DESIGN AND IMPLEMENTATION OF CORBA
COMMODITY GRID KIT

BY SNIGDHA VERMA

A thesis submitted to the
Graduate School—New Brunswick
Rutgers, The State University of New Jersey
in partial fulfillment of the requirements
for the degree of
Master of Science

Graduate Program in Electrical and Computer Engineering

Written under the direction of
Professor Manish Parashar

and approved by

New Brunswick, New Jersey

May, 2002

ABSTRACT OF THE THESIS

Design and Implementation of CORBA Commodity Grid Kit

by Snigdha Verma

Thesis Director: Professor Manish Parashar

This thesis presents the design, implementation, evaluation and deployment of a CORBA
Commodity Grid (CoG) Kit. The overall goal of this thesis is to enable the development of
advanced Grid applications while adhering to state-of-the-art software engineering practices
and reusing the existing Grid infrastructure. As part of this activity, we are investigating
how CORBA can be used to support this software engineering task. In this thesis, we outline
the design of a CORBA Commodity Grid Kit that will provide a software development
framework for building a CORBA “Grid domain.” We also present our experiences in
developing a prototype CORBA CoG Kit that support the development and deployment of
CORBA applications on the Grid by providing them access to the Grid services provided
by the Globus Toolkit.

ii

Acknowledgements

I would like to thank my research advisor, Prof. Manish Parashar, for his guidance and
support throughout my study as a graduate student. I would also like to thank Gregor von
Lazweski and Jarek Grawor from Argonne National Lab, Illinois for patiently answering all
my queries and helping me in the design of my work. I would especially like to thank Viraj
Bhat for helping me in the experiments.

I would like to acknowledge my colleagues at TASSL lab and friends here in US and in India
for their love and support during my studies.

I would also like to thank Kanishka Lahiri and Kundan Sen who helped me write my thesis
in latex.

Finally, I thank my family for their love and constant encouragement throughout my life.

iii

Table of Contents

Abstract ii
Acknowledgements iii
List of Tables e vii
List of Figures e viii
1. Introduction 1
1.1. Problem Statement L L 1
1.2. Objective« . 2
1.3. Organization of the Thesis 2

2. Background and Related Work 3
2.1. The Grid e 3
2.2. Commodity Technologies 5
2.3. Commodity Grid Kits)
23.1. Java CoG Kit 5

232, PerlCoGKit o 6

2.3.3. Python CoGKit 6

2.3.4. JAVA Server Pages CoG Kit 7

2.4. CORBA Commodity Grid Kit 7

3. CORBA Commodity Grid Kit 11
3.1. Architecture 11
3.1.1. Corba Interfaces to Globus Grid Services 12

3.2. CORBA CoG Directory Serviceot 15

v

3.2.1. Directory Service oo e 15

3.2.2. Metacomputing Directory Service 15
3.2.3. CORBA MDS Service 16
CORBA CoG MDS Server Object 16

3.3. CORBA CoG Grid Security Service 18
3.3.1. Security Requirements 0oL 18
3.3.2. Grid Security Infrastructureo 19
3.3.3. CORBA Security Service 19
3.3.4. CORBA CoG Security Service 21
3.3.5. CORBA CoG GSI Server Object 25

3.4. CORBA CoG Resource Allocation Service 28
3.4.1. Globus Resource Allocation Manager 28
3.4.2. Job Submission in Globus o o oL 29
3.4.3. CORBA CoG GRAM Service 30
3.4.4. CORBA Event Service 30
3.4.5. CORBA CoG GRAM Server Object 32

3.5. CORBA CoG GASS Service oottt 35
3.5.1. Global Access to Secondary Storage 35
3.5.2. CORBA CoG GASS Service. 36

3.6. Conclusion 37
. Experiments and Evaluation, 38
4.1. Experiments. 38
4.1.1. Scenario oo e 39
4.1.2. Setup 39
4.1.3. Execution Process 41

4.2. Timing Results 43
4.3. Applicationso 46
4.4. Availability 47

5. Conclusion & Future Work 49

5.1. Contribution of the Thesis 49
5.2. Challenges Faced o 50
5.3. Future Work L 50
References e o1

vi

List of Tables

2.1. Mapping of various CORBA related technologies into the Grid layers

vii

2.1.
3.1.
3.2.
3.3.
3.4.
3.5.
3.6.
3.7.
3.8.
3.9.

3.10.

3.11.

4.1.
4.2.
4.3.
4.4.
4.5.
4.6.
4.7.
4.8.

List of Figures

The Grid Architecture
The CORBA CoG Kit Architecture
Naming graph of CORBA CoG Kit architecture
Interface to CORBA CoG MDS Service
CORBA Security Architecture
Delegation Model 0.
Interface to CORBA CoG GSI Service
CORBA Event Service i i i ii it e
CORBA CoG GRAM Service o v v v v ittt e e
Interface to CORBA CoG GRAM Service
CORBA CoG GASS Service v v i i i it ittt e
Interface to CORBA CoG GASS Service
The CORBA CoG Kit Testing Scenario 1
The CORBA CoG Kit Testing Scenario2
The CORBA CoG Kit Testing Scenariod
The CORBA CoG Kit Interaction Diagram
Execution Time L
Execution Time for Different Scenarios
Increase in Memory Utilization on Server Side

Comparison of Execution Time between Java and CORBA CoG

viii

Chapter 1

Introduction

1.1 Problem Statement

The past decade has seen the emergence of computational Grids infrastructures aimed at
allowing the programmer to aggregate powerful and sophisticated resources scattered around
the globe. To enable this goal, the Grid computing community has concentrated on the
creation of advanced services that allow access to high-end remote resources such as batch
systems at supercomputing centers, large-scale storage systems, large-scale instruments,
and remote applications. This effort has resulted in the development of Grid services that
enable application developers to authenticate, access, discover, manage, and schedule remote
Grid resources, but they are often incompatible with commodity technologies. As a result,
it is difficult to integrate these services into the software engineering process adopted by
most application developers. At the same time, considerable advances have been made in
developing and refining commodity technologies for distributed computing. One such effort
is the Common Object Request Broker Architecture (CORBA) [5] defined by the Object
Management Group (OMG). OMG is an independent consortium of vendors; consequently,
the standard it defined is open (vendor independent) and has resulted in many independent
implementations for a variety of platforms. In order to provide interoperability between
these diverse implementations, CORBA defines interoperability mechanisms. A high-level,
distributed computing model, vendor independence, and a strong interoperability thrust all
combined to make CORBA an attractive and popular distributed computing standard. As
such CORBA meets the necessary requirements to be seriously considered by application

developers as part of the Grid infrastructure.

1.2 Objective

Recently, a number of research groups have started to investigate Commodity Grid Kits
(CoG Kits) in order to explore the affinities of the Grid and commodity technologies. De-
velopers of CoG Kits have the common goal of developing mappings and interfaces between
Grid services and a particular commodity technology. We believe that CoG Kits will en-
courage and facilitate the use of Grid technologies, while at the same time leveraging the
benefits of the commodity technology. Currently, CoG Kits are being developed for the Java
platform, Java Server Pages, Python, and Perl. This thesis will describe our experiments in
defining yet another CoG Kit: one allowing CORBA applications to access (and provide)
services on the Grid. Such integration would provide a powerful application development

environment for high-end users and would create a CORBA “Grid domain”.

1.3 Organization of the Thesis

Chapter 2 provides a brief overview of the Grid and its architecture followed by the in-
troduction of the services and protocols that are going to be integrated in the CORBA
CoG Kit. It also looks into other CoG Kits that have been developed by various other
research groups. Then a brief introduction to the CORBA technology and its advantages
and disadvantages from the viewpoint of Grid developers. Chapter 3 covers the design of
the CORBA CoG Kit architecture and the implementation of the four basic services that
provide access to Grid functionality. Chapter 4 describes the experiments and the results
in details thus evaluating the software. The last chapter draws conclusion on the work and
discusses the future work that can be done by integrating the software in other applications

and other services which can be developed for enhancing the software.

Chapter 2

Background and Related Work

2.1 The Grid

The term “Grid” emerged in the past decade to denote an integrated distributed com-
puting infrastructure for advanced science and engineering applications. The fundamental
Grid concept is based on coordinated resource sharing and problem solving in dynamic
multi-institutional virtual organizations [18]. Besides access to a diverse set of remote
resources, services, and applications among different organizations, Grid computing is re-
quired to facilitate highly flexible sharing relationships among these organizations ranging
from client-server to peer-to-peer. An example of a typical Grid client-server relationship is
a supercomputer center in which a client submits jobs to the supercomputer batch queue.
An example for peer-to-peer computing is the collaborative online steering of high-end ap-
plications, as demonstrated by the use of advanced instruments [28, 41]. Grids must support
different levels of control, ranging from fine-grained access control to delegation, single user
to multi-user and collaborations, and different services such as scheduling, co-allocation,
and accounting. These requirements are not sufficiently addressed by the current commod-
ity technologies, including CORBA. Although sharing of information and communication
between resources is allowed, it is not easy to coordinate use of resources at multiple sites
for computation. To date the Grid community has developed protocols, services, and tools
that address the issues arising from sharing resources, service, and applications in peer com-
munities. The community is also addressing security solutions that support management of
credentials and policies when computations span multiple institutions, secure remote access
to compute and data resources, and information query protocols that provide services for
obtaining the configuration and status information of the resources. Because of the diver-

sity of the Grid, however, it is difficult to develop an all-encompassing Grid architecture.

Recently, a Grid architecture has been proposed [18] that comprises five layers:

Application
Collective Application
Resource
\ 4
Connectivity Transport
Internet
Fabric Link

Figure 2.1: The Grid Architecture

1. A fabric layer, which interfaces to local control including physical and logical resources

such as systems, files, or even a distributed file system.

2. A connectivity layer, which defines core communication and authentication protocols

supporting Grid specific network transactions.
3. A resource layer, which allows the sharing of a single resource.
4. A collective layer, which allows resources to be viewed and operated on as collections.

5. An application layer, which uses the appropriate components of each layer to support

applications.

Each of these layers may contain protocols, APIs, and Software Development Kits (SDK)
to support the development of Grid applications. This general layered architecture of the

Grid is shown in the left part of Figure 2.1.

2.2 Commodity Technologies

The past few years have seen an unprecedented level of innovation and progress in commod-
ity technologies. Three areas have been critical in this development: the Web, distributed
objects, and databases. Each area has developed impressive and rapidly improving software
artifacts. Examples at the lower level include Hypertext Markup Language (HTML), Hy-
pertext Transfer Protocol (HTTP), MIME, Internet Inter-ORB Protocol (IIOP), Common
Gateway Interface (CGI), Java, JavaScript, JavaBeans, Common Object Request Broker
Architecture (CORBA), Common Object Model (COM), ActiveX, Virtual Reality Markup
Language (VRML), object broker ORBs, and dynamic Java servers and clients. Examples
at the higher level include collaboration, security, commerce, and multimedia technologies.
The most important contribution of commodity technologies is the set of open interfaces

that enable large components to be quickly integrated into new applications.

2.3 Commodity Grid Kits

The advances in “Grid” and “commodity” technologies have evolved in parallel, with dif-
ferent goals leading to different emphases and technology solutions. For example the com-
modity technologies focus on issues of component, scalability and presentation while the
Grid emphasizes on end-to-end performance, advanced network services, and support for
unique resources such as supercomputers. These two technologies could complement each
other but there is an obvious gap which needs to be bridged. The Commodity Grid Kit
project is one such effort to bring the world of commodity and Grid computing together.
Definition: “A Commodity Grid Toolkit (CoG Kit) defines and implements
a set of general components that map Grid functionality into a commodity

environment /framework.”

2.3.1 Java CoG Kit

The first activity that was undertaken in building a CoG kit was a Java CoG Kit [11, 39] at
Argonne National Laboratory. The Kit currently provides most of the client-side function-

ality of Globus [13]. Some of these capabilities include: the Grid Security Infrastructure,

which enables secure authentication and communication over an open network; the Resource
Specification Language, a method for exchanging information about resource requirements
between all of the components in a resource management architecture; the Globus Access
to Secondary Storage module, which allows applications to access data stored in any remote
file system; and the Metacomputing Directory Service, which provides the tools to build

information infrastructures for computational grids.

2.3.2 Perl CoG Kit

A parallel effort is being taken at University of San Diego to develop a Perl Commodity
Grid Kit [34]. It is intended to be used by any developer who wants to use the Perl
programming language and also has a need to use Grid services in the application. For
example web portals are good examples that can use grid services via the Perl CoG Kit.
Similiar to the Java CoG Kit, the Perl CoG Kit provides interface to Globus. It contacts the
Globus gatekeeper on remote machines to submit jobs and uses the Globus MDS to gather
information. In some cases it uses the Globus client utilities to make request to the Globus
server utilities. Some of the modules are wrappers around the binary executables such as
‘globusrun’ and ‘globus-job-submit’. It uses the ‘grid-proxy-init’ to implement much of the
security functionality. For installation purposes it provides a makefile and test script for

each of the modules.

2.3.3 Python CoG Kit

The development of Python CoG Kit [22] is being undertaken at Berkeley National Lab-
oratory. It provides a Python based high level interface to the Grid Services. The key
advantages of Python are that it is an object oriented programming language with auto-
matic memory management. It provides support to XML processing, SOAP, and MPI. The
interfaces provide the use of native extension modules in Python which provide a clean
interface to the Globus C code and mapping the underlying C code to a natural Python
idiom. For example, C returns an int value as status code and uses pointers to return multi-
ple values. In Python, functions return multiple values. The CoG Kit provides modules to

GRAM, GridFTP, GassCopy and Secure 10. It has future plans to integrate replica catalog

and replica management packages for data intensive projects.

2.3.4 JAVA Server Pages CoG Kit

The development of JAVA Server Pages Commodity Kit [26] is a collaboration effort of
NCSA, SDSC, and NASA IPG. It provides a common set of components and utilities that
make portal development easier and allow various portals to interoperate by using the same

core infrastructure.

2.4 CORBA Commodity Grid Kit

Researchers have expressed a growing interest in combining the functionality of Grid tech-
nologies and CORBA as CORBA services can support the Grid architecture as is obvious
from Figure 2.1 and Table 2.1. With the initiative of Gregor von Laszewski [14] at Argonne
National Lab, Illinoi we started looking into the development of a CORBA CoG Kit. One
of the key benefits of CORBA is that it enables software objects to transparently call re-
mote objects across networks. This is facilitated by the remote method invocations through
an Object Request Broker(ORB) which hides the complexity of distributed applications.
The ORB can be regarded as a “software bus”, analogous to hardware bus which provides
hardware devices with an abstract interface to the communications mechanism. The actual
functionality is implemented by the ORB libraries. The methods that can be invoked on
the remote objects are specified in a standardized Interface Definition Language(IDL) and
objects can be located with Interoperable Object References(IORs). CORBA also provides
other services such as naming service, event service, persistence service and security service.

There are additional reasons why CORBA appeals to users; some of the most important

ones are as follows:

e High-level, modular programming model: The CORBA interaction model, as well as
its services provides a convenient environment for distributed computation; CORBA
hides the complexities of networking, and provides security mechanisms and other
ready-made solutions. Programming in CORBA not only speeds the development

process but also results in systems with a high reusability potential.

Collective CORBA Services. Transaction,
Trading Object, Time,
Security, Relationship, Query,
Property, Persistent Object,
Notification, Life Cycle,
Licensing, Naming,
Externalisation, Event,
Concurrency, Collection

Resource POA

Connectivity |GIOP, IIOP, GSI, SSL
Fabric Client, Server, Networks

Table 2.1: Mapping of various CORBA related technologies into the Grid layers

e Interoperability of heterogeneous components: Components implemented in different
languages can interact by specifying interfaces in the Interface Definition Language

(IDL).

e Location transparency: The CORBA distributed computing model hides the fact that

two components may be interacting remotely.

e Open standard: CORBA is vendor independent, which results in many implementa-

tions over many diverse platforms.

e Interoperability: CORBA defines mechanisms that allow solutions from different ven-

dors to interoperate.

e Legacy integration: Legacy applications can be cast as CORBA objects [36].

The interest in CORBA within the Grid community has led to a number of applications
seeking [33, 16, 36] to combine the functionality of CORBA and Globus [13]. Although

these solutions work well to solve specific problems encountered in individual applications,
they lack generality and uniformity of approach. The different CORBA Grid solutions are
not necessarily compatible with each other, and they require programmers to frame their
solutions in terms of two different programming models that are not always consistent. The
purpose of our work is to examine the affinities of these two models, as well as the breadth
of functionality they cover and to define a consistent set of functionality that would fulfill
the needs of CORBA Grid applications. The Kit currently provides most of the client-side
functionality of Globus. Some of these capabilities include: the Grid Security Infrastructure,
which enables secure authentication and communication over an open network; the Resource
Specification Language, a method for exchanging information about resource requirements
between all of the components in a resource management architecture; the Globus Access
to Secondary Storage module, which allows applications to access data stored in any remote
file system; and the Metacomputing Directory Service, which provides the tools to build
information infrastructures for computational grids.

We have identified two key scenarios in which users may want to combine the function-

ality of the Grid technologies and CORBA:

1. A CORBA programmer may want to combine the CORBA programming model and

CORBA services with the functionality provided by the Grid.
2. A Grid programmer may want to access CORBA services not provided by the Grid.

While we eventually plan to address both scenarios in this thesis we will focus on pro-
viding a high-level CORBA interface to the Grid. We will begin by defining a CORBA Grid
computing model and making Grid services accessible through the CORBA programming
interface.

As CORBA defines both high-level interoperability through high-level bridges and low-
level interoperability through IIOP and acknowledges their respective advantages and dis-
advantages, we believe that our work on creating interoperability between the Grid and
CORBA architectures can benefit from such a dual approach. Therefore, we will pursue
both two lines of investigation: a high-level approach and a low-level approach. In the

former, adding Grid functionality to CORBA is achieved by wrapping CORBA interfaces

around key Grid services as described in this thesis. The advantages of this approach are
simplicity, modularity (i.e, the programmer can use a subset of Grid services and function-
ality fulfilling the application requirements), and the speed with which a system can be
implemented and deployed. The disadvantages are that the approach is not exposing all
features of CORBA. For example, let us consider the security service; in this approach the
mechanisms for Grid security are implemented using security services present in CORBA
and the security model of GSI, essentially requiring the presence of two largely overlapping
security models. In the low-level approach the CORBA programming model is overlaid on
a Grid-based implementation. In this case the CORBA security service (including its in-
terface, if necessary) is extended to include Grid-based functionality. Within this approach
we plan to experiment with uniting models for specific services rather than presenting them
as external components. For example, rather than translate between two different security
models we will consider if they can interoperate at a lower level presenting consistent inter-
face to the user. Similarly, rather than present GRAM [7] as an external service, we will
consider how it might fit within CORBA activation mechanisms. The advantages of this
approach are that the programmer would deal with one consistent model available through
familiar interfaces (CORBA mechanisms). The disadvantages are that this approach is
harder to implement and may involve extending many of the CORBA facilities beyond the
standard as defined today.

We believe that our final solution will incorporate both approaches to combining CORBA
and Grid. The low-level approach will provide the best, and in many cases also the most effi-
cient solution whenever critical functionality, or services present in both Grid and CORBA,
need to be combined. On the other hand the high-level approach is appropriate when op-
tional Grid-specific functionality (for example, a replica service) needs to be represented.
We anticipate that our final solution will contain three kinds of services: pure CORBA
services (for example, the Persistent State); combined Grid CORBA services (for example,
the security, as well as ORB functionality, Object Adapters and other critical services with
counterparts in both Grid and CORBA); and pure Grid services (for example, a Replica

Service).

Chapter 3

CORBA Commodity Grid Kit

3.1 Architecture

A schematic view of the architecture of the CORBA CoG Kit is shown in Figure 3.1. The
CORBA orb forms the middletier, providing clients access to CORBA objects that imple-
ment services on the Grid. The current implementation includes Grid services provided
by the Globus project [13, 17]. The Globus project is developing fundamental technologies
needed to build computational grids [18]. Grids are persistent environments that enable
software applications to integrate instruments, display computational and information re-
sources that are managed by diverse organizations in widespread locations. It provides an
authentication service as part of the Grid Security Infrastructure (GSI) [10], an informa-
tion service called Metacomputing Directory Service (MDS) [6, 9], a job submission service
called Grid Resource Allocation Manager (GRAM) [7], and data storage and access service
called Globus Access to Secondary Storage (GASS) [4]. A set of CORBA objects have been
developed that interact implicitly with the appropriate Grid services. Clients access these
CORBA objects using the CORBA naming service, which maps names to object references.
The CORBA security service is used for authenticating the clients, and for enabling them
to interact securely with the CORBA objects. The CORBA objects notify clients of any
status changes through the CORBA event service. In the future the CORBA CoG Kit
will be expanded to provide CORBA objects for other services on the Grid such as DIS-
COVER 8, 28], or NetSolve [2]. The goal is to provide uniform access to a pool of services

that can be used and composed by the user applications.

Client Applications Client Applications

Secure [IOP Secure IIOP
Naming Service Security Service
Grid P P P i
Server MDS {: GRAM :: GASS [GSI 3 Grid Service
i Object | : Object :: Object | : Object | Objects
Objects D P o i For other
el T I . : services
GSI MDS Gatekeeper| | GASS || Net solve ‘ ’ Discover
Service D
Globus Services | Active Data Repository Services

Figure 3.1: The CORBA CoG Kit Architecture

3.1.1 Corba Interfaces to Globus Grid Services

This section briefly describes the overall architecture and then the next few sections present
the interfaces and mechanisms used by the CORBA CoG Kit to provide access to various

Grid services.

Concepts and Terminology

Like all technologies CORBA has unique terminology associated with it. Under-
standing these terms and terminology will help in understanding the CORBA

CoG Kit architecture.

e A CORBA object is a “virtual” entity which is capable of being located by
an ORB and having client requests invoked on it. It is virtual in the sense
that it does not really exist unless it is made concrete by an implementation
written in a programming language. The realization of a CORBA object
by programming language constructs is analogous to the way virtual mem-
ory does not exist in an operating system but is simulated using physical

memory.

e A target object, within the context of a CORBA request invocation, is

the CORBA object that is the target of the request. The CORBA object
model is a single-dispatching model in which the target object for a request

is determined solely by the object reference used to invoke the request.

e A client is an entity that invokes a request on a CORBA object. A client
may exist in an address space that is completely separate from the CORBA
object or the client and the CORBA object may exist within the same
application. The term client is meaningful only within the context of a
particular request because the application that is the client for one request

may be the server for another request.

e A server is an application in which one or more CORBA objects exist.
As with clients this term is meaningful only in the context of a particular

request.

e A request is an invocation of an operation on a CORBA object by a client.
Requests flow from a client to the target object in the server, and the target

object sends the results back in a response if the request requires one.

o An object reference is a handle used to identify, locate and address a
CORBA object. To clients, object references are opaque entities. Clients
use object references to direct requests to objects but they cannot create
object references from their constituent parts nor can they access or modify
the contents of an object reference. An object reference refers only to a

single CORBA object.

e A servant is a programming language entity that implements one or more
CORBA objects. Servants are said to incarnate CORBA objects because
they provide bodies or implementations, for those objects. Servants exist
within the context of a server application. For e.g. in C+4 and Java

servants are object instances of a particular class.

In the CORBA CoG Kit architecture, as shown in Figure 3.1 the CORBA objects that
are interacting with the respective Grid Services are MDS, GRAM, GASS, and GSI objects.

When the client application makes a request, the request flows through the orb and the

server application receives it. The server dispatches the request to the respective servant of
the CORBA object. After the servant CORBA object carries out the request, it returns the
response to the client application. To obtain the object reference of these CORBA objects,
the CORBA Naming Service is used. The CORBA naming service is the simplest and most
basic of the standardized CORBA services. It provides a mapping from names to object
references; given a name the service returns an object reference stored under that name. It
is similiar to Internet Domain Service(DNS) which translates Internet domain names into

IP addresses. The naming service provides a number of advantages to clients.

e Clients can use meaningful names for objects instead of having to deal with stringified

object references.

e The naming service can be used to solve the problem of how the application compo-
nents get access to the initial references for an application. Advertising these refer-
ences in the Naming Service eliminates the need to store them as stringified references

in files.

In the naming service, a name-to-reference association is called a name binding. A
Naming Context is an object that stores name binding in form of a table that maps names
to object references. A name in the table can denote either an object reference to an
application object or another context object in the Naming Service. A collection of contexts
and bindings is known as naming graph. The Figure 3.2 below shows the naming graph of
the CORBA CoG Kit architecture.

Here the hollow nodes are the naming contexts and the solid nodes are the CORBA
objects. These CORBA objects are always the leaf node. The root naming context is called
Globus and each of the CORBA objects implementing the service is binded to the Globus
context by creating a new name binding for e.g the CORBA object implementing the Gram
Service is binded to the Globus context using the name binding called GramService. The
code as shown in Figure 7?7 shows how the various CORBA objects are binded to the
Naming Service.

The key advantage of this architecture is it’s scalability. New CORBA objects interfacing

various other Grid services can be developed and easily binded to the naming graph of

Globus

AN~

MDSService | | GRAM Service GSIService GASSService EventService

[[[L J L J
MDS GRAM GSl GASS Event
Server Server Server Server Server
Object Object Object Object Object

= NamingContext

© = Object Implementation

Figure 3.2: Naming graph of CORBA CoG Kit architecture

CORBA CoG Kit without any significant changes.

3.2 CORBA CoG Directory Service

3.2.1 Directory Service

High performance distributed computing applications often require the careful selection
and configuration of computers, networks, application protocols, and algorithms. These
requirements do not come up in traditional client server application where standard default
protocols and interfaces are used. In high performance computing applications, the systems
required are generally homogenous and can be manually configured. But in distributed
computing applications information rich approach to configuration is used where decisions
are made based upon the structure and the state of the system on which a program is to

run.

3.2.2 Metacomputing Directory Service

The Metacomputing Directory Service (MDS) in Globus provides the ability to manage

and access information about the state of a Grid. As such it enables read access to entities

such as computer, networks and people. The current implementation of MDS as part of the
Globus toolkit is based on a distributed directory based on LDAP technology [31]. A high-
end application can access information about the structure and state of the system through
the uniform LDAP API. The information is organized in MDS as well defined collection
called entries. The entries are organized in a hierarchical tree structured name space called
Directory Information Tree (DIT). Any of the MDS entry can be referred by its unique name
called Distinguished Name, which is constructed by specifying the path from the root to
the entry being named. These entities represent an instance of an object. The information
in an entry is represented by one or more attributes consisting of name and corresponding
value. The attributes depend on the object type that the entity is representing. The object
type information is encoded in the MDS Data Model. This data model specifies the data

hierarchy and the object classes used to define each type of entry.

3.2.3 CORBA MDS Service

In order to support information services in the Grid an interface to MDS is developed.
Although it is possible to develop a COS naming service to access objects stored within the
MDS, it is problematic as object definition in the LDAP data model are created at time of
instantiation. Thus, it is much easier to provide a direct interface to the MDS, returning
objects in the same fashion as the Java CoG Kit. This approach is useful for those familiar
with Grid services.

CORBA CoG MDS Server Object

The CORBA MDS server object implements a simple interface as shown in Figure 3.3 that

provides the following functionality:
1. Establishing connection to the MDS server.
2. Querying the MDS server.
3. Retrieving results obtained from the MDS query.

4. Disconnecting from the MDS server.

module MDS
{

interface MDSServer
{
void connect(in string name, in long portno, in string username
in string password) raises (MDSException);
void disconnect() raises (MDSException);
MDSResult getAttributes(in string dn) raises (MDSException);
MDSResult getSelectedAttributes(in string dn, in Attributes
attrs) raises (MDSException);
MDSList getList(in string basedn) raises (MDSException);
MDSList search(in string baseDN, in string filter, in long
searchScope) raises (MDSException);
MDSList selectedSearch(in string baseDN, in string filter, in
Attributes attrToReturn, in long searchScope) raises (MDSException);

}
}

end

Figure 3.3: Interface to CORBA CoG MDS Service

At the backend, the CORBA MDS server object accesses Globus MDS using JNDI (Java
Naming and Directory Interface) [27] libraries, i.e. it replicates the approach used by the
Java CoG Kit [11, 39]. JNDI is an interface rather than an implementation. As such it
needs to access an existing naming service. JNDI performs all naming operations relative
to a context. A Context in JNDI represents a set of bindings within the naming service
that all share the same naming convention. A Context object provides the method for
binding names to objects and unbinding names from objects, for renaming objects and for
listing the bindings. To assist in finding a place to start, the JNDI specification defines
an InitialContext class. This class is instantiated with properties that define the type of
naming service in use and, for naming services that provide security, the ID and password
to use when connecting. A new InitialDirContext object is created with default properties.
The username and password is obtained from the client application. The getAttributes()
method returns the attributes associated with the specified entry. The Attribute class
represents a collection of attributes; it contains instances of the Attribute class, which
by itself represents a single attribute. The getAttributes() method returns all attributes

for the specified entry and getSelectedAttributes() method returns only those attributes

which match the attributes specified in the function parameter. Similiarly for the search()
method it returns NamingEnumeration class. The data types returned by the calls to the
MDS server are very specific to the JNDI libraries. Since CORBA is a language-independent
middleware, it is necessary to map these specific data types into a generic data type. This
is achieved by the structures (i.e. Result, ListResult, MDSList, MDSResult) defined within
the MDS server object. For example, when the getAttributes() method is invoked on the
CORBA MDS server object, the JNDI libraries returns an array of NamingEnumeration
objects that have to be mapped into a customized Result data variable. This is done by
retrieving the id and attribute for each NamingEnumeration object in this array as string
types, and storing the string array as the value variable in the Result object. An array of
this Result object forms the MDSResult data variable. Similarly, MDSList data variable is

created by mapping the values returned by the search() and getList() MDS methods.

3.3 CORBA CoG Grid Security Service

3.3.1 Security Requirements

Large scale distributed computing environments consist of computers, storage systems, ad-
vanced instruments and distributed applications. The Grid applications are distinct from
traditional client-server applications by their use of large number of resources, dynamic re-
source requirements from multiple administrative domains, complex communication struc-
tures and stringent performance requirements. While heterogeneity is a desired goal for
computational Grids, it leads to security problems which are not addressed by the current
security technologies. For example a Grid application that requires multiple resources needs
to establish security relationship with processes that span the administrative domains of
those resources. As the Grid is dynamic it may not be possible to establish prior trust
relationships between sites. As such the security policy should be able to interoperate with
intradomain access technologies. It should provide authentication solutions that allow users,
the processes that comprise a user’s computation, resources used by processes to verify each
other’s identity. Some of the basic security functions should include authentication, access

control, integrity, privacy and nonrepudiation.

In short the primary motivations behind the Grid Security Service are:

e The need for secure communication (authenticated and perhaps confidential) between

elements of a computational Grid.

e The need to support security across organizational boundaries, thus prohibiting a

centrally-managed security system.

e The need to support “single sign-on” for users of the Grid, including delegation of

credentials for computations that involve multiple resources and/or sites.

3.3.2 Grid Security Infrastructure

The Grid Security Infrastructure(GSI) is the implementation of the security architecture in
Globus toolkit. It provides single sign on by creating a user prozy. A user proxy is defined
as a session manager process given permission to act on behalf of a user for a limited period
of time. The interdomain security issues are handled by a resource proxy. The resource
proxy is an agent which translates between interdomain security operations and local in-
tradomain mechanism. GSI is implemented on top of Generic Security Services application
programming interface (GSS-API). It provides security services to callers in a generic fash-
ion and as such the services can be implemented by a range of underlying mechanism and
technologies. The GSI-API bindings have been defined for two mechanism - one based for
plaintext passwords and one based on X.509 certificates. The latter mechanism is used
for wide area production use. The GSI implementation currently uses the authentication

protocols defined by SSL (Secure Socket Library) [38].

3.3.3 CORBA Security Service

One of the services provided by CORBA is the security service. It provides abstraction
to the application layer from the different underlying technologies. It tries to abstract
the application from the underlying transport and security mechanisms. It provides the

following security functionalities

e Authentication: Clients and targets can verify the identity of each other.

Message Protection: Transit data can be protected from integrity and confidentiality

attacks.

Authorization: Access to objects and methods can be controlled.

Audit: Logs can record which operations are invoked by which client.

Non-Repudiation: This functionality is optional. Irrefutable evidence of method in-

vocations can be generated and verified.

CORBASec [30] does not implement all the above functionalities itself but relies on the un-
derlying security mechanism such as Kerberos v5 [29], SESAME [37] and SSL [38]. As such
the functionalities offered are limited by the underlying technologies. The fundamental
goals of CORBASec is to provide confidentiality, integrity, accountability, and availabil-
ity. In addition the further requirements such as simplicity, consistency, scalability, trans-
parency, easy administration, easy implementation of applications, certification, assurance,
mechanism independence, reusability of the existing security infrastructure, flexibility, and
interoperability are also specified in the specifications. The CORBA security specifications
was first published in 1995 and has gone through a no of revisions. The current version
is 1.7. Explaining the CORBA security architecture is not trivial. As such this thesis will
only concentrate in explaining the authentication protocol which is used by the CORBA
CoG toolkit. The CORBA security model for mutual authentication in a client server ar-
chitecture is shown in Figure 3.4. It requires the client application to initially establish
its right to access objects on a secure orb. The client is identified as a User Sponsor ob-
ject in the security model. It passes its secure credentials, such as it public certificate and
password, to the CORBA Security Principal Authenticator object, which then creates a
Credentials object. The User Sponsor object then passes the Credential object reference
to the Current object. This Current object represents the current execution context. To
the client, a secure client invocation looks like any other method invocation, however the
security service obtains the required client security information from the Current object.
Similarly the Security Service at the server end can obtain required security information
from the server’s local Current object. The actual authentication between the client and

the server however depends on the underlying authentication mechanism, e.g. Kerberos

V5, SESAME or SSL. All the communication between the objects during authentication
takes place transparently. The only concern the application developer should address is
the location of the public and Certificate Authority (CA) certificates and the private key.
These certificates and the private key are obtained when Globus is installed on one of the
machines. If the client is executed from the machine that does not have Globus installed

then the certificates and the key should be securely copied to the machine.

S:JJOSr?rSOr Client Server
HAuee .Set Credentials Get Attributes
5.Invoke
nd Current
ALTr:CmC![F?Iator Current
2. C@ 4Reference
o
Credentias OBB

Figure 3.4: CORBA Security Architecture

3.3.4 CORBA CoG Security Service

Providing access to Grid security is an essential part of the CORBA CoG Kit. The imple-
mentation is based on the Globus Grid Security Infrastructure (GSI) [10]. It is designed
in such a way that it combines the functionalities provided by CORBA security service
with GSI implementation. To understand GSI implementation some of the concepts are
explained below.

Certificates
A central concept in GSI authentication is the certificate. Every user and service on the Grid
is identified via a certificate, which contains information vital to identifying and authenti-

cating the user or service. A GSI certificate includes four primary pieces of information.
e A subject name, which identifies the person or object that the certificate represents.

e The public key belonging to the subject.

e The identity of a Certificate Authority (CA) that has signed the certificate to certify

that the public key and the identity both belong to the subject.

e The digital signature of the named CA.

A third party (a CA) is used to certify the link between the public key and the subject
in the certificate. In order to trust the certificate and its contents, the CA’s certificate must
be trusted. The link between the CA and its certificate must be established via some non-
cryptographic means, or else the system is not trustworthy. GSI certificates are encoded
in the X.509 certificate format, a standard data format for certificates established by the
Internet Engineering Task Force [20]. These certificates can be shared with other public
key-based software, including commercial web browsers from Microsoft and Netscape.

Mutual Authentication
If two parties have certificates, and if both parties trust the CAs that signed each other’s
certificates, then the two parties can prove to each other that they are who they say they
are. This is known as mutual authentication. The GSI uses the Secure Sockets Layer (SSL)
for its mutual authentication protocol, which is described below. (SSL is also known by a
new, IETF standard name: Transport Layer Security, or TLS.)

Before mutual authentication can occur, the parties involved must first trust the CAs
that signed each other’s certificates. In practice, this means that they must have copies
of the CAs’ certificates—which contain the CAs’ public key and that they must trust that
these certificates really belong to the CAs. To mutually authenticate, the first person (A)
establishes a connection to the second person (B). To start the authentication process, A
gives B his certificate. The certificate tells B who A is claiming to be (the identity), what
A’s public key is, and what CA is being used to certify the certificate. B will first make
sure that the certificate is valid by checking the CA’s digital signature to make sure that
the CA actually signed the certificate and that the certificate hasn’t been tampered with.
(This is where B must trust the CA that signed A’s certificate.) Once B has checked out
A’s certificate, B must make sure that A really is the person identified in the certificate.
B generates a random message and sends it to A, asking A to encrypt it. A encrypts the

message using his private key, and sends it back to B. B decrypts the message using A’s

public key. If this results in the original random message, then B knows that A is who
he says he is. Now that B trusts A’s identity, the same operation must happen in reverse.
B sends A her certificate, A validates the certificate and sends a challenge message to be
encrypted. B encrypts the message and sends it back to A, and A decrypts it and compares
it with the original. If it matches, then A knows that B is who she says she is. At this
point, A and B have established a connection to each other and are certain that they know
each others’ identities.

Confidential Communication
By default, the GSI does not establish confidential (encrypted) communication between
parties. Once mutual authentication is performed, the GSI gets out of the way so that com-
munication can occur without the overhead of constant encryption and decryption. The GSI
can easily be used to establish a shared key for encryption if confidential communication is
desired. Recently relaxed United States export laws now include encrypted communication
as a standard optional feature of the GSI. A related security feature is communication in-
tegrity. Integrity means that an eavesdropper may be able to read communication between
two parties but is not able to modify the communication in any way. The GSI provides com-
munication integrity by default. (It can be turned off if desired). Communication integrity
introduces some overhead in communication, but not as large an overhead as encryption.

Securing Private Keys
The core GSI software provided by the Globus toolkit expects the user’s private key to be
stored in a file in the local computer’s storage. To prevent other users of the computer from
stealing the private key, the file that contains the key is encrypted via a password (also
known as a pass phrase). To use the GSI, the user must enter the pass phrase required
to decrypt the file containing their private key. In our implementation the passphrase is
available from the properties file of the toolkit.

Delegation and Single Sign-On
The GSI provides a delegation capability: an extension of the standard SSL protocol which
reduces the number of times the user must enter his pass phrase. If a Grid computation
requires that several Grid resources be used (each requiring mutual authentication), or if

there is a need to have agents (local or remote) requesting services on behalf of a user,

authenticates_toserver() '

authentication_successfull) -

authenticates_toclient()

authentication_successful()

- - -- T} -

set_client_credentials()

generate_new _publicpnt_key)

I

generate_cert_request()

get_certificate_request() ;

creates _proxy_cedificate()

; set_proxy_cerificaten)

set_trusted authority_certificatel)

I
create_chainaf_cenificatesn)
create_secure_proxy_object()

-

see--

Figure 3.5: Delegation Model

the need to re-enter the user’s pass phrase can be avoided by creating a proxy. A proxy
consists of a new certificate (with a new public key in it) and a new private key. The new
certificate contains the owner’s identity, modified slightly to indicate that it is a proxy. The
new certificate is signed by the owner, rather than a CA see Figure 3.5. The certificate also
includes a time notation after which the proxy should no longer be accepted by others. We
yet have to implement the time duration of the proxy. Currently once the proxy is created
it is only destroyed when the server application exits.

The proxy’s private key must be kept secure, but because the proxy isn’t valid for

very long, it doesn’t have to kept quite as secure as the owner’s private key. It is thus

possible to store the proxy’s private key in a local storage system without being encrypted,
as long as the permissions on the file prevent anyone else from looking at them easily.
Once a proxy is created and stored, the user can use the proxy certificate and private
key for mutual authentication without entering a password. When proxies are used, the
mutual authentication process differs slightly. The remote party receives not only the
proxy’s certificate (signed by the owner), but also the owner’s certificate. During mutual
authentication, the owner’s public key (obtained from her certificate) is used to validate the
signature on the proxy certificate. The CA’s public key is then used to validate the signature
on the owner’s certificate. This establishes a chain of trust from the CA to the proxy through
the owner. The GSI and software based on it (notably the Globus toolkit, GSI-SSH, and
GridFTP) is currently the only software which supports the delegation extensions to TLS
(a.k.a. SSL). The Globus Project is actively working with the Grid Forum [12] and the
IETF to establish proxies as a standard extension to TLS so that GSI proxies may be used

with other TLS software.

3.3.5 CORBA CoG GSI Server Object

One can integrate Grid security at various levels of the CORBA architecture. In order to
maintain portability across orbs, the protocol stack has not been modified but an inter-
mediary CORBA object is placed between the CORBA client and Grid services called the
CORBA GSI server object. This GSI server object creates a secure proxy object, which
allows other CORBA objects, i.e. MDS server, GRAM server and GASS server objects,
to securely access corresponding Globus services. The creation of the secure proxy object

consists of the following steps:

1. The client and the CORBA server mutually authenticate each other using the CORBA
security service (CORBASec) [30, 3] . One of the basic requirements for mutual
authentication in CORBASec is to have private credentials i.e. a public certificate
signed by a trusted certificate authority (CA), at both the client and server side. In
our architecture both the CORBA client and server use Globus credentials where the

trusted certificate authority is Globus CA.

2. As Globus services, such as gatekeeper [7] and gasserver [4], only accept connections
from clients with secure Globus credentials, the CORBA client delegates the GSI
server object to create a secure proxy object that has the authority to communicate

with the gatekeeper/gasserver on the clients’ behalf.

3. After successful delegation, the GRAM server and GASS server objects use the se-
cure proxy object to set up secure connections to the corresponding Globus servers

(gatekeeper/gasserver) and access required Globus services.

The process of delegation from the CORBA client to the CORBA GSI server object

involves the following steps.

1. The client sends over its public certificate in an encoded form to the server object.

2. The GSI server object generates a completely new pair of public and private keys and
embeds the new public key and the subject name from the client certificate in a newly
generated certificate request. The certificate request is signed by the new private key

and sent across to the client.

3. The client retrieves the public key from the certificate request and embeds it a newly
generated certificate. This new certificate is called a proxy certificate. It is signed by
the client’s original private key (not the one from the newly generated pair), and is

sent back to the server object in an encoded form.

4. The server object thus creates a chain of certificates where the first certificate is the
proxy certificate, followed by the client certificate and then the certificate of the CA.
It can then send this certificate chain to the gatekeeper as proof that it has the right

to act on behalf on the client.

5. The gatekeeper verifies the chain by walking through it starting with the proxy cer-
tificate, searching for trusted certificates and verifying the certificate signatures along
the way. If no trusted certificate is found at the base of the chain the gatekeeper

throws a CertificateException error.

module GSIService

{

interface GSIServer
{
typedef sequence joctet; ByteSeq;
void setClientCredentials(in ByteSeq certificate);
ByteSeq getCertificateRequest();
void setDelegatedCertificate(in ByteSeq certificate);
};
b

Figure 3.6: Interface to CORBA CoG GSI Service

The IDL interface for the GSI server object is shown in Figure 3.6. Its methods are

described below:

e setClientCredentials(): This method is called by the client to send its public certificate
to the server in an encoded form. The client can access this method only after mutual

authentication has been successful.

e getCertificateRequest(): This method provides the client access to the certificate re-

quest generated at the server end.

e setDelegatedCertificate(): Using the certificate request obtained from the server, the
client generates a new certificate called the proxy certificate for delegating to the
server the right to access the Globus services on its behalf. By invoking this method

the client can send this proxy certificate in an encoded form to the server.

The above delegation process is executed only once in the entire client and server in-
teraction. The client initiates the process by obtaining an handle to the GSI server object
from the Naming Service and calls upon the delegation process. The secure proxy object
which is created by the delegation process is stored by the GSI server object in a hashtable
keyed on the subjectid. When the other service objects such as GASS server/GRAM server
objects need the secure proxy object the GSI server object queries the hashtable and return
the secure proxy object to the respective server object. By using the secure proxy object
the GASS server/GRAM server objects communicate securely with it’s respective Globus

services.

3.4 CORBA CoG Resource Allocation Service

3.4.1 Globus Resource Allocation Manager

Metacomputing systems allow applications to be executed on various computational re-
sources without regards to physical location. These systems need to address issues such
as location and allocation of computational resources, authentication, process creation and
other activities for resource usage. The challenging problems which any resource manage-

ment architecture needs to address are:

e Site Autonomy: The resources will be geographically distributed, under different ad-
ministrative domains and different use policy, security mechanisms and scheduling

policies.

e Substrate: As the resources are scattered, the different sites may use different resource

management systems such as Condor, EASY and CODINE.

e Policy Extensibility: The solution should be able to support the changes in the ad-

ministrative domains.

e Co-allocation: As an application can have multiple resource requirements it is essential
to have specialised mechanism for allocating multiple resources, initiating computation

and monitoring the resources.

The resource management architecture in Globus toolkit addresses the issues of site au-
tonomy and heterogenous substrate by introducing entities called resource managers which
interface with local resource management tools. For online control and policy extensibility,
a resource specification language is defined that supports negotiation between different com-
ponents of a resource management architecture. The resource brokers handle the mapping
of high level application requests into request of individual managers. The resource co-
allocators address the problem of co-allocation. For our implementation we are particularly
interested in the local resource managers. This entity is called Globus Resource Allocation

Manager (GRAM) and is responsible for

1. Processing RSL requests by either denying the request or creating one or more pro-

cesses to satisfy the request.
2. Monitoring and management of jobs that are created in response to the request.

3. Updating the MDS about the availability and the capabilities of the resource.

The GRAM implementation is kept general by mapping the resource specification into
a request for local resource allocation mechanisms. When a job is submitted to GRAM a
global unique job handle is returned that can be used for monitoring the status and com-
pletion of the job. The implementation consists of the following components [7] - a GRAM
client library, gatekeeper, a Resource Specification Language (RSL), a parsing library, a job

manager, and a GRAM reporter. GRAM uses GSI for authentication and authorization.

3.4.2 Job Submission in Globus

The process of remote job submission using GRAM involves the following steps. First the
application authenticates with the gatekeeper at the remote site using the GSI libraries.
Next the application specifies the resources it needs (using RSL), the location of the binary
to be executed, and a callback function that will be invoked when the state of the job
changes. The Globus gatekeeper at the remote end mutually authenticates the user and
the resource, determines the user name for the remote user at the resource, and starts a
job manager. The job manager is responsible for the creation of the actual process that is
requested by the user. It submits the resource allocation request obtained from the RSL
parsing library to the local resource management system. This can either be a batch queue
or a simple process forked as part of the operating system management. In case it is not
possible to start the job an error is returned. Once the process is created the job manager
monitors the state of the process and uses the callback function to notify the user of a state
transition or process termination. The responsibility of job manager ends once the process

has terminated.

3.4.3 CORBA CoG GRAM Service

The CORBA CoG Kit GRAM server object implements an interface to GRAM and enables
application developers to access its capabilities to submit jobs on a remote computer, bind
to an existing job, get status updates (active, done, pending, failed and suspended) on sub-
mitted jobs, and cancel jobs. The state can also be monitored via the MDS. To understand
fully the implementation of the CORBA CoG GRAM Service it is essential to have some

understanding of the CORBA event service.

3.4.4 CORBA Event Service

In CORBA the event service represents a communication model where an application can
send an event that will be received by any number of objects. The model provides two ways
of initiating event communication and the communication can itself take up two forms.
There are two main entities in the CORBA event service - the suppliers that initiate the
event and the consumers that consume the event. Suppliers and Consumers are completely
decoupled: a supplier has no knowledge of the number of consumers or their identities and
consumers have no knowledge of which supplier generated the given event. In order to sup-
port this model the event service has a new architectural element called the event channel.
An event channel mediates the transfer of events between the suppliers and consumers as

follows:

1. The event channel allows consumers to register interest in events, and stores this

registration information.
2. The channel accepts incoming events from suppliers.

3. The channel forwards supplier generated events to registered consumers.

Suppliers and consumers connect to the event channel and not directly to each other.
From a supplier’s perspective, the event channel appears as a single consumer and from a
consumer’s perspective, the event channel appears as a single supplier. In this way, the event
channel decouples suppliers and consumers. Any number of suppliers can issue events to

any number of consumers using a single event channel. There is no correlation between the

O —_— Event Channel

Figure 3.7: CORBA Event Service

number of suppliers and the number of consumers, and new suppliers and consumers can be
easily added to the system. In addition, any supplier or consumer can connect to more than
one event channel. CORBA defines the event service at a level above the orb architecture.
Suppliers, consumers and event channels may be implemented as orb applications, while
events are defined using standard IDL operation calls. Suppliers, consumers and event
channels each implement clearly defined IDL interfaces that support the steps required to
transfer events in a distributed system. CORBA specifies two approaches to initiating the
transfer of events between suppliers and consumers. These approaches are called the Push
model and the Pull model. In the Push model, suppliers initiate the transfer of events
by sending those events to consumers. In the Pull model, consumers initiate the transfer
of events by requesting those events from suppliers. The event communication can be
2 form, typed or untyped. In untyped event communication, an event is propagated by
a series of generic push() or pull() operation calls. The push() operation takes a single
parameter which stores the event data. The event data parameter is of type any, which
allows any IDL defined data type to be passed between suppliers and consumers. The pull()
operation has no parameters but transmits event data in its return value, which is also of
type any. Clearly, in both cases, the supplier and consumer applications must agree about
the contents of the any parameter and return value if this data is to be useful. In typed event
communication, a programmer defines application-specific IDL interfaces through which
events are propagated. Rather than using push() and pull() operations and transmitting

data using an any, a programmer defines an interface that suppliers and consumers use for

the purpose of event communication. The operations defined on the interface may contain
parameters defined in any suitable IDL data type. In the Push model, event communication
is initiated simply by invoking operations defined on this interface. The Pull model is more
complex because event communication is initiated by invoking operations on an interface
that is specially constructed from the application-specific interface that the programmer
defines. As a consequence, the Push model and the Pull model can be used to transmit
typed or untyped events.

In our design we have used the push model where the server pushes the data into the
event channel and the client polls on the event channel and picks up the data as and when
it arrives on the event channel. The data type passed within the communication is defined
in the idl and consists of the jobid and the jobstatus. The details of the data type are

explained in detail in the next section.

3.4.5 CORBA CoG GRAM Server Object

Globus
Gatekeeper

ORB SeclIOP ORB

Figure 3.8: CORBA CoG GRAM Service

Job submission using CORBA CoG GRAM Service consists of the following steps: First,
the client authenticates with the CORBA server object using CORBASec. For this the client
and the server application should have access to their respective credentials such as private
key, public certificate and trusted CA certificate. In our implementation we have used
Globus credentials and Globus CA as the certificate authority. If the client and the server

application are installed where Globus is not installed then the credentials especially the

private keys should be securely copied. After mutual authentication is successful, the client
subscribes to the CORBA event channel on which the server is listening. The architecture
design is such that the server does not set up an event channel till the client does not initiate
it. This helps in restricting an event channel solely between the client and the server. To
implement this design a new service is created called the EventService. The implementa-
tion object, called EventServerImpl, of EventService has a handle to the server object. The
client obtains the reference of the event service from the naming service and then invokes
a method on EventServerImpl. The EventServerImpl inturn directs the server to start an
event channel. The client and server then bind to the same event channel thus ensuring
a secure channel of communication between them. This design is robust and scalable as
new event channel can be initiated for a new client application trying to connect to the
server. Next the client gets a handle to the GSI server object from the naming service and
delegates the CORBA GSI server object as described in the process in the earlier section.
Once delegation is successful, the client obtains a reference to GRAM server object (using
the CORBA naming service) and submits a job submission request specifying the name of
the executable and the name of the resource on which the job is to be executed in Resource
Specification Language. The syntax of an RSL language is based on the syntax for filter
specifications in the Lightweight Directory Access Protocol(LDAP) and MDS. The RSL
specification is constructed by combining simple parameter specifications and conditions by
&, —, and +. For example the following specification

& (executable=/bin/echo)(—(&(count=6)(memory;=64)) (& (count=10) (memory=32)))

(resourcemanager=penn.rutgers.edu:2119)

requests 6 nodes with atleast 64MB of memory or 10 nodes of 32MB of memory to ex-
ecute the program /bin/echo on the resource penn.rutgers.edu with portno as 2119.

On receiving the request, the GRAM server uses the secure proxy object created by GSI
server during delegation to set up a secure connection with the GRAM gatekeeper. It then
forwards the request to the gatekeeper. The gatekeeper returns the jobid and the status
ACTIVE on successful initiation of the request. This jobid and jobstatus is wrapped in an

object defined in the idl and communicated to the client as an any object through the event

channel. As and when the job status changes the gatekeeper notifies the server and the server
communicates it to the client. For e.g on completion of the job the server communicates
to the client the jobid and the status as DONE. As multiple client applications can be
connected to a GRAM server at one point of time the server has a hashtable keeping an
account of jobids of each client and their corresponding communication channel. It is also
possible for the client to suspend a job once its execution has begun with the jobid. On

successful suspension the client will get back the status of SUSPENDED from the server.

module GRAMService

{
exception GramException {short errorcode;};
exception GlobusProxyException{short errorcode;};

struct JobStatus {
string jobid;
string currstatus;
b
interface GRAMServer
{
typedef sequence (octet) ByteSeq;
void setProxyCredentials(in ByteSeq certificate);
void jobRequest(in string rsl,in string contact, in boolean batchjob);
b
b

Figure 3.9: Interface to CORBA CoG GRAM Service

The implementation of the GRAM server object in the CORBA CoG Kit provides a

simple interface with the following methods (see Figure 3.9)

1. setProxyCredentials() : This method sets the reference to the proxy secure object

created by the GSI server object.

2. jobRequest(): This method is used by the client to request a job submission on a

remote resource.

3. jobBind(String jobid) : This method is used by the client to bind to an existing job
identified by the jobid.

4. jobUnbind(String jobid) : This method is used by the client to unbind to an existing

job identified by the jobid.

Additionally the following data structure is used to monitor the status of the job:

JobStatus: This data structure is used by the CORBA event service to notify the client
of changes in the job status. The structure consists of two string data types -jobid and
jobstatus. Jobid identifies the id of the submitted job and jobstatus is one of the following
values - PENDING, DONE, ACTIVE, FAILED, or SUSPENDED.

3.5 CORBA CoG GASS Service

3.5.1 Global Access to Secondary Storage

In high performance distributed applications there arises a need to access data which is not
colocated with the site at which the computation is performed. This problem is challenging
because the solution should not require a lot of changes to the application program and
to the resource provider so that new resources can be easily incorporated into the grid
environment. The current technologies such as distributed file systems provide convenient
access to remote data but require substantial technology deployment and interorganizational
cooperation. Web based file systems provide transparent access to remote resources but
require special kernel capabilities in the target systems. Condor [32] avoids the need for
kernel services as it has its own specialized versions of I/O libraries but only provides access
to data on a user’s “home” machine. Legion [15] provides access to Legion objects but
not to data stored in the conventional file systems. The data movement and access service

provided by the Globus toolkit provides a new mechanism to access remote data.

e It provides mechanism for common grid I/O patterns, such as executable staging,

reading of configuration files, error/diagnostic output, and simulation output.

e [t provides mechanism which can be implemented at the participating site without

specialized services.

e [t provides mechanism which allow programmers to guide or override default data
movement strategies by controlling data source selection, staging, caching and filtering

of data before transfer.

3.5.2 CORBA CoG GASS Service

The objective of the CORBA GASS server object is to provide an interface to the Globus

GASS service as shown Figure 3.10.

Y
N
FTP,
GSIFTP,
HTTP,

HTTPS
N

Client <II:>CORBA GASS Server
en GASS

GASS Server

Figure 3.10: CORBA CoG GASS Service

The client gets a handle to the GASS server object from the naming service, and then
the server object forwards the request to the appropriate GASS servers using the protocol
specified by the client. GASS supports FTP, HTTP, HTTPS, and GSIFTP. Both the FTP
and GSIFTP protocol allows third-party file transfers; that is they allow file transfers from a
sender machine to a receiver machine to be initiated by an third initiator machine. Both the
sender and receiver machines have to provide a GASS server. Authentication is performed
using GSI. The methods defined by the CORBA GASS server object is defined in the IDL
as shown in Figure 3.11.

The client initiates the process of the file copy by getting a handle to the GASS server
object from the naming service. It then specifies the current location of the file by invoking
the setSourceURL function on the server object. Similiarly it specifies the destination

location of the file by calling setDestinationURL. When it initiates the copy function, the

module GASSService
{

interface GASSServer
{
void setSourceURL(in string url);
void setDestinationURL(in string url);
void allowThirdParty Transfer(in boolean value);
void setProxyCredentials();
void URLCopy();

b

Figure 3.11: Interface to CORBA CoG GASS Service

GASS server object uses the secure proxy object created by the GSIService to authenticate
with the back end GASS Server. Once the mutual authentication is successful a secure socket
connection is created between the the CORBA GASS server object and the backend GASS
Server. The file is copied to the destination file using this connection. The implementation of
CORBA GASS server object is based on JAVA CoG Kit. It provides a wrapper class around
the JAVA CoG Kit classes which provide the protocol implementation for communication

between the servers.

3.6 Conclusion

The above interfaces in CORBA to the Grid services is one of the attempts to create a
bridge between the commodity technology CORBA and Grid. In the next chapter we show
how using these services it is possible to submit jobs on remote resources and create a Grid

enabled application.

Chapter 4

Experiments and Evaluation

4.1 Experiments

The following experiment illustrates the capability of the CORBA CoG toolkit in the Grid
computing environment. The experiment uses the Tportamr application. This application
adopts the adaptive mesh refinement technique to solve a simple 2-dimensional transport
equation of the form

wt+ux+uy=0

where u represents some physical quantity and u,t represents the partial derivative of u with
respect to t, and so on. The computational domain is a rectangle. The initial values of u are
chosen from a gaussian distribution according to the initial parameters chosen by the user.
Generally a PDE is solved by choosing a discrete domain where the algebraic analogues of
the PDEs are solved. One standard method is to introduce a grid and estimate the values
of the unknowns at the grid points through the solutions of these algebraic equations. The
spacing of the grid points determines the local error and hence the accuracy of the solution.
The spacing also determines the number of calculations to be made to cover the domain
of the problem and thus the cost of the computation. For well behaved problems a grid
of uniform mesh spacing (in each of the coordinate directions) gives satisfactory results.
However, there are classes of problems where the solution is more difficult to estimate in
some regions (perhaps due to discontinuities, steep gradients, shocks, etc.) than in others.
In such cases the adaptive mesh refinement technique helps. It starts with a coarse grid and
as the solution proceeds the regions are identified which require more resolution by some
parameter characterizing the solution, for e.g. the local truncation error. Finer subgrids are
imposed only on these regions. Finer and finer subgrids are added recursively until either

a given maximum level of refinement is reached or the local truncation error has dropped

below the desired level. Thus in an adaptive mesh refinement computation grid spacing
is fixed for the base grid only and is determined locally for the subgrids according to the
requirements of the problem. This parallel application can be configured to run on multiple

processors by specifying the no of processors by the user.

4.1.1 Scenario

The test environment consisted of four machines each running a respective part of the
software. The client applications was deployed on Tassl-pc2 and Tassl-pcl running on
WinNT, server application on discover.rutgers.edu running Linux and Globus toolkit on
gridl.rutgers.edu running on linux. The JacORB [23] orb was installed on both the client
and the server machines. Figure 4.1, Figure 4.2, and Figure 4.3 illustrates the different
setups of the experiment for testing CORBA CoG toolkit. In the second setup we had
two clients submitting different jobs to the same server and the last setup had one client
submitting two consequetive jobs on the same server and monitoring the progress of the job

with the help of jobid.

E%j — Imternat —
= ORBE

Cliert Serwer Globus Toaolkit
on MinMT an Linux on Linus

Figure 4.1: The CORBA CoG Kit Testing Scenario 1

4.1.2 Setup

A couple of setup steps were required before CORBA CoG kit could be used for running

the application on a remote resource.

e The installation of an ORB at the client and the server end. In our implementation
we have used the freely available Java [25] orb called JacORB available at www.inf.fu-

berlin.de. JacORB is an open source software. To install it, it was just required to

lili Internet ‘—'E

Client ORg —
on WinHT _—
Globus
= Toolkit
on Linux
ov®
1
Client
on WinHT

Figure 4.2: The CORBA CoG Kit Testing Scenario 2

‘ Job Mo 1
Job Mo 2

= —7 =
Globus

T oolkit

on WinNT on Linux

on Linux

Figure 4.3: The CORBA CoG Kit Testing Scenario 3
unzip and untar the archive which resulted in a new directory called JacORB1.3.

e The installation of cryptography and SSL libraries by TAIK [19] viz. TAIK-JCe2.5 and
iSaSilLk3.0.

e Made changes to the classpath to include ’jacorb.jar’ and added ’bin’ to the search

path.

e Made changes to the various properties file which are provided by JacORB. The
property file ‘jacorb.properties’ comes with a number of configuration options and
is either stored in the home directory or in the current directory. If JacORB finds
multiple files it loads all of them and if there are different settings for the same property
then the last loaded one takes the most precedence. The only property which needed
to be changed was the ORBInitRef.NameService. The string value of this property
could be a file or a url. This value would be used by the ORB to locate the file used

to store the name server’s object reference.

e Created a keystore which will store the Globus certificates and private keys as JacORB
uses keystore during authentication process. A keystore is simply a file that contains
public key certificates and the corresponding private key. It also contains other cer-
tificates that can be used to verify the public key certificates. All cryptographic data
is protected using passwords and accessed using names called aliases. JacORB pro-
vides a GUI tool which allows the easy creation of keystore files. 2 keystore files were
created, one for client and another for the server. Each of these keystore contained a

Globus public certificate, a Globus private key and the Globus Certificate Authority.

e The respective keystore file names were added to the client and server property file.
The property to be defined were
jacorb.security.keystore=keystorefilename
To avoid typing in lot of aliases and passwords (one for the keystore and one for each
entry that is used) the aliases and the password can be specified in the property file
as
jacorb.security.default_user=brose
jacorb.security.default_password=jacorb
#the name and location of the keystore relative to the home directory

jacorb.security.keystore=.keystore.

4.1.3 Execution Process

The different steps for the successful execution of the Tportamr application on a remote

resource are outline below:

e The CORBA naming service was started on the server machine called ‘discover’ run-
ning linux using the command
ns ns.ior
where ns.ior is the filename which the client application references to obtain the loca-

tion of the naming server.

e Next the CORBA CoG server application was started on the same server machine

from the following command

jaco -Dcustom.props = server_props org.globus. CORBACoG.Server

The orb running the server application reads in the properties file and from the value
of the property ORBInitRef.NameService it gets the reference to the CORBA naming
service. For a secure connection it first authenticates to the naming service using the
keystore filename mentioned in the server properties file and jacorb properties file. It
then binds the various CORBA CoG server objects to the naming server and waits

for request from the client.

The client application was started on Tassl-pc-2 running WinNT using the command
jaco -Dcustom.props=client_props org.globus. CORBACoG.Client

The client in the similiar manner to the server first binds itself securely to the naming
service and then obtains local references to the various CORBA CoG server objects.
On obtaining reference to the CORBA CoG GSIServer object the client initiated
the process of delegation where the client and the server mutually authenticate each
other using CORBASec and their respective keystore. The successful completion of
the delegation process resulted in the creation of a secure proxy object which the
server objects will use to forward request to the respective Globus services. Only
when the delegation was completed the client initiated the creation of a secure event
channel with the server on the CORBA CoG EventServer object. The EventServer
object created a push event channel between the client and the server. Finally the

client was in the state for requesting a job on a remote resource.

To obtain the reference to the remote resource which satisfy the resource requirements
the CORBA CoG MDSServer object was queried. For e.g if the tportamr application
needs to be executed on a resource having four nodes with more than 64MB memory
then the query is passed to the MDSServer object which in turn queries the Globus
MDS to obtain the list of resources. In this case the query was kept simple and just the
resource name was sent as the parameter in the query. The CORBA CoG MDSServer
object returned with the resourcename “penn.rutgers.edu” and its various resource

properties.

e The tportamr application was then copied to “penn.rutgers.edu” using the CORBA
CoG GASSServer object. The parameter for setSourceURL was the location of the
tportamr application and the parameter for setDestinationURL was the location where
the application will be copied in the remote resouce. The protocol specified in the

source url was used for copying the file.

e The client requested the execution of the job on CORBA CoG GRAMServer object
by specifying the application, the resource name, the portno, the arguments for the
application in the rsl language. On receiving the request the GRAMServer object
used the secure proxy object created by GSI for authenticating with the resource
gatekeeper. On successful authentication the gatekeeper started the process on the
resource and returned a jobid. This jobid was returned by the server object to the
client using the event channel. The client could use the jobid for obtaining periodic

status update of the job.

e On the completion of the job, the gatekeeper notified the server with job status as

DONE. This status was propogated by the server to the client using the event channel.

e The output of tportmar application was logged into a file called “out” which was
copied back to the client side by using the CORBA CoG GASSService. This time the

sourceurl and destinationurl have to be interchanged.

The interaction diagram of the above scenario is shown in Figure 4.4. The above exper-

iment displays how an application can be executed remotely using the four basic services of

CORBA CoG toolkit.

4.2 Timing Results

The above experiments were repeated about 8 times to get an average value of the time
to execute each process for each scenario. The Figure 4.5 shows the execution time in
milliseconds for the processes Resolve Services, Delegation, Event Channel Creation and
Job Execution. These timing result are for the scenario where the client, server and the

Globus Toolkit are located on the same machine. The results project the exact time to

Host A | Host B Host C

Client | Sarver EvertServer GElzerver WODEServer GRAMServer GASEServer Globus Services

] resolve_gservices() | r !
] e .

: : : : |
1
} 1 I : : : |
. resolve_everrtservi_ce() : : : 1
localohi_eventzerver() — ! 1 1 : |
+ ! 1 1 |
R |’ ““““ resalve_gsiservice) ! 1 | 1 |
1 [l .I'"| ! ! !
localohi_gsiserver() 1 l : : |
b | I resalve_mdsservice) 1 1 : |
i [. 1 |
localobj_mdsserver() [: | |
R | ________ resolve_gramservicel) : 1 |
[- 1
localobi_aramservar(l [| i
b | resalve_gassservicel) _L |
localobi_gassserver() L |
- —
| delegation() |
|
| creste_secureproxy _obill |
create_eventchannel) 11
] | - =et_proxyoredentials() | | |
| zet_proxycredentialz() |
query _mdsserver) v
| L1 - |
job_request() .
| - althenticate_withgatekesper()
1 |
| authentication_successful()
e - — -]
| forvward_jobrequest()
| update_jobid_jobstatus() | v
forward_jobid_jobstatus() - P N B O —— R
== l-—-—--- il il iobEtatus_done [
forvweard_jobstatus |
updste_jokstatus() B [
| set_sourceur!() |
[-
[set_destinationurc) |
| capy() ! |
| *authenticate_withassserver()
]
| copy_done() forwarcli_copy()
farward_copydonel) oo —— N N [
R (R —— . |

Figure 4.4: The CORBA CoG Kit Interaction Diagram

execute the processes by eliminating the network.

The next Figure 4.6 shows the change in the execution time of the different processes with
change in the setup. In the case of Resolving Services as a search is performed on Globus
Toolkit the execution time increases when the server is not located on the same machine as
the Globus Toolkit. The time increase is attributed to the network. For Delegation process
the interaction is mainly between the client and the server and as such the time increase is
very small. Similiar explanation can be attributed to Event Channel Creation process. For
Job Execution process when 2 clients are connected to one server the extra time is logged

as the server is processing one job and then it executes the second job.

7000 - 6625

6000
26000 -
h
£4000 |
o 3100
"o2000 o
.EZDDD 1 1517
- 1101

1000 +

[:I T T T 1
Resolve Services Delegation EventChannel Job Execution
Creation
Processes

Figure 4.5: Execution Time

The Figurereffig:memusage shows the increase in memory utilization when the no of the
clients connecting to the server increases. We could only experiment with at most 2 clients
as we had Globus certificates for only 2 users.

The most interesting experiment was the comparison of Java and CORBA CoG Kit. The
comparison could only be done for 3 processes as the event channel creation is very unique to
CORBA CoG and it is handled as a Listener by the Java CoG Kit. Initially the Delegation
process for the Java CoG Kit took about 6000 msec which showed that the CORBA CoG
Kit was faster than Java CoG Kit. Logically it did not justify as the whole process of
delegation in Java CoG Kit takes place on one machine unlike the CORBA CoG Kit where
the client and server interact to send its certificate and certificate request. With input
from Jarek we realised that the seed generator which is used for creating the new public
and private key was taking the majority of the time. On initialising the seed generator
the execution time came down to 562 msec which is surely better than 922 msec. When
I applied this initialization for the CORBA CoG Kit no effect was observed as I believe
the CORBA Securlty layer already does the intialization of the seed generator during the
setup of the security layer. The execution time of other processes showed that the CORBA
CoG Kit took a longer time due to the overhead of the client-server architecture and the

presence of the ORB layer.

O Client, Server &
Gatekeeper on one

< ;ggg = machine
E 5000 - O Client & Server on Tpe2
£ 4000
@ 3000 -
E 2000 - O Client on Tpe2 & Server on
" 1000 1M e (108 grid1
0 - . .
% S S o O 2Clients & 1 Server: Client
oF &° & @cﬁ‘\o on Tpe2 & grid1, Server on
o »&* & § :
© o & & grid1
Qgeo\ c}’\‘%(\ ¥ W Client & Server on Tpc2,
& ns on grid1
<
Processes

Figure 4.6: Execution Time for Different Scenarios
4.3 Applications

Many other applications can benefit from a CORBA CoG Kit. One example is the Nu-
merical Propulsion System Simulation (NPSS) [35], which is a part of the NASA IPG and
provides an engine simulation using computational fluid dynamics. It consists of 0- to 3-
dimensional engine component models responsible for examining aerodynamics,structures,
and heat transfer. Previous studies show that the NPSS’s engine components can be encap-
sulated using CORBA in order to provide object access and communication from hetero-
geneous platforms while at the same time coordinating the modelling runs across Globus.
As part of this task, a large number of NPSS jobs (1000+) are submitted from a desktop
interface returning the output to that same interface using the CORBA CoG Kit. This
application can be also integrated with other services such as DISCOVER [8]. DISCOVER
service allow users to collaboratively monitor and control application, access, interact, and
steer individual component objects; manage object dynamics and distribution; and schedule
automated periodic interactions. The 0-D or 1-D engine components that are submitted
for execution via the CORBA CoG GRAM server can be interactively steered and col-
laboratively monitored using DISCOVER. Other examples include the control of advanced

scientific instruments such as radio telescopes and synchrotron rings, via their commercially

11.2 1 1117
1115
1.1 4
11.05

11 1
1095
109 - 1087
1085 4
10.8
1075 4
107 | |

1 Client 2 Clients

Chart Area

% increase in memory
usage

No of clients
Figure 4.7: Increase in Memory Utilization on Server Side

available control infrastructure, using access through CORBA objects. At many of these
installations it will not be possible to install Globus server side software but only to interface

to it as a client.

4.4 Availability

The CORBA CoG toolkit is available as an open source code from
http://www.caip.rutgers.edu/TASSL/Projects/CorbaCoG/
It is required for first time users to register and henceforth they have to just enter the name

and password to obtain a copy of the toolkit.

Time in msec

7000 B525
G000 -

5000 +

4000 4 mJava CoG

O CORBA Cols

3000 4

2000 4

1000 +

Resolving Services Delegation Job Execution

Processes

Figure 4.8: Comparison of Execution Time between Java and CORBA CoG

Chapter 5

Conclusion & Future Work

5.1 Contribution of the Thesis

While commodity distributed computing technologies enable the development of sophisti-
cated client server applications, Grid technologies provide advanced network services for
large-scale, wide area, multi-institutional environments and for applications that require
the coordinated use of multiple resources. The Commodity Grid Kits bridge these two
worlds so as to enable development of advanced applications that can benefit from both
grid services and sophisticated commodity development environments. A lot of effort has
already gone into the development of a Java, Perl and Python CoG Kit. Recently there has
been an increasing demand for the creation of a CORBA CoG toolkit as various projects
ranging from the creation of CORBA based control systems for advanced instruments to
the computational steering of fluid dynamics codes feel the need for integrating with the
Grid.

The CORBA Commodity Grid Kit presented in this thesis was one such effort at cre-
ating such a bridge. This thesis presents the design, implementation and deployment of
the CORBA CoG Kit which will allow Grid application developers to exploit commodity
technologies wherever possible and identifying modifications or extensions to commodity
that can render them more useful for Grid Applications.

The overall goal of this thesis was to provide a framework to enable existing Grid com-
puting environments and CORBA service providers to interoperate. CORBA targets dis-
tributed environment, is supported by many vendors, and provides transparency on many
levels including languages, operating systems, networks, and protocols. It is an ideal candi-
date for application programmers to develop Grid-based applications. Providing a CORBA

Grid domain will allow an easy integration of additional Grid services and functionality

within these applications.

5.2 Challenges Faced

e The Grid is a very complex infrastructure and it took some time to grasp the com-
plexities of the Grid. Installation of Globus was not an easy task though the Globus
people are trying to make the upgrades as simple as possible. I was greatly helped on

this by Paul D. Long and Viraj Bhat.

e Qur approach to the toolkit design was to start with providing interface to simple
services such as MDS and then move onto complex services such as GRAM, GSI. A
lot of idea about the interface design was obtained from Java CoG kit. I was helped

in this effort by Gregor von Lazweski.

e The toughest and the longest development time was spent on the development of the
GSI Service. As the security area is new and pretty difficult to comprehend it took me
a long time to understand the proxy architecture. I am extremely thankful to Jarek
Gawor [24] for spending time and clearing all my queries about the proxy architecture
in Globus. Added to it the different orbs came with different security features. We
intially started with Visibroker [40] and then had to switch to IONA [21] as the
security features integration in ORBIX was more pronounced than Visibroker. In the
end we finally switched to JacORB from Adiron Ltd [1] as it was freely available open

source software.

5.3 Future Work

Our future effort will concentrate on enabling applications to combine services developed
by the Globus project, with the collaborative monitoring, interaction, and steering capa-
bilities distributed with DISCOVER [8]. Our objective is to enable a scientific simulation
application using the CORBA CoG Kit to discover the available resources on the network,
use the GRAM service provided to run simulations on the desired high-end resources; and
use DISCOVER Web-portals to collaboratively monitor, interact with, and steer the appli-

cation.

[1]
2]

[10]

[11]

[12]
[13]
[14]

References

Adiron Secure System Design. http://www.adiron.com/.

D. C. Arnold and J. Dongarra. The Netsolve Environment: Progressing Towards The
Seamless Grid. In Proc. of the International Workshop on Parallel Processing, pages
199-206, 2000.

B. Blakley and R. Blakley and R. M. Soley. CORBA Security: An Introduction to Safe
Computing With Objects. Addison Wesley, Reading, Massachusettes, 1999.

J. Bester, I. Foster, C. Kesselman, J. Tedesco, and S. Tuecke. Gass: A Data Movement
and Access Service for Wide Area Computing Systems. In Proc. of the 6th Annual
Workshop on 1/0 in Parallel and Distributed Systems, pages 77-78, 1999.

Common Object Request Broker Architecture. http://www.omg.org.

K. Czajkowski, S. Fitzgerald, I. Foster, and C. Kesselman. Grid Information Services
for Distributed Resource Sharing. In Proc. of the 10th IEEE International Symposium
on High Performance Distributed Computing, pages 181-184, August 2001.

K. Czajkowski, I. Foster, N. Karonis, C. Kesselman, S. Martin, W. Smith, and
S. Tuecke. A Resource Management Architecture for Metacomputing Systems. In
Proc. of the IPPS/SPDP’98 Workshop on Job Scheduling Strategies for Parallel Pro-
cessing, pages 62-82, 1998.

DISCOVER. http://www.discoverportal.org.

S. Fitzgerald, I. Foster, C. Kesselman, G. von Laszewski, W. Smith, and S. Tuecke.
A Directory Service for Configuring High-Performance Distributed Computation. In
Proc. of the 6th IEEE Symp. on High-Performance Distributed Computing, pages 365—
375, 1997.

I. Foster, C. Kesselman, G. Tsudik, and S. Tuecke. A Security Architecture for Compu-
tational Grid. In Proc. of the 5th ACM Conference on Computer and Communications
Security Conference, pages 83-92, 1998.

G. v. Laszewski and I. Foster and J. Gawor and P. Lane. A Java Commodity Grid Kit.
Concurrency and Computation: Practice and Ezperience, 13(8-9):643-662, 2001.

Grid Forum. http://www.gridforum.org.
Globus. http://www.globus.org.

G. v. Laszewski. www-fp.mcs.anl.gov/gregor/.

[15]

[30]

[31]

32]

[33]

A. Grimshaw, W. Wulf, J. French, A. Weaver, and P. Jr. Reynolds. The Next Logical
Step Toward a Nationwide Virtual Computer. In Technical Report CS-94-21, Depart-
ment of Computer Science, University of Virginia, 1994.

H. Prot and M. Bouet and V. Breton and S. Du and N. Jacq and Y. Legre and
R. Medina and R. Metery and J. Montagnat. A Virtual Laboratory for Bioinformatics
on the GRID. European Community document, 2001.

I. Foster and C. Kesselman. Globus: A Metacomputing Infrastructure Toolkit. Inter-
national Journal of Supercomputer Applications, 11(2):115-128, 1997.

[. Foster and C. Kesselman and S. Tuecke. The Anatomy of the Grid: Enabling
Scalable Virtual Organizations. International Journal of Supercomputer Applications,
15(3), 2001.

Taik. http://www.jcewww.iaik.tu-graz.ac.at/.
Internet Engineering Task Force. http://www.ietf.org/.
Iona Technologies. http://www.iona.com/docs/manuals/orbix.

K. R. Jackson. Pyglobus:A Python Interface to the Globus Toolkit
http://www.cogkits.org/papers/c545python-cog-cpe.pdf.

Jacorb. http://www.jacorb.org.

J. Gawor. www.mcs.anl.gov/gawor.

Java. http://www.java.sun.com.

The Grid Portal Development Kit. http://dast.nlanr.net/Projects/GridPortal.
JAVA Naming and Directory Interface. http://java.sun.com/products/jndi.

S. Kaur, V. Mann, V. Matossian, R. Muralidhar, and M. Parashar. Engineering a
Distributed Computational Collaboratory. In Proc. of the 34th Hawaii Conference on
System Sciences, page 6, January 2001.

Kerberos: The Network Authentication Protocol.
http://web.mit.edu/kerberos/www/.

U. Lang, D. Gollmann, and R. Schreiner. Security Attributes in Corba. Submitted to
IEEE Symposium on Security and Privacy, 2001.

Netscape Directory and LDAP Developer Central.
http://developer.netscape.com/tech/directory/index.html.

M. Litzkow, M. Livny, and M. Mukta. Condor A Hunter of Idle Workstations. In Proc.
of the 8th International Conference on Distributed Computing Systems, pages 104-111,
1998.

I. Lopez, G. J. Follen, R. Gutierrez, 1. Foster, B. Ginsburg, O. Larsson, and S. Tuecke.
Using Corba and Globus to Coordinate Multidisciplinary Aeroscience Applications. In
Proc. of the NASA HPCC/CAS Workshop, 2000.

[34]

[35]
[36]

[37]

[40]
[41]

S. Mock, M. Thomas, and G. v. Laszewski. The Perl Commodity Grid Toolkit.
http://www.cogkits.org/papers/ CPE_Perl_CoG_submitted.pdf.

NPSS. http://www.nas.nasa.gov/SC2000/GRC /npssseat.html.

J. Sang, C. Kim, and I. Lopez. Developing Corba Based Distributed Scientific Ap-
plications from Legacy Fortran Applications. In Proc. of the HPCC Computational
Aerosciences (CAS), pages 13-30, 2000.

SESAME V4 - Overview. http://www.sesame.com.
SSL. http://openssl.org.

G. v. Laszewski, [an Foster, and Jarek Gawor. Cog kits: A Bridge between Commodity
Distributed Computing and High-Performance Grids. In Proc. of the ACM 2000 Java
Grande Conference, pages 97-106, 2000.

Visibroker. http://www.borland.com/bes/visibroker/.

Y. Wang and F. D. Carlo and D. Mancini and I. McNulty and B. Tieman and J. Bres-
nahan and I. Foster and J. Insley and P. Lane and G. v. Laszewski and C. Kesselman
and M. H. Su and M. Thiebaux. A High-Throughput x-ray Microtomography System
at the Advanced Photon Source. Review of Scientific Instruments, pages 2062-2068,
2001.

