Optimizing Web Servers Using Page Rank Prefetching for Clustered

A CCEeSSeS.

by

VICTORY SAFRONOV

A thesis submitted to the
Graduate School-New Brunswick
Rutgers, The State University of New Jer sey
in partial fulfillment of the requirements

for the degree of

Master of Science

Graduate Program in Electrical and Computer Engineering
Written under the direction of

And approved by

Professor M anish Par ashar

New Brunswick, New Jer sey

M ay, 2001

ABSTRACT OF THE THESIS

Optimizing Web Servers Using Page Rank Prefetching for Clustered

A CCESSES.

By Victor Safronov

Thesis Director: Professor Manish Parashar

This thesis presents a Page Rank based prefetching technique for accesses to web page
clusters. The approach uses the link structure of arequested page to determine the “ most
important” linked pages and to identify the page(s) to be prefetched. The underlying
premise of our approach isthat in the case of cluster accesses, the next pages requested
by users of the web server are typically based on the current and previous pages
requested. Furthermore, if the requested pages have alot of links to some “important”
page, that page has a higher probability of being the next one requested. An experimental
evaluation of the prefetching mechanismis presented using real server logs. The results
show that the Page-Rank based scheme does better than random prefetching for clustered

accesses, with hit rates of 90% in some cases.

Acknowledgements

I would like to thank my parents Yuri and Nataie and my fiancée Rowena for their love and
support during my studies in graduate school. | am grateful to my advisor Professor Manish
Parashar for invaluable guidance, encouragement and support throughout my stay at Rutgers. |
am thankful to Professors James L. Flanagan and Deborah Silver for their valuable advice and
suggestions regarding my thesis. | wish to acknowledge the suggestions of the committee in

developing my thinking, technical understanding, thesis writing and presentation skills.

Table of Contents

ABSTRACT OF THE THESIS......ooooi ettt I
ACKNOWLEDGEMENTS ..ottt a e e ii
TABLE OF CONTENTS ..ottt ettt e e e se e e e st e e e snne e e e e nnaene e v
TABLE OF FIGURES oottt ettt n e Vi
(O 1l I PRSP 1
INTRODUGCTION ...ttt e e e e e s e e e s st e e e e e sar e e e e s snseeeeesnnnaaeans 1
1.1 CONTRIBUTIONS. ...etteeiiutteeeeaitseeeeassseeeesssseeesasssssesassseeesassssesesaasssnessassssnssssssssneeeans 2
1.2 OUTLINE OF THE THESIS. ..ieeiiuttiieeeiiieee e e iitee e e s siae e e e e staeeesasnsaeeesasnsaneseasnsseeesssnnsneeeans 3
(O Il I T PSPPSR 4
WEB PAGE PREFETCHING — OVERVIEW AND RELATED WORK 4
2.1 OVERVIEW. .. .tttiie e ettt e e ettt e e ettt e e e et e e e e e st e e e asa e e e e e anns e e e e e ansseeeeeanssaeeeeaannneaeennnnnnas 4
2.2 RELATED WORKuttiiieiiiitiie e e ettt e e e ettt e e e ettt e e e e st e e e e snse e e e e annsaeeessnnnneeesannsneeeennnnnnas 5
2.2.1 Client-Side prefetChing ... 6
2.2.2 Proxy prefetChingo e 7
2.2.3 Server-side PrefetChiNg... ... 8

(O I el T S PP 10
PAGE RANK-BASED WEB PREFETCHING........ccooiiiiiiee e 10
3.1 BACKGROUND......cciiutttteeiitteeeeaitseeeeassseeeeaasseeeeaasseeesassseeeeassaeeseeasaeeeeaasaneeesanses 10
3.2 PAGE RANK ALGORITHM ...utiteeiiitiiteeeitteeeesstseeeeasssesesssnsseessassssessssssssesssssssnsessannns 11
3.3 PAGE RANK-BASED PREFETCHING.......uttieeiiiiieeesiiieeeeassseeeeasnneeseessseesesssnessssnnnns 12
3.3. 1 WED PAgE CIUSIEIS. ...coeieiieiiiieeieee ettt ettt st sse e e e e e snneee s 13

3.4 COMPUTATIONAL COMPLEXITY OF THE PAGE RANK PREFETCHING ALGORITHM14
3.5 DESIGN AND IMPLEMENTATION OF A CLUSTER BASED PREFETCHING SERVER........... 16
5.1 DESIGN ISSUES.....eeiiiueiieiiiieeieee et ee ettt et ee st e e st e e st e e e bt e e s nsee e s ssbeessnneeesnneeens 16
TR0 I o 11 0 o USSR 16

TSI I 1V = 0T PSS 17

TG T @ oo Tc o (0= g 2 4[] o PSS 17

3.5.2 IMplementation OVENVIEW.ccuuviei it 18
3521 HTTP handler (BASIC SEIVEN)ccceeiieiierieeeieeiesieeseeaseesteeneeaeeseeeseeaseesseensesseasseeseaneesseensesneesseensesnees 19

I = = (3= SRR 19

(O I el I ST 21
EXPERIMENTAL EVALUATION ..ottt 21

A L HIT RATE ottt e e s na e e 21

4.2 SERVER SCALABILITY 1uuutttttttiteeeeassiitsssesesesssssssssssssssssssessssssssssssssessssssssssssssesssseannns 24
CHAPTER 5. e e 25
CONCLUSIONS AND FUTURE WORKcooiiiiiiiieiice e 25
REFERENCESo e 26

Table of Figures

FIGURE 1. EXAMPLE GRAPH OF A CLUSTER....cciittiiiitttititeeeeessssssssseesssesesssssssssesesssessnnns 11
FIGURE 2. SERVER ARCHITECTURE.uuuvttttiieeeesesssissssseseesssssssssssssssessssssssssssssssssesssssnnnns 16
FIGURE 3. INTERNAL MESSAGE TRACE DIAGRAMuutiiiiiieiieiiiiiireieee e e s e sssisnneeeesaeeeeenas 20
FIGURE 4. BERKELEY CLUSTERS AND ACCESSES......uuttttttiieeeeiisissrnereeeeesssssssssnsseeesesessnnns 22
FIGURE 5. CAIP CLUSTERS AND ACCESSES ...ceeiieiiiutttttieeeeeeesssisssssseessssssssssssssssssssssssannns 23
FIGURE 6. SCALABILITY iiiuttttttiteeeeeassiststseeeesssasassssssseseeaeesssssssssssssssasssesssssssssnseeseseennnns 24

Vi

Chapter 1

I ntroduction

It isindisputable that the recent explosion of the World Wide Web has transformed
not only the disciplines of computer-related sciences and engineering but also the
lifestyles of people and economies of countries. The single most important piece of
software that enables any kind of Web activity is the Web server. Since its inception the
Web server has always taken aform of a daemon process. It accepts an HT TP request,
interpretsit and serves afile back. While CGI and Serviets extend on these capahilities,
file serving remains a key function of the Web server. As Web service becomes
increasingly popular, network congestion and server overloading have become significant
problems. Great efforts are being made to address these problems and improve Web
performance.

Web caching is recognized as one of the effective techniques to alleviate the server
bottleneck and reduce network traffic, thereby reducing network latency. The basic idea
isto cache recent requested pages at the server so that they do not have to be fetched
again. Regular caching however, only deals with previoudly requested files, i.e. by
definition, new files will never be in the cache. Web prefetching, which can be
considered as “active’ caching, builds on regular Web caching and helps to overcome its
inherent limitation. It attempts to guess what the next requested page will be. For regular
HTML file accesses, prefetching techniques try to predict the next set of files/pages that
will be requested, and use this information to prefetch the files/pages into the server
cache. This greatly speeds up access to those files, and improves the users experience.

To be effective however, the prefetching techniques must be able to reasonably predict

(with minimum computational overheads) subsequent web accesses.

In thisthesis, we present a Web prefetching mechanism for clustered accesses based
on Page Rank. Clustered accesses are access to closely related pages. For example
access to the pages of a single company or research group or to pages associated with the
chapters of abook. Clustered accesses are very common and accounted for over 70% of
the accesses in the server logs that we studied. These included logs from the University of
Cdlifornia, Berkeley Computer Science Division (for year 2000) and Rutgers University
Center for Advanced Information Processing (for year 2000). Page Rank uses link
information in a set of pages to determine which pages are most pointed to and, therefore,
are most important relative to the set. This approach has been successfully used by the
GOOGLE [7] search engine to rank pages (or clusters of pages) that match a query. In the
prefetching mechanism presented, we examine requested pages and compute Page Rank
for the pages pointed by the requested page. We then use this information to determine
the page(s) to be prefetched. Note that the most pointed to page need not have been
requested before. Therefore, the approach we describe here is prefetching and not simple
caching.

1.1 Contributions.
This thesis makes the following contributions:

o It introduces the concept of Web page clusters and presents heuristics for
identifying clusters.

o It defines a Page Rank based mechanism to predict accesses to page in web-
page clusters. The predictions are used to drive aweb-page prefetching
mechanism that prefetches pages into the server cache to improve access

times.

o It designs, implements and evaluates a distributed cluster-based architecture
for the Page Rank prefetching server. The architecture provides good

scalability and further improves server speed.

1.2 Outline of the Thesis.
Therest of thisthesisis organized as follows. Section 2 describes web prefetching

and presents related work. Section 3 introduces Page Rank and describes the Page Rank
based prefetching approach. Section 3 also presents the algorithm, analyzes its
complexity. Section 4 presents an experimental evaluation of the approach. Section 5

presents conclusions and future work.

Chapter 2

Web Page Prefetching — Overview and Related Work

2.1 Overview
If the World Wide Web isto be approached from a client-server view then, asthe

name suggests, Web server is the server part of the scheme and a browser isthe client. In
atypical interaction a user will request afile from a server ether by clicking on alink or
typing the request in manually. The browser trandatesit into an HTTP request, connects
to the proper server, sends the request and waits for a reply. Meanwhile the Web server
has been waiting for requests. It accepts the connection from the client, parsesthe HTTP
request and extracts the name of the file. The server then getsthe file from its cache or
fromits disk, formatsan HTTP reply that satisfies the request and sendsiit to the browser.
The browser then closes the connection.

Access to disk is much slower than access to memory. Just asin the case of OS
file systems, caching techniques are used in Web serversto reduce disk accesses. One
difference is that Web server file accesses are all reads due to the nature of the
application. In this context the cache is a collection of files that logically belong on the
disk but are kept in memory for performance reasons.

Web prefetching builds on web caching to improve the file access time at web
servers. The memory hierarchy made possible by caches helpsto improve HTML page
access time by significantly lowering average memory/disk access time. However, cache
misses can reduce the effectiveness of the cache and increase this average time.

Prefetching attempts to transfer data to the cache before it is asked for, thus lowering the

cache misses even further. Prefetching techniques can only be useful if they can predict
accesses with reasonable accuracy and if they do not represent a significant
computational load at the server. Note that prefetching files that will not be requested not
only wastes useful space in the cache but also results in wasted bandwidth and
computational resources.

2.2 Related Work
Existing prefetching approaches can be classified as client-side, proxy-based or server-

side. Table 1 summarizes the main features, advantages and disadvantages of each of

these approaches.

Client-side

Effectively is part of
the browser

Advantages

Devoted entirely to
one user.

Can be very quick
Can cache requests

from multiple
Servers.

Disadvantages

Requires browser
code modification
or plug-in.

Can increase server
load and demand
bandwidth without
user benefit.

Sitsin the middle
between the server
and the browser.

Usually devoted to a
group of userswith
similar interests.

Can cache requests
from multiple
servers.

Can be built into a
hierarchy.

Can increase server
load and demand
bandwidth without
user benefit.

Cache coherency
protocol may
become very
complicated.
Additional
messaging is
required.

Server-side

Part of the server.

2.2.1 Client-side prefetching

No increase in
bandwidth demand.

Simple cache
coherency protocol.

Known and limited
number of potentia
pagesto cache.

Increase in server
complexity.

No easy way to
track user
patterns/document
popularity across
multiple servers.

Table1l. Summary of prefetching approaches

In the client-side approach, the client determines pages to be prefetched and request

them from the server. Client-side prefetching is presented by Jiang et a in [4]. A key

drawback of this approachisthat it typically requires modifications to the client browser

code or use of a plug-in, which may be impractical. Furthermore, it may double the

required bandwidth, actually resulting in deteriorated performance. For example, in the
worst-case, the prefetcher will repeatedly request files that the user never wantsto see.
Therefore, the number of requests to the server will double without any benefit to the
user. Finally, maintaining cache coherency in client-side prefetching approachesis
expensive. Cache coherency deals with the following issue. If afile in cache has changed
on the server the new version of the file needs to be presented to the user instead of the
stale cached version. This requires checking with the server on the state of the file(s) in
the cache (possibly through a special protocol). As aresult there isincreased complexity
on the client and the server side, as well as increased traffic between the two.

2.2.2 Proxy prefetching

The proxy-based prefetching approach uses an intermediate cache between the server
and a client as described by Kroeger et a in [9]. This proxy can request filesto be
prefetched from the server, or the server can push some files to the proxy. Both of these
schemes increase the required bandwidth. Furthermore, like client-side schemes,
maintaining cache coherency in proxy-based schemes is expensive. This overhead gets
even more significant when multiple levels of proxy caches are employed.

One advantage of client and proxy side prefetching isthat they separate the HTTP
server part from the caching part thus allowing greater geographic and | P proximity to the
client. For example, placing a proxy cache next to or inside of an organization’'s subnet
means that the data a user requests will have far fewer 1P hops. These schemes are also
better suited for user-pattern tracking algorithms. In particular, the client-side
mechanism is dedicated to a particular user and spends all its time trying to follow what

the user might want. By the same token a proxy cache dedicated to a particular

organization will do a good job following that organization’s preferences. Another
advantage is that requests from multiple servers can be cached.
2.2.3 Server-side prefetching

In server-side approaches, the entire prefetching mechanism resides on the Web
server itself. These approaches avoid the problems mentioned above. There is no increase
in the bandwidth, as no files that haven't been requested will be sent to the client.
Furthermore, maintaining cache coherency in this case is ailmost effortless. Proxy-based
caches and client-side prefetching mechanisms require additional messaging and
protocols between the cache and the HT TP server for cache coherency. This overhead
can become expensive in terms of wasted bandwidth. There is no complicated protocol
and no extra messaging outside the server in case of sever-side schemes. Asthefile
system in this case is either local or mounted, al the messaging is within the server and
does not require external bandwidth. Furthermore, the OS file system guarantees access
to the latest copy of afile, and provides excellent and easy to use mechanisms to check
file attributes such as creation and modification times and dates, to assist in maintaining
cache coherency. Another distinction with the client-related schemesis that client-side
prefetching makes decisions on which files to prefetch based on the particular user’s
preferences, whereas in the server-side prefetching, decisions are based on the document
popularity, and more than one client can benefit from it.

A server-side prefetching approach based on analyzing server logs and predicting
user actions on the server sideis presented by Su et a in [5]. Tracking users on a server,
however, is quickly becoming impractical due to the widespread use of web proxies. The

proxy either presents one |P address to the server for alarge group of users, or it cycles

through some set of | P addresses according to its load-balancing scheme. Both cases
render a single user identity moot.

The work presented by Zukerman et al in [6], uses Artificial Intelligence-related
techniques to predict user requests. They implement alearning algorithm such as some
variation of Markov chains and use a previous access log in order to trainit. This
approach aso relies on tracking user patterns. Furthermore, it does not handle newly
introduced pages, or old pages that have changed substantialy. This approach also
requires arather long sequence of clicks from a user to learn his’/her access patterns.
The Page Rank based prefetching technique presented in thisthesisis a server-side
approach and uses the information about the link structure of the pages and the current
and past user accessesto drive prefetching. The approach is effective for accessto web
page clusters, is computationally efficient and scalable, and can immediately sense and
react to changes in the link structure of web pages. Furthermore, the underlying algorithm
uses relatively simple matrix operations and is easily parallelizable, making it suitable for

clustered server environments.

10

Chapter 3

Page Rank-Based Web Prefetching

3.1 Background
Serving files to arequesting client had been implemented long before the advent

of the web. Applications such as file servers and networked file systems are well known.
However, it has been recognized that serving Web requests presents a unique set of
challenges. General Web files are text files containing HTML [8] syntax, and tend to be
relatively small in size. A key feature of HTML is the ability to embed links to other
files. When a user views a page, chances are it contains links to other pages. Unless the
user isnot interested in the subject or further surfing he or sheislikely to click on one of
the links and request another file from a server. From this point of view each page can be
represented by a node in a directed graph and each URL link in that pageisan arc to
another node. Attempts have been made to try to utilize this specia structure of HTML
files for various purposes, particularly searching. One application based entirely on the
link structure is the Page Rank technique utilized by the GOOGLE [7] search engine.
The Page Rank technique [1][2] provides aranking of web pages based on the premise
that pages pointed to the most must be the most important ones. In this technique, the
importance of a page is defined recursively, that is, a page isimportant if important pages
link to it. To calculate the actual rank of the page a stochastic matrix is constructed as
follows:

1. Eachpagei correspondsto row i and column i of the matrix.

2. If page]j has n successors (links), then theijth entry is 1/n if page i is one of those

n successors of pagej, O otherwise

11

In our prefetching scheme, we only consider links to other pages on the same server.
After the matrix has been populated the actual calculation is performed. This essentially
consists of a principal Eigenvector calculation [3]. Some additional modifications are
required in order to avoid a few Web graph quirks. Web pages that have no outward links
or those that only link to themselves have to be specially dealt with. One solution to these
problemsisto “tax” each page some fraction of its current importance instead of applying
the matrix directly. The taxed importance is distributed equally among all pages. The
overall algorithm is presented below.

3.2 Page Rank Algorithm
To illustrate the Page Rank algorithm used for prefetching, consider the web page

graph shown in Figure 1. This graph shows a cluster of three pages, A, M and N; A is

linked to N and M, N islinked to A and to itself, M is linked only to itself.

Figure 1. Example Graph of a Cluster

12

Then the equation to be solved to determine the Page Rank is as follows.

=]
N

'

/ 0 1/ 2y
_ v
= 1 1/2y
/ 0 0§

B OO
o NN e
'

[N

B OO
oo aN e
BOPE
NN

As can be seen from the graph N linksto A and to itself. Hence the first column (N’s
column) has 1/2s in rows corresponding to N and A. M links only to itself. Therefore
second column has 1 in M’srow. By the same token A haslinksto M and A producing
corresponding arrangement in its column.

The solution of this equation is computed iteratively, by comparing the norm of
the current resulting vector with that of the previous one until the difference is less than
some delta. That is, if M is the matrix and R isthe [n, m, a] vector, the following
algorithm is executed.

DO
Rprevious = R;
R=M"R+0.2"[1];
WHILE |Rprevious |, -|R|, > D;
Multiply each page srank bythe number of
requests;
For the example, the solution of the equationisn=7/11;, m=21/11;a=5/11-i.e.

M is the most important page.

3.3 Page Rank-Based Prefetching
The Page Rank-based prefetching approach uses the link structure of requested pages

to determine the “ most important” linked pages and to identify the page(s) to be
prefetched. The underlying premise of the approach isthat the next pages requested by

users of the web server are typically based on the current and previous pages requested.

13

Furthermore, if the requested pages have alot of links to some “important” page, that
page has a higher probability of being the next one requested. The relative importance of
pages is calculated using the Page Rank method as described above. The important pages
identified are then prefetched into the cache to speed up users access to them.

For each page requested, the Page Rank algorithm performs the following operations.

1. The URL isscanned to seeif it belongsto acluster. If it does, as soon as the
contents of that page are retrieved, they are used to populate or update that
cluster’s matrix.

2. Assoon as the matrix update operation is complete, the Page Rank calculations
are performed to determine the most important pages among those requested or
pointed to in the cluster.

3. A configurable number of these pages are then prefetched into the cache. It is also
important to note that if the matrix and/or cache cannot hold all the pages, Page
Rank is used as a replacement mechanism, i.e. those pages with the lowest rank
get replaced with new ones.

3.3.1 Web Page Clusters
Since any random page on the server does not necessarily link to other pages on the
same server we define the concept of web page clusters. Clusters are groups of pages that
are tightly interlinked. Those are the areas of the server where Page Rank excels. Each
cluster hasit’s own Page Rank calculation. As soon asthe front end determines that a
page belongs to a cluster it isrouted for its cluster’s calculation. We heuristically define
any Web directory with 200 or more files under it as a candidate cluster. We find the

node closest to the root having this property but exclude the root itself. The justification

14

isthat thereis agreat chance that those files are related and are interlinked and their
hierarchies are sufficiently wide and deep.

While GOOGLE uses the Page Rank technique for Web searching, we use it for
prefetching i.e., it isnot used as a“spider” scouting the whole of the Web. We apply the
ranking calculations described above only to pages on a single server. Furthermore, we
only apply it for pages that are part of a defined cluster. Finally, prefetching calculations
are rea time by nature. As soon as new cluster access is processed the ranking
calculations are performed to determine how the graph of requested pages has changed
and which new pages need to be prefetched as a result of those changes. In other words,
instead of building a static graph of the Web asin the original application, we build a
dynamic graph of user accessed pages in a particular cluster on the server and use Page
Rank to determine which pages will be asked for next.

3.4 Computational Complexity of the Page Rank Prefetching Algorithm

The prefetching mechanism has to be invoked for each access at the server.
Consequently, it isimperative that the underlying algorithm be efficient. A complexity
analysis of the algorithm is presented in this section. The main part of the Page Rank
algorithm consists of populating the matrix and then calculating its principal eigenvector.

These are two consecutive operations:

1. Matrix population (smplified)
For each new page find al the pages it links toand all the pages that link to it.
A length n array is used to help keep track of pagesin memory .
Find al pages that the new page links to. This requires afull array scan. For

each array element, al the links on the new page need to be checked. Our

15

observations show that it is rare for a page to have more than 20 links to pages
on the same server. We can safely make an assumption that n is the maximum
number of links on a page. Then the worst case performance is O(n?).
Find all the pages that link to the new page. This again requires a full array
scan consisting of a scanning of the links on the current page and comparing
them to the link to the new page. Making the same assumption, that n isthe
maximum number of links on a page, we have aworst case performance of
o(n?).
The 2 operations above are consecutive and can be combined into one with
the same O(n?) complexity. Furthermore, ordering the array wouldn’t change
the worst-case performance.
Recalculate the matrix values. This as an O(n?) complexity as well.

2. Matrix multiplication.
Iterative matrix-vector multiplication and addition. This typically convergesin
less than 20 iterations.
The cost of multiplying an x m matrix by am x p matrix is O(hmp). We have
n x n by n x 1 therefore our multiplication algorithm’s cost is O(n?).

As aresult we have the overall complexity of the Page Rank prefetching algorithm as
o(n?).
Note that for n=200 a single-threaded implementation processed 90 requests per
minute on an 850 MHz PI11 with 256 MB RAM running Windows 2000. Thisis

equivalent to serving a month worth of requests in several hours.

16

3.5 Design and I mplementation of a Cluster Based Prefetching Server.

Figure 2. Server Architecture.
3.5.1 Design Issues

3.5.1.1 Parallelism

A key motivation for implementing the server on a cluster of machines was to exploit
the inherent parallelism in the Page Rank prefetching algorithm and maintain server
scalability. Page Rank computations for different page clusters can be performed in
parallel each on its own dedicated machine.

Furthermore, the associated matrix computations can also be paralelized. This

introduces a new level of parallelization that is not bounded by the number of page

17

clusters. Both levels of parallelization can be employed smultaneoudly to achieve
maximum performance gain.

The distributed server achieves almost perfect scalability as processing for each
cluster is performed independently. The overall runtime in this case is the maximum of
the computation times for the cluster plus some synchronization overheads. A single
server would have processed the requests sequentially resulting in an overall runtime
egual to the sum of the computation times for each cluster.
3.5.1.2 Matrix size

Our experiment showed that a matrix size n = 200 resulted in the most appropriate
balance. Matrices of size less than 10 produce results that were fast but were not useful
for prefetching. On the other hand, running with a matrix size of 1000 took an
unacceptably long time on an 850MHz Pl with 256 MB RAM running Windows 2000.
A matrix size of 200 gave good prefetching predictions and had a reasonable
computational cost.

Similarly, we empirically found that the most appropriate fraction of pagesin the
cache that should be prefetched is 0.25. Values that were too high wasted cache space
while values that are too low wasted computational effort. For example, we found that
prefetching a fraction of the pages 0.5 and higher did little to increase the hit rate but
caused alot of files that were never used to reside in the cache only to be replaced later.
On the other hand, values less than 0.1 produced a marked decrease in the hit rate.
3.5.1.3 Cache organization

Cache was implemented as a user-level cache. It is adynamic array of chunks of

memory indexed by the filenames. Each element also contains that file's timestamp for

18

comparison with the disk version of the same file. Due to the cluster-based architecture of
the server each file cluster is served by its own cache.
3.5.2 Implementation overview

We have implemented a prototype server with Page Rank prefetching. The server was
built on a cluster and performed al the basic functions required, but didn’t include any
optimizations. It additionally maintained running statistics (i.e. hit rate). The architecture
of the server is shown in Figure 2. The main components of the server are the Router (R),
and the HTTP handler (C) and Prefetcher (P) pairs. Each component was implemented
as a separate process. The P-C pairs were identical and were implemented on separate
nodes of the cluster. The Router ran on a dedicated machine. The Router was simple and
efficient. It accepted an incoming HT TP request, determined which cluster it belonged to,
and handed it off to a P-C pair for Page Rank computations. The HTTP handler
performed the functions of aregular HTTP server with caching and custom prefetching.
The Prefetcher implemented the Page Rank prefetching algorithm and decided which
files needed to be prefetched. When the HT TP handler sent areply page (either from its
cache or from the disk) back, the Prefetcher extracted the list of “href” linksto local
pages from this page, and computed the Page Rank. It then sent alist of pagesto be
prefetched to the HTTP handler. The client, in the meantime, received the page it
requested. Both the Router and the Prefetcher are multithreaded for further efficiency.
The internal structure and a few details of operations for each component are given

below.

19

3.5.21HTTP handler (Basic Server)

This component performs the functions of aregular HTTP server with caching
and custom prefetching as mentioned above. It could be used as stand-alone simple Web
server. The HTTP handler operates as follows. When it receives an HTTP request it
parses it to get the file name and checks if the file isin the cache. If so it verifiesit’sthe
file's freshness using a simple timestamp check. If the fileis not in the cache or is stale
it’s fetched from the disk. The handler then formats a proper HTTP reply and sendsiit to
the requesting object (prefetcher in our case). Also, when the HTTP handler receives a
prefetch request from the Prefetcher it will get the files from the disk and put them into
its cache. The cache isimplemented as a user-level memory cache indexed by the
filenames.
3.5.2.2 Prefetcher

Prefetcher is the component in charge of making a decision about which files
need to be prefetched. Asit passes the response to the client back to the Router it parses it
and creates alist of “href” links to local pages in the page. It should be noted that the
HTML parser has to be very forgiving. Special provisions have to be made to accept
anchors with or without quotes and other attributes. Very few pages were found to follow
strict HTML syntax since browsers tend to overlook many HTML syntax errors. The
parser also converts relative paths into absolute ones for ease and uniformity of
processing. The resulting list of links, including the link to the current page, isfed into
the Page Ranker component. Page Ranker returns alist of new highest-ranking pages.
Thislist isthen sent to the HTTP handler to be prefetched into its cache.

The Page Rank prefetcher calculates the pages to be prefetched on the fly

20

allowing the server to respond very quickly to any change in access pattern popularity.
The server prefetches pages that are not yet accessed and registers changes in the page's
contents as soon as the page is accessed again. In other words, the Prefetcher maintains a

running rank of pages on the server based on the pages accessed so far.

Router Prefetcher Basic Server
g
HTTP page request
g
page request forward
¢
reply page
¢
HTTP reply

g

prefetch request

Figure 3. Internal Message Trace Diagram

21

Chapter 4

Experimental Evaluation
We used server logs from the University of California, Berkeley Computer Science
Division (for year 2000) (www.cs.berkeley.edu) and Rutgers University Center for

Advanced Information Processing (for year 2000) (www.caip.rutgers.edu) to

experimentally evaluate the Page Rank-based perfecting mechanism. In particular, we
chose September 2000 log as a representative one for our experiment. The experiment
consisted of identifying the access clustersin the logs and extracting requests to these
clusters. The accesses were then used to drive the evaluation, which consisted of
measuring the hit rate for accesses at server with the Page Rank-based prefetching
scheme versus a random prefetching scheme.

To smulate client requests we wrote asimple driver. The driver reads server access
log, sendsan HTTP request corresponding to the original access and waits for the
response. This operation is easily parallelizable. We only needed to break the log file into
multiple pieces and start the drivers simultaneously for each piece. This smulates
multiple clients with repeatable behavior. While the primary objective of our experiment
is not to find out how many clients the server can handle multiple clients do speed up the
experiment as well as demonstrate our server’s scalability.

4.1 Hit Rate
We define hit rate as follows. Let H be the number of user requests that were found in

cache at the time of the request. Let M be the number of user requests that were not found

in the prefetch cache. Then the total number of requestsisH + M and the hit rate is

22

defined as

H

Hit Rate = ~ 100%
H+M

Using our heuristic, we found 28 clusters on the Berkeley server, constituting about 70%
of all the files on the server. So these clusters are quite common. We extracted requests
for each cluster and used them to evaluate our prefetching scheme. The results are as
follows. Hit rates per cluster range from 0 to 95%. In al, 61% of all the clusters gave hit
rates greater than 30% (i.e. greater than random). Requests to those clusters constitute

about 15% of all the requestsin the log.

% hit rate
—e— % all files

1234567 8 91011121314151617

Figure 4. Berkeley Clusters and Accesses
Figure 4 shows the cluster access for the Berkeley log. Only the clusters with hit rate

greater than 10% and with more than a 100 accesses are plotted.

23

Using the log from the CAIP server for November 2000 we found the following.
There are 12 clusters as defined by our heuristic. Filesin those clusters constitute 49% of

all the files on the server. Requests to those files constitute 39% of all the server requests.

12

- 6 % hit rate
—e— % all files

123456 7 8 9101112

Figure 5. CAIP Clusters and Accesses

Figure 5 shows the cluster accesses for the CAIP log. As can be seen from the chart
the hit rate varies from 20% all the way to 95% with only one cluster having the hit rate
less than 30%. One half of all the clusters have hit rate greater than 70% and one quarter
reach or exceed 90%. This again shows that cluster pages are common, that they account
for a substantial number of requests, and that the Page Rank scheme does very well
prefetching these type accesses.

It should be noted that the heuristic we employed is a temporary solution to finding
the clusters. It should be relatively straightforward to develop a spider that will crawl all
the pages on the server and discover clusters. Threshold of connectivity for the cluster

definition is a subject of future research. We predict that having defined the clustersin a

24

more systematic way will increase hit rate even further. It may also discover more
clusters and files belonging to clusters.

We aso note that the Page Rank prefetcher did not do well for non-clustered request.
In this case the hit rate was about 17%. The random prefetcher resulted in a hit rate of
about 30%. Thisis expected as the Page Rank prefetcher is based on the premise that
page link information determines accesses, which is true for clustered accessed but
typically not true for random accesses.

4.2 Server scalability
We ran the scalability part of the experiment on a cluster of identical SUN

workstations with 1220MB RAM each. Running with 12 machines in a cluster reduced the
overall running time by a factor of 8.

Figure 8 demonstrates these results for the CAIP logs. It demonstrates an amost
perfect scalability up to the number of file clusters on the server. This experiment shows
that the distributed architecture implemented works very well with the prefetching

scheme.

scalability

60
50 -

12

40 +

30 3 —e— scalability

reg/min

20 A
10 ~

0 T T
0 5 10 15

machines

Figure 6. Scalability

25

Chapter 5

Conclusions and Future Work

In this thesis we presented the Page Rank-based prefetching mechanism for
clustered web page accesses. In this approach, we rank the pages linked to arequested
page and use this determine the pages to be prefetched. We aso presented an
experimental evaluation of the presented prefetching mechanism using server logs from
the University of California, Berkeley Computer Science Division (for year 2000) and
Rutgers University Center for Advanced Information Processing (for year 2000). The
results show that the Page Rank prefetching does better than random prefetching for
clustered accesses, with hit rates 90% hit rate in some cases. We have also shown that
these clusters are quite common on both servers we explored. They constitute about 50%
and 70% of all the files on the server. Accesses to pages in the clusters are about 15% and
40% of all the accesses.

We are currently building a spider for discovering page clusters. Thiswork is also
investigating the appropriate depth and breadth thresholds for cluster identification. We
are investigating the type of web sites that can benefit from the Page Rank prefetching
approach. Finaly, we are implementing a distributed version of the prefetcher so that it

can be efficiently deployed in a cluster environment.

26

Refer ences:

[1]. S. Brinand L. Page. The anatomy of a large-scale hypertextual web search engine. In
Proceedings of the Seventh World Wide Web Conference, pp. 107-117. Apr. 1998.

[2]. S. Brinand L. Page. The PageRank Citation Ranking: Bringing Order to the Web.
Proceedings of ASIS98, Annual Meeting of the American Society for Information Science, pp
161-172. Jan. 1998.

[3]. S.D. Conte and C. de Boor. Elementary Numerical Analysis, an Algorithmic Approach.
McGraw-Hill 1980.

[4]. Z. Jiang and L. Kleinrock. An Adaptive Network Prefetch Scheme. |EEE Journa on Selected
Areas in Communications, pp. 358-368. Apr. 1998.

[5]. Z. Su, Q. Yang, Ye Lu Zhang. WhatNext: A Prediction System for Web Requests using N-
gram Sequence Models, In 1st International Conference on Web Information Systems
Engineering, pp.214-222. June 2000.

[6]. I. Zukerman, W. Albrecht and A. Nicholson. Predicting user's request on the WWW. UM99 -
- Proceedings of the Seventh International Conference on User Modeling, pp.275-284. June
1999.

[7]. The GOOGLE Search Engine. http://www.google.com.

[8]. HTML http://www.w3.org/MarkUp/.

[9]. T. M. Kroeger, D. D. E. Long, and J. C. Mogul. Exploring the bounds of Web latency
reduction from caching and prefetching. In Proc. of the 1st USENIX Symposium On Internet
Technologies and Systems, pp. 13-22, Dec. 1997

