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Thesis Director: Professor Manish Parashar

Dynamic Structured Adaptive Mesh Refinement (SAMR) techniques for solving par-
tial differential equations provide a means for concentrating computational effort to
appropriate regions in the computational domain. Parallel implementations of these
techniques typically partition the adaptive heterogeneous grid hierarchy across avail-
able processors, and each processor operates on its local portions of this domain
in parallel. However, configuring and managing the execution of these applications
presents significant challenges in resource allocation, data-distribution and load bal-
ancing, communication and coordination, and runtime management. Due to their
irregular load distributions and communication requirements across levels of the grid
hierarchy, parallel SAMR applications make extensive use of non-blocking MPI prim-
itives to reduce synchronization overheads.

The behavior and performance of MPI non-blocking message passing operations
are particularly sensitive to implementation specifics as they are heavily dependant
on available system resources. As a result, naive use of these operations without
an understanding of architectural constraints and the underlying MPI implementa-

tion can result in serious performance degradations, often producing synchronous
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behaviors. We believe that an efficient and scalable use of MPI non-blocking commu-
nication primitives requires an understanding of their implementation on the specific
architecture and its implication on application performance.

Specifically this thesis makes the following contributions:

e [t investigates and understands the behavior of non-blocking communication
primitives provided by popular MPI implementations on Linux and IBM SP2
clusters, and proposes usage strategies for these primitives than can reduce

processor synchronization and optimize SAMR application performance.

e [t proposes a design for multi-threaded communication algorithms for future ar-
chitectures like IBM Blue Gene/L which use separate hardware for computation

and communication
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Chapter 1

Introduction

Ever since the invention of the computer, users have demanded more and more compu-
tational power to tackle increasingly complex problems. In particular, the numerical
simulation of scientific and engineering problems creates an insatiable demand for
computational resources, as researchers seek to solve larger problems with greater
accuracy and in a shorter time. An example of such a problem are applications that
use Structured Adaptive Mesh Refinement (SAMR) techniques for solving partial dif-
ferential equations [1]. These methods (based on finite differences) start with a base
coarse grid with minimum acceptable resolution that covers the entire computational
domain. As the solution progresses, regions in the domain requiring additional res-
olution are tagged and finer grids are laid over these tagged regions of the coarse
grid. The accuracy of these techniques is determined by the resolution that can be
obtained on finer grids and the amount of computing power available to complete the
calculations in a timely manner.

A common means of increasing the amount of computational power available for
solving a problem is to use parallel computing. A parallel computer consists of two
or more independent processors connected by some form of communication network.
If a problem can be sub-divided into n smaller problems, a parallel program can be
written to concurrently solve those sub-problems on n different processors. Ideally
this would take 1/n'* of the time that would be required to solve the same problem
using one processor. But this is rarely the case for two main reasons. Firstly, many
problems contain significant amounts of computation that cannot be parallelized eas-
ily at all. Secondly, many problems require significant amounts of communication
and synchronization between sub-problems, which can introduce long delays.

There are a number of different methodologies that can be used to create parallel



programs that run on parallel computers [4]. Two of the most fundamental method-
ologies are closely associated with the main parallel computer architectures that are
available. The first is shared memory programming for tightly coupled shared-memory
multiprocessors which use a single address space. Systems based on this concept al-
low processor communication through variables stored in a shared address space. The
second major methodology for parallel programming, one which we will be concen-
trating on in this thesis, employs a scheme by which each processor has its own local
memory. In such distributed-memory multiprocessor systems (also called clusters);
processors communicate by explicitly copying data from one processor’s memory to
another using message passing.

The message passing programming model has gained wide use for developing high
performance parallel and distributed applications. In this model, processes explic-
itly pass messages to exchange information. As a result, it is naturally suited to
multi-computer systems without shared address spaces. Communications can be syn-
chronous (a send (receive) operation completes only when a matching receive (send) is
executed) or asynchronous (send and receive operations can complete independently).
The latter communication semantics are particularly useful for overlapping communi-
cation and computations, hiding latencies and supporting applications with irregular
loads and communication patterns. Higher level message passing operations support
barriers, many-to-one and many-to-many communications and reductions.

The Message Passing Interface (MPI) - a library of functions (in C) or subrou-
tines (in Fortran) that you insert into source code to perform data communication
between processes - has evolved as the de-facto message passing standard for sup-
porting portable parallel applications. Commercial as well as public-domain imple-
mentations of the MPI specification proposed by the MPI Forum [14] are available
for most existing parallel platforms including clusters of networked workstations run-
ning general purpose operating systems (e.g. Linux, Windows) and high-performance

systems such as IBM SP, SGI Power Challenge and CRAY T3E.

An important design goal of the MPI standard is to allow implementations on



machines with varying characteristics. For example, rather than specifying how op-
erations take place, the MPI standard only specifies what operations do logically.
Consequently, MPI can be easily implemented on systems that buffer messages at the
sender, receiver, or do no buffering at all. It is typically left to the vendors to imple-
ment MPI operations in the most efficient way as long as their behavior conforms to
the standards. As a result of this, MPI implementations on different machines often
have varying performance characteristics that are highly dependant on factors such as
implementation design, available hardware/operating system support and the sizes
of the system buffers used. Consequently, the performance of an MPI call usually
depends on how it is actually implemented on the system.

The behavior and performance of MPI non-blocking message passing operations
are particularly sensitive to implementation specifics as they are heavily dependant
on available system level buffers and other resources. As a result, naive use of these
operations without an understanding of the underlying implementation can result in
serious performance degradations, often producing synchronous behaviors. For ex-
ample, in [I1] White et al describe experiments that illustrate the degree to which
asynchronous communication primitives in popular MPI implementations support
overlap on different parallel architectures, and the degree to which programming for
overlap using these primitives can improve actual application performance. They
also enumerate environment variables that improve the performance of the MPI im-
plementation on these systems. However, as they acknowledge in their paper, these

solutions fail for larger numbers of processes and for large message sizes.

1.1 Contributions

This thesis proposes that in order to efficiently develop (or port) a salable parallel
application on a particular distributed memory architecture, it is necessary to have
a thorough understanding of the behavior of the MPI primitives offered by its MPI
implementation, available system level buffers, and other hardware constraints.

We investigate the behavior of non-blocking point to point communication primi-

tives provided by two popular MPI implementations: the public domain MPICH [15]



implementation on a Linux cluster, and the proprietary IBM implementation on an
IBM SP2 [10], and show how the same MPI calls offered by these two implementa-
tions differ in semantics. We then propose implementation specific usage strategies
for these primitives than can reduce processor synchronization and optimize appli-
cation performance, and use the proposed strategies to optimize the performance of
scientific/engineering simulations using finite difference methods on structured adap-
tive meshes [1]. Finally, we propose a design for an independant multi-threaded

communication engine for future architectures like IBM Blue Gene/L.

1.2 Organization

The thesis is organized as follows. Chapter [1/is the introduction. Chapter 2 explains
the operation of generic non-blocking MPI message passing primitives. Chapter |3
investigates the performance characteristics of the MPICH implementation of non-
blocking MPI calls on a Linux-based Beowulf cluster, and the IBM implementation
of these calls on the IBM SP2 System. This section also presents usage strategies to
optimize communication performance for each of these implementations. Chapter 4
evaluates the proposed strategies by applying them to optimize SAMR applications.
Chapter 5/ presents a design for a multi-threaded communication engine on archi-
tectures like IBM Blue gene/L which offer parallel hardware. Chapter 6/ presents a

summary of this thesis and comments on the future work.



Chapter 2
Message Passing in MPI

2.1 Overview of point to point communication

The elementary communication operation in MPI is point to point communication,
that is, direct communication between two processors, one of which sends and the
other receives. Point to point communication in MPI is "two-sided”, meaning that
both an explicit send and an explicit receive are required. In a generic send or
receive, a message consisting of some block of data is transferred between processors.
A message consists of an envelope, indicating the source and destination processors,
and a body, containing the actual data to be sent. MPI uses three pieces of information

to characterize the message body in a flexible way:

1. Buffer* - the starting location in memory where outgoing data is to be found

(for a send) or incoming data is to be stored (for a receive).

2. Datatype - the type of data to be sent. In the simplest cases this is an el-
ementary type such as float/REAL, int/INTEGER, etc. In more advanced

applications this can be a user-defined type built from the basic types.
3. Count - the number of items of type datatype to be sent.

MPT specifies a variety of communication modes [14] that define the procedure
used to transmit the message, as well as a set of criteria for determining when the
communication event (i.e., a particular send or receive) is complete. For example,
a synchronous send is defined to be complete when receipt of the message at its
destination has been acknowledged. A buffered or asynchronous send, however, is
complete when the outgoing data has been copied to a (local) buffer; nothing is

implied about the arrival of the message at its destination. In all cases, completion



of a send implies that it is safe to overwrite the memory areas where the data were

originally stored. The four communications modes available are:
e Standard
e Synchronous
e Buffered or Asynchronous
e Ready

In addition to the communication mode used, a send or receive may be blocking or
non-blocking. A blocking send or receive does not return from the subroutine call until
the operation has actually completed. Thus it ensures that the relevant completion
criteria have been satisfied before the calling process is allowed to proceed. On the
other hand, a non-blocking send or receive returns immediately, with no information
about whether the completion criteria have been satisfied. This has the advantage
that the processor is free to do other things while the communication proceeds ”in
the background”.

The standard communication mode is MPI’s general-purpose send mode. The
other send modes, discussed above, are useful in special circumstances, but none
have the general utility of standard mode. The vendor is free to implement the
standard mode as asynchronous or synchronous depending on the message size and
resource availability. Consequently, most parallel applications use the standard mode
of communication. Also, all of these modes are mainly used to ensure correctness in
a program; however, they can be treated the same if we base them on performance
characteristics alone [7]. Thus, it turns out that the results obtained from modelling
the standard mode sends/receives can be extended to other send /receive protocols as

well.

2.2 Asynchronous non-blocking MPI communication

Use of asynchronous non-blocking MPI communication to overlap communication

with computation is a primary strategy to improve parallel program performance.
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Figure 2.1: Schematic of a generic implementation of MPI non-blocking communica-
tions.
When MPI executes a standard mode send, one of two things happens. Either the
message is copied into an MPI internal buffer and transferred asynchronously to the
destination process (called asynchronous or buffered send) or both the source and
destination processes synchronize on the message (called synchronous or unbuffered
send). The MPI implementation is free to choose between buffering and synchroniz-
ing, depending on message size and resource availability. Most MPI vendors, however,
use a scheme by which a standard send is asynchronous in nature up to a certain mes-
sage size and then switches to synchronous mode for very long messages.

The generic operation of a non-blocking MPI communication is illustrated in Fig-
ure 2.1 as a "three step” process. This reflects the typical scenario as prescribed by
parallel programming texts [16][5].

In the first step, process 0 (sender) posts a non-blocking send call (MPI_Isend)



which initiates the asynchronous send operation. Process 1 (receiver) posts a match-
ing non-blocking receive (MPI_Irecv). Next, both processors can proceed with exe-
cutions unrelated to the message being passed. Meanwhile, the communication sub-
system delivers the message from process 0 to process 1. Finally, in step 3, both
processors test (MPI_Test) or wait for (MPI_Wait) the completion of their respective
send and receive operations.

As illustrated in Figure 2.1, the implementation of the non-blocking communica-
tion uses system and/or application buffers at the sender and the receiver. When the
send is initiated, the message is copied into an internal MPI buffer at the sender. The
communication subsystem then asynchronously transfers the message from the buffer
at the sender to a buffer at the receiver. The MPI standard specifies that an asyn-
chronous send operation completes as soon as the message is copied into the internal
buffer, while the corresponding receive operation completes when the buffer allocated
for the operation receives the data. This allows the sender and receiver operations to
be decoupled, allowing computation and communication to be overlapped. However,
this decoupling is strictly limited by the size of the buffers available to copy the mes-
sage. MPI implementations typically switch to a synchronous communication mode
when the message size exceeds the available buffer size, where the sender waits for
an acknowledgement from the receive side before sending out the data. However the
exact thresholds and mechanisms of this synchronization are implementation depen-
dent. As a result, fully exploiting the benefits of MPI’s non-blocking communications

requires an understanding of its implementations on the specific platform.



Chapter 3

Understanding the Behavior and Performance of
Non-blocking MPI Communications

In this chapter we experimentally investigate the behavior and performance of non-
blocking MPI communications provided by two popular MPI implementations: MPICH
version 1.2.5, release date January 6, 2003 on a Beowulf cluster, and IBM MPI ver-
sion 3 release 2, on the IBM SP2. The structure of the test kernel used for these

experiments is illustrated in Figure [3.1.

3.1 Test Kernel

In this kernel the sending process (process 0) issues MPI Isend (IS) at time-step TO
to initiate a non-blocking send operation. At the same time, the receiving process
(process 1) posts a matching MPI_Irecv (IR) call. Both processes then execute unre-
lated computation before executing an MPI_Wait call at T3 to wait for completion of
the communication. In the following discussion we denote MPI_Wait posted on the
send side as Ws and the MPI_Wait posted on the receive side as Wr. The processes
synchronize at the beginning of the kernel and use deterministic offsets to vary values
of TO, T1, T2 and T3 at each process.

For each configuration (value of TO, T1, T2 and T3 at each process) we conducted
a number of experiments varying the message size, system buffer size and number of
messages exchanged. Finally we ran the experiments with both processes exchanging
messages (each posts a send operation to the other). The objectives of these exper-
iments included determining thresholds at which the non-blocking calls synchronize,

the semantics of synchronization once this threshold is reached, and possibility of
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Figure 3.1: Operation of the test kernel used in the experimental investigation.

deadlocks due to synchronization. The results of these tests using the two MPI im-
plementations are summarized and discussed in the rest of this section. Optimization

strategies for each of these implementations are also presented.

3.2 MPICH on a Linux Beowulf Cluster

The first MPI implementation analyzed is MPICH version 1.2.5, release date January
6, 2003 [15] on Frea, a 64 node Linux Beowulf SMP cluster at Rutgers University.
Each node of cluster has a 1.7 GHz Pentium 4 processor with 512 MB main memory.
The nodes are connected using 100 MBPS switched TCP/IP interconnects. The
MPICH profiling tool Upshot [§] is used for the profiles and timing graphs presented

below.

3.2.1 Behavior of Non-Blocking Primitives

Our first experiment investigates the effect of message size on non-blocking commu-
nication semantics. In this experiment the value of T0 - T3 are approximately the
same on the two processes, and the message size was varied. The system buffer size

was maintained at the default value of 16K. For smaller message sizes (1KB), we
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Figure 3.2: Profile of the test on MPICH where process 0 (top) sends a 1 KB message
to process 1 (bottom).

e k]

R 18 blocks until process 1 posts Wr We

Figure 3.3: Profile of the test on MPICH where process 0 (top) sends a 60 KB message
to process 1 (bottom).

observe the expected non-blocking semantics. As seen in the Upshot plots in Figure
3.2, IS and IR return without blocking. Furthermore, Ws and Wr, posted after local
computations, return almost immediately, indicating that the message was delivered
during the computation.

However, for message sizes greater than or equal to 60 KB, it is observed that
IS blocks and returns only when the receiver process posts Wr. This behavior is
illustrated in Figure 3.3 We can further see from the Figure that Wr blocks until
the message delivery completes. Note that this threshold is dependent on the system
buffer size as discussed below. We repeated the experiments using MPI buffered com-
munication modes (MPI_Ibsend) with user defined buffers. The results demonstrated
the same blocking behavior for larger messages as shown in Figure [3.4.

To further understand the synchronizing behavior of MPI Isend for large mes-
sage sizes, we modified our experiment to post a matching MPI_Test (a non-blocking
variant of MPI_Wait) on the receiver side (i.e. process 1) in the middle of the com-

putation phase. As shown in Figure 3.5, in this case MPI Isend returns as soon as
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Figure 3.4: Profile of the test on MPICH in which buffered mode send is used.
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Figure 3.5: Profile of the test on MPICH in which process 1 (bottom) posts an
intermediate MPI _Test

MPI_Test is posted. It was also seen that the Wr posted after computation returns
almost immediately, indicating that the message was already delivered during the
computation. This indicates that MPI_Isend blocks for large messages until the com-
pletion of the corresponding MPI Irecv is checked using either blocking (MPI_Wait)
or non-blocking (MPI_Test).

Note that, as the MPI implementation optimizes the number of messages sent to a
single destination, the message size threshold is cumulative. That is, in the above case
MPI Isend switches to blocking semantics when the cumulative size of outstanding
messages to a particular process is 60KB. For example, when we repeated the test
using 3 sends of size 20KB each (instead of one of size 60KB), the same non-blocking
behavior was observed.

The blocking behavior of non-blocking sends in the case of large message sizes can
potentially lead to deadlocks. This may happen if two processes simultaneously send
large messages to each other using MPI_Isend and block. The experiment plotted in

Figure evaluates this case. The Figure shows that process 1 initially blocks but
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IS on process 1 times out 1S on process 0 blocks until
process 1 posts Wr

Figure 3.6: Profile of the test on MPICH in which both processes post MPI_Isend.
Message size is 60Kb.

then returns after a certain time instead of waiting for process 0 to post a Wr. Process
0 however blocks until Wr is posted on process 1. This behavior seems to indicate
a time out mechanism to ensure progress. However, which of the two processes will
timeout is not deterministic.

The key factor affecting the message threshold that causes the non-blocking send
to switch to blocking semantics is the size of the system socket buffer. In the case
of the Frea Beowulf cluster, default TCP socket buffer size is 16KB. This can be
increased by either using the environment variable P4 SOCKBUFSIZE or using the
command line option -p4dsctrl bufsize=jsize;. We repeated the experiments using
messages of size 60KB but increasing the TCP socket buffer size. We observed that
for a TCP socket buffer size of 64KB, IS did not block.

3.2.2 Analysis and Discussion

To try to understand the behavior of the MPICH non-blocking communication pre-
sented above let us consider its implementation. MPICH has a layered software
architecture [6] consisting of (a) a high level MPI API layer (b) a middle Abstract
Device Interface (ADI) layer and, (c) a Device layer. The Device layer provides a
small set of core message passing routines, which are used by the higher layers to
implement the MPI specification. The Frea Beowulf cluster uses the P4 device [2] as
the Device layer, which defines three protocols to send messages based on the message
size: short, eager (long) and rendezvous (very long).

In the case of relatively short messages, for example 1KB, MPICH can copy the



14

message directly into the system socket buffer and thus send the message out onto the
network using the eager protocol, allowing MPI_Isend to return immediately. By the
time MPI_Wait (Wr) is posted on the receiving processor, the network has delivered
the message. As a result, both Ws and Wr take minimal time to return.

In the case of larger messages (e.g. 60KB), the system socket buffer is not large
enough to accommodate the message and MPICH cannot directly copy the message
into the buffer. Instead, it switches to the rendezvous protocol, which requires the
sending process to synchronize with the receiving process before the message is sent
out. As a result MPI Isend, which should return immediately irrespective of the
completion mode, now has to wait for the corresponding Wr. An inspection of the
MPICH source code confirmed this behavior - when MPI_Isend cannot buffer the mes-
sage using the system buffers, it switches to the P4 routine called by its synchronous
counterpart MPI_Send, which blocks at the device layer waiting for an acknowledge-
ment from the receiver. This is the reason why in Figure 3.3, MPI_Isend at process
0 blocks until MPI_Wait is posted on processor 1. The MPI_Wait completion time
in this Figure is the time taken for message delivery. Similarly, when a matching
MPI Test is posted at the receiver process, it essentially sends an acknowledgement
back to the sender which caused the blocked MPI Isend to return. When the TCP/IP
socket buffer size is increased to 64KB, MPICH can copy the 60 KB message directly
into the socket buffer and use the eager protocol allowing the MPI Isend call to re-
turn without blocking. Finally, due to MPICH optimizations, the blocking behavior
of MPI Isend depends on the system socket buffer and the cumulative size of the

outstanding messages rather than the actual number of messages sent.

3.2.3 Optimization Strategies for Non-blocking communica-

tions in MPICH

Message sizes in most real world applications are typically of order of hundreds of
kilobytes. As a result, a naive use of non-blocking communications that does not take
the blocking behavior of the MPI_Isend implementation into account can result in un-

expected program behavior and a significant degradation of application performance.
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For o= to munber_of messages to receive|
MPI IRECV (m, recv msa@id m)

J
“4COMPUTE**

For v=1 to number of messages to send|
MPI ISEND (u, send_msaud n)
MFPT WAIT (send_msgid n)

]
#**COMPUTE***
MPI WATTALL {recv msgid *)

Figure 3.7: Example of a non-blocking implementation on MPICH

While the developer may stagger sends and receives to overlap computation with com-
munication expecting the MPI _Isend to return immediately and provide asynchronous
communication semantics, the send operations would block. This is especially true for
applications that have irregular communication patterns (e.g. adaptive mesh appli-
cations) and some load imbalance. Based on the analysis presented above we identify
two usage strategies to address the blocking behavior of MPI_Isend in MPICH. The
first strategy is obvious, increase the TCP socket buffer size. However this option is
not scalable. In MPICH, a process uses a separate socket for every other process and
therefore uses separate socket buffer for every other process. Hence, the total buffer
space grows with the number of processes. Further, every system imposes a hard
limit on the total socket buffer size. As a result this option has only limited benefits
and any further optimization must be achieved at the applications level.

It is clear from the analysis presented above that the only way to prevent MPI _Isend
from blocking is for the receiving process to return an acknowledgement using a
(blocking or non-blocking) test for completion call. Our second strategy is to use
calls to the non-blocking test for completion (MPI_Test or its variant) on the receive
side to release a blocked sender. To illustrate this consider the code snippet (Figure

3.7) for a typical loose-synchronous application, for example, a finite-difference PDE
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For =1 to number of messages to receive{
MPI IRECV(in, recv_msaud 1)

}

***COMPUTE***

For n=1 to nunber of messages to_send{
MFI ISEND{n, send msgid n)

MPI WAIT(send msaid n)

}

MFI TESTALL(recv_msad *)

***COMPUTE***

MPI WAITALL(recv_msaid *)

Figure 3.8: Optimization of the non-blocking implementation on MPICH

"
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IS on process 1 times out and IS on PO blocks until P1 Wr
returmns posts Wr

Figure 3.9: Example of a non-blocking implementation on MPICH

solver using ghost communications. In this pseudo-code, each process posts non-
blocking receive calls before computing on its local region of the grid. After finishing
computation, it then sends its data to update the ghost regions of its neighboring
processors. This is done using the MPI_Isend/MPI_Wait pair. The process may do
some further local computation and then finally waits to updates it own ghost re-
gions, possibly using an MPI_Waitall. In this case, if the message size is greater than
60KB the MPI_Isend will block until the corresponding MPI_Waitall is called on the
receiving process. This is shown in Figure 3.9. If we now insert an intermediate
MPI Testall call as shown in Figure 3.8, the MPI Isend returns as soon as the receiver
posts the test (see Figure 3.10). While the MPI_Testall call does have a cost, in our

experience this cost is small compared to the performance gain.



17

Harlzonist Zaon I Out | Veical Zoom In lCtul Dﬂti]ElllZl.‘llml | j Print | el | l Oosi
d WalT

B vecv [ SEN0 N TEST [ ]

S i
a )

—

IS on PO retums as 200n as
P1 posts MPT_TEST

Figure 3.10: Optimization of the non-blocking implementation on MPICH.

3.3 The Parallel Operating Environment (POE) on IBM SP2

The second MPI implementation analyzed is the IBM native implementation (version
3 release 2) [10] on the IBM SP2, BlueHorizon, at the San Diego Supercomputing
Center. Blue Horizon is a teraflop-scale Power3 based clustered SMP system at the
San Diego Supercomputing Center. The machine consists of 1152 processors arranged
as 144 8-way SMP compute nodes running AIX, each having 512 GB of main memory.

The nodes are connected via a proprietary switched interconnect.

3.3.1 Behavior of Non-Blocking Primitives

Once again, our first experiment investigates the effect of message size on non-blocking
communication semantics. As in the case of MPICH, in this experiment the value
of TO - T3 are approximately the same on the two processes, and the message size
was varied. The system buffer size was maintained at the default value. For smaller
message sizes (1KB), we observe the expected non-blocking semantics. As seen in
Figure 3.11, IS and IR return immediately. Furthermore, Ws and Wr posted after
local computations also return almost immediately, indicating that the message was
delivered during the computation. This behavior is also true for larger messages sizes
(greater than or equal to 100 KB), i.e. the IBM MPI Isend implementation continues
to return immediately as per the MPI specification, and Ws and Wr take minimal
time (of the order of microseconds) to return.

To further understand the effect of increasing message size on the behavior of non-

blocking communications in the IBM MPI, we moved Ws to T1, i.e. directly after
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Figure 3.11: Profile of the test on SP2 where Ws and Wr are posted at the same
time-step.
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Figure 3.12: Profile of the test on SP2 where Ws and Wr are posted at different
time-steps.

W oon PO returns as soon
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Figure 3.13: Profile of the test on SP2 showing the completion semantics of Ws.
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the send to simulate the situation where one might want to reuse the send buffer.
Wr remained at T3. In this case, the non-blocking behavior remained unchanged for
small messages. However, for message sizes greater than or equal to 100KB, it was
observed that Ws blocked until Wr was posted by the receiver at T3. This behavior
is illustrated in Figure [3.12.

We now modify the experiment so that the two processes exchange messages. As
shown in Figure 3.13, both processors post IS and IR at T0. Process 0 posts Ws at
T1 while process 1 posts Ws at T2. Both processes then post Wr at T3. The message
size is kept at 100KB. This test illustrates an interesting behavior. As seen in Figure
3.13, Ws posted at T1 on process 0 blocks. However, instead of waiting for Wr to be

posted at T3, it returns as soon as process 1 posts Ws at T2.

3.3.2 Analysis and Discussion

The SP2 parallel environment imposes a limit (called the eager limit) on the total
message size that can be sent out asynchronously. This limit is directly dependant on
the size of the memory that MPI uses and the number of processes in the execution
environment [10]. For message sizes less than this eager limit, the messages are sent
asynchronously. When message sizes exceed the eager limit, the IBM MPI implemen-
tation switches to a synchronous mode. However, in this case, it is the Ws call that
blocks until an acknowledgement is received from the receiver process. Consequently
in the experiment about, Ws blocks until Wr is posted at the receiving process. The
analysis above also shows that the synchronization call on the receive side need not
be a matching wait. In fact the receiver may post any call to MPI_Wait (or any of

its variants) to complete the required synchronization.
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For n=1 to number _of messages to_receive{
MET IRECYV (n, msgid_n)

]

.‘:.‘:.‘:{:W:}h_]}l’l’_'l":[‘F!:.‘:.‘:

For n=1 to number of messages to_send{
MPL ISEND (n, send msgid n)
NPT WAIT (send msgid n)

)
MPI WAITALL (recv_msad_*)

Figure 3.14: Example of a non-blocking implementation on SP2.

3.3.3 Optimizations Strategies for Non-blocking Communi-

cations in the IBM POE

It is clear from the analysis above that the time spent waiting for the processes to
synchronize, rather than network latency, is the major source of the communica-
tion overheads. Once again, this problem is particularly significant in applications
where the communications are not completely synchronized (regular) and there is
some load imbalance. The POE users’ guide [9] specifies the environment variable,
MP_EAGER_LIMIT, which defines the size of MPI messages that can be sent asyn-
chronously. However, trying to increase this limit is not a scalable solution. This
is because MP_EAGER_LIMIT is directly related to another environment variable,
MP_BUFFER_-MEM, which is the size of memory that MPI uses. As the number of
processes increase, trying to increase MP_EAGER_LIMIT simply reduces the amount
of memory available to the application.

A more scalable strategy is to address this at the application level by appropriating
positioning IS, IR, Ws and Wr calls. The basic strategy consists of delaying Ws until
after Wr and is illustrated in Figures3.14'and 3.15. To illustrate the strategy, consider
a scenario in which two processes use this template to exchange 3 messages each. Let

IR1, IR2 and IR3 denote the MPI_Irecv calls, IS1, IS2 and IS3 denote the MPI_Isend
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For n=1 to number of messages to receive{

MFI IRECVY (n, msaid_n)

****(_:OBEUTE****

For n=1 to number of messages to_send{
MFPI ISEND (n, send msgid n)

MPI WAITALL (reev_msaid * + send msgid *)

Figure 3.15: Optimization of the non-blocking implementation on SP2.

calls and Wsl, Ws2, Ws3, Wrl, Wr2 and Wr3 denote the MPI_Wait calls. Wall
denotes a MPI_Waitall call. As before, we split the execution sequence into steps T0
- T3.

Let both processes post IR1, IR2 and IR3 at TO. Assume that, due to load
imbalance, process 0 computes until T2 while process 1 computes only until T1. Let
the time taken by each MPI Isend call to return be denoted by ts. As observed in the
tests above, Wsl posted on process 1 at T1+ts will block until process 0 posts Wsl at
T2+ts. Only after Wsl returns can process 1 proceed with its send loop. Let the time
taken by each of Ws2, Ws3 and Wall be denoted by tw and the cumulative message
passing latency be p. The equation for the time taken for process 1 to complete
execution is thus T2+2*(ts+tw)+tw+p. For large numbers of messages, this value
can become significant. Consequently, to minimize the blocking overhead due to Wsl
on process 1 we must move it as close to T2 as possible.

If we now remove Ws from the send loop and post a collective MPI_Waitall as
shown in Figure 3.15, we observe that since Ws is moved out of the loop, process 1
goes ahead and posts all of its non-blocking sends. Also, by the time its reaches T2,
it has already posted IS0, IS1 and IS2 and is waiting on Wall (assuming that the time
interval T2-T1 is sufficient to post all the non-blocking sends, followed by Wall). The

time taken by process 1 to finish execution in this case is just T2+p.
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Chapter 4

Evaluation of communication performance in

SAMR Applications

This chapter evaluates the optimization strategies proposed in chapter 3/ by applying
them to the the Grid Adaptive Computational Engine (GrACE) [18][17] framework,
a toolkit for developing parallel SAMR applications. The rest of this chapter is or-
ganized as follows: Section 4.1 provides an overview of Structured Adaptive Mesh
Refinement techniques for solving partial differential equations. Section 4.2 enumer-
ates typical communication requirements in parallel SAMR applications. In section
4.3l we briefly describe the GrACE framework. Finally, in section /4.4, we integrate
our optimization strategies within the GrACE framework and evaluate performance

improvements using the RM3D SAMR application kernel [3].

4.1 SAMR Overview

Dr. Marsha Berger developed a formulation of the adaptive mesh refinement strategy
for structured meshes [1] based on the notion of multiple, independently solvable grids,
all of which were of identical type, but of different size and shape. The underlying
premise of the strategy is that all the grids for any resolution that cover a problem
domain are equivalent in the sense that given proper boundary information, they can
be solved independently by identical means.

Dynamic Structured Adaptive Mesh Refinement (SAMR) techniques [1] for solving
partial differential equations (PDE) provide a means for concentrating computational
effort to appropriate regions in the computational domain. The numerical solution to
a PDE is obtained by discretizing the problem domain and computing an approximate

solution to the PDE at the discrete points. These methods (based on finite differences)
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Figure 4.1: Grid Hierarchy.

start with a base coarse grid with minimum acceptable resolution that covers the
entire computational domain. As the solution progresses, regions in the domain
requiring additional resolution are tagged and finer grids are laid over these tagged
regions of the coarse grid. Refinement proceeds recursively so that regions on the finer
grid requiring more resolution are similarly tagged and even finer grids are overlaid
on these regions. The resulting grid structure is a dynamic adaptive grid hierarchy
as shown in Figure 4.1.

Berger’s AMR scheme employs the nested hierarchy of the grids to cover the ap-
propriate sub-domain at each level by the appropriate time step, then recursively
advancing the next finer level by the appropriate time step, then recursively advanc-
ing the next finer level by enough iterations at its (smaller) time step to reach the
same physical time as that of the newest solution of the current level. That is, the
integrations at each level are recursively interleaved between the iterations at coarser
levels. Thus, the Berger AMR approach refines in space and if the refinement factor
between the finer level (14-1) and the next coarser level is r, then grids on the finer level
(14-1) will be advanced r time steps for every coarser time step. For a d dimensional
domain, the grids at level (14+1) must cover the same portion of the computational

domain as only 1/r¢ coarser cells at level 1. For example, using a refinement factor of
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2 on a three dimensional domain, 2 iterations at level 1 will take more computation
time that an iteration at the root level (which comprises the entire computational

domain) unless the grids at level 1 cover no more that 1/8 of the domain.

4.2 Communication Requirements of Parallel SAMR Appli-

cations

In an SAMR formulation, the grid hierarchy is refined both in space and in time.
Refinements in the space create finer level grids which have more grid points/cells
than their parents. Refinement in time means that finer grids take smaller time
steps and hence have to be advanced more often. As a result, finer grids not only
have greater computational loads but also have to be integrated and synchronized
more often. This results in space and time heterogeneity in the SAMR adaptive grid
hierarchy. furthermore, regridding occurs at regular intervals at each level and results
in refined regions being created, moved and deleted. Together, these characteristics
of SAMR applications makes their efficient implementation a significant challenge.

Parallel implementations of hierarchical SAMR applications typically partition the
adaptive heterogeneous grid hierarchy across available processors, and each processor
operates on its local portions of this domain in parallel [13][18]. Each processor starts
at the coarsest level, integrates the patches at this level and performs intra-level or
ghost communications to update the boundaries of the patches. It then recursively
operates on the finer grids using the refined time steps - i.e. for each step on a
parent grid, there are multiple steps (equal to the time refinement factor) on the
child grid. when the parent and child grid are at the same physical time, inter-
level communications are used to inject the information from the child to its parent.
Dynamic re-partitioning and re-distribution is typically required after this step.

The overall performance of parallel SAMR applications is limited by the ability
to partition the underlying grid hierarchies at runtime to expose all inherent paral-
lelism, minimize communication and synchronization overheads, and balance load. A

critical requirement of the load partitioner is to maintain logical locality across the
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partitions at different levels of hierarchy and the same level when they are decom-
posed and mapped across processors. The maintenance of locality minimizes the total

communication and synchronization overheads.

4.2.1 Communication overheads in parallel SAMR applica-

tions

The communication overheads of parallel SAMR applications primarily consist of 3

components:

1. Inter-level communications defined between component grids at different levels
of the grid hierarchy and consist of prolongations (coarse to fine transfer and

interpolation) and restrictions (fine to coarse transfer and interpolation).

2. Intra-level communications required to update the grid elements along the
boundaries of local portions of a distributed grid, consists of near-neighbor ex-
changes. These communications can be scheduled so as to be overlapped with

computations on the interior region.

3. Synchronization cost, which occurs when the load is not well balanced among all
processors. These costs may occur at any time step and at any refinement level

due to the hierarchical refinement of space and time in SAMR applications.

Clearly, an optimal partitioning of the SAMR, grid hierarchy and scalable implemen-
tations of SAMR applications requires careful consideration of the synchronization

costs incurred while performing intra and inter level communications.

4.3 Grid Adaptive Computational Engine

The Grid Adaptive Computational Engine (GrACE) infrastructure at Rutgers Uni-
versity is an approach to distributing AMR grid hierarchies. GrACE is an object
oriented tool kit for the development of parallel SAMR applications. It is built on
a "semantically specialized” distributed shared memory substrate that implements a

hierarchical distributed dynamic array (HDDA) [18].
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Flnitiate all non-blocking receives before hand’/
LOOP
MPI_Irecv();
END LOOP
for each data operation {
for all neighboring processors {
Pack local boundary values
"Send boundary values®/

MPI_lsend();
"Wait for completion of my sends”/
MPI_wait();
Free the corresponding send buffer
¥
"Wait for completion of all my receives®/
MPI1_Waitall{);
Unpack received data
¥
P COMPUTATION CONTINUES ™™™
¥

Figure 4.2: Intra-level Communication model in a parallel SAMR application frame-
work.

Due to irregular load distributions and communication requirements across levels
of the grid hierarchy in parallel SAMR applications, GrACE makes extensive use
of non-blocking MPI primitives to reduce synchronization overheads. For example,
intra-level communications can be scheduled so as to be overlapped with computations

on the interior region.

4.3.1 Intra-level communication model

A typical model of the intra-level communication implemented by GrACE is illus-
trated in Figure 4.2.

In this implementation, each processor maintains local lists of all messages it has
to send and receive to/from its neighboring processors. As seen in Figure [4.2 each
process first posts non-blocking receives (MPI_Irecv). It then goes through its send
list, packs each message into a buffer and sends it using MPI_Isend. Typical message
sizes in these applications are in the order of hundreds of Kilobytes. Following each
MPI Isend, a corresponding MPI_Wait is posted to ensure completion of the send

operation so that the corresponding send buffer can be freed. Once all the sends are
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{

/*imtiate all non-blocking receives
before hand*/

LOOP

MPT Ivecv();

END LOOP

for each data operation{
for all neighbormg processors{

Pacl: local bounmy values

[*Send local boundary valnes*/

MPI_Isendi);

{*Wait for completion of my sends”/
DPT_Woait();

Free the corresponding send buffer

}
!*Wait for completion of all ny receives™/
MPT_Waatall();

TUnpaclk received data

¥
i

Figure 4.3: Staggered Sends - Optimizing SAMR Intra-level Communication for
MPICH.

completed, a MPI_Waitall is then posted to check completions of the receives. This
exchange is a typical ghost communication associated with parallel finite difference
PDE solvers as described in Chapter 3. Clearly, the optimizations proposed by us

Chapter 3 can be effective applied here to reduce the synchronization costs.

4.3.2 Optimizations

Figures 4.3 and 4.4/ illustrate optimizations to the intra-level message passing algo-
rithm in GrACE for Frea and Blue Horizon.

Staggered Sends on Frea - As discussed in Section 3.2.3, an efficient strategy - on
MPICH - to release a blocked MPI_Isend is for the receive side to post intermedi-

ate non-blocking calls to MPI_Test. Figure 4.3/ shows how the SAMR algorithm is
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{
[*mitate all non-blocking receives
before hand*/
LOOP
MPI Irecv();
END LOOP
for each data operation{
for all neighboring processors{
Pack local bounary values
{*Send local boundary values*®/
NPT Isend();

i
{*Wait for completion of all my receives®/
MPI_Waitall();

Tnpack received data

}

Figure 4.4: Delayed Waits - Optimizing SAMR Intra-level Communication for IBM
POE.
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optimized by interleaving an MPI_Test with each MPI _Isend that the ghost iterator
posts. (For further explanation refer 3.2.3)

Delayed Waits on Blue Horizon - We delayed the MPI_Wait call (that checks
completion of each MPI_Isend), originally inside the ghost iterator, to until after
the receives are completed (Figure 4.4). As discussed in Section [3.3.3] this allows the
sending side to post a larger number of MPI _Isends before being forced to synchronize.

Similar optimizations have been incorporated within the inter-level message pass-
ing algorithm. The next section discusses improvements in efficiency obtained by

these architecture specific optimizations.

4.4 Evaluation using the RM3D SAMR Kernel

To evaluate the impact of the proposed optimization strategies on application per-
formance we used the 3-D version of the compressible turbulence application kernel
(RM3D) which uses SAMR techniques to solve the Richtmyer-Meshkov instability [3].
The experiments consist of measuring the message passing and application execution
times for the RM3D application kernel before and after incorporating our optimiza-
tions strategies outlined in Chapter [3, on both Frea and Blue Horizon. Except for
the optimizations in the intra and inter level communication algorithms in GrACE,
all other application-specific and refinement-specific parameters are kept constant.
Both evaluations use 3 levels of factor 2 space-time refinements with regriding per-
formed every 8 time-steps at each level. The results of the evaluation for MPICH
on Frea for 16, 32 and 64 processors are shown in Figure 4.5. The figure compares
the original execution times and communication times of the application with the
ones obtained by optimizing the message passing algorithm. These runs used a base
grid size of 128%32*32 and executed 100 iterations. We observe that the reduction in
communication time is 27.32% on an average.

On the SP2 the evaluation run used a base grid size of 256*64*64 and executed
100 iterations. Figure 4.6 shows the comparisons of the execution times and commu-

nication times respectively for 64, 128 and 256 processors. In this case we observe
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that the reduction in communication time is 44.37% on the average.

Furthermore, it can be clearly seen from both the figures that the decrease in

execution time is primarily due to the decrease in message passing time.
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Chapter 5

Future work - Design of an independent
multi-threaded communication engine for parallel
hardware architectures

5.1 Introduction

AMR grids are inherently heterogeneous, varying in both resolution and extent and
can be moved, created and deleted on fly. SAMR applications offer multiple levels of
granularity and parallelism. Grids at the same level of refinement can be operated in
parallel. Similarly composite slices across all refinement levels (i.e. a parent grid and
all its children) can also be operated on in parallel. Finally, each grid can itself be
operated on in a data-parallel fashion. The SAMR algorithm requires that each grid
be periodically synchronized with its parents and its neighboring siblings requiring
communication at regular intervals. Clearly, there is a need for a runtime commu-
nication engine that can exploit these many levels and granularities of parallelism,
and efficiently manage and overlap the synchronizations and communications with
computations.

Multi-threading is an approach which can best exploit the parallelism inherent in
SAMR applications. The advantages of using threads are discussed in detail in a num-
ber of publications [21][12]. Among the obvious are the easy use of multiple processors
if available, latency hiding and cheap inter-thread (as opposed to inter-process) com-
munication and synchronization. In addition to this, the MPI specification is ”highly
parallelizable” itself, in the sense that communication operations are independent of
each other. This makes it natural to try performing computation and communication
in parallel, using all the concurrency that hardware can provide.

In order to design a reliable multi-threading algorithm it is necessary that the
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MPI implementation be thread safe. The IBM POE offers thread safe libraries for its
MPI calls while there have been a number of papers published towards designing a
thread-safe version of MPICH [21][12][19]. However, a major restricting factor while
using multi-threading to exploit inherent parallelism in current architectures like the
Beowulf and IBM SP2 discussed in Chapter3lis that a single processor is used to carry
out both communication and computation. This leads to a single process executing
user application as well as the MPI communication subsystem. Consequently, use of
multi-threading to exploit inherent parallelism in applications does not yield major
performance improvement on these architectures, even if the MPI implementation is
thread safe.

Future projects like the IBM Blue Gene/L supercomputer [20] being built at the
Lawrence Livermore Laboratory identify this performance bottleneck and are working
towards providing an architecture design in which each chip includes two processors:
one for computation and other for communication. This chapter presents a design of a
multi-threaded communication engine that can be plugged into the GrACE framework

to take advantage of the concurrent hardware provided by future parallel architectures

like Blue Gene/L.

5.2 Algorithm

The prototype of our algorithm has been implemented for intra-level ghost communi-
cations in SAMR applications using the POSIX threads library, and has been tested
for reliability on Linux. It has been designed such that it can be directly plugged
into the GrACE framework as a separate communication engine. Figure 5.1/ shows a
schematic of the prototype.

Immediately after MPI_Init is posted, the main thread spawns a separate thread
(called the communication thread) which handles all the MPI calls. Both threads
share a common data-structure called the Sync queue. The main thread proceeds with
the sequential program while the communication thread constantly polls the Sync
queue for work. When the main thread encounters a ghost synchronization call, it

enqueues the boundary parameters in the sync queue and immediately continues with



33

Comrm. Thread

Main Thread Seryice
ain Threa

aync Gueue 0 Synes
Il

Degueus

/"/:
Cﬂmpute ] SYHC ___/77

]
Engueus

/

bain Thread

Figure 5.1: Schematic of a multi-threaded algorithm for SAMR, applications

the the next program instruction (computation). Concurrently, the communication
thread dequeues the boundary parameters and executes the ghost iterator described
in Section 4.3.1/to carry out the boundary exchange. This algorithm exploits the fact
that composite slices of grids across different levels of refinement can be operated
upon in parallel. Hence, computation at a higher level can proceed concurrently with
ghost communication at a lower level.

Access to the Sync queue can be synchronized using a mutex lock, a semaphore or a
condition variable. However, while implementing a semaphore or a condition variable,
care should be taken to avoid conflict between the user interrupts used by the MPI
communication subsystem and the semaphore or condition variable implementation.
For example, we had to configure MPICH to use the SIGUSR2 interrupt for its socket
calls in order to avoid a conflict with the gnu semaphore implementation which uses
SIGUSRI1 to wake up a thread.

In order to test our prototype for correctness on the current non thread-safe
MPICH implementation on Frea, we used only one communication thread which
would post all the MPI calls serially. However, parallelism in SAMR applications can
be further exploited on a thread safe version of MPI by implementing two different

queues, one for the sends and another for the receives. Thus multiple communication
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threads could poll these queues for work and sends and receives can be carried out

simultaneously achieving greater overlap.

5.3 Future Work

The research presented in this chapter is but a small step in the field of using multi-
threading for performance optimization. The future direction would be to port the
algorithm on an architecture which offers concurrent hardware and implements a
thread safe MPI library. At the time of this writing the authors are corresponding
with IBM Research for access to the IBM Blue Gene/L simulator in order to evaluate
the current prototype and implement a full fledged engine which would exploit all

ingrained parallelism using multi-threading.
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Chapter 6

Conclusions

The message passing programming model is the widely accepted paradigm for devel-
oping high performance parallel and distributed applications. Furthermore, the Mes-
sage Passing Interface (MPI) has evolved as the de-facto message passing standard
for supporting portable parallel applications. Commercial as well as public-domain
implementations of the MPI specification are available for most existing parallel plat-
forms including clusters of networked workstations and high-performance systems.
However, MPI implementations on different machines often have varying performance
characteristics that are highly dependant on factors such as implementation design,
available hardware/operating system support and the sizes of the system buffers used.
MPT’s non blocking communication operations are often used by applications with
irregular loads and/or communications as they allow the application to reduce syn-
chronization overheads and hide latency. However, these operations are particularly
sensitive to the implementation details. As a result, naive use of these operations
without an understanding of the underlying implementation can result in serious
performance degradations.

Current clusters like Beowulf and SP2 use the same hardware for computation
as well as communication. As a result, there is a single process executing the user
application as well as the MPI communication subsystem. However, future archi-
tectures like IBM Blue Gene/L plan to offer parallel hardware for computation and
communication. The obvious approach to reduce communication synchronization on
these clusters would be to use separate threads for computation and communication.

In this paper we experimentally analyzed the behavior and performance of non-
blocking communication provided by two popular MPI implementations: the public

domain MPICH [I5] implementation on a Linux cluster, and the proprietary IBM
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implementation on an IBM SP2 [10]. We then proposed and evaluated usage strate-
gies for these primitives than can reduce processor synchronization and optimize
application performance using these implementations of MPI. We used the proposed
strategies to optimize the performance of the SAMR-based Richtmyer-Meshkov com-
pressible turbulence kernel. Our evaluation shows that the proposed strategies im-
proved the performance by an average of 27.32% for MPICH and 44.37% for IBM
MPI. Finally, we proposed design for a multi-threaded communication engine that
can exploit ingrained parallelism in SAMR applications on architectures that offer

separate hardware for communication and computation.
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