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ABSTRACT OF THE THESIS 

 

ADAPTIVE MESH REFINEMENT AND VISIOMETRICS IN ACCELERATED 

INHOMOGENEOUS FLOWS 

BY SHUANG ZHANG 

Thesis Director: Professor Manish Parashar 

This thesis investigates the issues introduced by the advanced computing technologies 

applications to our numerical simulation of accelerated inhomogeneous turbulence. The 

two focuses are adaptive mesh refinement (AMR) and data visualization/processing. 

The insight will lead to direct impact on numerical study of turbulent mixing and mass 

transport in astrophysics, inertial confinement fusion and internal combustion.  

The turbulent environment is initiated by a shock wave hitting a gas inhomogeneity in a 

supersonic shock tube in both 2D and 3D. Gas bubbles, driving by the vorticity deposited 

baroclinically on the density interfaces, evolve in time and interact with each other. The 

fact that the flow field is occupied with isolated structures through out the evolution 

motivates the introduction of AMR scheme. In this thesis, we introduced two AMR 

schemes into our simulation: FLASH and GrACE. And the performance gains are 

analyzed. However, the complexity introduced by these advanced schemes makes the 

error analysis extremely difficult  ---- the issues of verification and validation of numerical 

schemes, which haven’t been addressed with enough care. In this thesis, we study the 

convergence of the multi-dimensional AMR application. 

On the other hand, it is essential to obtain an access to the physical quantities 

associated with the bubbles and their evolution during the interaction. This could not be 
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accomplished by the standard visualization technique. In addition, high-resolution 

requirements for resolving as many scales as possible in a turbulent study make the 

data set significantly larger, and more complex if AMR scheme is invoked. Efficient 

visualization and well-designed data abstraction is necessary to understand the turbulent 

physics. 

In this thesis, we design a pipeline of feature-based analysis to extract regions of 

interest, then visualize, track, isolate and quantify their evolution. We further extend the 

feature extraction and tracking scheme in a computational steering environment, to 

handle large scale AMR dataset. We address quantitatively the spatial and temporal 

diffusivity of the mixing zone dominated by coherent vortex structures. We study and 

compare both slow/fast/slow (a helium curtain in air) and fast/slow/fast (a air curtain in 

helium) cases to illustrate the correlation of mass and momentum diffusivity. 

Data projection and space-time analysis are used as meanings of data abstraction to 

obtain the insight of a complex physical phenomenon. In this thesis, we design a 

comprehensive visiometrics pipeline, and encapsulate it innovatively into an optimization 

loop to quantify the error in a feedback manner. We are able to expose the error and 

correlate these errors to initial physical or numerical parameters during the experimental 

or numerical investigation. Excellent agreement is obtained between our simulation of a 

shock bubble interaction and the experiments performed at Los Alamos national lab 

(LANL). Our results outperformed both qualitatively and quantitatively the simulation at 

LANL. This methodology could be generalized to other disciplines. 
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Chapter 1 Introduction 

 

 

1.1 Overview 

Parallel computing is now a common approach in CFD of large-scale, complex flow 

system. Aside from the benefit provided by parallel computing, there are additional 

features in AIF we can use to invoke further high performance computing (HPC) 

approaches, primarily, adaptive mesh refinement (AMR). The advances in computer 

architecture and algorithms provide the feasibility of these approaches. This thesis will 

explore the application of the HPC approaches to AIFs flows. 

Visiometrics is a powerful methodology in our computational study. It is defined as a 

data pipeline of visualization, quantification and juxtaposition. Visiometrics can lead us 

the way to qualitative observations such as phenomena discovery and physical property 

identification, and to quantitative investigations such as the physical scaling laws and 

reduced mathematical modeling. HPC approaches bring new challenges to visiometrics 

because of the increased complexity in data structure. This thesis developed a 

systematic visiometrics pipeline in the HPC environment, integrated many visiometrics 

modules developed or enhanced by many researchers in Vizlab including the author. 

Most noticeably, data projection and space-time analysis allows compressive summary 

of the simulation data evolving in both space and time; feature analysis allows the 

access to the localized quantities, VPs in particular, and enables the detail turbulent 

study as well as reduced modeling.  
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1.2 Accelerated inhomogeneous flows 

A fundamental interaction in compressible hydrodynamics is that between accelerations 

and density interfaces. This environment is often referred to as the Rayleigh-Taylor (RT) 

or Richtmyer-Meshkov (RM) instability environment, or more generally, Accelerated 

Inhomogeneous Flow (AIF) environment [Zabusky, 99]. 

Our work is motivated by a variety of applications in nature as well as the physical 

challenges untapped underlying these applications. 

1.2.1 Domain of applications 

The interactions between the acceleration and density inhomogeneity occur in a myriad 

of fundamental and applied situations, from supernova explosions in astrophysics to 

sonic booms in the Earth's atmosphere (geophysics). In supernova explosions, 

extremely strong shock waves travel through enormous density gradients. The light 

curve and formation of mushroom structures and subsequent mixing requires an 

understanding of RM instabilities for an explanation, e.g., supernova (SN) 1987A 

remnant evolution [Arnet et al, 89][Arnet, 00].  

Another important application is inertial confinement (laser) fusion (ICF), a potential 

future nuclear powered energy source. Figure 1.1 shows the basic ICF concept [General 

Atomic, 03]. During the implosion-explosion process, hydrodynamic instability, most 

noticeably RM instability, of the impulsively accelerated shell containing the deutium-

tritium fuel limits the compression of the fuel which is important to achieve the high 

temperature where the nuclear reaction releases enormous amounts of energy. Thus 

RM instability represents a significant obstacle to achieving a productive fusion reaction 

[Lindl, 1995]. The fundamental mechanism of RM instability has also been considered to 

be of importance to enhancing mixing in supersonic combustion [Yang et. al., 93]. 
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These applications in general contain high energy and high-density fields, and hence are 

also referred to as high energy density physics. The system is intrinsically complicated, 

involves chemical reaction, MHD, and many combination of different flow patterns (multi-

phase, combustion, hypersonic, etc). 

Our focus in this study in on the hydrodynamics part of this high energy density 

environment, e.g., we assume gamma-law gases all the time and neglect chemical 

reaction. Even with this simplification, the complexity of the AIF system still left a lot of 

challenges untapped. 

1.2.2 Important physical and numerical challenges 

The initial accelerations in AIFs may arise from shock or blast waves (RM 

environments), bubble (or cloud) collisions impulsive radiation pressure, gravity (RT 

environments), etc. Most of the community focuses on the instability at interfaces arising 

from initial acceleration, and the turbulent mixing associated with these accelerations. 

These topics are also important parts in this thesis, with the assists of vortex paradigm 

analysis. In addition, this thesis work extends the investigation beyond early time, 

discovered and quantified the secondary baroclinic process.  

1.2.3 Main geometries 

Figure 1.2 sketches the major geometries of interests in studying AIF flows driven by RM 

instability. The first row shows density interfaces of different shape subjected to 

acceleration, and the second row shows inhomogeneity of different shapes subjected to 

acceleration. It is obvious that the latter case is of more practical interests. 
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1.3 Objectives and contributions 

1.3.1 High performance computing -- Adaptive Mesh Refinement in parallel 

environments 

The advance of massively parallel computers has enabled one to conduct the 

investigation of nonlinear phenomena with realistic grid resolutions. On the other hand, 

the increasing complexity and dimension naturally brought us in front of the problem of 

computation resources and time. Distributed and adaptive mesh become our very first 

option to maximize our computation within limited computer resources. All these 

concepts: parallel, dynamic, distributed, AMR, are part of high performance computing 

(HPC) family.  

For the inhomogeneity-dominated flow under investigation, adaptive mesh refinement 

(AMR) is extremely suitable by only refining the region of interests to the higher 

resolution. This yields more mesh efficiency at the expenses of complex data structure 

and memory. This thesis explores some numerical aspects associated with AMR 

scheme, in an application point of view, particularly ParaMesh package and Grid 

Adaptive Computational Engine (GrACE) package. 

1.3.2 Visiometrics 

Visiometrics, or visualization, juxtaposition and quantification, is a scheme introduced by 

[Bitz & Zabuksy, 89]. It is first success is on the discovery of solitons with numerical 

simulation of KdV equation in 1960s. By integrating the modules developed in nearly 15 

years since the foundation of Laboratory for Visiometrics & Modeling, 1989, with many 

new modules implemented during this thesis work, we prototype a comprehensive 

visiometrics pipeline. Parallel AMR dataset brings more challenges to visiometrics and is 

also addressed in this thesis.  
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Table 1.1 summarize the main parallel architectures investigated in this thesis. We give 

an approximate weight factor to all the machines with regard to the E10K Sparc II CPU. 

1.4 Layout of the thesis 

Chapter 2 focus on the introduction and some detail implementation of AMR scheme in 

to AIF environment, and some related high performance computing issues. In Chapter 3 

we present the concept and illustrate the key technology underlying visiometrics. 

Chapter 4 discuss some important discoveries of verification and validation underlying 

HPC scheme, under our visiometrics mode of working. And Chapter 5 shows the 

application of visiometrics to uncertainty quantification. In Chapter 6 we conclude. 
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Fig. 1.1 Basic concept of inertial confinement (laser) fusion: a) Atmosphere formation: Laser 

beams rapidly heat the surface of the fusion target forming a surrounding plasma envelope. b) 

Compression: Fuel is compressed by the rocket-like blowoff of the hot surface material. c) 

Ignition: During the final part of the laser pulse, the fuel core reaches 20 times the density of lead 

and ignites at 100,000,000 degrees Celsius. d) Burn: Thermonuclear burn spreads rapidly 

through the compressed fuel, yielding many times the input energy [GA Web, 2003]. 
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Fig. 1.2 Major geometries of interests in studying AIFs flows. (a). Sinusoidal interface; (b) Inclined 

interface; (c) Accelerated tank; (d) Curtain (inclined, sinusoidal and chevron); (e) bubble 

(cylinder/sphere, double cylinder/sphere & ellipse). 



10 

 

Machines 

(Abbrevation) 

versicolor 

(SGI) 

mphase 

(LAMD) 

Teal (SE10K) Green 

(SF12K) 

OS Onyx VTX Linux Sun OS Sun OS 

CPU type SGI R10000 AMD MP Sparc II Sparc III 

CPU numbers 8 44 32 36 

CPU speed 194MHz 1.6GHz 400 MHz 900 MHz 

Scale factor 

(w.r.t. E10K) 
W 

0.2 1.5 1.0 2.8 

Queue 
System 

n/a SGE LSF SGE 

RAM Shared 
512MB 

Distributed 
512MB/per 

Shared 16GB shared 72 GB 

Network 
Bandwidth 

100MB 100 MB 12.8Gbytes 12.8 Gbytes 

 

Tab. 1.1 Hardware configurations 
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Chapter 2 GrACE & FLASH: Adaptive mesh refinement (AMR) in 

high performance numerical simulation environment 

 

2.1 AIFs and AMR: introduction 

One main feature in AIFs is the inhomogeneity throughout the flow field, i.e., stratified 

flows. In most of the cases, the major physical activities, characterized by evolving and 

deforming density bubbles and interfaces (e.g., shocks), is highly localized to small 

fraction of the entire computational domain, while the bulk region of the simulated 

domain are relatively quiet. Due to the existence of the interface between gases, the 

localized regions usually require being highly resolved with a large number of numerical 

meshes. In the traditional uniform mesh simulation, the large amount of meshes in the 

vast “quiet” regions is a waste of resources. AMR scheme is a natural approach in 

solving the problem in the most computational time and memory efficient manner. 

2.2 AMR: main concept and review 

Adaptive mesh refinement is a scheme for finite difference and finite element codes 

wherein the size and distribution of the computational mesh is changed dynamically so 

that the solution complies with some specific constraint. Take 2D as an example, Figure 

2.1 illustrates AMR scheme and the corresponding data structure [Berger & Oleger, 85]. 

The basic idea is the dynamic adaptation of the computational mesh to concentrate 

additional computational effort and resources to only those regions that require them. 

The method yields highly advantageous cost/accuracy ratio and makes larger scale 

simulations possible on a given set of resources comparing to static methods. 
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The superimposed meshes are generated in an autonomous fashion by computing the 

local error and comparing it with a preset refinement criteria. The error is usually 

associated with the gradient of certain variables of the flow field. The simulation starts at 

a certain coarse resolution, which we defined as base mesh, or AMR level 1. According 

to the refinement criteria, the simulation might put more meshes on the regions with 

large gradient activity during the evolution, by recursively dividing the mesh size into 

half. For example, if the level one mesh size is 1.0 cm, level two mesh size will be 0.5 

cm, and, level three zone size will be 0.25 cm, and so forth. This could be expressed as: 

12
)( −

∆
=∆ nn

xx        (2.1) 

Where  is the base mesh resolution (AMR level 1), n is the refine level, and x∆ nx)(∆  is 

the mesh size resolution at level n. Or the other way around, by pre-defining a de-

refinement criteria, the simulation might decide that the finer mesh is not necessary any 

more and hence remove them. 

All AMR decisions are subject to the following two additional constraints: 1) each zone 

can be refined by a factor of two, i.e., one level, during each time step, and 2) adjacent 

cells can differ by at most one level of refinement. 

Fig. 2.2 shows a typical adaptive mesh hierarchy of a shock cylindrical bubble interaction 

simulation at t=0. The density is displayed together with grid boxes, each corresponds to 

a 8x8 mesh patch (ParaMesh implementation). The left column displays the visualization 

for each level and the right shows an integrated image for all levels. There are five AMR 

levels, with 8x16 base mesh and 128x256 final mesh. Note the localized mesh 

distribution at level five. The black regions indicate the savings of computation. 

2.3 Computational steering 
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The goal of computational steering is to design a common data structure for execution of 

interaction, visualization and analysis operations with the simulation. It has a lot of 

advantages, for examples, runtime control operations can now be directly performed on 

applications objects such as grids, meshes and trees through their visualization. 

Parallelization on post processing also becomes straightforward since the data structure 

is already in a distributed manner [Parashar & Browne, 98]. This is especially important 

in AMR applications.  

In general, the steering environment is object oriented and usually takes modular 

structure, which allows addition of more HPC or CFD modules easily. In this thesis, two 

computational steering environments are explored: GrACE-PPM and FLASH. 

Fig. 2.3 illustrates the necessity of computational steering with a typical AIF simulation: a 

shock wave interacting with a gas curtain. As we stated in the previous paragraph, we 

can see the main physics is highly confined in a small fraction of the simulation domain. 

Note the vast red region where indicating nothing significant is happening, and hence 

doesn’t need as high resolution as the localized (blue) regions. Dynamically adjusted 

refinement mesh is a good solution to this type of flow environment. 

Let’s assume we are running this simulation with two processors. At t=0, we prefer the 

simulation being partitioned vertically, allowing equivalent distribution of the mesh. At 

t=23.76, however, the gas curtain evolves into a boundary layer confine to the upper 

wall, hence a horizontal partitioning is preferable. The preferable partitioning is 

constantly changing in time. Because static partitioning suffers from imbalanced load, 

dynamic scheme is required, which is an important feature introduced by computational 

steering.  
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2.4 GrACE & GrACE-PPM 

Grid Adaptive Computation Engine (GrACE, former DAGH, distributed adaptive grid 

hierarchy), is one of earliest computational steering environment. Like most of the 

popular AMR package, this C++ parallel hierarchical AMR package implements the 

original Berger-Oliger scheme [Berger & Oliger, 84], with coarse grained SPMD (single 

process multiple data) data parallelism model.  

Designed as high-level programming abstractions and a general-purpose data 

management infrastructure, GrACE provides the interface to the application-general 

features, and leaves application-specific features to be user specified.  It has the 

advantages of scalability, locality, and portability, as well as coarse-grained data 

parallelism and Fortran compliant data storage.  

2.4.1 GrACE performance 

As any other the advanced schemes, the computational efficiency and high level 

steering ability are at the cost of more complex data structure. To validate GrACE 

environment and evaluate its performance, we introduced a simple convection system: 

0=++
dy
du

dx
du

dt
du

       (2.2) 

resolved by a Cartesian computational domain. The field is initialized with Gaussian 

distribution:  

))/))exp((( 2
0

5.022
0 σε tyxu −−+=  

And the algorithm is MacCormack (predictor-corrector) method. We fix the number of 

iterations as 130 and boundaries as outflow. 
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We study mainly the overhead introduced by the SPMD data parallelism model and the 

AMR. Two codes solving the convection system are studied: a). sequential uniform grid 

code, and b). Parallel AMR code interfaced with GrACE. The algorithm of the interface 

driver is:  

Define adaptive grid structure  

Define grid functions: containing information for the coordinate 

Initialize grid functions: data parallel model, call Fortran CFD initialization 

Repeat NumTimeSteps  

a. if (RefineTime) Refine at Level  

b. Evolve at Level: call Fortran CFD kernel 

c. if (Level+1 exists)  

Evolve at Level+1 

Update Level from Level+1  

End Repeat 

Visualization pipeline: 1D xgraph 

We also compare the SGI cluster running MPICH and the SUN HPC machine. 

We first examine the overhead introduced by the data parallelism in GrACE, by 

comparing it with sequential code. Note both codes are using a uniform mesh here. Fig. 

2.4 shows the run statistics. The overheads introduced by parallelelism are decreasing 

as the problem size growing. For example, on the SGI64 machine, the uniform grid 

GrACE run gives (1610-380)/380 = 324 % of overhead for a 64x64 run and (12381-

9650)/9650=28.3% of overhead for a 320x320 run. In terms of parallel machine 

performance, Sun E10k has very good scalability, as shown in Fig. 4.6 with speedup 
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3.67/4=92% of ideal speedup (comparing to 64.5% speedup on SGI64), although it 

performs poorly in sequential jobs, an anomaly we don’t yet fully understand, but we 

believe it is associated with the system configuration. It is also shown in Fig. 2.5 that 

smaller problem has poorer speedups as well as poorer scalability. 

We further investigate the overhead introduced by AMR engine in GrACE, by again 

comparing with the uniform mesh version with the same effective mesh, i.e., the 32x32 

AMR run with 3 refinement levels corresponds to 128x128 uniform mesh, according to 

Eqn. 2.1, shown in Fig. 2.6. Note the AMR run on 1 CPU runs much longer than its 

uniform mesh correspondence, which is due to: 

• The small size of the domain. A significant percentage of the time are wasted on 

MPI and AMR initialization, communication and synchronization (see the 

synchronization and recompose time in the table). 

• The less scalability of the SGI’s, as shown in the previous figures. 

2.4.2 GrACE PPM implementation 

GrACE provides the opportunity of adding HPC modules and computational steering 

functionality on top of a existing CFD solver, which is VH1 PPM code in our case. Good 

understandings on both the GrACE environment and the PPM algorithms are required.  

The object-oriented feature in GrACE has the potential of user-friendly interface with any 

hyperbolic PDE system. The general structure of GrACE-PPM is shown in Fig. 2.7, 

which has four layers. The lowest layer is the distributed data structures, indexed with 

space filling curves, as shown in Fig. 2.8. The space filling curve is inexpensive 

computationally and self-similar (recursive), which makes the original multi-dimensional 

space being easily encoded. The index corresponding to the right-most figure bottom is 
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shown at the bottom, with the under-line part corresponding to the refined region in the 

center. 

Next level in the GrACE-PPM structure (Fig. 2.7) is high-level programming abstractions. 

Three classes are implemented, containing the application fields (Grid Function 

Abstraction), Grid structure specification (Grid Hierarchy Abstraction) and Grid/Fields 

correlation (Grid Geometry abstraction). 

These abstractions allow the application being interfaced with the lower layer data 

structure without detail knowledge of the data structure. Between the top layer (PPM 

application) and the abstractions, there are computational steering modules as the 

interface, which involves:  

1. Multi-grid hierarchy and grid function definition and initialization. A main-shadow 

structure is used, where the shadow is one level finer mesh. 

2. Boundary and initial conditions alignments:  

• Physical boundary condition, which is integrated with the hydrodynamic 

evolution in the original PPM algorithm. This is a special requirement by the 

inflow/outflow boundary condition – certain number of ghost zones outside the 

real physical boundary are crucial to absorb the perturbations produced by 

physical quantities flowing out of domain. In GrACE-PPM, the physical boundary 

should be categorized into interior mesh (with boundary condition provided by 

the neighbor grids) and the boundary mesh (with boundary condition provided by 

the true physical boundary). 

• Inter-AMR-level boundary, which is implemented by prolongations (from coarser 

to finer levels) and restrictions (from finer to coarser levels); 

• Inter-CPU boundary; 
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• Alignment of time evolution in GrACE and time evolution for PPM, which 

requires the time step not too big, AND not too small. 

Fig. 2.9 shows these boundary alignment issues in GrACE-PPM implementation. 

3. Perform local error estimation. Aside from using density field as a refinement criteria, 

vortex paradigm suggests that vorticity field is another important criteria. The error is 

calculated as local second order gradient (e.g., density, vorticity, or both), clustered in a 

region pre-set by a cluster threshold, and compared with a preset refinement threshold. 

If it is greater than the threshold, the refinements to a finer level is performed. 

4. System dependency, programming language dependency, compiler dependency, 

initial geometry dependency. 

After setting up GrACE environment and the supporting software, most commonly, 

parameter parser, MPI and HDF input/output, we use the following interface driver 

algorithm: 

Initialize Grid Hierarchy 

Initialize Grid Function 

Initialize MPI 

Initialize physical domain over all AMR levels, with proper ghost zones 

Recursive_evolve(Level) { 
    if (level==0) #Iterations = 1; 

    else #Iterations = RefinementFactor; 
    Loop over #Iterations { 
        if(RegridTime(level)) { 
             Evaluate Local Truncation Error(Level); 
             Cluster Errors and Regrid current Level; 

         } 

        CFD Kernel (PPM: sweeping Reimann Solver); 

        Update boundary; 

        If (Level + 1exists ) call recursive_evolve(Level+1); 
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    } 

    Increment Timestep on current Level; 
    If(Level+1) exists) restrict solution from Level +1 to Level 
} 

IO/Interactive Viz 

2.4.3 GrACE-PPM: verification 

We use a few AIF geometries introduced in Fig. 1.2 to test our GrACE-PPM 

implementation, comparing with the uniform mesh PPM code VH1.  

Fig. 2.10 shows the verification comparison. Note 2D images are good for qualitative 

comparison but not enough for quantitative comparison. Hence we use projection 

concepts in our visiometrics environment (which will be discussed in depth in section 

4.3) and show comparison of the horizontal slice.  All the features during the shock 

traversing through the gas curtain are captured in the GrACE-PPM implementation, even 

at late time. Note the figures for the two runs are not to scale. 

Fig. 2.11 shows a 2D test run on shock-inclined interface interaction. Here we examine 

the computational steering issues. Visualization of various domains and boundaries: real 

physical boundaries; boundaries between refinement levels; and boundaries between 

different processors.  This is for an AMR, distributed, dynamic data set. We see the 

initial condition of a shock inclined interface interaction, with 8 CPU, 3 AMR levels, and 

128x32 base mesh. The mesh re-gridding is according to local density gradient. Note 

features:  

• AMR: different color meshes represent different AMR levels (1st level has 

the same color as the bounding box; 2nd black; 3rd yellow);  

• Distributed: different color of bounding boxes represent different 

processors;  
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• Dynamic data structure: note the light blue color, balance of data locality 

and load balance; 

Fig. 2.12 and 2.13 shows test runs on shock curtain interaction, in 2D and 3D, 

respectively. Fig. 2.14 gives a statistics of the GrACE-PPM’s parallel performance in 3D. 

2.5 FLASH 

FLASH is another computational steering environment. It is a modular, adaptive-mesh, 

parallel simulation code capable of handling general compressible flow problems, mainly 

in astrophysical environment. FLASH is designed to allow users to configure initial 

condition and boundary conditions, change CFD kernels, and add new physics modules, 

all with minimal effort. It uses the PARAMESH library to manage a block-structured 

adaptive grid. FLASH also uses MPI library to achieve portability and scalability on a 

variety of different parallel computers. In addition, it has many properties, e.g., MHD, 

physical viscosity and multi-species diffusion, and is supported by Department of Energy 

(DoE) ASCI program. 

Fig. 2.15 [FLASH, 03] shows the modular FLASH structure. And Fig. 2.16 shows a 

typical mesh evolution of FLASH juxtaposed with the density field visualization. The 

simulation is a shock-cylinder interaction configuration. Note in ParaMesh AMR scheme, 

the mesh box sizes are uniform, an important difference from GrACE AMR scheme and 

will be addressed later. 

We are the first group ported FLASH to SUN HPC system. Fig. 2.17 shows a hardware 

performance study on three newest architectures, which gives a benchmark of the 

different architecture and the level of optimization (whether the hardware achieved the 

expected performance). The machine abbreviations are defined in Tab. 1.1. The 

specification of the run is: 
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• FLASH2.1, viscous, shock-cylinder, M=2.0, base resolution 8x16, 3 AMR, 2496 

time subintervals 

For a reasonable comparison, 8 processors are used, which is not overloading any of 

these systems.  

It is obvious in Fig. 2.17a that SF12K is the fastest (about twice the E10K). However, if 

we consider weighting factors, we found that SF12K is not optimized to the its ideal 

performance (which is suppose to be 2.8 times faster than E10K). 

We summarize itemized timing (% of total) in Fig. 2.17b. Note The main items of the 

timing statistics are: Initialization, I/O and Evolution. The rest are itemized evolution 

term. It is a very interesting result. Item 2 (i/o), 6 (guard cell update), 9 (data base 

updating), 14 (refinement update), and 15 (tree structure update), are all communication 

(MPI) related, and have significant occupation of the total computing time on Linux AMD 

clusters, which reflect the bandwidth bottleneck on the privately networked clusters 

versus HPC platform. 

Fig. 2.18 shows performance on SGI machine. The simulation setups are: 

• FLASH2.1, 2D sod shock tube problem 6 AMR levels,. 8x8 base level, 

tmax=0.01, tplot=0.005, time subintervals: 122 

And the items are defined the same as in Fig. 2.17b. Note:  

1. The three main terms doesn’t sum to 100% because the coupling in timing; 

2. The IO scheme influence its percentage; 

3. From Fig. 2.18b, we can see the percentage of time in evolution reduced in 

parallel runs, but I/O increased. The balanced result gives the nearly linear scale 

in Fig. 2.18a.  
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4. In general, FLASH gives very good scaling in terms of time distribution among 

tasks and parallel. 

5. Great AMR behavior is taken advantage of: on 2 CPU, the run takes 318.269. 

However, if the domain is doubled, it only takes 323.841s. The rectangular 

domain is always necessary for AIFs due to the acceleration in one direction, and 

stretching bubble/interface. AMR is great for this type of problems. 

 

2.6 Summary  

Here we summarize the main technical efforts on HPC in this thesis: 

1. GrACE-PPM: Interface AMR scheme with an existing 3D Eulerian hydro code 

[Zhang et. al., 01]; 

2. Maintain and upgrade the FLASH code on Sun system; 

3. Validate the AMR hydro code: GrACE-PPM and FLASH. 

4. Performance study of AMR and HPC. 

5. Visiometrics of HPC data set. 

In Tab. 2.1 we summarize the code used/implemented/updated in this thesis and their 

main features. VH1 and FLASH are used as the main working codes in this thesis. 
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Fig 2.1 AMR Concept: Adaptive Grid Hirarchy (2D) 
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 Fig. 2.2 A typical adaptive mesh hierarchy: Shock Gas Bubble Interaction, 5 AMR 
levels, Level 1: 8x16; Level 5: 128x256  
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Fig. 2.3 AIFs and AMR: static and dynamic partitioning 
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Resolution : 64x64 

Iteration: 130 SGI64 time total SUNE10K time total 

sequential 380 380 960 960 

Unigrid (1CPU) 1610 1610 1320 1320 

Unigrid (2CPU) 1364 2800 959 1931 

Unigrid (4CPU) 2007 8140 747 3001 

a. Parallel overheads ---- 64x64
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Resolution : 320*320 

Iteration: 130 SGI64 time total SUNE10K time total 

sequential 9650 9650 26300 26300 

Unigrid (1CPU) 12381 12381 16143 16143 

Unigrid (2CPU) 6754 13552 8194 16420 

Unigrid (4CPU) 4860 19582 4404 17644 
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b. Parallel overhead ---- 320x320
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Fig. 2.4  Run statistics examining parallel overhead in GrACE. 

 

 

speedups 64*64(SGI) 64*64(SUN) ideal 320*320(SGI) 320*320(SUN) 

2CPU 1.18 1.38 2 1.83 1.97 

4CPU 0.8 1.78 4 2.58 3.67 
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Fig. 2.5 Speedups on uniform grids. 
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AMR(3 levels): 
32*32 p1 time p2 time p3 time p4 time total time syn time 

recompose 
time 

sequential 
(32*4 * 32*4) 5.95    5.95  

1CPU 55.974 0 0 0 55.974 24.156 9.719

2CPU 34.767 34.817 0 0 69.584 15.124 9.126

4CPU 33.116 33.147 33.116 33.118 132.497 16.027 9.995
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Fig. 2.6 AMR engine performance 
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Fig. 2.7 General structure of GrACE-PPM 

 

 

 

 

 

 

 

 

Fig. 2.8 Hierarchical space-filling mappings (Peano-Hilbert) 
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Fig. 2.9 Boundary alignments in GrACE-PPM implementation
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Fig. 2.11 Visualization of various domains and boundaries: real physical; refinement 
levels; and different processors.   
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Fig. 2.12 GrACE-PPM test: shock curtain interaction at intermediate time, resolution 128x512, 
with 3 AMR levels, 8 CPUs. Labels in density image are processor numbers. 
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c. 

b. 

a. 

Fig. 2.13 3D GrACE-PPM test: resolution: 128x32x32, 2 AMR Levels, 8 CPUs. (a). 
density isosurface, with AMR meshes; (b). two slices at j = 10 and 110, respectively; (c). 

A zoom of slice j=10. Note the transmission and reflection wave front and post shock 
compression of the curtain mass. 
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Aifs case study 3D with GrACE-PPM: 
128*32*32, 2 AMR levels
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Fig. 2.14 parallel performance of 3D GrACE-PPM simulation 
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Figure 2.15 Modular hierarchy of FLASH: dynamic degree of complexity. 
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 t=750e-6 t=500e-6 t=250e-6 
 

 

 

 

Figure 2.16 A typical mesh evolution in FLASH: 3 AMR levels. 
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b. Itemized performance a. 8 CPU Performance on 3 machines  

Itemize: 

1 initialization 11 diffusion 
2 i/o 12 flux conservation 
3 evolution 13 eos 
4 source terms 14 update refinement 
5 hydro 15 tree 
6 guard cell 16 guard cell (tree) 
7 hydro sweep 17 eos (tree) 
8 hydro_1d   
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Fig. 2.17 Performance scaling through different hardware: E10K, F12K and AMDMP. 
c. Itemized timing 
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 a. Parallel performance b. Itemized timing (%) 
Fig. 2.18 Performance of a typical FLASH run on SGI.  a. parallel performance; b. timing. 

 

Codes CFD Kernel AMR Parallel Accuracy Function in this thesis 
VH1 PPMLR No Yes O(3rd) in S and 

O(2nd) in T 
Main code + 
Validation testbed 

FLASH PPMDE Yes Yes O(3rd) in S and 
O(2nd) in T 

Main code 

GrACE-PPM PPMLR Yes Yes O(3rd) in S and 
O(2nd) in T 

Validation testbed 

GrACE-RM3D Godnov Yes Yes O(2nd) in S and 
O(2nd) in T 

Validation testbed 

WENO WENO No Yes O(7th) in S and 
O(3rd) in T 

Validation testbed 

 

Tab. 2.1 Summary of codes. 
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Chapter 3 Visiometrics  

 

3.1 Introduction 

Modern computer simulations usually produce large datasets. It is crucial to interpret 

these datasets through visualization and analysis to obtain physical insight. Visiometrics 

is our special methodology to accomplish this task.  

By visiometrics, we mean the comprehensive data pipeline of visualization, juxtaposition 

and quantification with modern computers architectures and algorithms. It is a cogent 

way to explore the dataset for physical and mathematical understanding of phenomena.  

The discovery of "Soliton"[Zabusky & Kruskal, 65] via numerical study of Korteweg-de 

Vries (KdV) equation is the first success of visiometrics, pure academically at the time. 

"Soliton" is now playing a crucial role in optical telecommunication industry. The 

dispersion managed soliton technology, once converted to industrial productivity, is 

impacting our life with 10 Gbit/s optical telecommunications systems, with researches on 

the future evolution towards multi wavelength 40 Gbit/s transmission systems.  

The term "Visiometrics" is first made official by the foundation of "Laboratory for 

Visiometrics and Modeling" (Vizlab) at Rutgers and a keynote paper [Bitz & Zabusky, 

90]. Vizlab is an interdisciplinary research lab among aerospace engineering, computer 

engineering, computer science, physics and applied mathematics. Many new physical 

discoveries were made in the lab under visiometrics mode of working. To name a few in 

recent years: secondary circulation enhancement [Zabusky & Zhang, 02], baroclinally 

forced inhomogeneous turbulence [Zhang et. al., 02], and uncertainty quantification 

[Zhang et.al., 03]. Some of the above examples will be discussed later in this thesis. At 
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the same time, many new algorithms and software packages were designed and 

implemented, e.g., Data Visualization and Diagnostics (DAVID) and Visiometrics 1.0. 

More interestingly, the visiometrics concept, mainly popularized in academia, is catching 

up in industry by the idea "data mining".  It becomes a common belief among spacious 

researches, both in industry and academia, that a smart way of exploring and presenting 

the data will be one of the most important research focuses in this information explosive 

world. 

3.2 Scientific visualization in fluid flow 

Visualization is one of the most effective tools for flow analysis in both experiments and 

simulations. It is actually the oldest candidate for visualization ---- the transparent nature 

of fluid flow and its complexity require smartly designed schematic to reveal the fluid 

physics without much interference. In terms of computer simulation, visualization could 

help in revealing scientific insight, as well as in assigning artistic flavors of science in 

terms of, for example, manipulating colors [Zabusky, 00]. 

How to visualize the data and which quantities to visualize may determine whether new 

physics can be discovered, or how much understandings could be obtained from the 

data. Transformation functions or filters can be applied to flow field variables to generate 

visual images [Samteney & Zabusky, 00]. Differentiation and threshold are two of the 

most straightforward and fundamental ones. Take the example of density field. First 

order differentiation of density filters out the smooth density background and is one of 

the common methods to visualize the high-gradient density region like contact 

discontinuity. This method has analogue from both experiment (called schlieren) and 

image processing (called edge detector). The density gradient field can be further used 

as the input to more advanced visualization techniques such as skeleton extraction, e.g., 
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we used the method in [Chang, 02] to extract skeleton of density gradient magnitude 

field for our Richtmyer-Meshkov interface simulation [Zabusky & Zhang, 02].  

The second order differentiation or Laplacian of density is another technique to visualize 

the high-gradient regions. We call it numerical shadowgraph in analogy with 

experimental shadowgraph technique. It is a high-pass filter in imaging processing. 

Density gradient and density Laplacian visualizations for the interface are smeared over 

a pretty large space, and consequently are hard for use in further quantitative analysis. 

One solution to extract the desired curve is the zero crossing of the Laplacian density 

field [Peng, 03].  

For our shock pattern analysis, we use the divergence of velocity field. This will capture 

only the highly compressed region. Instead, the Laplacian of density can be used to 

visualize both the shock wave and interface regions at the same time.  

[Post et. al., 03] reviewed scientific visualization advances in the past decades, with 

emphasis on feature-based visualization, a subject in our later discussions. These pre-

processing schemes directly associated with visualization are the first step of our 

visiometrics methodology, and its importance is widely accepted.  

3.3 Importance of quantification 

Quantification is a step further to the physical understanding and modeling. It is crucial to 

get physics and mathematics out of the system. There are two categories of 

quantifications: global and local.  

Global quantification measures the total quantities, for examples, circulation, integrated 

enstrophy, distribution or histogram, power density spectra, moments of statistical 

quantities (e.g. skewness, flatness et al) and so on. To avoid numerical noise that 

always associated with the numerical implementation of the boundary condition, 
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particularly inflow and outflow, we introduce the diagnostic box surround the region of 

interest to perform global quantification accurately.  

Local quantification characterizes the space-time topologies of coherent structures in an 

appropriate moving frame, including: evolution of critical scales; space-time diagram of 

integrated vorticity and density; slopes, normals and curvatures of interfaces; and other 

localized quantities through feature extraction and tracking.  

For AIFs and other multi-fluid flows, it is important to extract the localized features for 

local quantification. These localized features could be coherent vortex structures or the 

interface curve. Extraction is usually a stand-along post-processing process, but could 

also be online with the simulations. 

We’ll discuss the definition of these quantifications at the place we use them, and 

summarize the details of the procedure on how to get these quantifications in the next 

section.  

3.4 Visiometrics: the comprehensive pipeline 

The visiometrics pipeline mainly consists of four stages: 

OBTAIN & ASSIMILATE DATA: From numerical simulations, laboratory/filed 

experiments, and/or observations (e.g., space telescope), with appropriate 

preprocessing (reduction, filter, statistical modeling and juxtaposition). 

VISUALIZE DATA: Use interactive environments and animation, with proper 

choice of visual/graphics effects, e.g., colormaps. 

QUANTIFY DATA:   
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• Project fields (time evolving scalar, vector and tensor in nD) to lower 

dimensions (3D, 2D or 1D) by integrating with respect to an appropriate 

kernel;  

• Transform field by taking slices, space-time diagrams and volumes, or 

with wavelets, etc; 

• Identify, extract, juxtapose and track coherent objects and particles 

(features and trends); 

MATHEMATIZE: Obtain reduced models or statistical properties; Find scaling 

laws, simpler equations of motion and/or simple formulas.     

In the following we define a few key technologies underlying these modules. Note our 

definitions of these technologies are really dynamic: the technique is developing and 

expected to be enriched. 

3.4.1 Data Juxtaposition 

Data juxtaposition ---- Combine and compare data to build correlation, from 

1.Different source (experiments, simulations, field observations);  

2.Different quantities (independent or derived) and/or at different time;  

3.Different preprocessing procedure; etc… 

In complex physical processes, different factors usually interact, correlate and compete 

with each other. We can obtain different visualization and quantification results from 

different perspectives. Juxtaposition is a synthetic comparison for insightful analysis by 

putting side by side different but potentially correlated results (visualized and quantified) 

of different or similar functions. This is especially true in juxtaposing primary quantity 
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(e.g., density) with carefully structured quantities (e.g., vorticity). We can also validate 

the simulation by juxtaposing the experimental results with simulations. 

Juxtaposition allows one looking at different aspect of a complex system and derives 

innovative insights such as correlations and causes. 

3.4.2 Data projection 

Data projection ---- Project data with regard to appropriate kernel and reduce the 

dimension. The most popular projection methods are: 

1.Slice the data (0th order approach);  

2.Integrated with regard to a kernel to project the data to lower dimensions 

(higher order approach);  

3.Statistical distributions and correlations; etc… 

Project one quantity to the axis reduces the dimension (2D->1D) and makes it possible 

to juxtapose values of a 2D quantity from different time to capture its time evolution. Fig. 

3.1 illustrates an example of a 1st order projection. 

Note projection reduces the dimension of the data and make it feasible to juxtapose at 

this more abstracted level. 

3.4.3 Space-time analysis 

Space-time analysis ---- Assimilate the evolution of the data in one parameter space 

(e.g. temporal) with the other (e.g., spatial).   

• In 1D, it gives a 2D space-time diagram with no data reduction; 

• In 2D, it gives a 3D space-time volume with no data reduction or 2D S-T 

diagram with 1 projection; 
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• In nD, it gives a 3D space-time volume with n-2 projection/slice or 2D S-T 

diagram with n-1 projections. 

The discovery of soliton is a good example to illustrate the main concept of space-time 

diagram, as in Fig. 3.2. More complex space-time analysis used later-on in the thesis 

leads to many new discoveries.  

The basic idea in space-time analysis is dimensional transformation, in our case, 

transformation of spatial dimensions (upon projection) to temporal dimension. 

KdV equation is considered the champion of model equations of nonlinear waves. In Fig. 

3.2, we can see the PDE system and numerical configurations are on the top. The right 

column is a sequence of graphs showing the solutions at different times, a set of curves 

that Korteweg and de Vries were looking at in the 19th century, and hereafter by all the 

researchers for nearly seven decades.  

To the left, a space-time diagram of the same solution is shown, by packaging the 

curves from all time steps along time axis, and using a appropriate colormap to 

represent the value of the function (velocity in this case). The eye-capturing large 

streaks in the diagram are solitons, with some of their mathematical features such as 

strength, phase shift after intersection, etc, being geometrically visualized. 

Through data summarization with space-time diagram, the spatial and temporal 

evolution is captured together. Important features and their characteristics are easily 

identified. 

Note the extension of the orthogonal Cartesian space to parameter space will be of 

crucial importance in the extension of using visiometrics to non-scientific data, e.g., 

business data. 
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3.4.4 Feature analysis 

Features, or patterns, are of crucial importance in any scientific disciplines. This is 

especially true in AIFs flows, where the gas inhomogeneity is always rolled up by a 

strong vortex projectile and forms a mushroom dipolar jet as shown in Figure 1.2. The 

features of interests in fluid dynamics are: 

• Vortices 

• Shock waves 

• Material interfaces (contact discontinuities) 

• Separation and attachment lines 

• Recirculation zones 

• Boundary layers 

Etc… 

They can be primarily categorized into two groups: volumetric features (e.g., vortices) 

and interface/line features (e.g., shocks, CDs). Note transformation of the feature from 

one category to another is always possible, e.g., 3D vortex tube to vortex core line. 

Possible events of these time evolving features are summarized in Fig. 3.3. [Zabusky, 

99] has a more detail summary of interactions of fluid dynamical features. Clearly, it is 

very important to ask what happened in the evolution of the features qualitatively (event 

query) and quantitatively. This could be only answered by tracking algorithms, i.e., 

correspondence problem. Two main approaches to solve the correspondence problem 

are: 1. attribute correspondence [Samteney et. al., 92]; 2. full volume correspondence 

[Silver & Wang, 97]. The former is efficient because it uses the feature attributes as 

reduced model of the feature and calculates the correspondence of these attributes. 
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However, it has difficulty in handling features with high complexity, e.g., highly curved 

features. We use full volume feature correspondence in this thesis. 

Fig. 3.4 shows a feature analysis pipeline. The basic steps are: 1. Obtain data from 

experiments, simulations or observations, with appropriate preprocessing (e.g., 

transformation and juxtaposition); 2. Visualize (in traditional way) the simulation data, 

quantify fields globally and identify main feature of interests (vortices and mass bubbles 

in this case); 3. Extract these features and quantify them to get abstract description; 4. 

Track the time evolution of these features; 5. Isolate individual features (interactively) to 

obtain evolution quantification. 

Details on feature extraction and tracking algorithms could be found in [Silver & Wang, 

97]. And Fig. 3.5 shows a diagram of using the feature-tracking package.  

[Chen et. al., 02] [Chen et. al., 03] extended this package to parallel environment and 

addressed the correspondance problem of adaptive mesh data.  

Aside from extraction and tracking of the volumetric features, the material interfaces 

between different fluids, referred to as CD, and shock waves, are also of practical 

interests for extraction and tracking.  

[Samtaney & Zabusky, 99] examined the accuracy of zero crossing of the Laplacian 

density in quantifying the shock and contact discontinuity locations. [Peng, 03] extended 

this method to initially diffuse interface and developed a simplified interface extraction 

algorithm using the zero crossing of Laplacian of density in high-density gradient field. 

Other interfacial-tracking scheme includes media-axis work by [Chang, 02] and those in 

level set method literature. 

3.5 Unique features of visiometrics 

Visiometrics has the following features different from the usual visualization: 
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1.Data abstraction 

• Visiometrics increases the information content by abstract representation of the 

data (with features) and projections/transformations/juxtapositions; 

• Visiometrics could reduce the data by the order of 103, with high scalability in 

parallel environment; this data reduction allows real-time interaction between the 

viz and CFD simulation; 

• Visiometrics reduces visual clustering for easier viz; 

2.Visiometrics leads to effective physics representation by allowing physicists to 

relate visual observation to conceptual framework; 

3.Feature analysis allows access to the localized features and makes the 

quantification and reduced mathematical modeling feasible; 

3.6 Environments: DAVID & Visiometrics 1.0 

The first implementation of visiometrics toolbox is by [Bitz & Zabusky, 90] and [Feher & 

Zabusky, 95] created and augmented the DAVID environment [DAVID, 96] for facile 

interactive visualization and quantification of simulation data-- single frames of a variable 

in 2D or a slice from 3D. They introduced the idea of a “diagnostic box” and were able to 

extract and project coherent structures on which quantifications were done.   

A new visiometrics toolbox developed in this thesis dealing with the HPC dataset is 

visiometrics1.0. It has the following emphasis:  

1. It has enhanced features in visualizing, quantifying, scaling and reduced 

modeling the properties of evolving coherent structures of density, density 

gradients, velocity, vorticity (or domain circulations and enstrophy), velocity-

divergence and baroclinic generation, particularly emphasizing on obtaining 
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insight to late time turbulent decay and mixing with feature based analysis: 

feature (volumetric and interfacial) extraction and tracking.  

2. It has the ability of handling large, time-varying, parallel, adaptive mesh 

datasets. 

3. It is extended to 3D visiometrics under vortex paradigm framework, to address 

3D effect and obtain quantitative insight of 3D physics in AIF. 

3.7 Visiometrics for AMR data set – ChomboVis environment. 

We discussed in section 4.2 that AMR is a valuable scheme for large multi-scale 

simulations. However, the significant increase of data structure complexity, across many 

processors with dynamic features  (for load balancing), make it very difficult for 

visiometrics. For example, data “alignment” is extremely important for visualization and 

made difficult by various boundaries: real physical boundaries; boundaries of refinement 

level; and boundary between different processors. We use and augment AMR modules 

from ChomboVis, a Lawance Berkeley National Laboratory environment [ChomboVis, 

03], to visualize AMR data from FLASH and GrACE-PPM.  

Figure 4.25 use FLASH data structure as an example to show how FLASH data, with 

AMR structures, has been processed and visualized. The first approach, Fig. 3.6a, is to 

output our simulation data with regular HDF5 format, and write a routine to convert the 

regular HDF5 data to ChomboVis HDF5 format. The second approach is to output 

ChomboVis HDF5 format directly, as shown in Fig. 3.6b. 

Both approaches involves ChomboVis HDF5 data structure, which we’ll discuss in the 

following. 
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3.7.1 ChomboVis HDF5 data structure 

ChomboVis is a program for visualization of 2D and 3D AMR data sets. It is layered on 

top of the Visualization Toolkit (VTK) and provides a graphical and programmable user 

interface for interacting with the data set. The primary function is imlemented with C++, 

but the interface driver is written in Python. 

Before we discuss the data structure, we first summarize the datastructure. More details 

could be found at [ChomboVis, 03].  

ChomboVis uses the native data type internally, which allows HDF5 to make efficient 

conversions between binary data representations. Every NATIVE data type translates to 

a real data type for particular computer architecture.  

ChomboVis also defines two new composite HDF5 data types for IntVect and Box 

(which depend on the dimensionality of the Chombo HDF5 file). An typical 3D 

description is:  

DATATYPE ``intvect_id'' { 

  H5T_NATIVE_INT "intvecti"; 

  H5T_NATIVE_INT "intvectj"; 

  H5T_NATIVE_INT "intvectk"; 

         } 

DATATYPE ``box_id''{ 

  H5T_NATIVE_INT "lo_i"; 

  H5T_NATIVE_INT "lo_j"; 

  H5T_NATIVE_INT "lo_k"; 

  H5T_NATIVE_INT "hi_i"; 

  H5T_NATIVE_INT "hi_j"; 

  H5T_NATIVE_INT "hi_k"; 

         } 

 

With the above definitions, the file format could be break-down into the following:  

GROUP "/" { 

   ATTRIBUTE "time" [OPTIONAL]{ 

      DATATYPE { H5T_NATIVE_DOUBLE } 
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      DATASPACE { SCALAR } 

   } 

   ATTRIBUTE "iteration" [OPTIONAL] { 

      DATATYPE { H5T_NATIVE_INT } 

      DATASPACE { SCALAR } 

   } 

   ATTRIBUTE "max_level" { 

      DATATYPE { H5T_NATIVE_INT } 

      DATASPACE { SCALAR } 

   } 

   ATTRIBUTE "num_levels" { 

      DATATYPE { H5T_NATIVE_INT } 

      DATASPACE { SCALAR } 

   } 

   ATTRIBUTE "num_components" { 

      DATATYPE { H5T_NATIVE_INT } 

      DATASPACE { SCALAR } 

   } 

   [for n=0,num_components   

   ATTRIBUTE "component_n" { 

      DATATYPE { 

         { STRSIZE ; 

           STRPAD H5T_STR_NULLTERM; 

           CSET H5T_CSET_ASCII; 

           CTYPE H5T_C_S1; 

         } 

      } 

      DATASPACE { SCALAR } 

   }] 

   GROUP "Chombo_global" { 

      ATTRIBUTE "testReal" { 

         DATATYPE {H5T_NATIVE_DOUBLE } 

         DATASPACE { SCALAR } 

      } 

      ATTRIBUTE "SpaceDim" { 

         DATATYPE { H5T_NATIVE_INT } 

         DATASPACE { SCALAR } 

      } 

   } 

   [for n=0,num_levels 

   GROUP "level_n" { 

      ATTRIBUTE "dt" [OPTIONAL] { 

         DATATYPE {H5T_NATIVE_DOUBLE } 
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         DATASPACE { SCALAR } 

      } 

      ATTRIBUTE "dx" { 

         DATATYPE {H5T_NATIVE_DOUBLE } 

         DATASPACE { SCALAR } 

      } 

      ATTRIBUTE "ref_ratio" { 

         DATATYPE { H5T_NATIVE_INT } 

         DATASPACE { SCALAR } 

      } 

      ATTRIBUTE "prob_domain" { 

         DATATYPE box_id 

         DATASPACE { SCALAR } 

      } 

      DATASET "boxes" { 

         DATATYPE box_id 

         DATASPACE { SIMPLE 1D } 

      } # see section 'Data Flattening' 

      DATASET "data:datatype=0" { 

         DATATYPE {H5T_NATIVE_DOUBLE } 

         DATASPACE { SIMPLE 1D } 

      } # see section 'Data Flattening' 

      GROUP "data_attributes" { 

         ATTRIBUTE "ghost" { 

            DATATYPE intvect_id 

            DATASPACE { SCALAR } 

         } 

         ATTRIBUTE "comps" { 

            DATATYPE { H5T_NATIVE_INT } 

            DATASPACE { SCALAR } 

         } 

         ATTRIBUTE "objectType" { 

            DATATYPE { 

               { STRSIZE ; 

                 STRPAD H5T_STR_NULLTERM; 

                 CSET H5T_CSET_ASCII; 

                 CTYPE H5T_C_S1; 

               } 

            } 

            DATASPACE { SCALAR } 

         } 

      } 

   }] 
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 } 

The floating point data is stored in the single large data array in /level_*/data:datatype=0. 

The primary data holder used for each grid in an AMR calculation is defined as:  

struct FArrayBox 

{ 

   Real* dataPtr; 

   int   comps; 

   Box   region; 

} 

which is accessed in Fortran-ordering fashion with component indexing being the outer 

index, and zero indexing:  

for(int comp=0; comp < fab.comps; ++comp, index+=fab.region.numPts()) 

   for(int k=0 ; k < fab.region.size(2); ++k, 

                        index+=fab.region.size(0)*fab.region.size(1)) 

      for(int j=0 ; j < fab.region.size(1); ++j, index+=fab.region.size(0)) 

         for(int i=0 ; i < fab.region.size(0); ++i, ++index) 

           printf(``fab[%i,%i,%i,%i] = %d'', 

                  i,j,k,comp,fab.dataPtr[index]); 

For every level of AMR data, the number of components is stored once in 

/level_n/data_attribtues/comps. All of the Real data per level is then stored in one giant 

1D array called /level_n/data:datatype=0. Each FArrayBox data is written as a 
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contiguous section (an HDF5 hyperslab ) of this large 1D array  Along the 1D data array, 

the order which things vary is i, then j, k, component, and finally FArrayBox index.  

3.7.2 ChomboVis requirements 

ChomboVis are primarily tested on Linux. In this thesis, we have succeeded in building 

and running ChomboVis on Sun Sparc architecture.  

Before building and running ChomboVis, a number of supporting packages need to be 

installed first, include:  

• HDF5 1.4.2 - used by FLASH and GrACE-PPM to write data and by ChomboVis 

to read that data.  

• Tcl 8.3.3 and Tk 8.3.3  

• Python 2.2  

• Pmw.0.8.5 - Python megawidgets.  

• Mesa 3.4.2 (if you don’t have OPENGL).  

• VTK 3.2 

Note the version number is extremely important. A number of packages that are almost 

universally installed are also necessary, e.g., GNU make (v3.77 or higher), GNU zip, 

autoconf, and text tools like grep, sed, and awk. In addition, GNU C++ (gcc), version 

2.95 or later, except version 2.96 is required.  

3.7.3 Interface function and parameters 

Although ChomboVis was designed to use together with Chombo package (A variety of 

ParaMesh), the only point of contact between the two is that ChomboVis reads the 

HDF5 file format that Chombo writes. Any package could write out ChomboVis 

compatible data as far as it follows the data structure. The most important step is 
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knowing where in the large 1D data array to start a read or a write for a particular 

FArrayBox. Offset calculation and hyperslab construction is a large part of the code 

complexity in the ChomboVis HDF5 (combined with the complexity of the flexible HDF5 

binary portability). Upon completely reading in all the region information from the "boxes" 

data set, and reading the number of components, then one can calculate where to start 

any particular read/write operation. This is also an essential element of how to perform 

I/O in parallel, with every processor individually figuring out where in the giant array to 

write its particular data sections.  

As pointed out in the previous sections, an important difference between ParaMesh 

based AMR package (e.g., FLASH and Chombo) and GrACE based package (e.g., 

GrACE-PPM) is that the former has uniform size for all blocks. This makes it significantly 

easier for the offset calculation in visualizing ParaMesh based data than GrACE based 

data.  

For non-uniform grid size, we need to retrieve the box information as part of the Grid 

Hierarchy as well as part of Grid Function. Then at the time we are allocating memory for 

the 1D array, we also had the information of the box size and assign the memory 

accordingly.  

In the following, we show a typical interface function:  

void write_block_to_chombo_file (int* block_tot, // accumulating: total number of blocks 

been processed, for file close control 

  int* no_at_level, // accumulating: number of blocks at current level been 

processed, for computing offset of HDF5 dataspace 

  char* fileout2, // filename 
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                        int* tot_blocks, // total number of blocks, for file close control together with 

block_tot 

                        int* numLevels, // total number of levels, for initialize and close level-

wise HDF5 memdataspace 

  int* ndim, // number of dimensions 

  int* nvar, // number of variables 

  int* nxb,  // size of the box 

  int* nyb, 

  int* nzb, 

                        int* lrefine, // current level 

                        int* min_coordinate[ndim], //index coordinates of current box 

                        int* max_coordinate[ndim], 

                        double* unk[ndim[0],ndim[1],ndim[2],nvar], // Data: note the order (i, j, 

k, nvar) 

                        double* simtime, // simulation time 

                        double* dt, // time step 

  int* first_call, // boolean controling the file to be open only once for each 

time step 

  int* no_at_level_tot[numLevels], // An array contents total number of 

blocks at each level, for memdataspace allocation 

  double* dx[numLevels], // An array contents step size at each level 

  char* compNames // An array contents name of components); 
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Two block indexes is required to build the 1D array, as shown in Fig. 3.7: 

1). The total number of blocks for book-keeping: block_tot (accumulating) and 

tot_blocks (=6) in this case. 

2). The number of blocks at each level for dataspace memory allocation 

no_at_level_tot. 

The interface algorithm outputting FLASH data (different levels, multiple grid function) at 

each time step to one file in ChomboVis HDF5 format is summarized as following: 

1. Open file if called the first time (controlled by first_call); 

2. Define and insert compound data strcture, including box, attibute  (ndim, 

numLevels, nvar, simtime); 

3. Open and write out CHOMBO HDF5 level-wise: a data space is created for 

each level, and allocated with the size: no_at_level_tot[i]* *nvar * *nxb * *nyb; 

(Step 1, 2, 3 is within chomboinitializedfile) 

4. Compute level-wise offset of the data in the data space; 

5. plug the data into the appropriate data space according to the computed 

offset; 

6. Close the file if all the block numbers have been processed 

3.7.4 Examples 

Fig. 3.8 shows a typical ChomboVis visualization interface. Most of AMR visualization in 

this thesis is based on ChomboVis, however, the GUIs are omitted for all other cases. 
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Figure 4.xxx An illustration of data projection 
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Fig. 3.2 KdV soliton: an example of space time diagram. 
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Fig. 3.3 Events in 2D turbulent mixing. 
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Fig. 3.4 Feature based analysis in AIF study 
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Fig. 3.5 Diagram of the feature tracking package usage. 
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Fig. 3.7 Level-wise block indexes in ChomboVis HDF5 data. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3.8 ChomboVis GUI. 
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Chapter 4 Verification and validation 

 

4.1 Introduction 

Verification and validation, referred as V&V hereafter, are fundamental steps in 

developing any new simulation technology.  The goal is assessing the credibility of 

modeling and simulation. Verification means demonstrating that a code or simulation 

accurately represents the conceptual model – solves the equations right. Validation of a 

simulation means demonstrating that the simulation appropriately describes nature – 

solves the right equations. The scope of validation is therefore larger than that of 

verification, which involves comparison of numerical results with experimental or 

observational data [Calder et. al., 02]. 

The issue of verification and validation of a numerical scheme is very important but not 

yet being addressed with enough emphasis. According to a statistics shown by Steven 

Orszag at an APS Centennial Meeting, 1999, there are only 6.7% of totally 89 published 

CFD papers, randomly sampled in Journal of Fluid Dynamics and Physics of Fluids from 

1990 to 1999, that addressed carefully the numerical accuracy issues, while 68.5% has 

little or no tests at all.  

This V&V problem requires mathematical and physical insights into the problem to avoid 

wrong answers. In addition, careful examinations of the output data are crucial when 

theory is not available or not well-developed, which is the focus of this thesis. Here we 

use the validation of PPM as an example to show our vortex paradigm mode of V&V. 
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4.2 Dissipation of PPM 

In this section, we examine the dissipation effect of PPM algorithm in different 

implantations. These dissipations are very important to intermediate to late time 

dynamics, and could be treated as a sub-grid model of turbulence. 

We first study the effect of numerical precision Fig. 4.1. We define circulations as our 

convergence criteria:  

dxdy++ ∫=Γ ω , Γ , Γ     (4.1) dxdy−− ∫= ω dxdyω∫=

The simulation we are looking at is shock curtain interaction, with M=2.0, η =7.14, 

tend=200, resolution 2048x256, on SUN E10K machine. A double precision run uses 

CPU Time 261,078.56 sec, while a single precision uses CPU time 192,396.91 sec. 

Only starting from the end of second time epoch (eII), the influence of numerical error 

becomes significant, i.e., dissipation starts at an later time in double precision run.  

In Fig. 4.2, we show the convergence of circulations for runs with zero-viscosity and with 

two numerical methods: PPM and Weighted essentially non-oscillatory (WENO) method 

(two runs with WENO at 5th and 7th orders of accuracy respectively). The physical 

conditions are an M =1.2 shock traversing a SF6 gas cylinder in a 200x800 uniform mesh 

numerical shock tube. The circulation differences are unobservably small during shock 

passage and within 5% for later times. These differences come from the formation of 

small-scale structures beyond the intermediate time, which are also observed 

experimentally. All qualitative features in density and vorticity images are common to all 

the runs. Although PPM is only upto 3rd order accurate, its result is comparable to 5th 

order WENO run. 
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4.3 FLASH modules: constant viscosity, gamma blending and AMR 

numeric 

We introduced in this thesis a constant kinematic 3.2x10-3 cm2/sec to momentum 

evolution equation: 

 Momentum: / )()()( uguuu ∇⋅∇+=∇+⋅∇+∂∂ νρρρ pt   (4.4) 

In Fig. 4.3, we show that this viscosity does affect circulation evolution in a shock 

cylinder interaction simulation, with 01.0=∆x  cm. Fig. 4.3a shows that a viscous flow 

with viscosity 3.5x10-5 cm2/sec is essentially equivalent to an inviscid flow at this 

resolution. Fig. 4.3b shows that the circulation is smaller as the viscosity in this range 

increases.  

Note, the FLASH compressible code omits viscosity in the energy equation and thus 

provides only heuristic results for small scales at late times. For comparisons with 

experiments, we do not believe that this omission and the lower viscosity used is an 

important effect for the large and intermediate structures up to intermediate times. In the 

future, we hope to investigate the role of physical and numerical diffusivities at late times 

when the small-scale structures are be in a turbulent state. 

We note that the AMR implementation and some FLASH modules which introduces 

more complex physics into the simulation, e.g., gamma blending of different species, 

make the simulation subjected to more numerical errors.  

In Fig. 4.4, we show the error introduced by AMR comparing with the viscosity. We see 

that the circulation is actually enhanced by AMR scheme, a phenomenon we will discuss 

in more detail later.  

In the following, we further show the solution convergence and accuracy issues on the 

gamma-blending and AMR. In FLASH, the equation of state of gamma-law gases evolve 
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with different specific heat ratio, where for the gas mixture, the specific heat ratio is 

defined as weighted average adiabatic index [FLASH, 02]: 

∑ −
=

− i i

i

i A
X

1
1

1
1

γγ
      (4.5) 

Where X i is the mass fraction of the ith element, A is atomic mass, i is 1 and 2 in our 

case, for air and SF6, respectively. 

Fig. 4.5 shows a convergence study of gamma blending modules in FLASH.  Note for all 

five runs, the net circulations are the same, which means the basic physics for all the 

runs are consistent. The difference comes only from secondary structures. The hydro 

solver of VH1 and FLASH are almost identical, revealed by the solid and dotted lines, 

except a short region between 0.0007 ≤ t ≤ 0.0011, where FLASH circulations are 

smaller. Dashed line shows the effect of multi-species, which makes second baroclinic 

increase phase start at a significantly early time. Dark solid lines shows deviation from 

adaptive mesh. The difference is not negligible and is under investigation. We show in 

addition the simulation with a small diffusion 1.73E-5 here. 

Now we switch to another geometry: curtain to examine the convergence issues at late 

time while turbulence developed. Fig. 4.5 show four time steps for three shock curtain 

runs: 

Run 1: VH1, uniform mesh 256x2048, single species; 

Run 2: FLASH, AMR (32x256, 4 AMR levels), multi-species; 

Run 3: FLASH, AMR (8x64, 6 AMR levels), multi-species. 

It is important to prevent the CDs from being ill-refined to different level of mesh. Hence, 

an optimization study on the refinement threshold is performed and 0.2 is used for 4 

AMR levels and 0.08 for 6 AMR levels.  
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Figure 4.6a shows the mesh distribution of run 8 with FLASH. Each box in the Figure 

corresponds to an 8x8 mesh block. Clearly, 4 level of meshes are observed, and the 

discontinuities are well refined. 

Figure 4.6b captures the curtain when it is just hit by the incident shock and some shock 

wave interactions. The specific heat ratio is an important factor influencing the time 

scale, which result in the different position of the reflected shock wave front at the same 

time for different runs. Transmitted shocks for FLASH runs are not captured because of 

the colormap setups. The VBL driven curtain rolls up almost the same way for all three 

runs. However, small differences in secondary structures are presented. This continue to 

be true to intermediate time at t=2.5, Fig. 4.6c. But at late time, Fig. 4.6d, t=6.9, when 

turbulent mixing dominants the flow, the simulations agrees only in a very qualitative 

sense: the AMR runs with different γ’s are more turbulent. In addition, numerical effects 

become significant, which is certainly more severe in AMR runs: even the two AMR runs 

at this time do not agree well. 

We amplify the above statement by showing quantifications of Run 1 and Run 2 in Fig. 

4.7. In both Figs. 4.7a and b, we see that at early time, the circulation and the enstrophy 

agree. However, at t> 2.5 the results diverge. In Fig. 4.7a, the positive circulation seem 

to be subjected to a much stronger secondary baroclinic enhancement for the FLASH 

run than the VH1 run. This phenomenon is also seen in the stronger mixing process 

observed in Fig. 4.6 and the y-integrated vorticity in Fig. 4.7c, where we see locally, 

there is much more positive circulation in FLASH run (dash-dot curve) than VH1 run 

(solid curve). However, the negative circulation, obtained mostly from the strong 

localized vortex projectiles is subjected to much less mixing,  

In Fig. 4.7d we explain the above deviation by plotting the density gradient distribution. 

At t=2.5, we see the gradient distributes almost identically, while at t=6.9, the 
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distributions diverges. In the high gradient region, |∇ρ|>103, VH1  has a higher gradient 

value  because of its intrinsic ability in maintaining contact discontinuities, that is, it is  

less dissipative.  In the large intermediate gradient range 10<|∇ρ|<103, we see, FLASH 

gives a much wider gradient distribution, which contributes to the stronger circulation 

enhancement in eII. This arises because of the stronger mixing obtained from the 

different equations of state of the two gases and AMR implementations. 

In summary, we find that the combined effect of gamma-blending and AMR preserves 

very high gradient structures, which greatly change the circulation and enstrophy 

behaviors at and beyond the intermediate times. 

It is also interesting to note the difference of the two PPM implementations: PPMLR and 

PPMDE. Although according to [Woodward & Collela, 84], they are almost identical, VH1 

group pointed out that PPMLR is less dissipative and thus better at maintaining contact 

discontinuities, which is consistently observed here by the slightly larger circulation. 

4.4 AMR error exposure with visiometrics 

The efficiency in time and computer resources introduced by AMR is at the sacrifice of 

certain accuracy, as already shown in the global quantifications in the previous section. 

The import of AMR data hierarchy requires further numerical procedure, and 

consequently introduces more numerical error. For example, the time step splitting at 

finer levels introduces more numerical steps and hence more round off error.  

These errors are not being fully aware of by the AMR community and hence careful 

validation is extremely important. This section summarizes the error exposed during the 

course of this thesis and discusses the solutions. 
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4.4.1 AMR error  

We further focus on the numerical artifacts introduced by AMR. In Fig. 4.8 we show a 

comparison of AMR introduced numerical dissipation with viscosity. We see the error 

introduced by AMR is within 1% of the circulations, and will be overwhelmed by the 

constant viscosity greater than 3.5x10-5. 

4.4.2 Ill-imposed initial AMR mesh: refine criteria and local error clustering 

Efficient and accurate schemes for refinement and de-refinement of the variables are a 

crucial element in any adaptive scheme. The refinement and de-refinement strategies 

used here take advantage of the 1:2 and 2:1 ratios between parent and child cells, 

allowing these processes to be carried out rapidly and in a conservative manner. 

The usual procedure of refinement and de-refinement is driven by the calculation of a 

local error comparing with a preset error threshold – referred to as refinement criteria. In 

FLASH, the following error estimator is used [Lohner, 87]: 
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where the ε  term in the denominator acts as a filter, preventing refinement of small 

ripples. Partial derivatives are evaluated at the center of the i1i2i3-th zone. 

These errors computed at each cell were clustered to compare with the refinement 

threshold. In AIFs flow, the situation illustrated in Fig. 4.8a is possible, which gives the ill-

imposed mesh because the material interface haven’t been refined to the same level. 

For the type of flow that is extremely sensitive to initial condition, the boundary of 

different refinement level at the interface provides a perturbation which propagates 
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through the time evolution, and result in wrong secondary instability as in Fig. 4.8b. For 

comparison, the correct result is shown in Fig. 4.8c with appropriate refine criteria 

(usually lower). Note the best criteria is always a result of optimization because if the 

criteria is too low, it will waste a lot of mesh on refining less significant regions, with 

errors coming from maybe only numerical noise. 

4.4.3 Error exposure with visiometrics and anomaly 

Most of the AMR convergence study is concentrated on 1D problem with known 

analytical solution. The addition of AMR levels are usually shown to converge to the 

analytical solution[FLASH, 02]. However, few studies have been performed further.  

We set up a straightforward experiment to investigate the convergence of 2D simulation. 

The strategy is: we keep the numerical resolution the same, while varying the 

combination of the base mesh and AMR level, which gives the same numerical 

resolution. Four runs are  performed, as listed in Tab. 4.1. The VH1 run is  only shown 

for reference.  

Figure 4.9a shows the density images for run 1 and 3. There are subtle differences in 

the two runs which are  hard to identify through this qualitative comparison. We need to 

get quantitative with our visiometrics toolbox. 

The first step, we check in Fig. 4.9b the global conservation of the run: 

∫∫= dxdyttMass )()( ρ      (4.3) 

We note:  

1. The increase of the mass is due to the compressibility of the flow, which is 

balanced by the inflow/outflow boundary condition and gives mass conservation; 
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2. Mass evolution in PPMLR run (VH1) is offset a bit from the PPMDE run 

(FLASH2). 

3. Three AMR runs has the error around 0.1% ( (0.0001/20) / 0.0045);  

4. The number of refinement levels in AMR runs are guaranteed by the 

refinement criteria to refine to the finest mesh, as shown in the following picture 

This is the stage of most AMR validation study.  

We further project the mass to the axis as in Fig. 4.9c: 

∫= dyMassy ρ       (4.8) 

We start seeing difference between the first three runs: 

1. Each peak corresponds to a roll of the vortex structure, roughly speaking; 

2. AMR errors are larger inside the mixing zone; 

3. AMR makes the mass less mixed 

 More AMR, higher value inside the elongated bubble; 

 More AMR, lower value in the mixing zone; 

In Fig. 4.9d we plot the axis slice, which shows consistency with previous conclusion: 

AMR produces more gradient and hence less mixing. 

In Fig. 4.10, we plot the circulation budget of the runs. We note that the net circulation 

(solid curves) are consistent among all FLASH runs. Hence we conclude that the 

positive and negative circulation differences are due to the small-scale structures, the 

same course as in the mass mixing, and also with the same trend. AMR runs are less 

dissipative. 
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All the above quantifications expose the anomaly in AMR: that is, AMR runs are less 

dissipative than the uniform mesh, which is conflict with the fact that AMR actually 

introduces more error to the simulation and hence has larger numerical dissipation. 

We leave the detail investigation of this anomaly to future study. 
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runs. 
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Fig. 4.9 Error exposure by visiometrics in high performance computing 
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Fig. 4.10 Circulation budget of different AMR runs. 
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Chapter 5 Experiments/Simulation comparison and uncertainty 

quantification 

 

5.1 Introduction 

Laboratory studies have a lot of uncertainties: repeatability, limitation of measurements, 

three dimensionality, undesired boundary layers etc. In many cases, a membrane 

separates the two gases - the energy expended in breaking the membrane has been 

cited as the reason for the discrepancy between numerical and experimental values. 

Although advanced experimental technology has provided more accurate and detailed 

measurements of the RM environment without using membrane, e.g., [Zoldi, 02] and 

colleagues at Los Alamos National Laboratory investigated an M=1.2 shock cylinder 

interaction with Particle Image Velocimetry (PIV) and Planar Laser Rayleigh Scattering 

(PLRS), still, large discrepancies are observed between the experiments with their 

simulations.  

People in the field realized these issues and started addressing these uncertainties, for 

example, [Benjamin, 91] modeled the membrane as a thin layer of dense gas and 

concluded that the effect of the membrane should be negligible. The complexity of this 

type of uncertainly, in terms of the number of uncertain parameters and the range of the 

uncertainty for each parameter, demands a systematic way of addressing these 

uncertainties, featured by a workshop “quantifications of uncertainties in physics 

simulations” held at LANL, 2002.  

Although the presence of strong shocks and density contact discontinuities (CD) make it 

a challenging task to perform trustworthy simulations beyond  early times, it is 
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nevertheless extremely helpful to interpreting experimental data, because of its explicit 

control on the initial condition. Since the first numerical calculations [Meyer & Blewett, 

72] obtained good agreements with Richtmyer’s experiments, numerical simulation 

becomes a very important tool to verify the experimental conditions and analytical 

results, as well as allows predictions of complex system, thanks to the advances of the 

modern computers and numerical scheme. 

An important conclusion from 2D numerical work is that the late—time behavior of the 

RM instability is sensitive to the initial condition. [Mikaelian, 88] has reported that this 

dependence at late times is weak. His computations were supposedly identical to the 

experiments of [Sturtevant, 87], however, Sturtevant's experiments had ill-defined initial 

conditions due to the gas separation scheme: a plate was used and withdrawn before 

the shock reached the interface. 

The literature shows many efforts addressing the uncertainties in initial conditions in the 

experiments with simulation and analytical tools, by usually looking at one or two 

particular parameters. For example, [Cloutman & Werner, 92] studied the effect of 

boundary layers. An analytical treatment of the effects of viscosity was presented by 

[Mikaelian, 92]. 

5.2 Uncertainties and Dynamic Validation 

5.2.1 Optimization prototype 

Verification of codes and validation against experiments is a very important issue in 

numerical simulations [Calder et. al., 02]. In particular, the problem of reduction of order 

of accuracy of some codes when shocks and high-gradient regions arise in the flows has 

not been widely appreciated. For example, recent studies observed non-convergence 

behavior under mesh refinement in Rayleigh-Taylor simulation with FLASH code [Calder 
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et. al., 02]. In the discussion just below, we assume that the code has sufficient accuracy 

and resolution to solve the equations accurately and focus on the validation process. 

If an experiment exists, the goal of simulations is to capture the large, intermediate and 

small scale features in space and time. Often it is convenient to introduce symmetries 

into the simulation, based on remarks of the experimentalist and the requirements of 

simplicity (e.g., 2D vs 3D). Most often one deals with data and images in the literature 

and essential information is unavailable. On the other hand, even the experimentalists 

are not able to explain some phenomena, due to the limitation of experimental 

technique. Some typical experimental uncertainties are:  

• 3D nature of the experiment; 

• Undesirable boundary effects (boundary layers, wave reflections, perturbations, 

etc); 

• Causes of the asymmetry in the initial bubble shape due to the setup of the 

experiment; 

• Thickness of ITL at shock arrival; 

• Effect of seeding on initial true density and during evolution; 

• Correlation of experimental visualization with physical quantities;  

• Reproducibility of the initial conditions for multi-experimental study of evolutions. 

5.2.2 Simulation parameter space 

In Fig. 5.1, we summarize our dynamic initial condition validation process in obtaining 

the good agreements with both experiments shown in previous sections. The solid 

arrows indicate the process going forward from experimental data to the simulation 

setup, and the dashed arrows are feedbacks of information obtained from the 

visiometrics of simulated data.  
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The basic ideas are: from the experimental data and documentation, we obtain the 

experimental configuration, visualization technique and time evolution from which we 

choose the parameter sets. We limit the experimental uncertainties to a few parameters 

by simplification and modeling. For example, we concentrate on the ITL thickness, ITL 

profile, and SF6 concentration in this paper. These parameters are used as initial 

condition to invoke the simulation. Evolutionary data is fed into the visiometrics 

environment, where we define, extract and quantify features to modify control 

parameters, e.g., the bounding box dimensions (see Figs. 7.4 and 11) and the velocity 

distribution function in an extracted frame (see Figs. 7.8 and14c). The uncertainty 

parameters initially fed into the simulation as initial condition are adjusted by producing 

optimal agreements on these control parameters.  

Two optimization cycles are defined in Fig. 5.1: Loop 1, the optimization loop explored in 

this paper, and Loop 2, optimization and direct feed back from experimental initial 

condition. In a proper collaboration the simulator would interact with the experimentalist 

to elucidate possible experimental errors and discrepancies [Thurber & Hanson, 01] 

[Baltrusaitis et. al., 96].  

Note, in Zoldi’s attempt on juxtaposition with her own experiment using the Radiation 

Adaptive Grid Eulerian (RAGE) code, the comparison is less comprehensive and not as 

good without identifying the importance of the information feedback and optimization.  

Table 5.1 shows the parameters explored in this study, which is a extended table to Tab. 

2.2. The adjustment of numerical parameters is mainly for validation purpose as 

discussed in the previous section. The physical parameters shown in the table 

correspond exactly the range of ambiguities in the experiments.  

A diffused ITL between the gas bubble and the ambient is obvious in both experiments 

(Fig. 7.3a for Jacobs and Fig. 7.11a for Zoldi). The medium seeded to the original SF6 
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gas (biacetyl in Jacobs’ and glycol in Zoldi’s), necessary for laser-induced visualization 

technique, makes the observation ill-informed especially at the interface. A common 

assumption of the ITL profile is the error function, solution of diffusion equation. 

However, other profiles such as Gaussian [Zoldi, 02] are also used based on the 

assumption that the exact profile has smaller effect than the introduction of ITL itself. 

The seeding medium, on the other hand, changes the density of the bubble. As a result, 

the concentration of the initial bubble gas, another quantity that is difficult to measure, is 

also a critical parameter, since it actually determines the initial deposition of the 

baroclinic circulation by the incident shock. Variation of the concentration changes the 

mass of the bubble gas too, although we keep the mass conserved while adjusting the 

thickness of the ITL. Consequently, it will influence the distribution of the mass, hence 

the distribution of the density gradient.   

Note with initial concentration less than 100%, either because the diffusion time is so 

long that all original bubble gas is diffused, or because of the seeding, it is very possible 

that there are actually no pure bubble gas present initially, i.e., the whole bubble should 

be modeled as an transition layer. Consequently, the exact profile of the ITL has more 

ambiguity, because no diffusion law holds if one gas is completely mixed.  

We choose a constant viscosity 3.2x10-3, an order of magnitude smaller than the real 

SF6 viscosity, taking account of the mixing and the assumption of its negligible influence 

on energy equation. We assume gamma law gas properties for both air and SF6, and 

use the specific heat 1.4 for both gases. 

Other parameters which are important to the experiments, but we consider them having 

smaller effects includes: the flow rate of the SF6 (necessary to produce the cylinder) in 

the 3rd dimension; the initial asymmetry of the gas cylinder; the percentage of the 
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seeding media in the bubble and their dynamical significance; three dimensional effect; 

and wall effect. 

In the following sections we discuss three of our simulations, with parameters also listed 

in Tab. 5.1. Simulation cyld2 and cyld3 compare with Jocobs’ experiment at M=1.095, 

and focus on the effect of ITL parameters and SF6 concentration. cyld4 compare with 

Zoldi’s experiments at M=1.2, with parameters adapted from the previous simulation-

experiment comparison.  

5.3. Comparison with Jacobs’ experiment and dynamic validation of 

experimental initial condition 

5.3.1 Validating experimental initial condition 

We extract the colormap used in Jacobs’ paper [Jacobs, 93] and reconstruct it for our 

simulation. We find that the profile is nearly linear and thus accounts for our cyld2, as 

shown at t=0 in Fig. 5.2 We are aware that it is difficult to associate a PLIF image 

precisely with the density of the carrier gas for a variety of reasons. Cyld3 is therefore 

based on the validity the diffusion equation and used an error function profile. 

In Fig. 5.2, we show the comparison of Cyld2 (column 2) and Cyld3 (column 3), with 

Jacobs’ PLIF images (column 1). The rows correspond to different times. Note in Fig. 

5.2, column 1, the original sequential marks of the experimental PLIF images are kept 

for reference. They are shown at only selected times here. For column 2 and 3, each 

picture is composed of two images, density (above) and the vorticity (below), except for 

t=0 ms, when vorticity is zero and we show instead the initial on-axis density profiles 

(ρ(x,y=0)). 

For a quantitative comparison, we define three bounding box dimensions: the width, 

height and neck of the evolving bubble, shown in the embedded image at upper right 
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corner in Fig. 5.3.  For the experiment, we measure these scales directly from the PLIF 

images. For the simulations, we use an interface extraction and tracking algorithm with 

density gradient. All the measured values are normalized by the initial diameter of the 

bubble, 2R.  

We adjust by trial and error other parameters to get good agreements for both 

simulations, for examples, radius/thickness of the ITL and SF6 concentration 

[Baltrusaitis, et. al., 96]. We believe that an automatic optimization process is necessary 

to make efficient initial condition validation.  

Both simulations quantitatively reproduce the experiments in large and intermediate 

scales as shown in Figs. 5.2 and 5.3. We now discuss the subtle differences that exist in 

the two simulations and thus provide a better understanding of the initial parameters. 

In Fig. 5.3, we see the solid curves for width and height from cyld2 agree well with the 

first two points of Jacobs’ experiments. However, at later times there is more 

disagreement, especially the height. With the same colormap, cyld3 does not compare 

as well at early time but does much better at intermediate to late times, on all three 

scales. Thus we conclude that cyld3 is overall a better simulation and use it for our 

further simulation in next section. More details of the differences in evolutionary 

phenomena are discussed in the following sub-section. 

The most important inference of these subtle differences is that none of these two 

analytical forms of the initial ITL is exact correspondence with the experimental 

condition. 
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5.4. Comparison with Zoldi’s experiment 

5.4.1 Overview 

Following the previous analysis and resulting parameters, we further validate our initial 

condition reconstruction process by comparing our simulation (Cyld4) to recent 

experiments performed by Zoldi2002 at Los Alamos National Laboratory. With advanced 

experimental technique, a stronger incident shock wave is studied (M=1.2) and more 

quantitative information is available. The attempt of numerical validation with Radiation 

Adaptive Grid Eulerian (RAGE) code is made, with difficulties shown, discussed but 

unfortunately not completed.  

With the same dynamic validation process as in the previous section, we obtain 

excellent agreements with Zoldi’s experiments, even without the direct access to the 

experimental data. As we shown in Tab.1, we use exactly the set of parameters used in 

Cyld3, except a larger radius of the gas bubble and a stronger shock wave, both 

correspond to Zoldi’s experiment.  

Zoldi’s RAGE simulation uses the initial condition constructed directly from experimental 

data, i.e., including the factor of initial asymmetry and CD diffusion. However, the 

ambiguities are still overwhelming and the comparison is poor. With certain validation 

effort, better insight is obtained and the comparison is improved. Numerical errors arise 

from ill-imposed adaptive mesh, e.g., the boundary of the experimental data is refined as 

a small but sharp discontinuity upon plugging into the ambient gas in the simulation. 

Details of the numeric such as those associated with adaptive mesh, and the 

optimization of the numerical parameter set, are beyond the scope of this paper, and 

we’ll discuss in the future. 
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Aside from more careful numerical and physical setup, our FLASH simulation introduces 

physical viscosity. The initial symmetry is assumed in our simulation, since the 

asymmetry is smeared during time evolution in both Zoldi’s experiments and RAGE 

simulation.  

By defining the characteristic length scale and distributing effective mesh accordingly, 

our FLASH simulation, on a SUN Enterprise 100000 machine, achieve great efficiency 

(a factor of 3) than the RAGE simulation. 

5.4.2 Evolution morphologies 

Figure 5.4 illustrates the evolution of the major mass and vortex phenomena in our 

simulation (Cyld4) comparing with the experiments. Fig. 5.4a shows the experimental 

images (volume fraction of SF6). Fig. 5.4b shows the simulation result, density above 

and vorticity below.  

Initially, note again the asymmetry in the experimental image. The time used by Zoldi 

starts after shock passage, which is ambiguous. We find a shift of 75ms is necessary to 

account for the shock passage time and match the time scales between the simulation 

and experiment. 

The simulations represent well the large and intermediate scale features. Fig. 5.5 shows 

the measurement of the bounding box dimensions: height, width and neck, as defined 

for Fig. 5.3. Note the measurement for the neck for the experiment is not available, due 

to the poor quality of the experimental images. The agreements in width and height are 

excellent. 

At t =125ms in Fig. 5.4b, our simulation captured the upstream indentation (indicated by 

I in the figure), with almost exactly the same curvature as in the experiments, and the 

axis downstream protuberance (P). The vorticity image at the same time reveals the 
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same VBL configuration as in lower Mach number simulations. At around time t = 325-

475ms, the secondary instabilities appear on the interfaces of the deformed bubble. Fig. 

5.4c left show a zoom at t = 325ms, with vorticity above and density below. 

The secondary structures correspond well with the experiment. For example, at 

t=800ms, (also shown with a zoom in Fig. 5.4c right panel, vorticity above and density 

below), we indicate the velocity components (arrows), and three pockets of entrained air 

(marked by 1, 2, & 3).  Another very important observation is associated with the 

development of the outer shear layer: 1 the location of the appearance of the secondary 

instability; 2 the first merger of nearby localized vortices; 3 the extension of the 

downstream side. 

5.4.3 Velocity field validation 

In Fig. 5.6, we look into more detail of the velocity field and compare carefully with the 

experiment. Fig. 5.6a shows an experimental PIV image, which is the basis of all 

experimental analysis and quantification. The resolution and the windowing domain are 

fixed. To match the experimental data, we extract and average 

the appropriate portion of the simulation data to compute the velocity vectors which is 

shown in Fig. 5.6b. 

We compare in Fig. 5.6c the velocity magnitude distribution. The range of the velocity 

magnitude and the value of the peak region agree extremely well. This indicates the 

validity of both our data processing process and the simulation results for large and 

intermediate scale features.  In fact the detailed shapes of the curves are in good 

agreement, as seen by shifting the simulation data to higher velocity in the inset figure 

(See the arrows for close matching of features). 
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During the comparison, we conclude that the following factors will influence the final 

velocity distribution result: 1). Size of the windowing domain; 2). Portion of cylinder in the 

data-cut; 3). Data reduction rate (averaging); 4). Number of bins taking the distribution 

(larger # of bins yields more shallower  profile with lower peak value); 5). Frame velocity. 

5.5 Conclusion 

With comprehensive visiometrics of intermediate and late time simulation data, it is 

possible to obtain a parameter space that corresponds to the experiments, i.e., validate 

the experimental initial condition dynamically. In this thesis, we introduce a prototype of 

this systematic approach of quantifying the uncertainties in the experiments and 

integrate the visiometrics pipeline into a feedback loop to obtain excellent 

simulation/experiments comparison. 
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Parameters Studied cyld2 cyld3 cyld4 

AMR Levels: [0,5] 4 4 4 Mesh Adaptivity 

Base mesh: [8,200] 16 16 16 

Resolution 
(HxL) 

64x128; 128x256; 
256x512 

128x256 128x256 128x256 

Numerical 
parameters 

Numerical 
scheme 

PPMLR, PPMDE, 
WENO 

PPMDE(FLASH) PPMDE(FLASH) PPMDE(FLAS
H) 

viscosity [1.7e-5, 3.5e-2] 3.2e-3 3.2e-3 3.2e-3 
ITL profile Linear, Gaussian, Error 

function 
smoothed linear Error Function Error Function 

ITL thickness 
(δ/2) 

[20%,100%]R 100%R 100%R 100%R 

SF6 
concentration 

[60%, 100%] 100% 60% 60% 

Gamma law γair=γSF6=1.4 

γ air =1.4, γ SF6=1.1 
 

γair=γSF6=1.4 
 

γair=γSF6=1.4 
 

γair=γSF6=1.4 
 

Radius (R) [8%,15%]H 10%H 15%H 23.4%H 
Shock strength 1.095, 1.2, 1.5 1.095 1.095 1.2 

Physical Parameters 

Y Boundary 
condition 

Reflecting, outflow outflow outflow outflow 

 

Tab. 5.1 Simulation parameter space summary. 
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Sim 2 Sim 1 Experiment: PLIF  
t=1.4 ms  

 
 
 
 
 
 
 
 

Vorticity Colormap
Fig. 5.2 cont. 

PLIF Colormap Density Colormap 

Compare of experiment (Jacobs, 93), Cyld2 and Cyld3. Column 1: PLIF images from 
experiments; Column 2: Cyld2 with linear ITL, 0.1Ymax radius, and 100% SF6 concentration; 
Column 3: Cyld3 with error function ITL, 0.15Ymax radius, and 60% SF6 concentration. Each row 
shows a different time, and each picture in column 2 & 3 has two panels: density above and 
vorticity below, except the first row at t=0, with density above and y=0 density slice showing initial 
ITL parameters. 
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At higher mach number: compare with LANL Zoldi’s experiment/RAGE simulation 
 
ITL: Zoldi used Gaussian. 
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Fig. 5.4 Simulation and experiment compare at M=1.2. 
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Fig. 5.5 Measurement of macroscopic scales: Width, Height and Neck, as 
defined in Fig. 5.3, and normalized by the initial diameter of the bubble. 
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Fig. 5.6 velocity magnitude distribution. (a). PIV image from Zoldi’s experiments, at the resolution 
of 11.7µm/pixel, and velocity vectors every 187 µm. (b). Velocity vector field from Cyld4. Note the 
data is windowed and averaged according to the experimental configuration. (c) Velocity 
magnitude distribution: experiments (solid) versus simulation (dashed). The embedded figure 
shows the peak region after shifting a frame velocity difference between the experiment and our 
simulation. 
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Chapter 6 Summary and Conclusion 
 

 

Fig 6.1 shows a comprehensive HPC visiometrics framework developed in this thesis. 

There are three main parts in the pipeline, the HPC modules (top part), discussed in 

chapter 3, the visiometrics modules (central part), discussed in chapter 4.  

The bottom part of Fig. 4.1 shows the hardware environment supporting our HPC 

simulation and comprehensive visiometrics. In summary, the major visiometrics work is 

done on an 8-processor (3 nodes with 2 CPU each and 2 nodes with 1 CPU) DELL 

precision workstation Win2K cluster. A 16-processor (2 nodes with 4 CPU and 1 nodes 

with 8 CPU) SGI IRIX64 Cluster and a 44-processor Linux cluster are mainly used as a 

validation and benchmarking platform. All the major simulations are performed on a SUN 

Enterprise 10000 HPC machine with 64 processors and 32 GB RAM, and most recently 

SUN Fire 12K with 32 processors and 144 GB RAM, through Center for Advanced 

Information Processing (CAIP) at Rutgers University. 

The numerical schemes, together with the advanced computational modules, are subject 

to verification (i.e., check the errors produced by the numerical approximation of 

equations – whether we solved the equations correctly) and validation (i.e., check the 

errors produced by the modeling of real world with the equations based on certain 

assumptions – whether we solved the correct equations). The verification and validation 

(V&V) issues are not addressed with enough care and are discussed in chapter 5, with 

the assists of comprehensive visiometrics. Excellent comparison results are obtained 

with multiple experimental date sets. 
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Fig. 6.1 Comprehensive HPC visiometrics pipeline. 
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