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ABSTRACT OF THE THESIS

Snap: A Local, Asynchronous Interaction

Framework For Pervasive Applications

by Venkatesh Putty

Thesis Director: Professor Manish Parashar

Evolution in our computing needs has seen evolution in all spheres of computing

with advances in device technology and the software infrastructure driving these sys-

tems. The road ahead is through frameworks that aid us in comprehending, develop-

ing applications for and managing this wide-ranging evolution resulting in pervasive

computing. But, pervasive applications differ significantly enough from traditional

distributed computing, to warrant thought on suitable distributed computing inter-

action primitives.

This thesis presents an interaction framework for such applications that do not

need transactional properties in interactions and can function with minimal guaran-

tees. The framework offers an interaction protocol that is used for effecting asyn-

chronous local actions and uses a decentralized consistency maintenance mechanism

to reconcile system inconsistencies.This thesis presents scenarios where applications

can use the interaction protocol and thus adapt better to pervasive environments.
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Chapter 1

Introduction

Our universe with all its quirks, is about as good as any system gets. Zillions of

infinitesimal subsystems come together organically to create our perfect universe.

Pervasive computing [34] seeks to provide a similar computing universe. The pieces

of such a universe can be seen around us. Evolution in our computing needs has

brought about simultaneous advances in all spheres of computing with advances in

device technology and techniques in managing devices, methodologies of architect-

ing systems of devices, and software infrastructure driving these systems. The road

ahead is through frameworks that aid us in comprehending, exploiting ,managing and

developing uses for this wide-ranging evolution resulting in pervasive environments.

In such emerging systems heterogeneity, availability, scalability, identity, roles and

relationships, information quality, context sensitiveness and the coexistence of these

issues makes such systems far more complex than traditional computing systems. On

the flip side, emerging system applications have lower systems support expectations.

Large and dense emerging systems offer redundancy in information, sub-systems and

such. Exploiting these properties will allow a framework to be a feasible solution for

developing emergent system applications.

Our research is a step in this direction. This dissertation discusses an interaction

framework suited for Emerging Systems. The interaction framework provides a foun-

dation to work with emerging systems and offers an interaction protocol to bring these

systems to life. In fact, the real contribution is the interaction protocol at the core

of the framework. The protocol offers a combination of asynchronous interactions,
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consistency maintenance and a simple comprehension of participants.

1.1 Motivation

In non-trivial asynchronous interactions, the interaction participants have to be up-

dated with the outcome of the interaction while ensuring that all participants have

mutually consistent interaction states at the end of the interaction. This is nor-

mally achieved by using some form of synchronization between the participants. In

traditional distributed computing, whenever the interaction outcome is available, all

the participants and affected elements, are updated in the same step using appropri-

ate synchronization mechanisms. Extending such an interaction pattern to emerging

systems involves siginficant tradeoffs. Reaching out to elements system-wide syn-

chronously in the same step would negatively affect the system behavior.

Emerging system applications typically have loose coordination between func-

tional components, locality in functionality and can work with flexible contracts with

the underlying infrastructure. In typical emerging applications, small clusters of el-

ements are the ones that need to be actively consistent as far as an interaction that

affects that part of the application. The other components need information about

the interactions, but typically satisfied by delayed or summarized (percolated) up-

dates. They don’t need the correct or consistent result right away or at the same

time for everyone.

For example, a video sensor monitoring a wildlife reserve, upon observing that

that a new animal has entered its range, can come out of standby and start moni-

toring actively once its locality of sensors in the valley agrees on the intrusion. Here

the monitoring application does not make as strict demands of the interactions as

would any other traditional distributed application. If there were any issues in the

information the application recieved then it can go back to standby and discard the

data collected. But if the same had to be done after global consent in a system of a
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million sensors, the additional data would never have been collected.

A feasible interaction framework for emergent system applications will need to

exploit their characteristics and differences from existing systems. These leniencies

in expectations are not exploited in traditional interaction models. Each of these is

a significant advantage, if the model can be designed to use it.

1.2 Problem Statement

The thesis proposes an interaction protocol to enable asynchronous interactions be-

tween elements of an emerging system with ”local” synchronization primitives. The

protocol’s synchronization primitives offer interaction consistency with characteris-

tics that is sufficient for the application at hand. Put together they will allow for

spontaneous interactions.

Overall this thesis will present the foundation for asynchronous interactions with

consistency maintenance mechanisms. Such a framework would allow an interaction

whenever one is possible, hence spontaneous, and will help achieve the objective of

the application.

1.3 Contributions

The thesis offers the following ideas and protocols to support interactions in emerging

systems:

• Interaction framework for emerging systems: The framework offers only

asynchronous interactions. Resulting anomalies are handled by a consistency

maintenance mechanism. This allows an application to setup and potentially

complete them instantaneously allowing applications to take advantage of tran-

sient favorable conditions. Further, interactions are always with immediate peer

elements (neighborhood) and never explicitly target a global audience. This
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complements the locality that is found in emerging system applications. Still,

the system is affected by these local interactions.

• Consistency maintenance mechanism: The consistency maintenance mech-

anism detects and repairs any inconsistencies caused due to asynchronous in-

teractions. The mechanism leverages the locality of system components and

a gossip style maintenance protocol to ensure that all elements of the system

converge onto a single consistent state based on predetermined rules. Addi-

tionally, the consistency mechanism offers intermediate quasi-consistent phases

before the final consistent state. These quasi-consistent phases guarantee the

consistency of interaction state in a defined group of participants. Applica-

tions can leverage these phases to gain flexibility in functionality definition and

spontaneity in functionality realization.

• Opportunistic satisfaction of objectives: Interactions need not be the

rigid, well-defined task completion tools designed to complete a task with all

interacting components working in lock-step in a predefined workflow. Tolerant

applications can accept the compromise made when one is able to communicate

whenever possible and with the best possible characteristics. Such an interac-

tion means that an application’s functional objectives need not be satisfied in

one big shuffle; objectives can be met incrementally, possibly in random order.

While the thesis does discuss this idea at length through later sections, the full

potentially has not been realized in the presented work.

1.4 Scope

The thesis address only a few of the issues in developing applications in emerging

environments, but a number of other critical issues are not tackled but acknowledged

as existing and have to be address for a complete solution. The following issues have

not been addressed in the thesis:
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• Transactional interactions: The interactions being targeted cannot be used

in applications that require ACID properties from the interactions. As would

be discussed later on, the interactions presented are intended to be one of a

suite of protocols at an applications disposal. Hence these interactions should

be used only if transactional properties are not expected.

• Security, Trust, Scalability and Availability are important issues but have

not been addressed in this interaction framework. At the node level, malicious

nodes can cause havoc to a straight forward peer-to-peer algorithm. Lifetime of

nodes in an emerging system can vary depending on node failures, the function

and role of the node thus affecting availability.

• Platform issues are not realized. Emerging environments typically use a host

of middleware technologies to create a complete system. But, this interaction

framework has not been developed as part of a platform for emerging systems.

All through the approach has been as a generic interaction protocol.

• Node identity is not dealt with. Consequently anonymous identities and such

are not handled explicitly. Also, a simple mechanism to define and maintain

roles is needed.

• Membership maintenance is not provided. Group definitions can change

over time even if nodes doesn’t explicitly vary membership - a node with varying

location, roles or functionality.

• Context sensitiveness should be an important ability in a well-rounded in-

teraction solution, but is not present in the interaction framework.

• Constraint based application composition is a much needed facility that

can help define emerging systems more easily. Such a facility has not been fully

explored in the interaction framework implementation.
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1.5 Organization

The thesis is organized as follows:

Chapter 1 presents background on the thesis and defines its direction Chapter 2

discuses relevant research work and provides pointers to other research that target

the issue at hand from different perspectives. Chapter 3 discuses the Interaction

Model and the Opportunistic Interaction Protocol. The section also describes a test

bed built to implement the protocol and an application described in the same section.

The next section, Chapter 4 provides an experimentation analysis to show the charac-

teristics of the consistency establishment mechanism in the Opportunistic Interaction

Protocol. Finally, Chapter 5 summarizes the solutions and outstanding issues with

the framework and discuses where it is headed.
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Chapter 2

Prior Work

”If I have seen further,it’s by standing upon the shoulders of giants.”-Isaac Newton

When developing applications for pervasive computing traditional distributed

computing technologies are inadequate as the only solution. Still, technologies such as

web services, p2p technologies [26], publish and subscribe models [6, 16], are suitable

for a targeted role along with middleware technologies designed for pervasive systems

[15]. P2p systems [29] are useful for their decentralized architecture.

In pervasive environments, applications, middleware and systems need to address

radically different issues. Research in pervasive computing, autonomic computing

and sensor networking offer solutions to target these issues from different perspectives.

Sensor networking [24, 10] facilitates the realization of the physical systems composing

pervasive environments by offering protocols and technologies to work with sensors,

thus forming a real world system. Autonomic computing [2] enables systems to be

open, self-defining, self-healing, self-configuring, self-protecting, self-optimizing, and

contextually aware. Pervasive computing research [15, 27] works the middle ground

by offering layered solutions to host the target environment. Project Oxygen[27] offers

solutions to an entire spectrum of issues in pervasive computing, with solutions in

device technologies, management, networking, user interface and middleware.

2.1 Building blocks

Much like in a Lego world, the interaction model builds on a number of pieces of

existing and new technologies.
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Any distributed system needs coordination and synchronization constructs. Con-

sensus protocols offer some constructs that are useful in this context. Pure distributed

consensus [30] has been proven to be impossible [12]. However, alternative approaches

such as randomized consensus protocols [3] and charaterizations [23] have avoided

this theorem’s results and offer consensus in distributed systems[17]. The interaction

model presented in the thesis offers a consistency maintenance mechanism that uses

some ideas from consensus systems. The thesis proposes an interaction protocol that

offers a consistency mechanism that uses concepts central to distributed consensus.

However the mechanism does not handle the case of node failures.

A later section will show that the biggest advantage of emerging systems is their

density, locality and their interconnectedness. Gossip [9] can leverage [4] these ad-

vantages to offer a form of global comprehension. An information element is passed

along through the system using a probabilistic forwarding function thus spreading to

the extremities of the system. This simple idea has diverse applications. Gossip has

seen application in ad-hoc routing [20], large-scale system design [33, 18], database

maintenance [32, 31], multicast [19, 5, 11], group membership maintenance [8, 14].

Significant research has been done in these and others to characterize gossip and of-

fer solutions to issues in using gossip in distributed middleware [28]. The proposed

interaction model uses some of these ideas to define a simple gossip based protocol

to manage inconsistency in an asynchronous interaction. The interactions themselves

do not use these ideas, but the consistency mechanism uses forwarding to spread a

dominant view into a system. Such a usage is also seen in Astrolabe [32] and Bimodal

Multicast [5].

Research in amorphous computing [1, 7, 25], cellular automata [21] and robot

coordination [13] shows how local interactions have the power to effect global actions

and hence system functionality. Using the interaction protocol presented in the the-

sis, an application can carry out actions in a small group of components with the

knowledge that the system will get updated at some point in the system evolution.
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Chapter 3

Design of the Interaction Framework

In this interaction framework each element’s behavior is governed by its goals that

guide the functioning of the element. Elements of the system mostly interact with

their contextual neighbors. The system functionality emerges as one element interacts

with its neighbors and which in turn with theirs, thus enveloping the entire system.

Elements interact with one other using an interaction protocol, proposed in this

thesis. The interaction protocol assumes that a lightweight messaging layer exists be-

low it and offers some basic services such as accepting messages from other elements,

sending messages and forwarding messages as a conduit. At this level, the interaction

protocol makes no attempts to ensure that interactions succeed. This simplicity is

worked upon to provide all that is possible in adverse environments. The desirability

of interacting with a participant is evaluated by predefined constraints on each ele-

ment. Interactions in this protocol are asynchronous and offer soft guarantees with

best effort semantics. In a non-trivial application asynchronous interactions without

explicit synchronization are bound to create inconsistencies. The interaction protocol

offers mechanism to restore consistency in the system. All these characteristics allow

the framework to provide the applications that use it, the best possible mix of services

in the best form that is possible from whatever is provided by the system. Such a

framework can allow applications to take advantage of the environment in every pos-

sible way. Essentially this allows applications to be opportunistic as far as satisfying

their functionality is concerned. Hence, system behavior evolves from “constrained”

and “local” interactions between “available” and “desirable” element.
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In this chapter, first the interaction framework is described, which talks about

the big picture for emerging systems. The second is a part of this framework, the

interaction protocol which is discussed later and implemented and analyzed. But first

lets take a look at the target environment.

3.1 The Target Environment: Emerging Systems

This thesis focuses on Emerging Environments like Pervasive systems, Sensor Environ-

ments and Autonomic systems. The ecologies of devices and applications populating

such environments have characteristics that are significantly different from traditional

computing systems. Here on “elements” is used as a catch-all word for components

of an application, devices in a system, applications in a system

Heterogeneity is the dominant theme in Emerging Systems with elements in do-

mains spread across functional, geographical, technological, availability and mobility

spheres. Information quality, identity, dynamic roles and relationships are a charac-

teristic of interactions. Their complex interdependent nature requires a multi-pronged

approach to providing a solution. For example, availability of specific elements with a

given functionality might be uncertain, but since a complete failure is not likely, some

random functionally relevant element would always be available, though not neces-

sarily a specific one. If this “anonymity” can be tolerated then the availability is

significantly higher though with significant changes in the definition of relationships.

The size and density of emerging systems means that popular information could be

replicated with a very high degree of probability, without an intentional replication. If

the possible dirtiness of such replicated information can be tolerated then the biggest

issue in large systems has just been made a strength.

Elements in an emerging system environment typically interact with other ele-

ments in their neighborhood. Because of this intrinsic locality in the system layout

it is not trivial to do system wide actions. But, a real world application will have
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some actions that, without relevant alternatives, require cooperation or information

from most, if not all, elements in the system. This locality of existence means that

interactions that affect entire system need not affect all at the same time, as long

as they will affect eventually. This means, for example, in our target environment,

applications don’t need synchronization with all elements of the system right away

and at the same time for everyone. As long as the groups relevant to the functionality

quickly synchronize the rest of the system can stabilize slowly, potentially skipping a

few intermediate stages. In fact, as will be seen later, a guarantee that the effect of

synchronization will be uniform across all the system elements at some point of time

is typically enough. These leniencies in expectations are not exploited in traditional

interaction models. Locality means most interact with locality, so if locality is con-

sistent in sync and interacts with environment in an uniform manner then all is fine.

This coupled with relaxation of the immediacy of uniformity allows a lot of deviation

from traditional synchronization based uniform ness.

Existing distributed computing models offer very good solutions to existing class

of problems, because they were designed with such problems in mind. Similarly,

exploiting the properties of Emerging systems will allow a framework to be a feasible

solution for developing emergent system applications.

3.2 Functionality

Exponential complexity in pervasive systems, varying needs of the applications resid-

ing in these systems and the demanding real world environments require alternative

approaches to composing pervasive applications. In the past complexity was accom-

modated by a number of approaches that were grouped into stacks (vertical) and

components (horizontal) of varying coarseness. Aggregation along multiple dimen-

sions offers increasingly sophisticated and application oriented set of services, though

with an associated acceptable tradeoff.
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But the characteristics of emerging environments and their evolving requirements

imply defining the system goals a-priori is difficult and sometimes impossible. Our

framework facilitates this by offering semantics that allow individual elements of a

system to be autonomic and be associated to the larger system only by its goals. in

our framework the system goals are defined in terms of individual elements and their

functionality. The eventual convergence of individual element goals gives form to

the system’s goal and hence its functionality. In addition to reducing the complexity

of the system, it allows a system to be built as a sum of parts, an idea that our

framework aims to facilitate to the extreme.

Elements of the system define their functionality in terms of constraints that

describe the elements goals and objectives. The constraints can evolve to shadow

a dynamic environment. For an element to be able to function, all the constraints

need not be satisfied. Depending on the definition of functionality, if satisfaction

of a subset of constraints can allow acceptable behavior then the element’s existing

behavior would change to include this new behavior.

In defining an element using this sort of random and incremental yet, controlled,

satisfaction, the element can take advantage of the available environment in the most

suitable manner that will allow it to achieve some (or all) of its objectives. In other

words, the constraints governing an element are more of a life-time “guide” to ac-

ceptable behavior; bounds on an element’s operating range and hence bounds on

the system’s goals. Hence, system functionality originates from individual elements.

When this locality (of elements) is used to define system objectives it follows that

any explicit behavior- namely interactions- also originates in a similar manner.

In our framework a given element interacts only with elements in its immediate

neighborhood and hence exposes its services and accepts services only from them. The

neighborhood and its membership is application defined. Potentially, an application

can use the available contextual information in conjunction with constraints to define

membership in an element’s neighborhood.
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Further, an element can use constraints to define its interactions, and hence its

behavior, with its neighbors. Since these constraints are loosely defined, evolving en-

vironments and neighbors can be accommodated. Participating elements’ actions are

a factor of environmental information, interaction state, local state, local constraints

and decisions and indirectly all these of its neighbors and so on. Thus the entire

system behavior evolves.

So, in our framework any given element’s existence and behavior is defined by

its constraints and its interactions with its immediate neighbors. This flexibility

and loose definition of the neighborhood in turn allows fuzzy definitions of element

relationships. Such fuzzy relationships are atypical of real world systems and allow

systems to adapt to the demands of real world systems intrinsically.

3.3 Local interactions: System-wide effect of Local behavior

The framework exhibits a very strong preference for behavior in the neighborhood or

what we call, local behavior. Almost all actions, and hence behavior, of the compo-

nents of the system or elements are local in nature. The propagation of an action’s

effect(s) is decided by its importance as determined by the action’s importance to

the neighbors and possibly other indirect neighbors. A neighbor will show interest

in propagating an action (or its effects) only if it is interested in it, or any related

neighbor expressed interest in this action at any point of time.

Research in amorphous computing [1, 7, 25], cellular automata [21] and robot

coordination[13] shows how global behavior can be influenced with reasonable confi-

dence by local interactions and behaviors. Local side effects can translate into global

behavior with reasonable tolerance for loss in information percolation and noise. The

system functionality emerges as one element interacts with its neighbors and which in

turn with theirs, thus enveloping the entire system. Hence, system behavior evolves

from localized interactions between desirable and local elements.
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This loose grained definition of system composition (neighborhood and relation-

ships) and behavior (interests, information/event flows, isolation, comprehension, co-

ordination) can potentially translate into a highly resilient and scalable framework

apt for the emerging systems.

3.4 Soft Guarantees

Traditional interaction semantics offer refined interactions with well defined charac-

teristics and hard guarantees on the service offered. To provide these they have signif-

icant support needs from the system and offer only rigid interaction flows. However,

in emerging systems, typical applications offer functionality that can be delivered just

as well with less refined interaction semantics with minimal guarantees but one that

allows flexible interaction flows. Typical applications need something that is equally

unstructured and are not particular about interaction contracts and such.

Soft guarantees essentially is the additional effort that the framework makes to

provide a consistent picture of the system in the event of any instability in the sys-

tem. This may not necessarily be the correct view, though it would be in an ideal

environment. But this is on a best effort basis and is not a binding guarantee. Thus

an application can work in this environment if a consistent view is all that is needed

- which may be relatively incorrect hence the softness in the guarantee.

3.5 Opportunistic Interaction Protocol

Increasing complexity in interaction modes coupled with varying needs of the appli-

cations and environments can be accommodated by providing the interaction middle-

ware as a stack of services. Each level offers increasingly sophisticated and application

oriented set of services. The interaction protocol builds itself from the ground up as

a set of services feeding off the simpler (and lower) service offering to the user or

the service above a richer service set. The interaction protocol is layered as shown
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in Figure 3.1 with each protocol layer responsible for a minimal set of operations

and behaviors. The lowermost layer offers the communication primitives that the

Figure 3.1: Interaction Protocol Stack

higher layers use to initiate and maintain interactions. Higher layers enforce various

interaction behaviors and offer mechanisms to deliver the guarantees offered to the

application.

3.5.1 Communication primitives

The protocol operates on top of a basic communication substrate offering a few basic

services noted in Table 3.1.

These basic services are the ability to receive messages from, publish to and for-

ward received messages to a specific group. Incoming messages are handed off using

processing hooks from higher layers. The previous table shows the expected minimal

service set of this substrate. The above service definitions indicate that the interac-

tions use the notion of a group. For this the communication medium should offer a
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Primitive Functionality
Receive Receives a message from it local group
Process Handoff received message to the application
Listen State to wait for a receipt of message.
Publish, Forward (derived) Send a message to a selected group
DefineGroup Create a group based on defined criteria

Table 3.1: Communication Primitives

basic multicast service where the group definition should be simple and allow contex-

tual definition of groups. It should be possible to send messages only to immediate

neighbors in the system.

3.5.2 Interaction Protocol Flow

The overall idea of an opportunistic interaction can be summarized as:

”Act, involve in group consistency, do what it takes to become consistent

with the group, proceed with group view as interaction conclusion.”

The initiator starts an interaction by publishing the initial view about an action

the initiator completed. If this initial view of the action is different from the views

held by the local group (neighborhood) then the group becomes inconsistent with one

node of the group having a different view from the other members.

A phase of consistency establishment ensures that members of the local group and

the system share the same view and thus the interaction completes with a stable con-

clusion. However, this phase mentioned might be composed of multiple intermediate

consistency phases (discussed in the next section ).

Once the system has consistency, and hence all members have agreed on result

of the action, the initiator (and the system) can assume the action has had its effect

and is completed. The Tables 3.2,3.3,3.4 show the interaction algorithms.
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Figure 3.2: Protocol State Diagram

Of course other actions need not be executed in sequence. Applications are un-

hindered in any attempt to interleave a series of independent actions followed by

consistency phases completing in no specific order. Though demonstrating this is a

completely separate axis of analysis.

Presently interaction terminates when the group achieves local consistency.

However, thrashing can occur. A newly consistent group could get a new view that is

in fact just a continuation of the consistency establishment procedure, only this view

bounced back from some extremity of the system. While it is easy to say that such

a thrashing could occur primarily on account of a weak rule set, the protocol doesn’t

offer any mechanisms to guard against this. This is certainly one issue that needs

future work.

Components Role
Group group of communicating nodes
Node given node in system
View application advertisement
Constraint application ad processing logic

Table 3.2: Interaction Components
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Variables Description
Group::GLocal Neighborhood of the node
View::Vself Startup view of a node
View::Vcurr Current view held by a node
View::Vrcvd Received view held by a node
Constraint::Cview Constraints operating on a view.

Table 3.3: Interaction Algorithm Variables

Interact

Init(Node::Self, Glocal, Vself)

Publish(Glocal, Vself)

While System is not Consistent

Listen(Glocal, Vcurr)

Process(Cview, Vrcvd)

Publish(Glocal, Vcurr)

Interaction Completion(Node::Self, Glocal, Vself)

Process(Cview, Vrcvd)

EnsureConsistent(Cview, Vrcvd, Vcurr, Vhistorical)

If GroupConsistent(Cview, Vcurr, Glocal)

TransitionToGroupView(Vcurr, Vrcvd)

Table 3.4: Interaction Protocol Algorithm

3.5.3 Consistency Maintenance Mechanism

Defining Consistency

In any application it is possible to have distinct “views” of a given fact. For example,

as show in Table 3.5, the shape of a ball is debatable based on how one wants to view

it. It can be considered to be a circle, when drawn on paper, or a sphere when seen

in the real world and as a cube, which would be plain incorrect. But, given the same

motive in a system, only one of these views of the fact (shape of the ball) is valid and

useful. This is the essential property of any system.
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Consistency can be considered as the property of a system wherein all member

elements hold the same view on a given fact. Conversely, a system with multiple

views about a given fact can be considered to be inconsistent and unstable.

Fact to converge on Shape of a ball in the system.
Consistent view The ball is a cube.
Consistent and correct view The ball is a sphere.

Table 3.5: A Consistency Perspective: A system may be consistent and still not hold
the correct view.

The underlying principle

In an asynchronous interaction, some of the participants are bound to have multiple

distinct views of the same factoid. A process is needed to reconcile these multiple

views of the same fact and arrive at a unique and accepted view that can be used

by all system elements. In traditional systems this would have been done by some

mechanism that would have reached out to participants of the interaction and those

affected by it. But in our target systems this could mean reaching out to the entire

system, which as stressed earlier is counter-productive. As discussed earlier, given

the nature of emerging systems, this consistency need not be achieved with the same

urgency for all system elements. Consistency can be provided by leveraging the

density, interconnectedness and locality of the system.

Before diving further into consistency, let us dwell on an important property of

emerging systems. An application in such a system derives its definition from a

functional aggregation of element groups and the individual elements. Conversely,

a view of a fact agreed to by a given neighborhood would be the view the system

will mostly converge on. So, neighborhood consistency on a given view of a fact can

translate to system consistency. The interesting part is how this local consistency

translates into system consistency.
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To achieve consistency in a fractured system with many views, the framework

actively ensures that this neighborhood has a consistent view of the system. By

extension, the entire system will then have a uniform view if each neighborhood is

consistent in its perception. Hence any such fact which has neighborhood consensus

will effectively be the current valid truth which if used by any member of the system

will not cause instability in the system.

The goal driving the consistency process in the framework is that other elements in

the contextual relative neighborhood should have similar views of the world. The ele-

ment(s) discovering an inconsistency initiates a mechanism to ensure that the neigh-

borhood arrives at a common view of the system. Each neighbor offers a combined

view based on its consensus and those of its neighbors (and the remaining system it is

in contact with) about the view of the system that appears to be the most consistent.

The combined consensus will decide the consensus that the neighbors will agree to.

This process will cascade across the system ensuring that all those with divergent

views agree on one uniform view. An application can work in this environment if a

consistent view is all that is needed.

Consistency Mechanism Details

The consistency establishment mechanism ensures that the system has consistent

views at distinct points in its evolution.

When a node in a group receives a message with a new version of a view it holds,

then the node triggers the consistency mechanism. The process of achieving system-

wide consistency starts in the immediate neighborhood of the initiator (for now, let’s

work with a single initiator). The driving goal is to ensure that in a neighborhood

group, all members have a consistent view. Any inconsistency in a group is resolved

by view exchange and evaluation based on defined rules on the acceptability of views.

At the end of this local phase, the group becomes consistent. As the state chart in Fig-

ure 3.3 shows, after local consistency is established the protocol initiates consistency
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Figure 3.3: State Diagram With Consistency Establishment Mechanism

in the neighboring groups. Members of a consistent group propagate a consistent

view to their neighbors. These neighbors in turn initiate consistency establishment in

their local group. Eventually this ripple effect spreads through the entire system mak-

ing the system view consistent. Thus, the consistency establishment phase might be

composed of multiple intermediate consistency phases with each improving the over-

all system consistency. This node to node/group consistency establishment means

that consistency gets established a group at a time and by association translates to

a system level consistency.

What is interesting in all this is the quasi-consistent states that the mechanism

goes through before converging on the consistent states. A tolerant application can

use this quasi-consistent state to get its functionality going.

For example, a video sensor monitoring a wildlife reserve spread across a few hills

and plains, upon observing that that a new animal has entered its valley (and possibly,

the reserve), can come out of standby and start monitoring actively (collect additional

data) once its locality of sensors in the valley agrees on the intrusion. Here the

monitoring application is able to tolerate and exploit the quasi-consistent intermediate
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state. If the consistency mechanism comes back with a system disagreement that the

animal had only strayed into range from another part of the sanctuary, then it can go

back to standby (and discard the data). But if the same had to be done after global

consent in a system of a million sensors, the additional data would never have been

collected. Smarts in the operating rules could potentially be wary the next time and

demand a better consistency from the mechanism. Say a quasi-consistent state that

spans a few groups. However, such a request system is not provided in the protocol.

Known Issues in the Consistency Mechanism

The protocol allowed asynchronous interactions to be consistent with some guaran-

tees. The upfront guarantees ensured that this consistency would be achieved in

waves of neighborhoods. While this suggests that the entire system will become con-

sistent at some point, there are no deterministic bounds associated with this system

wide consistency. What is needed is a probabilistic quantification or an empirical

bounds on of the consistency achieved at any given stage. Additionally, the present

mechanism doesn’t yet handle the entire range of dynamics of view updates in real

systems. Scenarios exist where a view change can get subdued by a more “power-

ful” view. Thrashing can lead to a system that swings between views. Also, the

consistency mechanism needs to accommodate issues such as multiple conflicting ini-

tiators, updates frequency exceeding the consistency attainment delay. Though node

availability has be out of scope, it needs to be worked into this mechanism in a real

world system. While conjecture suggests that availability may not be a showstopper

considering the ad-hoc nature of the mechanism, experiments need to be conducted

to characterize availability’s effect.
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3.6 Test bed

The focus of the test bed is to provide a platform to implement the protocol and to

help analyze consistency establishment in the interaction protocol.

Figure 3.4: Event flow in an interaction participant using the TestBed. Each node
in the cluster hosts a single JXTA peer and uses JXTA Discovery protocol for its
communication. Each node has a Rule Engine ,JESS , executing rules in a Rule Base
that evaluate a recieved view.

3.6.1 Testbed infrastructure

The experiment runs on the Frea-Tolkein research cluster with each node in the

experiment mapping to a box in the cluster.

The nodes use the Jxta p2p toolkit for a simple communication medium. The

Jxta discovery service is used for communication between the nodes in the system.

The simulation components forming the simulation run as Jxta peers carrying out

a certain task. Each component running on a node has a rule engine, JESS[22] (an

expert system shell), which compares views recieved based on rules in a Rule Base.
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Figure 3.5: SimViewer: The testbed offers a simulation viewer that can display the
topology configuration for a given simulation. It is shown here displaying a system
with 40 nodes (red and green dots). The green dot represents a fish and the red ones
the sharks. SimViewer was written in Python.

The topology seen in the Figure 3.5 is for one of the simulation runs discussed in

a later section. Most of the applications using the testbed are based on cluster nodes

mapped to a logical 2d space, an ocean 100x100 units large, with a layout as shown

below. For example, in the Game of Life application discussed in the next section

the green spot (the fishes) represents the initiator of the task (“alcarin”) with other

nodes represented as red spots (the sharks) with a light blue Pacific. The task and

its relevance to the experiment are explained in the next section.
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3.6.2 Assumptions

For this testbed, message delivery in the communication substrate is assumed to be

reliable and ordered. Consistency establishment is by nature a group based activity.

An interesting part of any group based activity is behavior under unpredictable group

membership. This is best seen in a system where nodes do fail at various points in the

activity lifecycle. This behavior is not our current focus, and hence in our experiment

all the nodes are reliable and don’t fail.

The comparability of available views based on defined rules is central to the es-

tablishment of consistency. The experiment assumes that view change eligibility can

be expressed as a rule that can evaluate available views to yield decision. Moreover,

it is assumed that a trivial rule can adequately approximate a larger system where

nodes utilize rules to analyze the world they observe. This is actually the subject

of an entire body of research comprising of constraint systems. Also a single view

change by a single initiator is assumed.

There are a few limitations imposed on the experiments on account of implemen-

tation choices. Group messaging is achieved by using a thin filtering layer over a

broadcast to simulate a notion of multicast. Also, The nodes in the experiment have

unique names are based on the network hostnames.

3.7 Applications

The framework is suited for applications with loose coordination between functional

components, locality in functionality and can work with flexible contracts with the

underlying infrastructure. This section a few motivating applications are described

that show how the various components of the framework can be exploited in different

real world examples.
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3.7.1 Concept Illustration Using Automata

Consider a system containing a and b in the contextual neighborhood with c being

a distant element. The distant element is “indirectly” a neighbor of a and b by

the neighborhood principle. Any “information event” generated by c can get com-

municated to a and b through the intermediate elements in varying coarseness and

availability (may get sent by itself or as a part of a bigger “information event”). This

in a free flowing system translates into every element having a fair view of any event

in the system by way of interactions and the information it receives over time. If it

doesn’t, there is a very high possibility of its neighbors having such information.Hence

if at any point in an element’s existence it realizes that it has a divergent view of the

system, then it can ask its neighbors for consensus on what is their perception of the

view it has and what is the consistent view of the system.

3.7.2 Protocol implementation: A game of life

This section describes how the protocol can be used in an application scenario.

Assumptions

The protocol implementation builds on the previous experiment with consistency and

adds to it the notion of an application. Specifically, messages (earlier used solely to

build consistency) are suitably loaded with additional information which coupled with

application logic at each node delivers the application functionality being described

in this section. So, assumptions made in the previous experiment are also needed

here.
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Details of the Game

The interaction protocol provides mechanisms (for asynchronous interactions) that

offer system consistency at distinct intervals. This section describes an implemen-

tation of this protocol to implement a simple sharks and fishes game of life. The

objectives of the game are trivial but the game offers interesting opportunities to

observe the protocol “in action”.

The game itself revolves around a school of sharks hunting a single fish and at-

tempting to eat it uniquely - only one shark gets to munch its lunch- without any

explicit coordination while attempting to eat the fish. To elaborate on the meaning

of “eat” in this example, eating can be considered as a series of steps which starts

with an attempt to eat. The eating completes only when the system is consistent.

The ultimate arbiter of succesful eating is, the object of attention, the fish.

The ocean with the sharks and fishes are depicted in Figure 3.5. It shows a game

layout with 39 sharks and 1 fish. Further, each entity in this ocean can only listen to

views from so far away. Given that the ocean is 100 by 100 units wide, each entity can

listen to views published by another entity only 15 units away. This rule informally

defines the neighborhood group for a given node. A final twist in the game is that the

fish doesnt move throughout the game, while a shark can move and pounce on the

fish the moment it recieves the advertisment. Although incredulous, this rule serves

an important purpose: it doesnt bring in mobility into the game and extracts only

the group activity from the classic game of life.

Using the protocol the sharks publish their attempt at eating the fish. Consistency

establishment mechanisms ensure that there is only one successful shark. Simple rules

evaluate which shark actually ate the fish. This decision is used by various groups

of sharks to arrive at a single conclusion and a single successful shark. The decision

propagates through the various groups via the protocol gossip. Additionally each

group uses group consistency to arrive at local consistency regarding the successful

shark.
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Results

The two graphs in this section represent datasets for various runs of the application

with the interaction protocol.

The first graph shows how inconsistency arises in the system as a results of the

asynchronous eating (gobble curves). Each point on the curve represents a node

gobbling alcarin on receipt of the alcarin ad. One of the gobbles is by the fish

acknowledging the successful shark. Note that the gobble curves track pretty closely

the consistency curves from the previous section (note: the 30 and 40 consistency

curves are based on the gobbles of the implementation). On closer analysis it makes

sense. For the consistency establishment experiment, a node receiving an “alcarin”

ad transitions to a consistent state. Whereas in the Game of Life implementation

such a node would “eat alcarin” i.e. a gobble.

Figure 3.6: Inconsistency caused by Asynchronous interactions. Plots the rise in
inconsistency for systems with 15, 30 and 40 nodes. Each includes only one fish with
the remaining as sharks. Each gobble is treated as an inconsistency since only one
shark can legally gobble the fish.
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The next chart shows the consistency repairs by each node that wasn’t the suc-

cessful shark. This curve shows the consistency establishment phase for resolving the

inconsistency caused by the asynchronous gobbles by the sharks. The consistency is

achieved by each group agreeing on the most consistent and correct view, the suc-

cessful shark, and passing this on to the neighboring group. The charts shows only

those cases where this local consistency results in the “correct” successful shark be-

ing selected for local consistency (since that would be the desired consistency). This

consistency also uses the fish’s (alcarin’s) acknowledgement. Considering these two

points and the gobble curve it is interesting to note that the consistency phase took

more messages than the gobble phase. This could be in part due to the simplicity of

message propagation and the gossip approach itself.

Figure 3.7: Consistency Establishment:Plots the repair of inconsistency for systems
with 15, 30 and 40 nodes. Each includes only one fish with the remaining as sharks.
Each message implies that a shark realised that it wasn’t the legal gobbler of the fish,
and hence converged toward the consistent view.

Oddly enough, early in the consistency establishment, the run with 40 nodes does

establish consistency a few messages earlier than the run with 30 nodes, though it is
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not significantly faster. This is most probably due to the implementation’s approach

to group messaging using broadcast and vagaries induced by it, but does encourage

an interesting possibility. Existing research on gossip systems show that large systems

can leverage gossip based systems better- so will such an interaction protocol converge

faster in systems of sizes greater than 100 or even 1000 nodes?

3.7.3 YACE: Yet Another Campus Example

Consider a campus visitor tracking application that tries to track campus visitors

opting to wear RFID badges and provides them maximum assistance with few stu-

dent volunteers. Such and application could tell Open house volunteers approximate

campus locations of visitors beamed in from sensors spread through the campus in

addition to “beacon balloons” floating around the campus, campus busses tracking

onboard visitors, cafeterias and so on.

3.7.4 Opportunistic interactions in Coffee Production

Coffee is indispensable as a drink, and is an important traded commodity. Information

about coffee is useful at all levels from the plantations all the way to the commodity

trading desks.

Maturity of beans sensed by sensors, changes in weather, insect populations, new

results on how to better regulate drainage of plantations, cost of labor during harvest,

shipping and packaging news, changing commodity prices of coffee amongst others

can affect decisions regarding irrigation, harvest timing, shipping, supply, commodity

trading prices and even regulatory measures to protect commodity prices from catas-

trophic events. It is important to realize that decision systems driving each part of

the chain can benefit from, but will survive without, information from other pieces.

But since the number of sources and their quality and interpretation can differ a rigid

system to tie in all these interactions to set up decisions cannot be orchestrated at
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system design.Harvesting has to be done when the beans are almost ripe. But in-

clement weather or approaching infestations might prompt an earlier harvest. If the

decisions are driven primarily by meteorological data from satellites then information

quality might be accurate but might be offset by a couple of hours. If any information

from weather sensors from nearby plantations, HELIOS (Nasa) crafts or plain sight

indicates otherwise emergency harvest can be kicked in to save what can be saved.

This example depends on a free form information sharing subspace that can be

composed out of any available information spaces. Here the interaction framework

exists as a information sharing and correlation tool.
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Chapter 4

Evaluation

Consistency in our model evolves through a number of intermediate phases before

finally achieving complete consistency in the system. This section explores consistency

establishment in a simple experiment running on a cluster-based custom test bed.

4.1 Experimental setup

The task is to make the system agree on a desired view evaluated using a simple

rule. The system is composed of interlocking groups of nodes. The view spreads by

gossiping, and hence consistency follows this by changing consistencies in groups of

nodes at a time. A stable system will have a single “eventual system view” - the view

that all nodes in the system will hold after a change in the view of the system.

A view in this application is based on the node names which in turn are derived

from the network hostnames of the cluster nodes. The desirability rule is trivially

expressed as lexicographical precedence of current node’s name versus the received

view’s propagator’s name. So, At the start of the experiment the nodes are seeded

with their node names as the views. Nodes transition to the most useful view in

their neighborhood and eventually converge on the most useful view in the system.

Consistency maintenance depends on these transitions.

Note that the experiment’s view change rule has been designed such that a node

could potentially change a other intermediate views before finalizing on the system

view; a view change need not be a one shot job.

To make sense of all this, consider the popular sensor application where sensors
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are tracking, albeit discreetly, animals in a sanctuary, in the interests of conservation-

Each node aims to track the largest animal in sanctuary, and hence the most impor-

tant view. So, a t-rex entering a forest teeming with springboks would be of interest to

the sensors, and possibly, the puzzled sanctuary intern manning the sensor network.

The experiment starts with each node believing in similar views (that each is the

leader of the system). One node believes differently, say “alcarin” for a given group,

and claims leadership (view) by alphabetical superiority(rules). For the system to be

consistent, all nodes have to agree on a single view. So, any node receiving another’s

claim has to accept the superior one of the two as the leader. In a consistent system all

nodes will end up picking up “alcarin” as the leader since that’s the lexicographically

superior view in the system.

4.2 Progressive consistency

This experiment shows the behavior of consistency establishment after a single view

change initiated by a single node. Such a view change interaction is one of the

basic interactions that can be used to compose complex interactions that form the

functionality of a system.

The Figure 4.1 shows messages taken to converge on a particular “eventual system

view” by individual nodes after one of the nodes, the initiator, publishes a view

change. Hence, a bump up in the chart, say at x messages received, implies that a

node in the system converged after receiving x messages. The nodes converged at

the initiator’s view represent the consistency of the system; in other words the chart

presents consistency curves for various system sizes.

These consistency curves show the part of the system that has already converged

(cumulative). The graph plots each converging node by itself and each curve saturates

at the system population.



34

Figure 4.1: Progressive consistency establishment:Results for systems with
10,15,20,25, 30 and 40 nodes. Each includes only one valid view.

4.3 Role of Gossip

Need to understand the pattern of alternating regions of growth and temporary sat-

uration in consistency. Also, given that gossip is an important part of our model, it

would be interesting to note its role in consistency establishment.

The Figure 4.2 shows two data sets that complement each other and lend support

to the observations in the earlier section.

The curves in broken lines plot nodes undergoing direct transitions. Direct transi-

tions are by the immediate neighbors of the initiator of the view change, who received

the view change directly from the initiator. These, as expected, are the front of the

view changes in the system. Their effect is almost immediate, and to some extent,

can improve the initial indirect transitions. The solid curves plot nodes undergoing

indirect transitions. Indirect transitions are the view changes of nodes not in direct

contact with the initiator. These transitions are based on the gossiped information.

Indirect transitions follow the pattern noticed in the previous section - they have a

healthy initial growth, implying that a lot of nodes transitioned within a few messages.
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Figure 4.2: Effect of indirect transitions on Consistency Establishment, show here for
systems with 10,15,20 and 25 nodes. The solid line shows the effect of transitions
due to indirectly recieved views while the direct ones show the transitions based on
observations of the neighbours.

This initial growth is followed by alternating regions of saturation and growth.

4.4 Inferences: Behavior of Consistency Establishment

The first experiment starts with a change of system view initiated by a single node.

Each new entity that converges to the eventual system view increases the cumulative

consistency of the system. Our interest is in the manner in which this cumulative

consistency improves.

The consistency curve rises sharply for the first few messages and then temporarily

saturates and additional messages do not cause an improvement to the system con-

sistency. This temporary saturation is followed by another increase in consistency,

although not as steep as the first one. This increase is staggered over a larger number

of messages. If the system hasn’t converged yet, a temporary saturation follows. This

pattern gets repeated till the system converges.
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The initial spike followed by gentle improvements in consistency, points to a phe-

nomenon existing only at the start. This coupled with the pattern of increases in-

terspersed with temporary saturation point to some local phenomenon. The second

experiment shows that the pattern noticed in the earlier section is exhibited solely

by the indirect transitions. The initial increase can be attributed to the nodes in the

immediate neighborhood. This increase is almost never due to gossip. The gossip

effect can be seen beyond this initial spike. These indirect transitions are based on

gossiped view changes. While this doesn’t explain the pattern by itself, it does bring

to the front the role of gossip and its effect on achievement of consistency in our

model.

Further, a rapid increase in transitions implies a number of nodes got the desired

“trigger” within a few messages of each other. An obvious reason seems to be prox-

imity to the initiator. Nodes would tend to take additional messages to get a specific

view update as the number of intermediate nodes increases. This could mean that

nodes receiving updates with a few messages of each other are at about the same level

or hops from the initiator. Which implies that nodes could be in equidistant groups

that may or may not talk within the group.

The alternating regions of temporary saturation followed by the groups of nodes

converging within a few messages of each other represents the messages that are

processed by the remaining group members before processing the trigger message

that brings about the next wave of transitions. This pattern is repeated till the

system converges to a single consistent view. Hence, nodes in a group transition

quickly and completely in a span of few messages of each other. This means that a

node receiving a trigger message can safely transition after seeing some percentage of

its group transition. The confidence stems from the knowledge that the gossip would

infect the remaining members.
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Chapter 5

Discussion and Conclusions

5.1 Discussion

The interaction protocol and the model presented is a first step towards a solution that

can support applications in the emerging systems described earlier. Understanding

what this step accomplished will help define what lies beyond it.

The protocol allowed asynchronous interactions to be consistent with some guar-

antees. The upfront guarantees ensured that this consistency would be achieved in

waves of neighborhoods. But, the present mechanism doesn’t yet handle the dynam-

ics of view updates in real systems. Scenarios exist where a view change can get

subdued by a more “powerful” view. Thrashing can lead to a system that swings

between views. Also, the consistency mechanism needs to accommodate issues such

as multiple conflicting initiators, updates frequency exceeding the consistency attain-

ment delay. Though node availability has be out of scope, it needs to be worked

into this mechanism in a real world system. While conjecture suggests that avail-

ability may not be a showstopper considering the ad-hoc nature of the mechanism,

experiments need to be conducted to characterize availability’s effect. Additionally

classic protocol issues like medium induced delays, out of sequence message delivery

and such need to be consisdered. These need not necessarily be handled by the con-

sistency mechanism, as is the case in the present model. But their effect has to be

characterised and the cost of being protected from these issues by the communication

substrate needs to be quantified.

The consistency maintenance mechanism depends on plain vanilla multicast. Such
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propagation is subject to noise in the form of local system disruptions, intermediate

local interests downgrading an information item’s importance and hence its spread by

intermediate elements. This however is not without a solution. Gossip middleware has

long recognized and offered various solutions to this problem. Only, the consistency

mechanism needs to use an appropriate gossiping scheme. Further, the effects of

gossiping on the consistency process needs to be better understood.

Application evolution as a result of maximum probability interactions is not ad-

dressed.

5.2 Conclusions

This thesis offers the interaction model as an approach to develop applications in

emerging systems. In this model, each element’s behavior is governed by local goals.

Each element mostly interacts within a defined neighborhood and these cascade into

the system functionality. Elements interact with one other using the proposed inter-

action protocol.

5.3 Future Work

Let us consider what lies beyond the basic protocol and model presented.

At its core, the interaction model uses a plain vanilla multicast scheme, simple

functionality specifications and a consistency mechanism to build its services. Each

of these can use improvements. A well chosen gossiping scheme can offer useful

characteristics to the protocol. The existing simple functionality specification needs

to make way for a more powerful and rich functionality composition model. A number

of open issues exist in the consistency model that have been mentioned in the previous

section. These have to be addressed for a real world consistency mechanism. Further,

the characteristics of consistency establishments need to be better understood. For

example, as long as the groups relevant to the functionality quickly synchronize, can
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the rest of the system stabilize slowly, potentially skipping a few intermediate stages?

Such observations can help fine tune the consistency mechanism and make it more

suited for the real world.

Beyond these foundational enhancements, the interaction model can be expanded

with several nice capabilities. Neighborhood has an important role in the model and

in the protocol. Application functionality is expected to leverage neighborhood and

the consistency mechanism uses it to establish a notion of consistency after any insta-

bility. Bringing in context sensitiveness makes all this exciting. A flexible definition

of neighborhood based on the contextual environment can potentially accommodate

dynamic populations (in size, relationships or roles). This is a very powerful con-

cept leveraging the advantages of neighborhood interactions and available contextual

information that can describe other elements and the system.

As discussed earlier, complex systems are better defined in terms of the individual

component goals and their interdependencies. With neighborhood interactions and

a sufficiently diverse mix of elements, these individual pieces of functionality will

eventually converge to create the desired system wide behavior. This flexibility in

emergence of system behavior allows an application to rapidly adapt to changing

environments and fulfil its objectives. This purposeful relaxation of the desired system

wide behavior and the paths taken to achieve the goals has been one of the corner

stones of the model. Taking it forward, the goals can potentially be “infinite” goals-

they will never be completely fulfilled; this gap in the fulfillment of the goals defines

the system lifecycle. Mutual goal satisfactions incrementally drive the system forward

only to be brought to some state in a given element’s lifecycle which causes it to be

reinitialized (restarted) causing the system to remain unsatisfied, but useful to the

users. But this approach means that goals should be amenable to reasoning and need

to be subject to sufficient validation safeguards both at definition and at composition

to achieve higher system goals. Theoretically, such systems can organically scale to

real world dynamics.
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In emerging systems the interpretation of guarantees itself is different from tradi-

tional systems. In many situations, qualified or probabilistic guarantees are sufficient.

Adjusting to such guarantees allows an application to offer functionality in situations

where none would have been possible. Though the model proposes such a mechanism,

the real protocol itself doesn’t offer a refined mechanism to query and argue about

the guarantees available with an interaction.
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