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ABSTRACT OF THE THESIS

Snap: A Local, Asynchronous Interaction

Framework For Pervasive Applications

by Venkatesh Putty

Thesis Director: Professor Manish Parashar

Evolution in our computing needs has seen evolution in all spheres of computing
with advances in device technology and the software infrastructure driving these sys-
tems. The road ahead is through frameworks that aid us in comprehending, develop-
ing applications for and managing this wide-ranging evolution resulting in pervasive
computing. But, pervasive applications differ significantly enough from traditional
distributed computing, to warrant thought on suitable distributed computing inter-
action primitives.

This thesis presents an interaction framework for such applications that do not
need transactional properties in interactions and can function with minimal guaran-
tees. The framework offers an interaction protocol that is used for effecting asyn-
chronous local actions and uses a decentralized consistency maintenance mechanism
to reconcile system inconsistencies.This thesis presents scenarios where applications

can use the interaction protocol and thus adapt better to pervasive environments.
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Chapter 1

Introduction

Our universe with all its quirks, is about as good as any system gets. Zillions of
infinitesimal subsystems come together organically to create our perfect universe.
Pervasive computing [34] seeks to provide a similar computing universe. The pieces
of such a universe can be seen around us. Evolution in our computing needs has
brought about simultaneous advances in all spheres of computing with advances in
device technology and techniques in managing devices, methodologies of architect-
ing systems of devices, and software infrastructure driving these systems. The road
ahead is through frameworks that aid us in comprehending, exploiting ;managing and
developing uses for this wide-ranging evolution resulting in pervasive environments.

In such emerging systems heterogeneity, availability, scalability, identity, roles and
relationships, information quality, context sensitiveness and the coexistence of these
issues makes such systems far more complex than traditional computing systems. On
the flip side, emerging system applications have lower systems support expectations.
Large and dense emerging systems offer redundancy in information, sub-systems and
such. Exploiting these properties will allow a framework to be a feasible solution for
developing emergent system applications.

Our research is a step in this direction. This dissertation discusses an interaction
framework suited for Emerging Systems. The interaction framework provides a foun-
dation to work with emerging systems and offers an interaction protocol to bring these
systems to life. In fact, the real contribution is the interaction protocol at the core

of the framework. The protocol offers a combination of asynchronous interactions,



consistency maintenance and a simple comprehension of participants.

1.1 Motivation

In non-trivial asynchronous interactions, the interaction participants have to be up-
dated with the outcome of the interaction while ensuring that all participants have
mutually consistent interaction states at the end of the interaction. This is nor-
mally achieved by using some form of synchronization between the participants. In
traditional distributed computing, whenever the interaction outcome is available, all
the participants and affected elements, are updated in the same step using appropri-
ate synchronization mechanisms. Extending such an interaction pattern to emerging
systems involves siginficant tradeoffs. Reaching out to elements system-wide syn-
chronously in the same step would negatively affect the system behavior.

Emerging system applications typically have loose coordination between func-
tional components, locality in functionality and can work with flexible contracts with
the underlying infrastructure. In typical emerging applications, small clusters of el-
ements are the ones that need to be actively consistent as far as an interaction that
affects that part of the application. The other components need information about
the interactions, but typically satisfied by delayed or summarized (percolated) up-
dates. They don’t need the correct or consistent result right away or at the same
time for everyone.

For example, a video sensor monitoring a wildlife reserve, upon observing that
that a new animal has entered its range, can come out of standby and start moni-
toring actively once its locality of sensors in the valley agrees on the intrusion. Here
the monitoring application does not make as strict demands of the interactions as
would any other traditional distributed application. If there were any issues in the
information the application recieved then it can go back to standby and discard the

data collected. But if the same had to be done after global consent in a system of a



million sensors, the additional data would never have been collected.

A feasible interaction framework for emergent system applications will need to
exploit their characteristics and differences from existing systems. These leniencies
in expectations are not exploited in traditional interaction models. Each of these is

a significant advantage, if the model can be designed to use it.

1.2 Problem Statement

The thesis proposes an interaction protocol to enable asynchronous interactions be-
tween elements of an emerging system with ”local” synchronization primitives. The
protocol’s synchronization primitives offer interaction consistency with characteris-
tics that is sufficient for the application at hand. Put together they will allow for
spontaneous interactions.

Overall this thesis will present the foundation for asynchronous interactions with
consistency maintenance mechanisms. Such a framework would allow an interaction
whenever one is possible, hence spontaneous, and will help achieve the objective of

the application.

1.3 Contributions

The thesis offers the following ideas and protocols to support interactions in emerging

systems:

e Interaction framework for emerging systems: The framework offers only
asynchronous interactions. Resulting anomalies are handled by a consistency
maintenance mechanism. This allows an application to setup and potentially
complete them instantaneously allowing applications to take advantage of tran-
sient favorable conditions. Further, interactions are always with immediate peer

elements (neighborhood) and never explicitly target a global audience. This



complements the locality that is found in emerging system applications. Still,

the system is affected by these local interactions.

e Consistency maintenance mechanism: The consistency maintenance mech-
anism detects and repairs any inconsistencies caused due to asynchronous in-
teractions. The mechanism leverages the locality of system components and
a gossip style maintenance protocol to ensure that all elements of the system
converge onto a single consistent state based on predetermined rules. Addi-
tionally, the consistency mechanism offers intermediate quasi-consistent phases
before the final consistent state. These quasi-consistent phases guarantee the
consistency of interaction state in a defined group of participants. Applica-
tions can leverage these phases to gain flexibility in functionality definition and

spontaneity in functionality realization.

e Opportunistic satisfaction of objectives: Interactions need not be the
rigid, well-defined task completion tools designed to complete a task with all
interacting components working in lock-step in a predefined workflow. Tolerant
applications can accept the compromise made when one is able to communicate
whenever possible and with the best possible characteristics. Such an interac-
tion means that an application’s functional objectives need not be satisfied in
one big shuffle; objectives can be met incrementally, possibly in random order.
While the thesis does discuss this idea at length through later sections, the full

potentially has not been realized in the presented work.

1.4 Scope

The thesis address only a few of the issues in developing applications in emerging
environments, but a number of other critical issues are not tackled but acknowledged
as existing and have to be address for a complete solution. The following issues have

not been addressed in the thesis:



Transactional interactions: The interactions being targeted cannot be used
in applications that require ACID properties from the interactions. As would
be discussed later on, the interactions presented are intended to be one of a
suite of protocols at an applications disposal. Hence these interactions should

be used only if transactional properties are not expected.

Security, Trust, Scalability and Availability are important issues but have
not been addressed in this interaction framework. At the node level, malicious
nodes can cause havoc to a straight forward peer-to-peer algorithm. Lifetime of
nodes in an emerging system can vary depending on node failures, the function

and role of the node thus affecting availability.

Platform issues are not realized. Emerging environments typically use a host
of middleware technologies to create a complete system. But, this interaction
framework has not been developed as part of a platform for emerging systems.

All through the approach has been as a generic interaction protocol.

Node identity is not dealt with. Consequently anonymous identities and such
are not handled explicitly. Also, a simple mechanism to define and maintain

roles is needed.

Membership maintenance is not provided. Group definitions can change
over time even if nodes doesn’t explicitly vary membership - a node with varying

location, roles or functionality.

Context sensitiveness should be an important ability in a well-rounded in-

teraction solution, but is not present in the interaction framework.

Constraint based application composition is a much needed facility that
can help define emerging systems more easily. Such a facility has not been fully

explored in the interaction framework implementation.



1.5 Organization

The thesis is organized as follows:

Chapter [1| presents background on the thesis and defines its direction Chapter
discuses relevant research work and provides pointers to other research that target
the issue at hand from different perspectives. Chapter [3| discuses the Interaction
Model and the Opportunistic Interaction Protocol. The section also describes a test
bed built to implement the protocol and an application described in the same section.
The next section, Chapter 4| provides an experimentation analysis to show the charac-
teristics of the consistency establishment mechanism in the Opportunistic Interaction
Protocol. Finally, Chapter [5| summarizes the solutions and outstanding issues with

the framework and discuses where it is headed.



Chapter 2
Prior Work

"If I have seen further,it’s by standing upon the shoulders of giants.”-Isaac Newton

When developing applications for pervasive computing traditional distributed
computing technologies are inadequate as the only solution. Still, technologies such as
web services, p2p technologies [26], publish and subscribe models [6], [16], are suitable
for a targeted role along with middleware technologies designed for pervasive systems
[15]. P2p systems [29] are useful for their decentralized architecture.

In pervasive environments, applications, middleware and systems need to address
radically different issues. Research in pervasive computing, autonomic computing
and sensor networking offer solutions to target these issues from different perspectives.
Sensor networking [24] [10] facilitates the realization of the physical systems composing
pervasive environments by offering protocols and technologies to work with sensors,
thus forming a real world system. Autonomic computing [2] enables systems to be
open, self-defining, self-healing, self-configuring, self-protecting, self-optimizing, and
contextually aware. Pervasive computing research [15, 27] works the middle ground
by offering layered solutions to host the target environment. Project Oxygen[27] offers
solutions to an entire spectrum of issues in pervasive computing, with solutions in

device technologies, management, networking, user interface and middleware.

2.1 Building blocks

Much like in a Lego world, the interaction model builds on a number of pieces of

existing and new technologies.



Any distributed system needs coordination and synchronization constructs. Con-
sensus protocols offer some constructs that are useful in this context. Pure distributed
consensus [30] has been proven to be impossible [12]. However, alternative approaches
such as randomized consensus protocols [3] and charaterizations [23] have avoided
this theorem’s results and offer consensus in distributed systems[17]. The interaction
model presented in the thesis offers a consistency maintenance mechanism that uses
some ideas from consensus systems. The thesis proposes an interaction protocol that
offers a consistency mechanism that uses concepts central to distributed consensus.
However the mechanism does not handle the case of node failures.

A later section will show that the biggest advantage of emerging systems is their
density, locality and their interconnectedness. Gossip [9] can leverage [4] these ad-
vantages to offer a form of global comprehension. An information element is passed
along through the system using a probabilistic forwarding function thus spreading to
the extremities of the system. This simple idea has diverse applications. Gossip has
seen application in ad-hoc routing [20], large-scale system design [33] 18], database
maintenance [32, B1], multicast [19, 5, I1], group membership maintenance [8], [14].
Significant research has been done in these and others to characterize gossip and of-
fer solutions to issues in using gossip in distributed middleware [28]. The proposed
interaction model uses some of these ideas to define a simple gossip based protocol
to manage inconsistency in an asynchronous interaction. The interactions themselves
do not use these ideas, but the consistency mechanism uses forwarding to spread a
dominant view into a system. Such a usage is also seen in Astrolabe [32] and Bimodal
Multicast [5].

Research in amorphous computing [I}, [7, 25], cellular automata [2I] and robot
coordination [13] shows how local interactions have the power to effect global actions
and hence system functionality. Using the interaction protocol presented in the the-
sis, an application can carry out actions in a small group of components with the

knowledge that the system will get updated at some point in the system evolution.



Chapter 3

Design of the Interaction Framework

In this interaction framework each element’s behavior is governed by its goals that
guide the functioning of the element. Elements of the system mostly interact with
their contextual neighbors. The system functionality emerges as one element interacts
with its neighbors and which in turn with theirs, thus enveloping the entire system.

Elements interact with one other using an interaction protocol, proposed in this
thesis. The interaction protocol assumes that a lightweight messaging layer exists be-
low it and offers some basic services such as accepting messages from other elements,
sending messages and forwarding messages as a conduit. At this level, the interaction
protocol makes no attempts to ensure that interactions succeed. This simplicity is
worked upon to provide all that is possible in adverse environments. The desirability
of interacting with a participant is evaluated by predefined constraints on each ele-
ment. Interactions in this protocol are asynchronous and offer soft guarantees with
best effort semantics. In a non-trivial application asynchronous interactions without
explicit synchronization are bound to create inconsistencies. The interaction protocol
offers mechanism to restore consistency in the system. All these characteristics allow
the framework to provide the applications that use it, the best possible mix of services
in the best form that is possible from whatever is provided by the system. Such a
framework can allow applications to take advantage of the environment in every pos-
sible way. Essentially this allows applications to be opportunistic as far as satisfying
their functionality is concerned. Hence, system behavior evolves from “constrained”

and “local” interactions between “available” and “desirable” element.
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In this chapter, first the interaction framework is described, which talks about
the big picture for emerging systems. The second is a part of this framework, the
interaction protocol which is discussed later and implemented and analyzed. But first

lets take a look at the target environment.

3.1 The Target Environment: Emerging Systems

This thesis focuses on Emerging Environments like Pervasive systems, Sensor Environ-
ments and Autonomic systems. The ecologies of devices and applications populating
such environments have characteristics that are significantly different from traditional
computing systems. Here on “elements” is used as a catch-all word for components
of an application, devices in a system, applications in a system

Heterogeneity is the dominant theme in Emerging Systems with elements in do-
mains spread across functional, geographical, technological, availability and mobility
spheres. Information quality, identity, dynamic roles and relationships are a charac-
teristic of interactions. Their complex interdependent nature requires a multi-pronged
approach to providing a solution. For example, availability of specific elements with a
given functionality might be uncertain, but since a complete failure is not likely, some
random functionally relevant element would always be available, though not neces-
sarily a specific one. If this “anonymity” can be tolerated then the availability is
significantly higher though with significant changes in the definition of relationships.
The size and density of emerging systems means that popular information could be
replicated with a very high degree of probability, without an intentional replication. If
the possible dirtiness of such replicated information can be tolerated then the biggest
issue in large systems has just been made a strength.

Elements in an emerging system environment typically interact with other ele-
ments in their neighborhood. Because of this intrinsic locality in the system layout

it is not trivial to do system wide actions. But, a real world application will have
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some actions that, without relevant alternatives, require cooperation or information
from most, if not all, elements in the system. This locality of existence means that
interactions that affect entire system need not affect all at the same time, as long
as they will affect eventually. This means, for example, in our target environment,
applications don’t need synchronization with all elements of the system right away
and at the same time for everyone. As long as the groups relevant to the functionality
quickly synchronize the rest of the system can stabilize slowly, potentially skipping a
few intermediate stages. In fact, as will be seen later, a guarantee that the effect of
synchronization will be uniform across all the system elements at some point of time
is typically enough. These leniencies in expectations are not exploited in traditional
interaction models. Locality means most interact with locality, so if locality is con-
sistent in sync and interacts with environment in an uniform manner then all is fine.
This coupled with relaxation of the immediacy of uniformity allows a lot of deviation
from traditional synchronization based uniform ness.

Existing distributed computing models offer very good solutions to existing class
of problems, because they were designed with such problems in mind. Similarly,
exploiting the properties of Emerging systems will allow a framework to be a feasible

solution for developing emergent system applications.

3.2 Functionality

Exponential complexity in pervasive systems, varying needs of the applications resid-
ing in these systems and the demanding real world environments require alternative
approaches to composing pervasive applications. In the past complexity was accom-
modated by a number of approaches that were grouped into stacks (vertical) and
components (horizontal) of varying coarseness. Aggregation along multiple dimen-
sions offers increasingly sophisticated and application oriented set of services, though

with an associated acceptable tradeoff.
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But the characteristics of emerging environments and their evolving requirements
imply defining the system goals a-priori is difficult and sometimes impossible. Our
framework facilitates this by offering semantics that allow individual elements of a
system to be autonomic and be associated to the larger system only by its goals. in
our framework the system goals are defined in terms of individual elements and their
functionality. The eventual convergence of individual element goals gives form to
the system’s goal and hence its functionality. In addition to reducing the complexity
of the system, it allows a system to be built as a sum of parts, an idea that our
framework aims to facilitate to the extreme.

Elements of the system define their functionality in terms of constraints that
describe the elements goals and objectives. The constraints can evolve to shadow
a dynamic environment. For an element to be able to function, all the constraints
need not be satisfied. Depending on the definition of functionality, if satisfaction
of a subset of constraints can allow acceptable behavior then the element’s existing
behavior would change to include this new behavior.

In defining an element using this sort of random and incremental yet, controlled,
satisfaction, the element can take advantage of the available environment in the most
suitable manner that will allow it to achieve some (or all) of its objectives. In other
words, the constraints governing an element are more of a life-time “guide” to ac-
ceptable behavior; bounds on an element’s operating range and hence bounds on
the system’s goals. Hence, system functionality originates from individual elements.
When this locality (of elements) is used to define system objectives it follows that
any explicit behavior- namely interactions- also originates in a similar manner.

In our framework a given element interacts only with elements in its immediate
neighborhood and hence exposes its services and accepts services only from them. The
neighborhood and its membership is application defined. Potentially, an application
can use the available contextual information in conjunction with constraints to define

membership in an element’s neighborhood.
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Further, an element can use constraints to define its interactions, and hence its
behavior, with its neighbors. Since these constraints are loosely defined, evolving en-
vironments and neighbors can be accommodated. Participating elements’ actions are
a factor of environmental information, interaction state, local state, local constraints
and decisions and indirectly all these of its neighbors and so on. Thus the entire
system behavior evolves.

So, in our framework any given element’s existence and behavior is defined by
its constraints and its interactions with its immediate neighbors. This flexibility
and loose definition of the neighborhood in turn allows fuzzy definitions of element
relationships. Such fuzzy relationships are atypical of real world systems and allow

systems to adapt to the demands of real world systems intrinsically.

3.3 Local interactions: System-wide effect of Local behavior

The framework exhibits a very strong preference for behavior in the neighborhood or
what we call, local behavior. Almost all actions, and hence behavior, of the compo-
nents of the system or elements are local in nature. The propagation of an action’s
effect(s) is decided by its importance as determined by the action’s importance to
the neighbors and possibly other indirect neighbors. A neighbor will show interest
in propagating an action (or its effects) only if it is interested in it, or any related
neighbor expressed interest in this action at any point of time.

Research in amorphous computing [I}, 7, 25], cellular automata [21] and robot
coordination[I3] shows how global behavior can be influenced with reasonable confi-
dence by local interactions and behaviors. Local side effects can translate into global
behavior with reasonable tolerance for loss in information percolation and noise. The
system functionality emerges as one element interacts with its neighbors and which in
turn with theirs, thus enveloping the entire system. Hence, system behavior evolves

from localized interactions between desirable and local elements.



14

This loose grained definition of system composition (neighborhood and relation-
ships) and behavior (interests, information/event flows, isolation, comprehension, co-
ordination) can potentially translate into a highly resilient and scalable framework

apt for the emerging systems.

3.4 Soft Guarantees

Traditional interaction semantics offer refined interactions with well defined charac-
teristics and hard guarantees on the service offered. To provide these they have signif-
icant support needs from the system and offer only rigid interaction flows. However,
in emerging systems, typical applications offer functionality that can be delivered just
as well with less refined interaction semantics with minimal guarantees but one that
allows flexible interaction flows. Typical applications need something that is equally
unstructured and are not particular about interaction contracts and such.

Soft guarantees essentially is the additional effort that the framework makes to
provide a consistent picture of the system in the event of any instability in the sys-
tem. This may not necessarily be the correct view, though it would be in an ideal
environment. But this is on a best effort basis and is not a binding guarantee. Thus
an application can work in this environment if a consistent view is all that is needed

- which may be relatively incorrect hence the softness in the guarantee.

3.5 Opportunistic Interaction Protocol

Increasing complexity in interaction modes coupled with varying needs of the appli-
cations and environments can be accommodated by providing the interaction middle-
ware as a stack of services. Each level offers increasingly sophisticated and application
oriented set of services. The interaction protocol builds itself from the ground up as
a set of services feeding off the simpler (and lower) service offering to the user or

the service above a richer service set. The interaction protocol is layered as shown
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in Figure with each protocol layer responsible for a minimal set of operations

and behaviors. The lowermost layer offers the communication primitives that the

Client Application

Interaction Protocol

| Consistency Maintenance Mechanism
| Communication Primitives

Messaging Substrate
System Ether
Multicast Support?

\/

Figure 3.1: Interaction Protocol Stack

higher layers use to initiate and maintain interactions. Higher layers enforce various
interaction behaviors and offer mechanisms to deliver the guarantees offered to the

application.

3.5.1 Communication primitives

The protocol operates on top of a basic communication substrate offering a few basic
services noted in Table [3.1]

These basic services are the ability to receive messages from, publish to and for-
ward received messages to a specific group. Incoming messages are handed off using
processing hooks from higher layers. The previous table shows the expected minimal
service set of this substrate. The above service definitions indicate that the interac-

tions use the notion of a group. For this the communication medium should offer a
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Primitive Functionality

Receive Receives a message from it local group
Process Handoff received message to the application
Listen State to wait for a receipt of message.
Publish, Forward (derived) | Send a message to a selected group
DefineGroup Create a group based on defined criteria

Table 3.1: Communication Primitives

basic multicast service where the group definition should be simple and allow contex-
tual definition of groups. It should be possible to send messages only to immediate

neighbors in the system.

3.5.2 Interaction Protocol Flow

The overall idea of an opportunistic interaction can be summarized as:

7 Act, involve in group consistency, do what it takes to become consistent

with the group, proceed with group view as interaction conclusion.”

The initiator starts an interaction by publishing the initial view about an action
the initiator completed. If this initial view of the action is different from the views
held by the local group (neighborhood) then the group becomes inconsistent with one
node of the group having a different view from the other members.

A phase of consistency establishment ensures that members of the local group and
the system share the same view and thus the interaction completes with a stable con-
clusion. However, this phase mentioned might be composed of multiple intermediate
consistency phases (discussed in the next section ).

Once the system has consistency, and hence all members have agreed on result

of the action, the initiator (and the system) can assume the action has had its effect

and is completed. The Tables show the interaction algorithms.
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Figure 3.2: Protocol State Diagram

Of course other actions need not be executed in sequence. Applications are un-
hindered in any attempt to interleave a series of independent actions followed by
consistency phases completing in no specific order. Though demonstrating this is a
completely separate axis of analysis.

Presently interaction terminates when the group achieves local consistency.
However, thrashing can occur. A newly consistent group could get a new view that is
in fact just a continuation of the consistency establishment procedure, only this view
bounced back from some extremity of the system. While it is easy to say that such
a thrashing could occur primarily on account of a weak rule set, the protocol doesn’t
offer any mechanisms to guard against this. This is certainly one issue that needs

future work.

Components | Role

Group group of communicating nodes
Node given node in system

View application advertisement
Constraint application ad processing logic

Table 3.2: Interaction Components
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Variables Description

Group::GLocal Neighborhood of the node
View::Vself Startup view of a node
View::Vcurr Current view held by a node
View::Vrcvd Received view held by a node
Constraint::Cview | Constraints operating on a view.

Table 3.3: Interaction Algorithm Variables

Interact
Init(Node: :Self, Glocal, Vself)
Publish(Glocal, Vself)
While System is not Consistent
Listen(Glocal, Vcurr)
Process(Cview, Vrcvd)
Publish(Glocal, Vcurr)
Interaction Completion(Node::Self, Glocal, Vself)
Process(Cview, Vrcvd)
EnsureConsistent (Cview, Vrcvd, Vcurr, Vhistorical)
If GroupConsistent(Cview, Vcurr, Glocal)
TransitionToGroupView(Vcurr, Vrcvd)

Table 3.4: Interaction Protocol Algorithm

3.5.3 Consistency Maintenance Mechanism
Defining Consistency

In any application it is possible to have distinct “views” of a given fact. For example,
as show in Table the shape of a ball is debatable based on how one wants to view
it. It can be considered to be a circle, when drawn on paper, or a sphere when seen
in the real world and as a cube, which would be plain incorrect. But, given the same
motive in a system, only one of these views of the fact (shape of the ball) is valid and

useful. This is the essential property of any system.
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Consistency can be considered as the property of a system wherein all member
elements hold the same view on a given fact. Conversely, a system with multiple

views about a given fact can be considered to be inconsistent and unstable.

Fact to converge on Shape of a ball in the system.
Consistent view The ball is a cube.
Consistent and correct view The ball is a sphere.

Table 3.5: A Consistency Perspective: A system may be consistent and still not hold
the correct view.

The underlying principle

In an asynchronous interaction, some of the participants are bound to have multiple
distinct views of the same factoid. A process is needed to reconcile these multiple
views of the same fact and arrive at a unique and accepted view that can be used
by all system elements. In traditional systems this would have been done by some
mechanism that would have reached out to participants of the interaction and those
affected by it. But in our target systems this could mean reaching out to the entire
system, which as stressed earlier is counter-productive. As discussed earlier, given
the nature of emerging systems, this consistency need not be achieved with the same
urgency for all system elements. Consistency can be provided by leveraging the
density, interconnectedness and locality of the system.

Before diving further into consistency, let us dwell on an important property of
emerging systems. An application in such a system derives its definition from a
functional aggregation of element groups and the individual elements. Conversely,
a view of a fact agreed to by a given neighborhood would be the view the system
will mostly converge on. So, neighborhood consistency on a given view of a fact can
translate to system consistency. The interesting part is how this local consistency

translates into system consistency.
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To achieve consistency in a fractured system with many views, the framework
actively ensures that this neighborhood has a consistent view of the system. By
extension, the entire system will then have a uniform view if each neighborhood is
consistent in its perception. Hence any such fact which has neighborhood consensus
will effectively be the current valid truth which if used by any member of the system
will not cause instability in the system.

The goal driving the consistency process in the framework is that other elements in
the contextual relative neighborhood should have similar views of the world. The ele-
ment(s) discovering an inconsistency initiates a mechanism to ensure that the neigh-
borhood arrives at a common view of the system. Each neighbor offers a combined
view based on its consensus and those of its neighbors (and the remaining system it is
in contact with) about the view of the system that appears to be the most consistent.
The combined consensus will decide the consensus that the neighbors will agree to.
This process will cascade across the system ensuring that all those with divergent
views agree on one uniform view. An application can work in this environment if a

consistent view is all that is needed.

Consistency Mechanism Details

The consistency establishment mechanism ensures that the system has consistent
views at distinct points in its evolution.

When a node in a group receives a message with a new version of a view it holds,
then the node triggers the consistency mechanism. The process of achieving system-
wide consistency starts in the immediate neighborhood of the initiator (for now, let’s
work with a single initiator). The driving goal is to ensure that in a neighborhood
group, all members have a consistent view. Any inconsistency in a group is resolved
by view exchange and evaluation based on defined rules on the acceptability of views.
At the end of this local phase, the group becomes consistent. As the state chart in Fig-

ure |3.3| shows, after local consistency is established the protocol initiates consistency
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Figure 3.3: State Diagram With Consistency Establishment Mechanism

in the neighboring groups. Members of a consistent group propagate a consistent
view to their neighbors. These neighbors in turn initiate consistency establishment in
their local group. Eventually this ripple effect spreads through the entire system mak-
ing the system view consistent. Thus, the consistency establishment phase might be
composed of multiple intermediate consistency phases with each improving the over-
all system consistency. This node to node/group consistency establishment means
that consistency gets established a group at a time and by association translates to
a system level consistency.

What is interesting in all this is the quasi-consistent states that the mechanism
goes through before converging on the consistent states. A tolerant application can
use this quasi-consistent state to get its functionality going.

For example, a video sensor monitoring a wildlife reserve spread across a few hills
and plains, upon observing that that a new animal has entered its valley (and possibly,
the reserve), can come out of standby and start monitoring actively (collect additional
data) once its locality of sensors in the valley agrees on the intrusion. Here the

monitoring application is able to tolerate and exploit the quasi-consistent intermediate
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state. If the consistency mechanism comes back with a system disagreement that the
animal had only strayed into range from another part of the sanctuary, then it can go
back to standby (and discard the data). But if the same had to be done after global
consent in a system of a million sensors, the additional data would never have been
collected. Smarts in the operating rules could potentially be wary the next time and
demand a better consistency from the mechanism. Say a quasi-consistent state that

spans a few groups. However, such a request system is not provided in the protocol.

Known Issues in the Consistency Mechanism

The protocol allowed asynchronous interactions to be consistent with some guaran-
tees. The upfront guarantees ensured that this consistency would be achieved in
waves of neighborhoods. While this suggests that the entire system will become con-
sistent at some point, there are no deterministic bounds associated with this system
wide consistency. What is needed is a probabilistic quantification or an empirical
bounds on of the consistency achieved at any given stage. Additionally, the present
mechanism doesn’t yet handle the entire range of dynamics of view updates in real
systems. Scenarios exist where a view change can get subdued by a more “power-
ful” view. Thrashing can lead to a system that swings between views. Also, the
consistency mechanism needs to accommodate issues such as multiple conflicting ini-
tiators, updates frequency exceeding the consistency attainment delay. Though node
availability has be out of scope, it needs to be worked into this mechanism in a real
world system. While conjecture suggests that availability may not be a showstopper
considering the ad-hoc nature of the mechanism, experiments need to be conducted

to characterize availability’s effect.
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3.6 Test bed

The focus of the test bed is to provide a platform to implement the protocol and to

help analyze consistency establishment in the interaction protocol.
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Figure 3.4: Event flow in an interaction participant using the TestBed. Each node
in the cluster hosts a single JXTA peer and uses JXTA Discovery protocol for its
communication. Each node has a Rule Engine ,JESS | executing rules in a Rule Base
that evaluate a recieved view.

3.6.1 Testbed infrastructure

The experiment runs on the Frea-Tolkein research cluster with each node in the
experiment mapping to a box in the cluster.

The nodes use the Jxta p2p toolkit for a simple communication medium. The
Jxta discovery service is used for communication between the nodes in the system.
The simulation components forming the simulation run as Jxta peers carrying out
a certain task. Each component running on a node has a rule engine, JESS[22] (an

expert system shell), which compares views recieved based on rules in a Rule Base.
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Figure 3.5: SimViewer: The testbed offers a simulation viewer that can display the
topology configuration for a given simulation. It is shown here displaying a system
with 40 nodes (red and green dots). The green dot represents a fish and the red ones
the sharks. SimViewer was written in Python.

The topology seen in the Figure is for one of the simulation runs discussed in
a later section. Most of the applications using the testbed are based on cluster nodes
mapped to a logical 2d space, an ocean 100x100 units large, with a layout as shown
below. For example, in the Game of Life application discussed in the next section
the green spot (the fishes) represents the initiator of the task (“alcarin”) with other
nodes represented as red spots (the sharks) with a light blue Pacific. The task and

its relevance to the experiment are explained in the next section.
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3.6.2 Assumptions

For this testbed, message delivery in the communication substrate is assumed to be
reliable and ordered. Consistency establishment is by nature a group based activity.
An interesting part of any group based activity is behavior under unpredictable group
membership. This is best seen in a system where nodes do fail at various points in the
activity lifecycle. This behavior is not our current focus, and hence in our experiment
all the nodes are reliable and don’t fail.

The comparability of available views based on defined rules is central to the es-
tablishment of consistency. The experiment assumes that view change eligibility can
be expressed as a rule that can evaluate available views to yield decision. Moreover,
it is assumed that a trivial rule can adequately approximate a larger system where
nodes utilize rules to analyze the world they observe. This is actually the subject
of an entire body of research comprising of constraint systems. Also a single view
change by a single initiator is assumed.

There are a few limitations imposed on the experiments on account of implemen-
tation choices. Group messaging is achieved by using a thin filtering layer over a
broadcast to simulate a notion of multicast. Also, The nodes in the experiment have

unique names are based on the network hostnames.

3.7 Applications

The framework is suited for applications with loose coordination between functional
components, locality in functionality and can work with flexible contracts with the
underlying infrastructure. This section a few motivating applications are described
that show how the various components of the framework can be exploited in different

real world examples.
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3.7.1 Concept Illustration Using Automata

Consider a system containing a and b in the contextual neighborhood with ¢ being
a distant element. The distant element is “indirectly” a neighbor of a and b by
the neighborhood principle. Any “information event” generated by c¢ can get com-
municated to a and b through the intermediate elements in varying coarseness and
availability (may get sent by itself or as a part of a bigger “information event”). This
in a free flowing system translates into every element having a fair view of any event
in the system by way of interactions and the information it receives over time. If it
doesn’t, there is a very high possibility of its neighbors having such information.Hence
if at any point in an element’s existence it realizes that it has a divergent view of the
system, then it can ask its neighbors for consensus on what is their perception of the

view it has and what is the consistent view of the system.

3.7.2 Protocol implementation: A game of life

This section describes how the protocol can be used in an application scenario.

Assumptions

The protocol implementation builds on the previous experiment with consistency and
adds to it the notion of an application. Specifically, messages (earlier used solely to
build consistency) are suitably loaded with additional information which coupled with
application logic at each node delivers the application functionality being described
in this section. So, assumptions made in the previous experiment are also needed

here.
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Details of the Game

The interaction protocol provides mechanisms (for asynchronous interactions) that
offer system consistency at distinct intervals. This section describes an implemen-
tation of this protocol to implement a simple sharks and fishes game of life. The
objectives of the game are trivial but the game offers interesting opportunities to
observe the protocol “in action”.

The game itself revolves around a school of sharks hunting a single fish and at-
tempting to eat it uniquely - only one shark gets to munch its lunch- without any
explicit coordination while attempting to eat the fish. To elaborate on the meaning
of “eat” in this example, eating can be considered as a series of steps which starts
with an attempt to eat. The eating completes only when the system is consistent.
The ultimate arbiter of succesful eating is, the object of attention, the fish.

The ocean with the sharks and fishes are depicted in Figure It shows a game
layout with 39 sharks and 1 fish. Further, each entity in this ocean can only listen to
views from so far away. Given that the ocean is 100 by 100 units wide, each entity can
listen to views published by another entity only 15 units away. This rule informally
defines the neighborhood group for a given node. A final twist in the game is that the
fish doesnt move throughout the game, while a shark can move and pounce on the
fish the moment it recieves the advertisment. Although incredulous, this rule serves
an important purpose: it doesnt bring in mobility into the game and extracts only
the group activity from the classic game of life.

Using the protocol the sharks publish their attempt at eating the fish. Consistency
establishment mechanisms ensure that there is only one successful shark. Simple rules
evaluate which shark actually ate the fish. This decision is used by various groups
of sharks to arrive at a single conclusion and a single successful shark. The decision
propagates through the various groups via the protocol gossip. Additionally each
group uses group consistency to arrive at local consistency regarding the successful

shark.
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Results

The two graphs in this section represent datasets for various runs of the application
with the interaction protocol.

The first graph shows how inconsistency arises in the system as a results of the
asynchronous eating (gobble curves). Each point on the curve represents a node
gobbling alcarin on receipt of the alcarin ad. One of the gobbles is by the fish
acknowledging the successful shark. Note that the gobble curves track pretty closely
the consistency curves from the previous section (note: the 30 and 40 consistency
curves are based on the gobbles of the implementation). On closer analysis it makes
sense. For the consistency establishment experiment, a node receiving an “alcarin”
ad transitions to a consistent state. Whereas in the Game of Life implementation

such a node would “eat alcarin” i.e. a gobble.

Protocol Implemenation Results

Gobble:

0 20 40 60 80 100
Messages to Gobble

—a— Gobble 40 —e— Gobble 30 —— Gobble 15

Figure 3.6: Inconsistency caused by Asynchronous interactions. Plots the rise in
inconsistency for systems with 15, 30 and 40 nodes. Each includes only one fish with
the remaining as sharks. Each gobble is treated as an inconsistency since only one
shark can legally gobble the fish.
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The next chart shows the consistency repairs by each node that wasn’t the suc-
cessful shark. This curve shows the consistency establishment phase for resolving the
inconsistency caused by the asynchronous gobbles by the sharks. The consistency is
achieved by each group agreeing on the most consistent and correct view, the suc-
cessful shark, and passing this on to the neighboring group. The charts shows only
those cases where this local consistency results in the “correct” successful shark be-
ing selected for local consistency (since that would be the desired consistency). This
consistency also uses the fish’s (alcarin’s) acknowledgement. Considering these two
points and the gobble curve it is interesting to note that the consistency phase took
more messages than the gobble phase. This could be in part due to the simplicity of

message propagation and the gossip approach itself.

Protocol Implemenation Results
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Figure 3.7: Consistency Establishment:Plots the repair of inconsistency for systems
with 15, 30 and 40 nodes. Each includes only one fish with the remaining as sharks.
Each message implies that a shark realised that it wasn’t the legal gobbler of the fish,
and hence converged toward the consistent view.

Oddly enough, early in the consistency establishment, the run with 40 nodes does

establish consistency a few messages earlier than the run with 30 nodes, though it is



30

not significantly faster. This is most probably due to the implementation’s approach
to group messaging using broadcast and vagaries induced by it, but does encourage
an interesting possibility. Existing research on gossip systems show that large systems
can leverage gossip based systems better- so will such an interaction protocol converge

faster in systems of sizes greater than 100 or even 1000 nodes?

3.7.3 YACE: Yet Another Campus Example

Consider a campus visitor tracking application that tries to track campus visitors
opting to wear RFID badges and provides them maximum assistance with few stu-
dent volunteers. Such and application could tell Open house volunteers approximate
campus locations of visitors beamed in from sensors spread through the campus in
addition to “beacon balloons” floating around the campus, campus busses tracking

onboard visitors, cafeterias and so on.

3.7.4 Opportunistic interactions in Coffee Production

Coffee is indispensable as a drink, and is an important traded commodity. Information
about coffee is useful at all levels from the plantations all the way to the commodity
trading desks.

Maturity of beans sensed by sensors, changes in weather, insect populations, new
results on how to better regulate drainage of plantations, cost of labor during harvest,
shipping and packaging news, changing commodity prices of coffee amongst others
can affect decisions regarding irrigation, harvest timing, shipping, supply, commodity
trading prices and even regulatory measures to protect commodity prices from catas-
trophic events. It is important to realize that decision systems driving each part of
the chain can benefit from, but will survive without, information from other pieces.
But since the number of sources and their quality and interpretation can differ a rigid

system to tie in all these interactions to set up decisions cannot be orchestrated at
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system design.Harvesting has to be done when the beans are almost ripe. But in-
clement weather or approaching infestations might prompt an earlier harvest. If the
decisions are driven primarily by meteorological data from satellites then information
quality might be accurate but might be offset by a couple of hours. If any information
from weather sensors from nearby plantations, HELIOS (Nasa) crafts or plain sight
indicates otherwise emergency harvest can be kicked in to save what can be saved.
This example depends on a free form information sharing subspace that can be
composed out of any available information spaces. Here the interaction framework

exists as a information sharing and correlation tool.
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Chapter 4

Evaluation

Consistency in our model evolves through a number of intermediate phases before
finally achieving complete consistency in the system. This section explores consistency

establishment in a simple experiment running on a cluster-based custom test bed.

4.1 Experimental setup

The task is to make the system agree on a desired view evaluated using a simple
rule. The system is composed of interlocking groups of nodes. The view spreads by
gossiping, and hence consistency follows this by changing consistencies in groups of
nodes at a time. A stable system will have a single “eventual system view” - the view
that all nodes in the system will hold after a change in the view of the system.

A view in this application is based on the node names which in turn are derived
from the network hostnames of the cluster nodes. The desirability rule is trivially
expressed as lexicographical precedence of current node’s name versus the received
view’s propagator’s name. So, At the start of the experiment the nodes are seeded
with their node names as the views. Nodes transition to the most useful view in
their neighborhood and eventually converge on the most useful view in the system.
Consistency maintenance depends on these transitions.

Note that the experiment’s view change rule has been designed such that a node
could potentially change a other intermediate views before finalizing on the system
view; a view change need not be a one shot job.

To make sense of all this, consider the popular sensor application where sensors
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are tracking, albeit discreetly, animals in a sanctuary, in the interests of conservation-
Each node aims to track the largest animal in sanctuary, and hence the most impor-
tant view. So, a t-rex entering a forest teeming with springboks would be of interest to
the sensors, and possibly, the puzzled sanctuary intern manning the sensor network.

The experiment starts with each node believing in similar views (that each is the
leader of the system). One node believes differently, say “alcarin” for a given group,
and claims leadership (view) by alphabetical superiority(rules). For the system to be
consistent, all nodes have to agree on a single view. So, any node receiving another’s
claim has to accept the superior one of the two as the leader. In a consistent system all
nodes will end up picking up “alcarin” as the leader since that’s the lexicographically

superior view in the system.

4.2 Progressive consistency

This experiment shows the behavior of consistency establishment after a single view
change initiated by a single node. Such a view change interaction is one of the
basic interactions that can be used to compose complex interactions that form the
functionality of a system.

The Figure 4.1)shows messages taken to converge on a particular “eventual system
view” by individual nodes after one of the nodes, the initiator, publishes a view
change. Hence, a bump up in the chart, say at x messages received, implies that a
node in the system converged after receiving x messages. The nodes converged at
the initiator’s view represent the consistency of the system; in other words the chart
presents consistency curves for various system sizes.

These consistency curves show the part of the system that has already converged
(cumulative). The graph plots each converging node by itself and each curve saturates

at the system population.
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Figure 4.1: Progressive consistency establishment:Results for systems with
10,15,20,25, 30 and 40 nodes. Each includes only one valid view.

4.3 Role of Gossip

Need to understand the pattern of alternating regions of growth and temporary sat-
uration in consistency. Also, given that gossip is an important part of our model, it
would be interesting to note its role in consistency establishment.

The Figure shows two data sets that complement each other and lend support
to the observations in the earlier section.

The curves in broken lines plot nodes undergoing direct transitions. Direct transi-
tions are by the immediate neighbors of the initiator of the view change, who received
the view change directly from the initiator. These, as expected, are the front of the
view changes in the system. Their effect is almost immediate, and to some extent,
can improve the initial indirect transitions. The solid curves plot nodes undergoing
indirect transitions. Indirect transitions are the view changes of nodes not in direct
contact with the initiator. These transitions are based on the gossiped information.

Indirect transitions follow the pattern noticed in the previous section - they have a

healthy initial growth, implying that a lot of nodes transitioned within a few messages.
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Indirects on Progressive consistency
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Figure 4.2: Effect of indirect transitions on Consistency Establishment, show here for
systems with 10,15,20 and 25 nodes. The solid line shows the effect of transitions
due to indirectly recieved views while the direct ones show the transitions based on
observations of the neighbours.

This initial growth is followed by alternating regions of saturation and growth.

4.4 Inferences: Behavior of Consistency Establishment

The first experiment starts with a change of system view initiated by a single node.
Each new entity that converges to the eventual system view increases the cumulative
consistency of the system. Our interest is in the manner in which this cumulative
consistency improves.

The consistency curve rises sharply for the first few messages and then temporarily
saturates and additional messages do not cause an improvement to the system con-
sistency. This temporary saturation is followed by another increase in consistency,
although not as steep as the first one. This increase is staggered over a larger number
of messages. If the system hasn’t converged yet, a temporary saturation follows. This

pattern gets repeated till the system converges.
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The initial spike followed by gentle improvements in consistency, points to a phe-
nomenon existing only at the start. This coupled with the pattern of increases in-
terspersed with temporary saturation point to some local phenomenon. The second
experiment shows that the pattern noticed in the earlier section is exhibited solely
by the indirect transitions. The initial increase can be attributed to the nodes in the
immediate neighborhood. This increase is almost never due to gossip. The gossip
effect can be seen beyond this initial spike. These indirect transitions are based on
gossiped view changes. While this doesn’t explain the pattern by itself, it does bring
to the front the role of gossip and its effect on achievement of consistency in our
model.

Further, a rapid increase in transitions implies a number of nodes got the desired
“trigger” within a few messages of each other. An obvious reason seems to be prox-
imity to the initiator. Nodes would tend to take additional messages to get a specific
view update as the number of intermediate nodes increases. This could mean that
nodes receiving updates with a few messages of each other are at about the same level
or hops from the initiator. Which implies that nodes could be in equidistant groups
that may or may not talk within the group.

The alternating regions of temporary saturation followed by the groups of nodes
converging within a few messages of each other represents the messages that are
processed by the remaining group members before processing the trigger message
that brings about the next wave of transitions. This pattern is repeated till the
system converges to a single consistent view. Hence, nodes in a group transition
quickly and completely in a span of few messages of each other. This means that a
node receiving a trigger message can safely transition after seeing some percentage of
its group transition. The confidence stems from the knowledge that the gossip would

infect the remaining members.
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Chapter 5

Discussion and Conclusions

5.1 Discussion

The interaction protocol and the model presented is a first step towards a solution that
can support applications in the emerging systems described earlier. Understanding
what this step accomplished will help define what lies beyond it.

The protocol allowed asynchronous interactions to be consistent with some guar-
antees. The upfront guarantees ensured that this consistency would be achieved in
waves of neighborhoods. But, the present mechanism doesn’t yet handle the dynam-
ics of view updates in real systems. Scenarios exist where a view change can get
subdued by a more “powerful” view. Thrashing can lead to a system that swings
between views. Also, the consistency mechanism needs to accommodate issues such
as multiple conflicting initiators, updates frequency exceeding the consistency attain-
ment delay. Though node availability has be out of scope, it needs to be worked
into this mechanism in a real world system. While conjecture suggests that avail-
ability may not be a showstopper considering the ad-hoc nature of the mechanism,
experiments need to be conducted to characterize availability’s effect. Additionally
classic protocol issues like medium induced delays, out of sequence message delivery
and such need to be consisdered. These need not necessarily be handled by the con-
sistency mechanism, as is the case in the present model. But their effect has to be
characterised and the cost of being protected from these issues by the communication
substrate needs to be quantified.

The consistency maintenance mechanism depends on plain vanilla multicast. Such
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propagation is subject to noise in the form of local system disruptions, intermediate
local interests downgrading an information item’s importance and hence its spread by
intermediate elements. This however is not without a solution. Gossip middleware has
long recognized and offered various solutions to this problem. Only, the consistency
mechanism needs to use an appropriate gossiping scheme. Further, the effects of
gossiping on the consistency process needs to be better understood.

Application evolution as a result of maximum probability interactions is not ad-

dressed.

5.2 Conclusions

This thesis offers the interaction model as an approach to develop applications in
emerging systems. In this model, each element’s behavior is governed by local goals.
Each element mostly interacts within a defined neighborhood and these cascade into
the system functionality. Elements interact with one other using the proposed inter-

action protocol.

5.3 Future Work

Let us consider what lies beyond the basic protocol and model presented.

At its core, the interaction model uses a plain vanilla multicast scheme, simple
functionality specifications and a consistency mechanism to build its services. Each
of these can use improvements. A well chosen gossiping scheme can offer useful
characteristics to the protocol. The existing simple functionality specification needs
to make way for a more powerful and rich functionality composition model. A number
of open issues exist in the consistency model that have been mentioned in the previous
section. These have to be addressed for a real world consistency mechanism. Further,
the characteristics of consistency establishments need to be better understood. For

example, as long as the groups relevant to the functionality quickly synchronize, can
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the rest of the system stabilize slowly, potentially skipping a few intermediate stages?
Such observations can help fine tune the consistency mechanism and make it more
suited for the real world.

Beyond these foundational enhancements, the interaction model can be expanded
with several nice capabilities. Neighborhood has an important role in the model and
in the protocol. Application functionality is expected to leverage neighborhood and
the consistency mechanism uses it to establish a notion of consistency after any insta-
bility. Bringing in context sensitiveness makes all this exciting. A flexible definition
of neighborhood based on the contextual environment can potentially accommodate
dynamic populations (in size, relationships or roles). This is a very powerful con-
cept leveraging the advantages of neighborhood interactions and available contextual
information that can describe other elements and the system.

As discussed earlier, complex systems are better defined in terms of the individual
component goals and their interdependencies. With neighborhood interactions and
a sufficiently diverse mix of elements, these individual pieces of functionality will
eventually converge to create the desired system wide behavior. This flexibility in
emergence of system behavior allows an application to rapidly adapt to changing
environments and fulfil its objectives. This purposeful relaxation of the desired system
wide behavior and the paths taken to achieve the goals has been one of the corner
stones of the model. Taking it forward, the goals can potentially be “infinite” goals-
they will never be completely fulfilled; this gap in the fulfillment of the goals defines
the system lifecycle. Mutual goal satisfactions incrementally drive the system forward
only to be brought to some state in a given element’s lifecycle which causes it to be
reinitialized (restarted) causing the system to remain unsatisfied, but useful to the
users. But this approach means that goals should be amenable to reasoning and need
to be subject to sufficient validation safeguards both at definition and at composition
to achieve higher system goals. Theoretically, such systems can organically scale to

real world dynamics.
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In emerging systems the interpretation of guarantees itself is different from tradi-
tional systems. In many situations, qualified or probabilistic guarantees are sufficient.
Adjusting to such guarantees allows an application to offer functionality in situations
where none would have been possible. Though the model proposes such a mechanism,
the real protocol itself doesn’t offer a refined mechanism to query and argue about

the guarantees available with an interaction.
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