applications using the

appropriate protocol. In the case of remote applications however, this communication is done

with the remote CorbaProxy object using its local reference (i.e. CorbaProxyInterface).

5.2 Middleware Operation

This section describes the operation of key mechanisms across multiple instances of the

DISCOVER computational collaboratory, viz. server and applications discovery,

security/authentication across servers, collaboration across servers, distributed locking, and

distributed information logging.

37

5.2.1 Servers and Applications Discovery

DISCOVER servers locate each other using the CORBA trader services. The CORBA trader

service maintains all the server (DiscoverCorbaServer) references as service-offer pairs. In our

prototype we have implemented a minimalist trader service on top of the CORBA naming

service. All DISCOVER servers are identified by the service-id �DISCOVER�. The service offer

is a CORBA CosTrading module (CORBA Trader service specification), which encapsulates the

CORBA object reference and a list of properties defined as name-value pairs. Thus an object can

be identified based on the service it provides or its properties list.

Applications are located using their globally unique identifiers, which are dynamically

assigned by the DaemonServlet. The application identifier is chosen to be a combination of the

server�s IP address and a local count of applications on each server. This ensures that even if the

same application is connected to multiple servers or multiple instances of an application are

connected to the same server, each instance will have a unique identifier. Moreover, the server�s

IP address can be extracted from this application identifier, making it very easy to determine if

the application is a local application or a remote application.

5.2.2 Security/Authentication across Servers

As described in Chapter 4 (Section 4.1), each DISCOVER server supports a two-level client

authentication; the first level authorizes access to the server and the second level permits access

to a particular application. To control access, all applications are required to be registered with

the server and to provide a list of users and their access privileges (e.g. read-only, read-write).

This information is used to create access control lists (ACL) for each user-application pair. For

access to remote applications, the security handler uses the DiscoverCorbaServer to authenticate

the client with each server in the network, and in return gets the list of active applications

connected to all the servers to which the user has some access privileges. Once the client selects a

remote application, the second level authentication is performed to get a customized

38

interaction/steering interface for the application based on the client�s access privileges. As a result

each client can access only those applications that it is authorized to, and only it can interact in

ways defined by its privileges and capabilities. Note that a client has access only to those servers

where he is a registered user � i.e. he is on the authorized user list for at least one of the

applications registered with the server. Thus, in the current system, a client�s user-Id for a

particular application is assumed to be consistent across all servers.

5.2.3 Collaboration across Servers

DISCOVER enables multiple clients to collaboratively interact with and steer applications.

As described in Chapter 4 (section 4.1), the dedicated collaboration handler servlet handles all

collaboration on the server side, while a dedicated polling thread is used on the client side. All

clients connected to an application form a collaboration group by default. These collaboration

groups can span multiple servers. In this case, the CorbaProxy objects poll each other for updates

and responses. . They use the main channel for retrieving global messages, the response channel

for retrieving response messages generated in response to any of the clients� requests, and the

control channel for retrieving any error messages or steering control (locks) updates.

The peer-to-peer architecture offers two significant advantages for collaboration. First, it

reduces the network traffic generated by reducing the large number of broadcast messages that

would be typically sent by a server to all the participants of the collaboration session. This is

because, now, instead of sending individual collaboration messages to all the clients connected

through a remote server, only one message is sent to that remote server, which then updates its

locally connected clients as shown in Figure 7. Since clients always interact through the server

closest to them and the broadcast messages for collaborative updates are generated at this server,

these messages don�t have to travel large distances across the network. This reduces overall

network traffic as well as client latencies when the servers are geographically far away. It also

leads to better scalability in terms of the number of clients that can be supported within a

39

collaboration session without overloading a server as the collaboration load now spans across

multiple servers.

Figure 7. Collaborative group spanning multiple servers

5.2.4 Distributed Locking

Session management and concurrency control is based on capabilities granted by the server.

A simple locking mechanism is used to ensure that the application remains in a consistent state

during collaborative interactions. This ensures that only one client �drives� (issues commands)

the application at any time. In a distributed server framework, locking information is only

maintained at the application�s host server i.e. the server to which the application connects

directly. Servers providing remote access to this application only relay lock requests to the host

server and receive locking information from the host server. Thus using the application�s host

server as the controller of the session guarantees consistency during interaction and collaboration.

40

5.2.5 Distributed Logging

The session archival handler maintains two types of logs. The first one logs all interactions

between a client(s) and an application. This log enables clients to replay their interactions with

the applications. It also enables latecomers to a collaboration group to get up to speed. For remote

applications, the client logs are maintained at the server where the clients are connected. The

peer-to-peer architecture assumes that there is an application running on a remote server, and the

data generated by the application is sent to all the servers who have clients interested in that data

set. Thus handling of the output files, resulting data sets, etc., are all handled by the home server

or the server to which the clients are directly connected and the home server creates the output

files or the records under the ownership of the client who requested that data. The p2p

architecture doesn�t allow creation of files on a remote server by the clients.

The second log maintains all requests, responses, and status messages for each application.

This log allows clients to have direct access to the entire history of the application. For remote

applications, all the data generated by the application throughout its execution is logged at that

application�s host server (the server to which the application is directly connected).

41

Chapter 6

Performance and Design Evaluation

6.1 An Experimental Evalutation of the DISCOVER Middleware Substrate

The DISCOVER collaboratory is currently operational and the current server network

includes server deployments Rutgers University and the Center for Subsurface Modeling (CSM),

University of Texas at Austin. We are currently expanding the network to include a deployment

at the Center for Advanced Computational Research (CACR), California Institute of Technology.

Figure 8 shows the setup used for the experimental evaluation presented in this section. The

middleware implementation used Apache Web Server 1.3 [59] with Apache Jserv 1.1.12 [60] as

the servlet engine, and Visibroker for Java 4.5.1 [61] as the CORBA ORB. The evaluation

consists of three experiments, viz. access latency over local area and wide area networks, effect of

multiple clients on access latencies and server memory overheads due to local and remote

applications.

6.1.1 Experiment 1 � Access Latency over a Local Area Network (LAN) and a Wide Area

Network (WAN)

This experiment consisted of 2 sets of measurements � the first set includes latency

measurements taken on a LAN and the second set includes measurements taken on a WAN. For

the local area network latency measurement, two DISCOVER servers running on a 10 Mbps local

area network at Rutgers University were used. For the wide area network latency measurement,

DISCOVER servers running at Rutgers University and at CSM, University of Texas at Austin

were used. The clients were running on the local area network at Rutgers University for both sets

of measurements.

42

Figure 8. Setup for the experimental evaluation of the DISCOVER middleware

For all measurements an application was connected to one of the servers, and a minimal

client (without any user interface) was used to access and interact with the application. In the case

of the LAN measurements, the application was connected to one of the servers at Rutgers

University, while in the case of the WAN measurements, the application was connected to the

server at CSM, University of Texas at Austin. Requests for data of different sizes were issued.

Response times were measured for direct access to the server where the application was

connected and for indirect (remote) access through the middleware substrate. Direct access time

includes the time taken for the client�s request to be sent to the server over HTTP, the server

handling the request and sending the request to the application, the server getting the response

back and parsing it to form a Java Object and the response object being sent back to the client.

The time taken by the application to compute the response is not included in this time. Indirect

(remote) access time includes the direct access time and also the time taken by the server to send

Web
Client

DISCOVER Server
CORBA Name

Service

R1

Internet

R2

tassl-pc-7.rutgers.edu
(PIII-800 MHz, 256MB)

DISCOVER Server

DISCOVER Server

tassl-pc-5.rutgers.edu
(PIII-333MHz, 192MB)

brahma.rutgers.edu
(PII-300 MHz, 128MB)

Discover.hpc.utexas.edu
(PIII-800Mhz, 160MB)

Application

Application

43

the request to the remote server and then get the result back over IIOP. A mean response time was

calculated over 10 measurements for each data size.

The resulting response latencies for direct and indirect accesses measured on the LAN are

plotted in Figure 9. It can be seen that the response times for direct accesses to an application at a

local server increase linearly with the increase in size of data. This indicates that the server

overhead for request �response handling is almost constant and the change in latencies is largely

due to the increase in communication times. The response times for indirect accesses to an

application at a remote server also vary almost linearly. Indirect access times are almost twice

the direct access times, which is not surprising as an indirect access includes the time for a direct

access. However, it should be noted that the difference in indirect and direct access times

approaches a constant as the data size increases.

Direct and Indirect Access Latencies measured on a LAN
(response time calculated as an arithmetic mean of measurements)

0

50

100

150

200

250

300

350

400

450

1024 10240 20480 30720 40960 51200 61440

Response Size in Bytes

R
es

po
ne

 T
im

e
in

 m
s

Direct Accesses

Indirect Accesses

Figure 9. Comparison of latencies for direct and indirect application accesses on a Local

Area Network (LAN)

44

The response latencies for direct and indirect responses measured on the WAN are plotted in

Figure 10. Contrary to the results for the LAN, indirect access times measured on the WAN are

of comparable order to direct access times. In fact, for small data sizes (1K, 10 K and 20K)

indirect access times are either equal to or smaller than direct access times. At first look, these

results might appear to be contradictory to expectations, but the experimental setup used for

measurements on the WAN provides an explanation. The application was connected to the server

at Austin, while both the second server and the client were running on machines at the local area

network at Rutgers University. Direct access consisted of a client running at Rutgers accessing

the server at Austin over HTTP. Indirect access consisted of a client running at Rutgers accessing

the server within the same local area network at Rutgers over HTTP, which in turn accessed the

server at Austin over IIOP. Thus for direct accesses, a large network path across the Internet was

covered over HTTP which meant setting up a new TCP connection over a wide area network for

every request. For indirect accesses, only a short network path was covered over HTTP (within

the same LAN) and the larger network path (across the Internet) was covered over IIOP, which

used the same TCP connection for multiple requests. Since the time taken to set up a new TCP

connection for every request over a wide area network is considerably larger than that over a local

area network, the direct access times are significantly larger.

For small data sizes HTTP performs worse than IIOP for a wide area network because the

connection setup times constitute a large portion of the overall communication time. As data sizes

increase, the overhead of connection set up time becomes a relatively smaller portion of the

overall communication time involved and hence, the overall access latency is dominated by the

communication time, which is larger for remote accesses as they involve accesses to two servers.

45

Direct and Indirect Access Latencies measured on a WAN
(response time calculated as an arithmetic mean of measurements)

0

100

200

300

400

500

600

700

800

900

1000

1024 10240 20480 30720 40960 51200 61440

Response Size in Bytes

R
es

po
ns

e
Ti

m
e

in
 m

s

Direct Accesses
Indirect Accesses

Figure 10. Comparison of latencies for direct and indirect application accesses on a Wide

Area Network (WAN)

IIOP vs. HTTP for Wide Area Networks: One well-known problem with HTTP is that a

new TCP connection is opened for each request, and closed after the response has been delivered.

This is an inefficient use of system and network resources and a source of delay. Although

persistent connections or keepalive connections are supported as a standard option in HTTP/1.1,

both the client and the server should have the keepalive capability and this should be negotiated

before the start of a new connection. By contrast, GIOP and its mapping for TCP/IP � IIOP is

designed to allow a connection to be used for multiple requests, and also to allow overlapping

requests; amortizing setup costs over many requests/replies. Several requests may be sent over the

same connection without waiting for a reply, and the replies may be delivered in any order. The

replies are matched to requests by the use of identifiers. In a CORBA system, the ORB provides

connection and session management to make best use of the available resources. Thus, larger the

network path, over which IIOP is used, higher will be the performance gain as compared to the

46

use of HTTP. This idea has been used in earlier work to improve performance. Gateways that

convert HTTP interactions into the corresponding interactions described by the IDL are proposed

in [64]. These two gateways are the I2H gateway, which converts IIOP requests to HTTP, and the

H2I gateway, which converts HTTP requests to IIOP. By co-locating the I2H gateway near the

web server, and the H2I gateway near the web client, the IIOP protocol can be used over most of

the route. In cases where this part of the route accounts for a significant part of the round trip

time, the ability of IIOP to re-use an existing connection shows an improvement.

Figure 11. Use of IIOP as the protocol for the World Wide Web

6.1.2 Experiment 2 � Access Latency with Multiple Simultaneous Clients

This experiment measured the variation of direct and indirect access latencies in the presence

of multiple simultaneous clients over a LAN. The setup used for this experiment was the same as

that described above for experiment 1 for the LAN. In this experiment, an application was

connected to one of the servers and multiple clients simultaneously accessed and interacted with

the application. Each client requested data of size 20 Kbytes. Response times for direct access to

the server with the application and indirect access through the middleware substrate were

measured. These results are plotted in Figure 12. The results show that the response times more or

less hover around the average response times for a single client for 20 Kbytes of data (see Figure

9), both for direct and indirect accesses. The 3 points towards the right end of the graph (for 16,

47

17 and 19 clients) are probably due to the communication and network irregularities � we are

unable to explain these values and are in the process of repeating these experiments.

Response Times vs No of Clients (20K Data Size)

0

100

200

300

400

500

600

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Number of Clients

R
es

po
ns

e
Ti

m
es

 in
 m

s

Direct Access Time (20K)

Indirect Access Time (20K)

Figure 12. Variation in access latencies with multiple, simultaneous clients over a LAN

6.1.3 Experiment 3 � An Evaluation of Server Memory Requirements

This set of experiments was conducted to compare the memory used at the server for different

configurations when multiple applications were connected to it. Memory usage was calculated as

the difference between the total memory available to the Java Virtual Machine (JVM) for current

and future objects and free memory available for future objects. The method calls freeMemory()

and totalMemory() defined in the java.lang.Runtime class were used for this purpose. These

methods return an approximation to the total amount of memory currently available for future

allocated objects, measured in bytes and the total amount of memory currently available for

current and future objects, measured in bytes, respectively. Since these methods return only an

approximate value and this value is for the entire JVM rather than a single process within the

JVM, the calculated values for memory usage are approximate and actual values will be a little

48

lesser than those shown here. However, it was made sure that only the server process was in

operation in the JVM during the experiment, so that the changes in memory usage reflect the

memory allocated for new applications.

For the single standalone server configuration, applications were connected to a server with

no CORBA calls and no ORB and Naming Service running. Thus, there were no updates

generated for remote servers. A single client running on a different machine was used to issue

requests for 1K of data and memory usage was measured as the number of applications connected

to the server was increased. In the subsequent experiments, the two servers at the Rutgers

University LAN, with configurations described earlier were used. For measuring the memory

usage at a local server when it publishes all its local applications for remote accesses, applications

were connected to a server and the server created the corresponding CORBA objects for the

applications (CorbaProxy objects), which registered themselves with the CORBA Naming

Service. CORBA updates for remote servers were generated. A single client running on a

different machine accessed one of the applications remotely through CORBA. Memory usage

was measured at the local server (the server where the application was connected). In the next

measurement, multiple clients were used to access multiple applications remotely through

CORBA. Memory usage was measured both at the local server (which is similar to the previous

experiment, except that there are multiple clients accessing multiple applications instead of a

single client accessing one of the many applications) and at the remote server (memory usage at

the remote server represents the memory required for storing remote CORBA references of

applications and invoking IDL methods on them).

49

Memory Used by the Middleware Substrate

0

2000

4000

6000

8000

10000

12000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Number of Applications

M
em

or
y

U
sa

ge
 in

 K
B

yt
es

Single Standalone Server

Local Server with a single client

Local Server with multiple (20) clients

Remote Server with multiple remote
references

Figure 13. Sever memory utilization for different configurations

The results are plotted in Figure 13. As expected, the memory usage increased for all cases

as the number of applications is increased. It is interesting to see that the memory usage for

accessing remote applications is even less than that for accessing local applications on a single

standalone server with no CORBA calls. However, in order to publish a local application for

remote use by other servers, the memory usage at a local server with the middleware substrate is

almost double as compared to the single standalone server case. Thus, by using the middleware

substrate for integration, the local servers incur additional memory overheads, whereas the remote

servers benefit by reducing their memory usage. It should be noted that the memory used by the

server for maintaining client states is not significant. This can be inferred from the graphs of local

server with a single remote client and local server with multiple remote clients cases.

6.2 Retrospective Evaluation of the Design and Technologies Used

The primary goal of the solutions presented in the thesis is to support wide deployment and

global access; as a result we build on widely used commodity distributed technologies. For

example, access to DISCOVER is provided using thin web browsers and the ubiquitous HTTP

protocol. Our implementation builds on existing HTTP servers and adds new services, rather than

building customized servers from scratch. The choice of CORBA as the middleware substrate is

50

motivated by its inherent support for peer-to-peer interactions. It enables seamless integration

with 3rd party custom servers, thereby achieving interoperability through shared IDLs.

Integration of these IDLs as standard CORBA services into an ORB is the next step towards true

interoperability. The use of IIOP for communication among peer servers, rather than clients

accessing remote servers through HTTP over a wide area network, provides comparable

performance even for indirect accesses while enabling scalability, higher availability and

enhanced set of services for the users.

But the use of these commodity technologies is not without its disadvantages and limitations.

While the use of HTTP for client-server interactions provides ubiquitous pervasive access

through standard web browsers, it necessitates a poll and pull mechanism for fetching the data

from the server instead of a push mechanism, as HTTP is a request-response protocol. The poll

and pull mechanism makes it necessary to maintain FIFO buffers at the server for each client to

support slow clients. Such a poll and pull mechanism may be unsuitable for large virtual reality

collaborative environments where 3D data is involved, as it presents both memory and

performance overheads. Similarly the use of CORBA as the middleware technology causes the

middleware to give up control over its transport and communication policies and reduces

performance when compared to a lower level socket based system. Furthermore, in our

experience, the current commercial CORBA ORBs leave much to be desired, especially in the

areas of high performance and interoperability.

6.3 Challenges and Open Issues in a Peer-to-Peer Computational Environment

The peer-to-peer integration of DISCOVER servers in a Grid environment consisting of

multiple institutions and different administrative domains has presented many challenges. We

briefly discuss a few of them.

Authentication and Security across servers: Authentication of users and applications

across servers presents a significant challenge. DISCOVER tries to minimize global knowledge

51

by having the services or applications identify the users (or user-IDs) that have access and their

access privileges. Thus when an application or a service registers with a server, it supplies the

server with this information in the form of a list of authorized users-IDs and their privileges.

Once a user-ID is supplied, a server will automatically authenticate that user-ID. Thus, even

though the system assumes consistent user-IDs across all servers, this is hardly a problem, as the

user-IDs do not belong to a server but to an application/service. In the current implementation,

the user is authenticated at his home server before he can proceed. One way to get around this

problem is to have a centralized directory service like the GIS that maintains user-IDs and other

global information. All the servers in the system can now use this directory service.

Resource utilization: It is important to account for the resources used by any remote server.

Currently, the system does not track the use of resources. It is, however, possible to add control

mechanisms by creating access policies for each server, and then restricting each server�s use of

resources according to that policy. The access policies can be added to the current ACLs and can

be defined in terms of metrics like number of requests per second, or the data bytes being

transferred to each server per second.

Data Management and ownership across servers: In a peer-to-peer environment enabling

interaction and steering of remote applications, the management of the generated data becomes

important. The current implementation of DISCOVER avoids these issues by using Relational

Databases to store all the data generated in the form of records. Access to these databases is

provided through customized interfaces and is protected through passwords. The data produced

by the application/service in response to clients� requests is handled by the local server (i.e. the

server to which the clients are directly connected) and the local server creates the output files or

the records under the ownership of the user who requested that data. The periodic data generated

by the applications/services are handled by the home server of the application (i.e. the server to

which the application is directly connected) and records are created under the ownership of the

user-id who owns the application. All the clients, who have access privileges to this application,

52

are also provided with read only access rights to these records. Thus, the peer-to-peer architecture

doesn�t allow creation of files/records on a remote server by the clients.

Some of these issues are still open and we are in the process of addressing them. Note that the

current implementation of DISCOVER is a prototype aimed at evaluating the viability of the

peer-to-peer architecture and current commodity technologies for addressing the requirements of

current and emerging Grid applications.

53

Chapter 7

Conclusion and Future Work

This thesis presented the design, implementation, and operation of a middleware substrate

that enables peer-to-peer integration of and global collaborative (web-based) access to multiple,

geographically distributed instances of the DISCOVER computational collaboratory for

interaction and steering. The substrate builds on the CORBA distributed object technology and

enables dynamic application/service discovery on the Grid, remote authentication and access

control, coordinated interactions for collaborative interaction and steering. A retrospective

evaluation of the design and an experimental evaluation of the middleware substrate were also

presented. The performance of the middleware substrate over a wide area network validated the

middleware design and also justified the use of CORBA/IIOP for inter-server communication.

Some open issues in peer-to-peer environments were also discussed.

The DISCOVER middleware architecture is currently operational and provides collaborative

interaction and steering capabilities to remote distributed scientific and engineering simulations,

including oil reservoir simulations, computational fluid dynamics and numerical relativity. The

DISCOVER server network currently includes deployments at the Center for Subsurface

Modeling (CSM), University of Texas at Austin, and is being expanded to include a deployment

at the Center for Advanced Computational Research (CACR), California Institute of Technology.

This thesis also investigated the requirements for achieving interoperability among

collaboratories operating on the Grid. The impact of these requirements on the middleware design

of a collaboratory was discussed and a hierarchical architecture that builds on common protocols

for interoperability was presented. A key contribution of this thesis is the design of a middleware

substrate that enables interoperability among multiple, independently administered and managed,

54

instances of an entire collaboratory deployed at geographically distributed locations, with the goal

of enabling global access and sharing of services across these instances with acceptable

performance. This requires the servers to be lightweight, portable and easily deployable so that a

server or network of servers (constituting the collaboratory middleware) can be installed

anywhere where there is a growing community of users, much like a HTTP proxy server.

DISCOVER middleware presents a prototype implementation of this design with different

services like resource discovery, request dispatching, status monitoring, and remote

authentication. Interoperability in the current implementation of the middleware is achieved by

sharing interfaces defined in the CORBA IDL. As discussed in chapter 3, IDL based approaches

require each implementation to know about the interface supported by every other

implementation. This raises the issue whether such approaches can support the level of

interoperability required for global sharing of resources. As mentioned earlier, one option is to

build grid ORBs with these IDLs integrated into the ORB as standard CORBA services. Just as

the prototype DISCOVER middleware substrate provided interesting information and comparison

on the use of IIOP over a WAN, more prototype implementations like the DISCOVER

middleware substrate, which target interoperability using different protocols and technologies

should be experimented with. XML based protocols like SOAP and peer-to-peer initiatives like

JXTA hold a lot of promise for the Grid computing community and deserve more attention.

The DISCOVER middleware substrate currently allows interoperability between multiple

instances of the DISCOVER computational collaboratory which is the first step towards

achieving overall interoperability among collaboratories on the Grid. We have started working on

integrating the different services provided by the DISCOVER middleware substrate into an ORB

as standard CORBA services and are currently evaluating open source ORBs like JacORB [62]

and MICO[63]. We are also developing interfaces to further consolidate the pool of services

model proposed in the design.

55

In a related research effort we are building a CORBA CoG kit to provide application

developers with access to Grid services using CORBA [31]2. The overall goal is to integrate Grid

services provided by CORBA with the collaborative interaction and steering services provided by

DISCOVER. For example a client can use Globus [66] services provide by the CORBA CoG Kit

to discover, allocate and stage a scientific simulation, and then use the DISCOVER web-portal to

collaboratively monitor, interact with, and steer the application.

2www.caip.rutgers.edu/TASSL/CorbaCoG/CORBACog.htm

56

References

[1]. V. Mann and M. Parashar, �Middleware Support for Global Access to Integrated

Computational Collaboratories�, Proc. of the 10th IEEE symposium on High Performance

Distributed Computing (HPDC-10), San Francisco, CA, August 2001.

[2]. R. T. Kouzes, J. D. Myers, and W. A. Wulf, �Collaboratories: Doing science on the

Internet�, IEEE Computer, Vol.29, No.8, August 1996.

[3]. I. Foster and C. Kesselman, �The Grid: Blueprint for a New Computing Infrastructure,

Morgan Kaufmann�, San Francisco, 1998.

[4]. The 1st Global Grid Forum, March 2001, Amsterdam, Netherland, http://www.ggf1.nl

[5]. Grid Computing Environments Working Group, Global Grid Forum,

http://www.computingportals.org.

[6]. S. Subramanian, G.R. Malan, H.S. Shim, J.H.Lee, P. Knoop, T. Weymouth, F. Jahanian, A.

Prakash, and J. Hardin, �The UARC web-based collaboratory: Software architecture and

experiences�, IEEE Internet Computing, Vol.3, No.2, pp.46-54, 1999. See also:

http://intel.si.umich.edu/sparc/.

[7]. J. H. Lee, A. Prakash, T. Jaeger, and G. Wu, �Supporting multi-user, multi-applet

workspaces in CBE�, Proc. of the ACM 1996 Conf. on Computer Supported Cooperative

Work (CSCW'96), Cambridge, MA, pp.344-353, November 1996.

[8]. C. M. Pancerella, L. A. Rahn, and C. L.Yang, �The diesel combustion collaboratory:

Combustion researchers collaborating over the Internet�, Proc. of IEEE Conference on High

Performance Computing and Networking, Portland, OR, November 1999.

[9]. R. A. Whiteside, E. J. Friedman-Hill, and R. J. Detry, �PRE: A framework for enterprise

integration�, Proc. of Design and Information Infrastructure Systems for Manufacturing

(DIISM), Fort Worth, TX, May 1998.

http://www.ggf1.nl/
http://www.computingportals.org/
http://intel.si.umich.edu/sparc/

57

[10]. Argonne National Laboratory, Access Grid, Online at: http://www-

fp.mcs.anl.gov/fl/accessgrid/

[11]. NetSolve - http://www.cs.utk.edu/netsolve/

[12]. The EMSL Collaboratory. http://www.emsl.pnl.gov:2080/docs/collab/.

[13]. M. Russell, G. Allen, G. Daues, I. Foster, T. Goodale, E. Seidel, J. Novotny, J. Shalf, W.

Suen, and G. von Laszewski, �The Astrophysics Simulation Simulation Collaboratory: A

Science Portal Enabling Community Software Development�. Proceedings of Tenth IEEE

International Symposium on High Performance Distributed Computing, August 2001

(submitted).

[14]. Cactus Computational Collaboratory. http://www.cactuscode.org.

[15]. DISCOVER (Distributed Interactive Steering and Collaborative Visualization

EnviRonment), http://www.discoverportal.org.

[16]. S. Kaur, V. Mann, V. Matossian, R. Muralidhar, M. Parashar, "Engineering a Distributed

Computational Collaboratory", 34th Hawaii Conference on System Sciences, January 2001

[17]. I. Foster, C. Kesselman, S. Tuecke, �The Anatomy of the Grid: Enabling Scalable Virtual

Organizations�, Intl. J. Supercomputing Applications, 2001.

[18]. �CORBA: Common Object Request Broker Architecture�, http://www.corba.org.

[19]. HyperText Transfer Protocol (HTTP), http://www.w3.org/Protocols/

[20]. I. Foster, �Internet Computing and the Emerging Grid�, Nature Web Matters,

(http://www.nature.com /nature/webmatters/grid/grid.html) 2000.

[21]. N. H. Kapadia and J. A. B. Fortes,� PUNCH: An Architecture for Web-Enabled Wide-Area

Network-Computing�, Cluster Computing: The Journal of Networks, Software Tools and

Applications; special issue on High Performance Distributed Computing. September 1999.

[22]. N. H. Kapadia, R. J. Figueiredo, and J. A. B. Fortes, �PUNCH: Web Portal for Running

Tools�, IEEE Micro, May-June 2000.

http://www-fp.mcs.anl.gov/fl/accessgrid/
http://www-fp.mcs.anl.gov/fl/accessgrid/
http://www.emsl.pnl.gov:2080/docs/collab/
http://www.cactuscode.org./
http://www.corba.org/
http://www.w3.org/Protocols/

58

[23]. D. Bhatia, V. Burzevski, M. Camuseva, G. Fox, W. Furmanski, and G. Premchandran,

�WebFlow - A Visual Programming Paradigm for Web/Java Based Coarse Grain

Distributed Computing�, Presented at Workshop on Java for Computational Science and

Engineering Workshop, Syracuse University, December 1996.

[24]. E. Akarsu, G. Fox, T. Haupt, A. Kalinichenko, K. Kim, P. Sheethaalnath, and C. H. Youn,

�Using Gateway System to Provide a Desktop Access to High Performance Computational

Resources�, 8th IEEE International Symposium on High Performance Distributed

Computing (HPDC-8), Redondo Beach, California, August, 1999.

[25]. HotPage User Portal- https://hotpage.npaci.edu/

[26]. M. Thomas, S. Mock, and J. Boisseau, �Development of Web Toolkits for Computational

Science Portals: The NPACI HotPage�, The 9th IEEE International Symposium on High

Performance Distributed Computing (HPDC 2000), Pittsburgh, Aug. 1-4, 2000.

[27]. SDSC GridPort Toolkit - http://gridport.npaci.edu/

[28]. Grid Portal Development Kit (GPDK), http://www-itg.lbl.gov/grid/projects/GPDK/

[29]. Gregor von Laszewski, Ian Foster, Jarek Gawor, Peter Lane, Nell Rehn, and Mike Russell,

�Designing Grid-based Problem Solving Environments and Portals�, Proceedings of the 34th

Hawaii International Conference on System Sciences, January 2001.

[30]. Commodity Grid Toolkits (CoG), http://www.globus.org/cog

[31]. S. Verma, J. Gawor, M. Parashar, and G. von Laszewski, �A CORBA Commodity Grid

Kit�, Submitted to the 2nd International Workshop on Grid Computing, November 2001.

[32]. Nimrod/G Problem Solving Environment and Computational Economies,

http://www.csse.monash.edu.au/~rajkumar/ecogrid/

[33]. JiPANG - A Jini based Computing Portal System, http://ninf.is.titech.ac.jp/jipang/

[34]. S. Matsuoka and H. Casanova, �Network-Enabled Server Systems and the Computational

Grid�, White Paper, http://www.eece.unm.edu/~apm/WhitePapers/GF4-WG3-NES-

whitepaper-draft-000705.pdf

http://gridport.npaci.edu/
http://www-itg.lbl.gov/grid/projects/GPDK/
http://www.globus.org/cog
http://www.csse.monash.edu.au/~rajkumar/ecogrid/
http://ninf.is.titech.ac.jp/jipang/
http://www.eece.unm.edu/~apm/WhitePapers/GF4-WG3-NES-whitepaper-draft-000705.pdf
http://www.eece.unm.edu/~apm/WhitePapers/GF4-WG3-NES-whitepaper-draft-000705.pdf

59

[35]. G. R. Malan, F. Jahanian, and S. Subramanian, �Salamander: A Push-based Distribution

Substrate for Internet Applications�, Proceedings of the USENIX Symposium on Internet

Technologies and Systems, December 1997, Monterey, CA.

[36]. G. R. Malan, F. Jahanian and P. Knoop, �Comparison of Two Middleware Data

Dissemination Services in a Wide-Area Distributed System�, Proceedings of the 17th IEEE

International Conference on Distributed Computing Systems, May 1997, Baltimore, MD.

[37]. G. R. Malan, F. Jahanian, C. Rasmussen, and P. Knoop, �Performance of a Distributed

Object-Based Internet Collaboratory�, Technical Report CSE-TR-297-96, University of

Michigan EECS Deptartment, July 1996.

[38]. Internet Performance Measurement and Analysis (IPMA) project homepage,

http://nic.merit.edu/ipma/

[39]. The Collaboratory Interoperability Framework Project (CIF), http://www-itg.lbl.gov/CIF/

[40]. S. Matsuoka, H. Nakada, M. Sato and S. Sekiguchi, �Design issues of Network Enabled

Server Systems for the Grid�, White Paper,

http://www.eece.unm.edu/~apm/WhitePapers/satoshi.pdf

[41]. T. Suzumura, H. Nakada and S. Matsuoka, �Are Global Computing Systems Useful? �

Comparison of Client-Server Global Computing Systems - Ninf, Netsolve versus CORBA�,

Proceedings of the 14th International Parallel and Distributed Processing Symposium

(IPDPS'00).

[42]. G.C. Fox, �Portals for Web Based Education and Computational Science�, http://new-

npac.csit.fsu.edu/users/fox/documents/generalportalmay00/erdcportal.html

[43]. Napster, http://www.napster.com/

[44]. Gnutella, http://gnutella.wego.com/

[45]. I.Clarke, O. Sandberg, B.Wiley, and T.W. Hong, �Freenet: A Distributed Anonymous

Information Storage and Retrieval System�, ICSI Workshop on Design Issues in

Anonymity and Unobservability, 1999.

http://nic.merit.edu/ipma/
http://www-itg.lbl.gov/CIF/
http://new-npac.csit.fsu.edu/users/fox/documents/generalportalmay00/erdcportal.html
http://new-npac.csit.fsu.edu/users/fox/documents/generalportalmay00/erdcportal.html

60

[46]. SETI@home, http://setiathome.ssl.Berkeley.edu

[47]. Parabon, www.parabon.com

[48]. Entropia, www.entropia.com

[49]. Project JXTA, http://www.jxta.org

[50]. Intel Proposals on Peer-to-Peer Computing,

http://www.intel.com/ebusiness/products/peertopeer/index.htm

[51]. Universal Description Discovery and Integration (UDDI), Technical White Paper,

http://www.uddi.org, September 6,2000.

[52]. Microsoft .NET, http://www.microsoft.com/net/

[53]. Web Services Description Language (WSDL), http://www-

106.ibm.com/developerworks/library/w-wsdl.html

[54]. W. Allcock, I. Foster, S, Tuecke, A. Chervenak and C. Kesselman, �Protocols and Services

for Distributed Data-Intensive Science�, to be published in ACAT2000 proceedings.

[55]. J. Hunter, �Java Servlet Programming�, 1st edition, O�Reilly, California (1998).

[56]. Java Servlet API Specification, http://java.sun.com/products/servlet/2.2/.

[57]. Java Remote Method Invocation, http://java.sun.com/products/jdk/rmi.

[58]. CORBA Trader Service Specification, ftp://ftp.omg.org/pub/docs/formal/97-07-26.pdf.

[59]. Apache Web Server, http://httpd.apache.org

[60]. Apache Jserv Servlet Engine, http://java.apache.org

[61]. Visibroker for Java (CORBA ORB), http://www.borland.com/visibroker/

[62]. JacORB, http://www.jacorb.org

[63]. MICO, http://www.mico.org

[64]. O. Rees, N. Edwards, M. Madsen, M. Beasley, and A. McClenaghan, �A Web of

Distributed Objects�, Fourth International World Wide Web Conference, December 1995,

Boston, Massachusetts (MA).

http://setiathome.ssl.berkeley.edu/
http://www.parabon.com/
http://www.entropia.com/
http://www.jxta.org/
http://www.intel.com/ebusiness/products/peertopeer/index.htm
http://www.microsoft.com/net/
http://java.sun.com/products/servlet/2.2/
http://java.sun.com/products/jdk/rmi
ftp://ftp.omg.org/pub/docs/formal/97-07-26.pdf
http://httpd.apache.org/
http://java.apache.org/
http://www.borland.com/visibroker/
http://www.jacorb.org/
http://www.mico.org/

61

[65]. M. Baker, R. Buyya and D. Laforenza, �The Grid: A Survey on Global Efforts in Grid

Computing�, ACM Journal of Computing Surveys, 2000 (submitted).

[66]. I. Foster and C. Kesselman, �Globus: A Metacomputing Infrastructure Toolkit�, Intl J.

Supercomputer Applications, 11(2): 115-128, 1997.

[67]. A. Grimshaw, A. Ferrari, F. Knabe and M. Humphrey, �Legion: An Operating System for

Wide-Area Computing�, IEEE Computer, 32:5, May 1999: 29-37.

	ABSTRACT OF THE THESIS
	Acknowledgements
	Table of Contents
	ABSTRACT OF THE THESIS	ii
	List of Figures
	List of Tables
	Table 1.	A Collaboratory for interaction and computational steering (e.g. DISCOVER)	19
	Introduction
	Objective
	Background
	Problem Statement
	Overview
	Contributions
	Organization

	Background and Related Work
	Current Status of Problem Solving Environments and Computational Collaboratories
	Motivation for Interoperable Collaboratories
	Related Work on Interoperable Collaboratories
	Enabling Technologies for Interoperability
	Peer-to-Peer Computing
	Enterprise Computing Technologies

	Building Interoperable Collaboratories on the Grid
	Approaches to Interoperability
	Architecture of a Grid-based Collaboratory
	Interoperability through available Protocols

	Middleware Design for Grid-based Collaboratories
	DISCOVER Middleware Approach
	DISCOVER Middleware Design

	DISCOVER: A Computational Collaboratory for Interaction and Steering
	DISCOVER Interaction and Collaboration Servers
	DISCOVER Model for Requests - Responses

	A Middleware Substrate for Peer-to-Peer Integration of DISCOVER Servers

	Implementation and Operation of the DISCOVER Middleware Substrate
	Middleware Implementation
	The DiscoverCorbaServer Interface
	The CorbaProxy Interface

	Middleware Operation
	Servers and Applications Discovery
	Security/Authentication across Servers
	Collaboration across Servers
	Distributed Locking
	Distributed Logging

	Performance and Design Evaluation
	An Experimental Evalutation of the DISCOVER Middleware Substrate
	Experiment 1 – Access Latency over a Local Area Network (LAN) and a Wide Area Network (WAN)
	Experiment 2 – Access Latency with Multiple Simultaneous Clients
	Experiment 3 – An Evaluation of Server Memory Requirements

	Retrospective Evaluation of the Design and Technologies Used
	Challenges and Open Issues in a Peer-to-Peer Computational Environment

	Conclusion and Future Work
	References

