
Optimizing Web Servers Using Page Rank Prefetching for Clustered 

Accesses. 

by 
 

 VICTOR Y SAFRONOV 
 

A thesis submitted to the  

Graduate School-New Brunswick 

Rutgers, The State University of New Jersey 

in partial fulfillment of the requirements 

for the degree of 

Master of Science 

Graduate Program in Electrical and Computer Engineering 

Written under the direction of 

And approved by 

Professor Manish Parashar 

 

 
 

 

 

 

New Brunswick, New Jersey 

May, 2001 



 

 

 
 
  
 

  

ii 
 
  

 

 

ABSTRACT OF THE THESIS 

Optimizing Web Servers Using Page Rank Prefetching for Clustered 

Accesses. 

By Victor Safronov 

Thesis Director:  Professor Manish Parashar 

 

This thesis presents a Page Rank based prefetching technique for accesses to web page 

clusters. The approach uses the link structure of a requested page to determine the “most 

important” linked pages and to identify the page(s) to be prefetched. The underlying 

premise of our approach is that in the case of cluster accesses, the next pages requested 

by users of the web server are typically based on the current and previous pages 

requested. Furthermore, if the requested pages have a lot of links to some “important” 

page, that page has a higher probability of being the next one requested. An experimental 

evaluation of the prefetching mechanism is presented using real server logs. The results 

show that the Page-Rank based scheme does better than random prefetching for clustered 

accesses, with hit rates of 90% in some cases. 

 

 

 

 



 

 

 
 
  
 

  

iii 
 
  

 

Acknowledgements 

I would like to thank my parents Yuri and Natalie and my fiancée Rowena for their love and 

support during my studies in graduate school.  I am grateful to my advisor Professor Manish 

Parashar for invaluable guidance, encouragement and support throughout my stay at Rutgers. I 

am thankful to Professors James L. Flanagan and Deborah Silver for their valuable advice and 

suggestions regarding my thesis.  I wish to acknowledge the suggestions of the committee in 

developing my thinking, technical understanding, thesis writing and presentation skills. 



 

 

 
 
  
 

  

iv 
 
  

 

 

Table of Contents 

ABSTRACT OF THE THESIS.....................................................................................ii 

ACKNOWLEDGEMENTS ........................................................................................ iii 

TABLE OF CONTENTS .............................................................................................iv 

TABLE OF FIGURES .................................................................................................vi 

CHAPTER 1 ..................................................................................................................1 

INTRODUCTION.........................................................................................................1 

1.1 CONTRIBUTIONS......................................................................................................2 
1.2 OUTLINE OF THE THESIS. .........................................................................................3 

CHAPTER 2 ..................................................................................................................4 

WEB PAGE PREFETCHING – OVERVIEW AND RELATED WORK..................4 

2.1 OVERVIEW..............................................................................................................4 
2.2 RELATED WORK .....................................................................................................5 

2.2.1 Client-side prefetching ....................................................................................6 
2.2.2 Proxy prefetching ............................................................................................7 
2.2.3 Server-side prefetching ....................................................................................8 

CHAPTER 3 ................................................................................................................10 

PAGE RANK-BASED WEB PREFETCHING..........................................................10 

3.1 BACKGROUND.......................................................................................................10 
3.2 PAGE RANK ALGORITHM.......................................................................................11 
3.3 PAGE RANK-BASED PREFETCHING.........................................................................12 

3.3.1 Web Page Clusters.........................................................................................13 
3.4 COMPUTATIONAL COMPLEXITY OF THE PAGE RANK PREFETCHING ALGORITHM .....14 
3.5 DESIGN AND IMPLEMENTATION  OF A CLUSTER BASED PREFETCHING SERVER. .........16 

3.5.1 Design Issues .................................................................................................16 
3.5.1.1 Parallelism ...................................................................................................................................... 16 
3.5.1.2 Matrix size ...................................................................................................................................... 17 
3.5.1.3 Cache organization .......................................................................................................................... 17 

3.5.2 Implementation overview...............................................................................18 
3.5.2.1 HTTP handler (Basic Server) ........................................................................................................... 19 
3.5.2.2 Prefetcher........................................................................................................................................ 19 

CHAPTER 4 ................................................................................................................21 

EXPERIMENTAL EVALUATION ...........................................................................21 



 

 

 
 
  
 

  

v 
 
  

 

4.1 HIT RATE..............................................................................................................21 
4.2 SERVER SCALABILITY ............................................................................................24 

CHAPTER 5 ................................................................................................................25 

CONCLUSIONS AND FUTURE WORK..................................................................25 

REFERENCES:...........................................................................................................26 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 
 
  
 

  

vi 
 
  

 

Table of Figures 

FIGURE 1. EXAMPLE GRAPH OF A CLUSTER.....................................................................11 
FIGURE 2. SERVER ARCHITECTURE. ................................................................................16 
FIGURE 3.  INTERNAL MESSAGE TRACE DIAGRAM ..........................................................20 
FIGURE 4. BERKELEY CLUSTERS AND ACCESSES .............................................................22 
FIGURE 5. CAIP CLUSTERS AND ACCESSES ....................................................................23 
FIGURE 6. SCALABILITY .................................................................................................24 

 

 

 



1 

 

 
 
  

   

  
 
  

Chapter 1 

Introduction 

 
It is indisputable that the recent explosion of the World Wide Web has transformed 

not only the disciplines of computer-related sciences and engineering but also the 

lifestyles of people and economies of countries. The single most important piece of 

software that enables any kind of Web activity is the Web server. Since its inception the 

Web server has always taken a form of a daemon process. It accepts an HTTP request, 

interprets it and serves a file back. While CGI and Servlets extend on these capabilities, 

file serving remains a key function of the Web server. As Web service becomes 

increasingly popular, network congestion and server overloading have become significant 

problems. Great efforts are being made to address these problems and improve Web 

performance.  

Web caching is recognized as one of the effective techniques to alleviate the server 

bottleneck and reduce network traffic, thereby reducing network latency. The basic idea 

is to cache recent requested pages at the server so that they do not have to be fetched 

again. Regular caching however, only deals with previously requested files, i.e. by 

definition, new files will never be in the cache. Web prefetching, which can be 

considered as “active” caching, builds on regular Web caching and helps to overcome its 

inherent limitation. It attempts to guess what the next requested page will be. For regular 

HTML file accesses, prefetching techniques try to predict the next set of files/pages that 

will be requested, and use this information to prefetch the files/pages into the server 

cache. This greatly speeds up access to those files, and improves the users’ experience. 

To be effective however, the prefetching techniques must be able to reasonably predict 



2 

 

 
 
  

   

  
 
  

(with minimum computational overheads) subsequent web accesses. 

In this thesis, we present a Web prefetching mechanism for clustered accesses based 

on Page Rank.  Clustered accesses are access to closely related pages. For example 

access to the pages of a single company or research group or to pages associated with the 

chapters of a book. Clustered accesses are very common and accounted for over 70% of 

the accesses in the server logs that we studied. These included logs from the University of 

California, Berkeley Computer Science Division (for year 2000) and Rutgers University 

Center for Advanced Information Processing (for year 2000). Page Rank uses link 

information in a set of pages to determine which pages are most pointed to and, therefore, 

are most important relative to the set. This approach has been successfully used by the 

GOOGLE [7] search engine to rank pages (or clusters of pages) that match a query. In the 

prefetching mechanism presented, we examine requested pages and compute Page Rank 

for the pages pointed by the requested page. We then use this information to determine 

the page(s) to be prefetched. Note that the most pointed to page need not have been 

requested before. Therefore, the approach we describe here is prefetching and not simple 

caching.  

1.1 Contributions. 

 This thesis makes the following contributions: 

q  It introduces the concept of Web page clusters and presents heuristics for 

identifying clusters. 

q  It defines a Page Rank based mechanism to predict accesses to page in web-

page clusters. The predictions are used to drive a web-page  prefetching 

mechanism that prefetches pages into the server cache to improve access 

times.  



3 

 

 
 
  

   

  
 
  

q  It designs, implements and evaluates a distributed cluster-based architecture 

for the Page Rank prefetching server. The architecture provides good 

scalability and further improves server speed. 

 

1.2 Outline of the Thesis. 

The rest of this thesis is organized as follows. Section 2 describes web prefetching 

and presents related work. Section 3 introduces Page Rank and describes the Page Rank 

based prefetching approach. Section 3  also presents the algorithm, analyzes its 

complexity. Section 4 presents an experimental evaluation of the approach. Section 5 

presents conclusions and future work. 



4 

 

 
 
  

   

  
 
  

 

Chapter 2 

Web Page Prefetching – Overview and Related Work 

2.1 Overview 

If the World Wide Web is to be approached from a client-server view then, as the 

name suggests, Web server is the server part of the scheme and a browser is the client. In 

a typical interaction a user will request a file from a server either by clicking on a link or 

typing the request in manually. The browser translates it into an HTTP request, connects 

to the proper server, sends the request and waits for a reply. Meanwhile the Web server 

has been waiting for requests. It accepts the connection from the client, parses the HTTP 

request and extracts the name of the file. The server then gets the file from its cache or 

from its disk, formats an HTTP reply that satisfies the request and sends it to the browser. 

The browser then closes the connection. 

Access to disk is much slower than access to memory. Just as in the case of OS 

file systems, caching techniques are used in Web servers to reduce disk accesses. One 

difference is that Web server file accesses are all reads due to the nature of the 

application. In this context the cache is a collection of files that logically belong on the 

disk but are kept in memory for performance reasons. 

Web prefetching builds on web caching to improve the file access time at web 

servers. The memory hierarchy made possible by caches helps to improve HTML page 

access time by significantly lowering average memory/disk access time. However, cache 

misses can reduce the effectiveness of the cache and increase this average time. 

Prefetching attempts to transfer data to the cache before it is asked for, thus lowering the 



5 

 

 
 
  

   

  
 
  

cache misses even further. Prefetching techniques can only be useful if they can predict 

accesses with reasonable accuracy and if they do not represent a significant 

computational load at the server. Note that prefetching files that will not be requested not 

only wastes useful space in the cache but also results in wasted bandwidth and 

computational resources. 

 2.2 Related Work 

Existing prefetching approaches can be classified as client-side, proxy-based or server-

side. Table 1 summarizes the main features, advantages and disadvantages of each of 

these approaches. 



6 

 

 
 
  

   

  
 
  

 

 Main Features Advantages Disadvantages 

Client-side Effectively is part of 
the browser 

Devoted entirely to 
one user.  
 
Can be very quick 
 
Can cache requests 
from multiple 
servers. 

Requires browser 
code modification 
or plug-in. 
 
Can increase server 
load and demand 
bandwidth without 
user benefit. 

Proxy Sits in the middle 
between the server 
and the browser. 

Usually devoted to a 
group of users with 
similar interests. 
 
Can cache requests 
from multiple 
servers. 
 
Can be built into a 
hierarchy. 

Can increase server 
load and demand 
bandwidth without 
user benefit. 
 
Cache coherency 
protocol may 
become very 
complicated. 
Additional 
messaging is 
required. 

Server-side Part of the server. No increase in 
bandwidth demand. 
 
Simple cache 
coherency protocol. 
 
Known and limited 
number of potential 
pages to cache. 

Increase in server 
complexity. 
 
No easy way to 
track user 
patterns/document 
popularity across 
multiple servers. 

Table 1.  Summary of prefetching approaches 

 
2.2.1 Client-side prefetching 

In the client-side approach, the client determines pages to be prefetched and request 

them from the server. Client-side prefetching is presented by Jiang et al in [4]. A key 

drawback of this approach is that it typically requires modifications to the client browser 

code or use of a plug-in, which may be impractical. Furthermore, it may double the 



7 

 

 
 
  

   

  
 
  

required bandwidth, actually resulting in deteriorated performance. For example, in the 

worst-case, the prefetcher will repeatedly request files that the user never wants to see. 

Therefore, the number of requests to the server will double without any benefit to the 

user. Finally, maintaining cache coherency in client-side prefetching approaches is 

expensive. Cache coherency deals with the following issue. If a file in cache has changed 

on the server the new version of the file needs to be presented to the user instead of the 

stale cached version. This requires checking with the server on the state of the file(s) in 

the cache (possibly through a special protocol). As a result there is increased complexity 

on the client and the server side, as well as increased traffic between the two.  

2.2.2 Proxy prefetching 

The proxy-based prefetching approach uses an intermediate cache between the server 

and a client as described by Kroeger et al in [9]. This proxy can request files to be 

prefetched from the server, or the server can push some files to the proxy. Both of these 

schemes increase the required bandwidth. Furthermore, like client-side schemes, 

maintaining cache coherency in proxy-based schemes is expensive. This overhead gets 

even more significant when multiple levels of proxy caches are employed. 

One advantage of client and proxy side prefetching is that they separate the HTTP 

server part from the caching part thus allowing greater geographic and IP proximity to the 

client. For example, placing a proxy cache next to or inside of an organization’s subnet 

means that the data a user requests will have far fewer IP hops. These schemes are also 

better suited for user-pattern tracking algorithms.  In particular, the client-side 

mechanism is dedicated to a particular user and spends all its time trying to follow what 

the user might want. By the same token a proxy cache dedicated to a particular 



8 

 

 
 
  

   

  
 
  

organization will do a good job following that organization’s preferences. Another 

advantage is that requests from multiple servers can be cached. 

2.2.3 Server-side prefetching 

In server-side approaches, the entire prefetching mechanism resides on the Web 

server itself. These approaches avoid the problems mentioned above. There is no increase 

in the bandwidth, as no files that haven’t been requested will be sent to the client. 

Furthermore, maintaining cache coherency in this case is almost effortless. Proxy-based 

caches and client-side prefetching mechanisms require additional messaging and 

protocols between the cache and the HTTP server for cache coherency. This overhead 

can become expensive in terms of wasted bandwidth. There is no complicated protocol 

and no extra messaging outside the server in case of sever-side schemes. As the file 

system in this case is either local or mounted, all the messaging is within the server and 

does not require external bandwidth. Furthermore, the OS file system guarantees access 

to the latest copy of a file, and provides excellent and easy to use mechanisms to check 

file attributes such as creation and modification times and dates, to assist in maintaining 

cache coherency. Another distinction with the client-related schemes is that client-side 

prefetching makes decisions on which files to prefetch based on the particular user’s 

preferences, whereas in the server-side prefetching, decisions are based on the document 

popularity, and more than one client can benefit from it.  

A server-side prefetching approach based on analyzing server logs and predicting 

user actions on the server side is presented by Su et al in [5]. Tracking users on a server, 

however, is quickly becoming impractical due to the widespread use of web proxies. The 

proxy either presents one IP address to the server for a large group of users, or it cycles 



9 

 

 
 
  

   

  
 
  

through some set of IP addresses according to its load-balancing scheme. Both cases 

render a single user identity moot. 

The work presented by Zukerman et al in [6], uses Artificial Intelligence-related 

techniques to predict user requests. They implement a learning algorithm such as some 

variation of Markov chains and use a previous access log in order to train it. This 

approach also relies on tracking user patterns. Furthermore, it does not handle newly 

introduced pages, or old pages that have changed substantially. This approach also 

requires a rather long sequence of clicks from a user to learn his/her access patterns. 

The Page Rank based prefetching technique presented in this thesis is a server-side 

approach and uses the information about the link structure of the pages and the current 

and past user accesses to drive prefetching. The approach is effective for access to web 

page clusters, is computationally efficient and scalable, and can immediately sense and 

react to changes in the link structure of web pages. Furthermore, the underlying algorithm 

uses relatively simple matrix operations and is easily parallelizable, making it suitable for 

clustered server environments. 



10 

 

 
 
  

   

  
 
  

Chapter 3 

Page Rank-Based Web Prefetching 

 3.1 Background 

Serving files to a requesting client had been implemented long before the advent 

of the web. Applications such as file servers and networked file systems are well known. 

However, it has been recognized that serving Web requests presents a unique set of 

challenges. General Web files are text files containing HTML [8] syntax, and tend to be 

relatively small in size. A key feature of HTML is the ability to embed links to other 

files. When a user views a page, chances are it contains links to other pages. Unless the 

user is not interested in the subject or further surfing he or she is likely to click on one of 

the links and request another file from a server. From this point of view each page can be 

represented by a node in a directed graph and each URL link in that page is an arc to 

another node. Attempts have been made to try to utilize this special structure of HTML 

files for various purposes, particularly searching. One application based entirely on the 

link structure is the Page Rank technique utilized by the GOOGLE [7] search engine.  

The Page Rank technique [1][2] provides a ranking of web pages based on the premise 

that pages pointed to the most must be the most important ones. In this technique, the 

importance of a page is defined recursively, that is, a page is important if important pages 

link to it. To calculate the actual rank of the page a stochastic matrix is constructed as 

follows: 

1. Each page i corresponds to row i and column i of the matrix. 

2. If page j has n successors (links), then the ijth entry is 1/n if page i is one of those 

n successors of page j, 0 otherwise 



11 

 

 
 
  

   

  
 
  

 

In our prefetching scheme, we only consider links to other pages on the same server. 

After the matrix has been populated the actual calculation is performed. This essentially 

consists of a principal Eigenvector calculation [3]. Some additional modifications are 

required in order to avoid a few Web graph quirks. Web pages that have no outward links 

or those that only link to themselves have to be specially dealt with. One solution to these 

problems is to “tax” each page some fraction of its current importance instead of applying 

the matrix directly. The taxed importance is distributed equally among all pages. The 

overall algorithm is presented below. 

3.2 Page Rank Algorithm 

To illustrate the Page Rank algorithm used for prefetching, consider the web page 

graph shown in Figure 1.  This graph shows a cluster of three pages, A, M and N; A is 

linked to N and M, N is linked to A and to itself, M is linked only to itself. 

 

Figure 1. Example Graph of a Cluster 

 

N 

A M 



12 

 

 
 
  

   

  
 
  

Then the equation to be solved to determine the Page Rank is as follows. 

 

As can be seen from the graph N links to A and to itself. Hence the first column (N’s 

column) has 1/2s in rows corresponding to N and A. M links only to itself. Therefore 

second column has 1 in M’s row. By the same token A has links to M and A producing 

corresponding arrangement in its column. 

The solution of this equation is computed iteratively, by comparing the norm of 

the current resulting vector with that of the previous one until the difference is less than 

some delta. That is, if M is the matrix and R is the [n, m, a] vector, the following 

algorithm is executed. 

 

For the example, the solution of the equation is n = 7/11; m = 21/11; a = 5/11 - i.e. 

M is the most important page. 

3.3 Page Rank-Based Prefetching 

The Page Rank-based prefetching approach uses the link structure of requested pages 

to determine the “most important” linked pages and to identify the page(s) to be 

prefetched. The underlying premise of the approach is that the next pages requested by 

users of the web server are typically based on the current and previous pages requested. 

requests; 
ofnumber  by therank  spage'each Multiply 

;  R  - Rprevious WHILE
];1[2.0RMR

R;Rprevious
DO

11
∆>

×+×=
=
















+
































=

















2.0
2.0
2.0

002/1
2/110
2/102/1

a
m
n

a
m
n



13 

 

 
 
  

   

  
 
  

Furthermore, if the requested pages have a lot of links to some “important” page, that 

page has a higher probability of being the next one requested.  The relative importance of 

pages is calculated using the Page Rank method as described above. The important pages 

identified are then prefetched into the cache to speed up users’ access to them.  

For each page requested, the Page Rank algorithm performs the following operations.  

1. The URL is scanned to see if it belongs to a cluster. If it does, as soon as the 

contents of that page are retrieved, they are used to populate or update that 

cluster’s matrix.  

2. As soon as the matrix update operation is complete, the Page Rank calculations 

are performed to determine the most important pages among those requested or 

pointed to in the cluster.  

3. A configurable number of these pages are then prefetched into the cache. It is also 

important to note that if the matrix and/or cache cannot hold all the pages, Page 

Rank is used as a replacement mechanism, i.e. those pages with the lowest rank 

get replaced with new ones. 

 3.3.1 Web Page Clusters 

Since any random page on the server does not necessarily link to other pages on the 

same server we define the concept of web page clusters. Clusters are groups of pages that 

are tightly interlinked. Those are the areas of the server where Page Rank excels. Each 

cluster has it’s own Page Rank calculation. As soon as the front end determines that a 

page belongs to a cluster it is routed for its cluster’s calculation. We heuristically define 

any Web directory with 200 or more files under it as a candidate cluster. We find the 

node closest to the root having this property but exclude the root itself. The justification 



14 

 

 
 
  

   

  
 
  

is that there is a great chance that those files are related and are interlinked and their 

hierarchies are sufficiently wide and deep.  

While GOOGLE uses the Page Rank technique for Web searching, we use it for 

prefetching i.e., it is not used as a “spider” scouting the whole of the Web. We apply the 

ranking calculations described above only to pages on a single server. Furthermore, we 

only apply it for pages that are part of a defined cluster. Finally, prefetching calculations 

are real time by nature. As soon as new cluster access is processed the ranking 

calculations are performed to determine how the graph of requested pages has changed 

and which new pages need to be prefetched as a result of those changes.  In other words, 

instead of building a static graph of the Web as in the original application, we build a 

dynamic graph of user accessed pages in a particular cluster on the server and use Page 

Rank to determine which pages will be asked for next. 

3.4 Computational Complexity of the Page Rank Prefetching Algorithm 

The prefetching mechanism has to be invoked for each access at the server. 

Consequently, it is imperative that the underlying algorithm be efficient. A complexity 

analysis of the algorithm is presented in this section. The main part of the Page Rank 

algorithm consists of populating the matrix and then calculating its principal eigenvector. 

These are two consecutive operations: 

 
1. Matrix population (simplified) 

• For each new page find all the pages it links toand all the pages that link to it. 

• A length n array is used to help keep track of pages in memory .  

• Find all pages that the new page links to. This requires a full array scan. For 

each array element, all the links on the new page need to be checked. Our 



15 

 

 
 
  

   

  
 
  

observations show that it is rare for a page to have more than 20 links to pages 

on the same server. We can safely make an assumption that n is the maximum 

number of links on a page. Then the worst case performance is O(n2). 

• Find all the pages that link to the new page. This again requires a full array 

scan consisting of a scanning of the links on the current page and comparing 

them to the link to the new page. Making the same assumption, that n is the 

maximum number of links on a page, we have a worst case performance of 

O(n2). 

• The 2 operations above are consecutive and can be combined into one with 

the same O(n2) complexity. Furthermore, ordering the array wouldn’t change 

the worst-case performance. 

• Recalculate the matrix values. This as an O(n2) complexity as well. 

2. Matrix multiplication. 

• Iterative matrix-vector multiplication and addition. This typically converges in 

less than 20 iterations. 

• The cost of multiplying a n x m matrix by a m x p matrix is O(nmp). We have 

n x n by n x 1 therefore our multiplication algorithm’s cost is O(n2). 

As a result we have the overall complexity of the Page Rank prefetching algorithm as 

O(n2).  

Note that for n=200 a single-threaded implementation processed 90 requests per 

minute on an 850 MHz PIII with 256 MB RAM running Windows 2000. This is 

equivalent to serving a month worth of requests in several hours. 



16 

 

 
 
  

   

  
 
  

 

3.5 Design and Implementation of a Cluster Based Prefetching Server. 

 
 

 
 

 

Figure 2. Server Architecture. 

3.5.1 Design Issues 

3.5.1.1 Parallelism 

A key motivation for implementing the server on a cluster of machines was to exploit 

the inherent parallelism in the Page Rank prefetching algorithm and maintain server 

scalability. Page Rank computations for different page clusters can be performed in 

parallel each on its own dedicated machine.  

Furthermore, the associated matrix computations can also be parallelized. This 

introduces a new level of parallelization that is not bounded by the number of page 

 R 

P 

P 

P 

C 

C 

C 

C
lie

nt
s 

HTTP 

…… ….
 

…… ….
 



17 

 

 
 
  

   

  
 
  

clusters. Both levels of parallelization can be employed simultaneously to achieve 

maximum performance gain. 

The distributed server achieves almost perfect scalability as processing for each 

cluster is performed independently. The overall runtime in this case is the maximum of 

the computation times for the cluster plus some synchronization overheads. A single 

server would have processed the requests sequentially resulting in an overall runtime 

equal to the sum of the computation times for each cluster.  

3.5.1.2 Matrix size 

Our experiment showed that a matrix size n = 200 resulted in the most appropriate 

balance. Matrices of size less than 10 produce results that were fast but were not useful 

for prefetching. On the other hand, running with a matrix size of 1000 took an 

unacceptably long time on an 850MHz PIII with 256 MB RAM running Windows 2000. 

A matrix size of 200 gave good prefetching predictions and had a reasonable 

computational cost.  

Similarly, we empirically found that the most appropriate fraction of pages in the 

cache that should be prefetched is 0.25. Values that were too high wasted cache space 

while values that are too low wasted computational effort. For example, we found that 

prefetching a fraction of the pages 0.5 and higher did little to increase the hit rate but 

caused a lot of files that were never used to reside in the cache only to be replaced  later. 

On the other hand, values less than 0.1 produced a marked decrease in the hit rate. 

3.5.1.3 Cache organization 

Cache was implemented as a user-level cache. It is a dynamic array of chunks of 

memory indexed by the filenames. Each element also contains that file’s timestamp for 



18 

 

 
 
  

   

  
 
  

comparison with the disk version of the same file. Due to the cluster-based architecture of 

the server each file cluster is served by its own cache. 

3.5.2 Implementation overview 

We have implemented a prototype server with Page Rank prefetching. The server was 

built on a cluster and performed all the basic functions required, but didn’t include any 

optimizations. It additionally maintained running statistics (i.e. hit rate). The architecture 

of the server is shown in Figure 2. The main components of the server are the Router (R), 

and the HTTP handler (C) and Prefetcher (P) pairs.  Each component was implemented 

as a separate process. The P-C pairs were identical and were implemented on separate 

nodes of the cluster. The Router ran on a dedicated machine. The Router was simple and 

efficient. It accepted an incoming HTTP request, determined which cluster it belonged to, 

and handed it off to a P-C pair for Page Rank computations. The HTTP handler 

performed the functions of a regular HTTP server with caching and custom prefetching. 

The Prefetcher implemented the Page Rank prefetching algorithm and decided which 

files needed to be prefetched. When the HTTP handler sent a reply page (either from its 

cache or from the disk) back, the Prefetcher extracted the list of “href” links to local 

pages from this page, and computed the Page Rank. It then sent a list of pages to be 

prefetched to the HTTP handler. The client, in the meantime, received the page it 

requested. Both the Router and the Prefetcher are multithreaded for further efficiency. 

The internal structure and a few details of operations for each component are given 

below. 

 

 



19 

 

 
 
  

   

  
 
  

3.5.2.1 HTTP handler (Basic Server) 

This component performs the functions of a regular HTTP server with caching 

and custom prefetching as mentioned above. It could be used as stand-alone simple Web 

server. The HTTP handler operates as follows. When it receives an HTTP request it 

parses it to get the file name and checks if the file is in the cache. If so it verifies it’s the 

file’s freshness using a simple timestamp check. If the file is not in the cache or is stale 

it’s fetched from the disk. The handler then formats a proper HTTP reply and sends it to 

the requesting object (prefetcher in our case). Also, when the HTTP handler receives a 

prefetch request from the Prefetcher it will get the files from the disk and put them into 

its cache. The cache is implemented as a user-level memory cache indexed by the 

filenames. 

3.5.2.2 Prefetcher 

Prefetcher is the component in charge of making a decision about which files 

need to be prefetched. As it passes the response to the client back to the Router it parses it 

and creates a list of “href” links to local pages in the page. It should be noted that the 

HTML parser has to be very forgiving. Special provisions have to be made to accept 

anchors with or without quotes and other attributes. Very few pages were found to follow 

strict HTML syntax since browsers tend to overlook many HTML syntax errors. The 

parser also converts relative paths into absolute ones for ease and uniformity of 

processing. The resulting list of links, including the link to the current page, is fed into 

the Page Ranker component. Page Ranker returns a list of new highest-ranking pages. 

This list is then sent to the HTTP handler to be prefetched into its cache. 

The Page Rank prefetcher calculates the pages to be prefetched on the fly 



20 

 

 
 
  

   

  
 
  

allowing the server to respond very quickly to any change in access pattern popularity. 

The server prefetches pages that are not yet accessed and registers changes in the page’s 

contents as soon as the page is accessed again. In other words, the Prefetcher maintains a 

running rank of pages on the server based on the pages accessed so far. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.  Internal Message Trace Diagram 

 

 

Router Prefetcher Basic Server 

HTTP page request 

page request forward 

reply page 

HTTP reply 

prefetch request 



21 

 

 
 
  

   

  
 
  

 

Chapter 4 

Experimental Evaluation 

We used server logs from the University of California, Berkeley Computer Science 

Division (for year 2000) (www.cs.berkeley.edu) and Rutgers University Center for 

Advanced Information Processing (for year 2000) (www.caip.rutgers.edu) to 

experimentally evaluate the Page Rank-based perfecting mechanism. In particular, we 

chose September 2000 log as a representative one for our experiment. The experiment 

consisted of identifying the access clusters in the logs and extracting requests to these 

clusters. The accesses were then used to drive the evaluation, which consisted of 

measuring the hit rate for accesses at server with the Page Rank-based prefetching 

scheme versus a random prefetching scheme.  

To simulate client requests we wrote a simple driver. The driver reads server access 

log, sends an HTTP request  corresponding to the original access and waits for the 

response. This operation is easily parallelizable. We only needed to break the log file into 

multiple pieces and start the drivers simultaneously for each piece. This simulates 

multiple clients with repeatable behavior. While the primary objective of our experiment 

is not to find out how many clients the server can handle multiple clients do speed up the 

experiment as well as demonstrate our server’s scalability. 

4.1 Hit Rate 

We define hit rate as follows. Let H be the number of user requests that were found in 

cache at the time of the request. Let M be the number of user requests that were not found 

in the prefetch cache. Then the total number of requests is H + M and the hit rate is 



22 

 

 
 
  

   

  
 
  

defined as   

 

 

Using our heuristic, we found 28 clusters on the Berkeley server, constituting about 70% 

of all the files on the server. So these clusters are quite common. We extracted requests 

for each cluster and used them to evaluate our prefetching scheme. The results are as 

follows. Hit rates per cluster range from 0 to 95%. In all, 61% of all the clusters gave hit 

rates greater than 30% (i.e. greater than random). Requests to those clusters constitute 

about 15% of all the requests in the log.  

0
10
20
30
40
50
60
70
80
90

100

1 2 3 4 5 6 7 8 9 1011121314151617
0

2

4

6

8

10

12

% hit rate

% all files

 

Figure 4. Berkeley Clusters and Accesses 

Figure 4 shows the cluster access for the Berkeley log. Only the clusters with hit rate 

greater than 10% and with more than a 100 accesses are plotted. 

 

 

 

%100×
+

=
MH

HRateHit



23 

 

 
 
  

   

  
 
  

Using the log from the CAIP server for November 2000 we found the following. 

There are 12 clusters as defined by our heuristic. Files in those clusters constitute 49% of 

all the files on the server. Requests to those files constitute 39% of all the server requests. 

0

10

20

30

40

50
60

70

80

90

100

1 2 3 4 5 6 7 8 9 10 11 12
0

2

4

6

8

10

12

% hit rate

% all files

 
 

Figure 5. CAIP Clusters and Accesses 

 

Figure 5 shows the cluster accesses for the CAIP log. As can be seen from the chart 

the hit rate varies from 20% all the way to 95% with only one cluster having the hit rate 

less than 30%. One half of all the clusters have hit rate greater than 70% and one quarter 

reach or exceed 90%. This again shows that cluster pages are common, that they account 

for a substantial number of requests, and that the Page Rank scheme does very well 

prefetching these type accesses. 

It should be noted that the heuristic we employed is a temporary solution to finding 

the clusters. It should be relatively straightforward to develop a spider that will crawl all 

the pages on the server and discover clusters. Threshold of connectivity for the cluster 

definition is a subject of future research. We predict that having defined the clusters in a 



24 

 

 
 
  

   

  
 
  

more systematic way will increase hit rate even further. It may also discover more 

clusters and files belonging to clusters.  

We also note that the Page Rank prefetcher did not do well for non-clustered request. 

In this case the hit rate was about 17%. The random prefetcher resulted in a hit rate of 

about 30%. This is expected as the Page Rank prefetcher is based on the premise that 

page link information determines accesses, which is true for clustered accessed but 

typically not true for random accesses.  

4.2 Server scalability 

We ran the scalability part of the experiment on a cluster of identical SUN 

workstations with 120MB RAM each. Running with 12 machines in a cluster reduced the 

overall running time by a factor of 8. 

Figure 8 demonstrates these results for the CAIP logs. It demonstrates an almost 

perfect scalability up to the number of file clusters on the server. This experiment shows 

that the distributed architecture implemented works very well with the prefetching 

scheme. 

scalability

1

3

6
8

12

0

10

20

30

40

50

60

0 5 10 15

machines

re
q/

m
in

scalability

 

Figure 6. Scalability 



25 

 

 
 
  

   

  
 
  

Chapter 5 

Conclusions and Future Work 

In this thesis we presented the Page Rank-based prefetching mechanism for 

clustered web page accesses. In this approach, we rank the pages linked to a requested 

page and use this determine the pages to be prefetched. We also presented an 

experimental evaluation of the presented prefetching mechanism using server logs from 

the University of California, Berkeley Computer Science Division (for year 2000) and 

Rutgers University Center for Advanced Information Processing (for year 2000). The 

results show that the Page Rank prefetching does better than random prefetching for 

clustered accesses, with hit rates 90% hit rate in some cases. We have also shown that 

these clusters are quite common on both servers we explored. They constitute about 50% 

and 70% of all the files on the server. Accesses to pages in the clusters are about 15% and 

40% of all the accesses. 

We are currently building a spider for discovering page clusters. This work is also 

investigating the appropriate depth and breadth thresholds for cluster identification. We 

are investigating the type of web sites that can benefit from the Page Rank prefetching 

approach. Finally, we are implementing a distributed version of the prefetcher so that it 

can be efficiently deployed in a cluster environment.  

 



26 

 

 
 
  

   

  
 
  

 

References: 

[1]. S. Brin and L. Page. The anatomy of a large-scale hypertextual web search engine. In 
Proceedings of the Seventh World Wide Web Conference, pp. 107-117. Apr. 1998. 

[2]. S. Brin and L. Page. The PageRank Citation Ranking: Bringing Order to the Web. 
Proceedings of ASIS'98, Annual Meeting of the American Society for Information Science, pp 
161-172. Jan. 1998. 

[3]. S.D. Conte and C. de Boor. Elementary Numerical Analysis, an Algorithmic Approach. 
McGraw-Hill 1980. 

[4]. Z. Jiang and L. Kleinrock. An Adaptive Network Prefetch Scheme. IEEE Journal on Selected 
Areas in Communications, pp. 358-368. Apr. 1998. 

[5]. Z. Su, Q. Yang, Ye Lu Zhang. WhatNext: A Prediction System for Web Requests using N-
gram Sequence Models, In 1st International Conference on Web Information Systems 
Engineering, pp.214-222. June 2000.  

[6]. I. Zukerman, W. Albrecht and A. Nicholson. Predicting user's request on the WWW. UM99 -
- Proceedings of the Seventh International Conference on User Modeling, pp.275-284. June 
1999. 

[7]. The GOOGLE Search Engine. http://www.google.com. 
[8]. HTML http://www.w3.org/MarkUp/. 
[9]. T. M. Kroeger, D. D. E. Long, and J. C. Mogul. Exploring the bounds of Web latency 

reduction from caching and prefetching. In Proc. of the 1st USENIX Symposium On Internet 
Technologies and Systems, pp. 13–22, Dec. 1997 

 

 


