
ADAPTIVE MESH REFINEMENT AND VISIOMETRICS IN ACCELERATED

INHOMOGENEOUS FLOWS

By

SHUANG ZHANG

A thesis submitted to the

Graduate School-New Brunswick

Rutgers, The State University of New Jersey

in partial fulfillment of the requirements

for the degree of

Master of Science

Graduate Program in Electrical and Computer Engineering

written under the direction of

Professor Manish Parashar

and approved by

New Brunswick, New Jersey

January, 2004

 ii

ABSTRACT OF THE THESIS

ADAPTIVE MESH REFINEMENT AND VISIOMETRICS IN ACCELERATED

INHOMOGENEOUS FLOWS

BY SHUANG ZHANG

Thesis Director: Professor Manish Parashar

This thesis investigates the issues introduced by the advanced computing technologies

applications to our numerical simulation of accelerated inhomogeneous turbulence. The

two focuses are adaptive mesh refinement (AMR) and data visualization/processing.

The insight will lead to direct impact on numerical study of turbulent mixing and mass

transport in astrophysics, inertial confinement fusion and internal combustion.

The turbulent environment is initiated by a shock wave hitting a gas inhomogeneity in a

supersonic shock tube in both 2D and 3D. Gas bubbles, driving by the vorticity deposited

baroclinically on the density interfaces, evolve in time and interact with each other. The

fact that the flow field is occupied with isolated structures through out the evolution

motivates the introduction of AMR scheme. In this thesis, we introduced two AMR

schemes into our simulation: FLASH and GrACE. And the performance gains are

analyzed. However, the complexity introduced by these advanced schemes makes the

error analysis extremely difficult ---- the issues of verification and validation of numerical

schemes, which haven’t been addressed with enough care. In this thesis, we study the

convergence of the multi-dimensional AMR application.

On the other hand, it is essential to obtain an access to the physical quantities

associated with the bubbles and their evolution during the interaction. This could not be

 iii

accomplished by the standard visualization technique. In addition, high-resolution

requirements for resolving as many scales as possible in a turbulent study make the

data set significantly larger, and more complex if AMR scheme is invoked. Efficient

visualization and well-designed data abstraction is necessary to understand the turbulent

physics.

In this thesis, we design a pipeline of feature-based analysis to extract regions of

interest, then visualize, track, isolate and quantify their evolution. We further extend the

feature extraction and tracking scheme in a computational steering environment, to

handle large scale AMR dataset. We address quantitatively the spatial and temporal

diffusivity of the mixing zone dominated by coherent vortex structures. We study and

compare both slow/fast/slow (a helium curtain in air) and fast/slow/fast (a air curtain in

helium) cases to illustrate the correlation of mass and momentum diffusivity.

Data projection and space-time analysis are used as meanings of data abstraction to

obtain the insight of a complex physical phenomenon. In this thesis, we design a

comprehensive visiometrics pipeline, and encapsulate it innovatively into an optimization

loop to quantify the error in a feedback manner. We are able to expose the error and

correlate these errors to initial physical or numerical parameters during the experimental

or numerical investigation. Excellent agreement is obtained between our simulation of a

shock bubble interaction and the experiments performed at Los Alamos national lab

(LANL). Our results outperformed both qualitatively and quantitatively the simulation at

LANL. This methodology could be generalized to other disciplines.

 iv

ACKNOWLEDGEMENTS

First of all, I would like to thank my thesis advisors, Professor Manish Parashar and

Professor Norman J. Zabusky, whose constant support, encouragement, and profound

scientific insight make this research possible. The type of trainings I’ve been exposed, in

science as well as in various aspects of life, is something I’ll be benefit from through out

my life.

I want to express my gratitude to my thesis committee members: Professors A. Zebib

and T. Wei for their review of this thesis. I am also indebted to Prof. D. Silver, whose

pioneering work and insight advices in scientific visualization are part of the foundation

of this dissertation.

I thank Prof. S. Subramaniam and Prof. Pelz, who had been reviewer of my dissertation

proposal and gave me a lot of valuable suggestions on the layout of the dissertation. Mr.

Gaozhu Peng gives me a lot of constructive suggestions, and I really enjoy many of our

valuable discussions.

I want to acknowledge the extensive help I received during the course of this dissertation

by the computing stuff at CAIP center, particularly Mr. Bill Kish and James Chun, and at

ASCI/FLASH center.

Finally, I want to thank my wife Jian for her love, our parents and sisters for their

constant and crucial support, and my son Cheney through whose eye I am re-

discovering the world.

 v

DEDICATIONS

To:

Jian

Our parents and sisters

Cheney

1

Table of contents

Abstract ... ii

Acknowledgements ... iv

Dedication .. v

Table of contents ... 1

Chapter 1 Introduction...4

1.1 Overview ...4

1.2 Accelerated inhomogeneous flows..5

1.2.1 Domain of applications ...5

1.2.2 Important physical and numerical challenges ..6

1.3 Objectives and contributions ...7

1.3.1 High performance computing -- Adaptive Mesh Refinement in parallel

environments...7

1.3.2 Visiometrics ..7

1.4 Layout of the thesis ...8

Chapter 2 GrACE & FLASH: Adaptive mesh refinement (AMR) in high performance
numerical simulation environment...11

2.1 AIFs and AMR: introduction ..11

2.2 AMR: main concept and review...11

2.4 GrACE & GrACE-PPM ..14

2.4.1 GrACE performance...14

Define adaptive grid structure ...15

Define grid functions: containing information for the coordinate15

Initialize grid functions: data parallel model, call Fortran CFD initialization.................15

2

Repeat NumTimeSteps ...15

End Repeat ...15

Visualization pipeline: 1D xgraph ..15

2.4.2 GrACE PPM implementation..16

2.5 FLASH...20

2.6 Summary ...22

Chapter 3 Visiometrics ..35

3.1 Introduction..35

3.2 Scientific visualization in fluid flow...36

3.3 Importance of quantification ..37

3.4 Visiometrics: the comprehensive pipeline ...38

3.4.1 Data Juxtaposition..39

3.4.2 ..40

Data projection ..40

3.4.3 Space-time analysis ...40

3.4.4 Feature analysis ...42

3.5 Unique features of visiometrics ...43

3.6 Environments: DAVID & Visiometrics 1.0..44

3.7 Visiometrics for AMR data set – ChomboVis environment....................................45

3.7.1 ChomboVis HDF5 data structure ...46

3.7.2 ChomboVis requirements...50

3.7.3 Interface function and parameters..50

3.7.4 Examples..53

Chapter 4 Verification and validation ..58

4.1 Introduction..58

3

4.2 Dissipation of PPM..59

4.3 FLASH modules: constant viscosity, gamma blending and AMR numeric............60

4.4 AMR error exposure with visiometrics...63

4.4.1 AMR error...64

4.4.2 Ill-imposed initial AMR mesh: refine criteria and local error clustering...........64

4.4.3 Error exposure with visiometrics and anomaly...65

Chapter 5 Experiments/Simulation comparison and uncertainty quantification75

5.1 Introduction..75

5.2 Uncertainties and Dynamic Validation...76

5.2.1 Optimization prototype ...76

5.2.2 Simulation parameter space...77

5.3. Comparison with Jacobs’ experiment and dynamic validation of experimental

initial condition...80

5.3.1 Validating experimental initial condition ...80

5.4. Comparison with Zoldi’s experiment ..82

5.4.1 Overview ..82

5.4.2 Evolution morphologies ..83

5.4.3 Velocity field validation ...84

5.5 Conclusion...85

Chapter 6 Summary and Conclusion ..93

References..95

4

Chapter 1 Introduction

1.1 Overview

Parallel computing is now a common approach in CFD of large-scale, complex flow

system. Aside from the benefit provided by parallel computing, there are additional

features in AIF we can use to invoke further high performance computing (HPC)

approaches, primarily, adaptive mesh refinement (AMR). The advances in computer

architecture and algorithms provide the feasibility of these approaches. This thesis will

explore the application of the HPC approaches to AIFs flows.

Visiometrics is a powerful methodology in our computational study. It is defined as a

data pipeline of visualization, quantification and juxtaposition. Visiometrics can lead us

the way to qualitative observations such as phenomena discovery and physical property

identification, and to quantitative investigations such as the physical scaling laws and

reduced mathematical modeling. HPC approaches bring new challenges to visiometrics

because of the increased complexity in data structure. This thesis developed a

systematic visiometrics pipeline in the HPC environment, integrated many visiometrics

modules developed or enhanced by many researchers in Vizlab including the author.

Most noticeably, data projection and space-time analysis allows compressive summary

of the simulation data evolving in both space and time; feature analysis allows the

access to the localized quantities, VPs in particular, and enables the detail turbulent

study as well as reduced modeling.

5

1.2 Accelerated inhomogeneous flows

A fundamental interaction in compressible hydrodynamics is that between accelerations

and density interfaces. This environment is often referred to as the Rayleigh-Taylor (RT)

or Richtmyer-Meshkov (RM) instability environment, or more generally, Accelerated

Inhomogeneous Flow (AIF) environment [Zabusky, 99].

Our work is motivated by a variety of applications in nature as well as the physical

challenges untapped underlying these applications.

1.2.1 Domain of applications

The interactions between the acceleration and density inhomogeneity occur in a myriad

of fundamental and applied situations, from supernova explosions in astrophysics to

sonic booms in the Earth's atmosphere (geophysics). In supernova explosions,

extremely strong shock waves travel through enormous density gradients. The light

curve and formation of mushroom structures and subsequent mixing requires an

understanding of RM instabilities for an explanation, e.g., supernova (SN) 1987A

remnant evolution [Arnet et al, 89][Arnet, 00].

Another important application is inertial confinement (laser) fusion (ICF), a potential

future nuclear powered energy source. Figure 1.1 shows the basic ICF concept [General

Atomic, 03]. During the implosion-explosion process, hydrodynamic instability, most

noticeably RM instability, of the impulsively accelerated shell containing the deutium-

tritium fuel limits the compression of the fuel which is important to achieve the high

temperature where the nuclear reaction releases enormous amounts of energy. Thus

RM instability represents a significant obstacle to achieving a productive fusion reaction

[Lindl, 1995]. The fundamental mechanism of RM instability has also been considered to

be of importance to enhancing mixing in supersonic combustion [Yang et. al., 93].

6

These applications in general contain high energy and high-density fields, and hence are

also referred to as high energy density physics. The system is intrinsically complicated,

involves chemical reaction, MHD, and many combination of different flow patterns (multi-

phase, combustion, hypersonic, etc).

Our focus in this study in on the hydrodynamics part of this high energy density

environment, e.g., we assume gamma-law gases all the time and neglect chemical

reaction. Even with this simplification, the complexity of the AIF system still left a lot of

challenges untapped.

1.2.2 Important physical and numerical challenges

The initial accelerations in AIFs may arise from shock or blast waves (RM

environments), bubble (or cloud) collisions impulsive radiation pressure, gravity (RT

environments), etc. Most of the community focuses on the instability at interfaces arising

from initial acceleration, and the turbulent mixing associated with these accelerations.

These topics are also important parts in this thesis, with the assists of vortex paradigm

analysis. In addition, this thesis work extends the investigation beyond early time,

discovered and quantified the secondary baroclinic process.

1.2.3 Main geometries

Figure 1.2 sketches the major geometries of interests in studying AIF flows driven by RM

instability. The first row shows density interfaces of different shape subjected to

acceleration, and the second row shows inhomogeneity of different shapes subjected to

acceleration. It is obvious that the latter case is of more practical interests.

7

1.3 Objectives and contributions

1.3.1 High performance computing -- Adaptive Mesh Refinement in parallel

environments

The advance of massively parallel computers has enabled one to conduct the

investigation of nonlinear phenomena with realistic grid resolutions. On the other hand,

the increasing complexity and dimension naturally brought us in front of the problem of

computation resources and time. Distributed and adaptive mesh become our very first

option to maximize our computation within limited computer resources. All these

concepts: parallel, dynamic, distributed, AMR, are part of high performance computing

(HPC) family.

For the inhomogeneity-dominated flow under investigation, adaptive mesh refinement

(AMR) is extremely suitable by only refining the region of interests to the higher

resolution. This yields more mesh efficiency at the expenses of complex data structure

and memory. This thesis explores some numerical aspects associated with AMR

scheme, in an application point of view, particularly ParaMesh package and Grid

Adaptive Computational Engine (GrACE) package.

1.3.2 Visiometrics

Visiometrics, or visualization, juxtaposition and quantification, is a scheme introduced by

[Bitz & Zabuksy, 89]. It is first success is on the discovery of solitons with numerical

simulation of KdV equation in 1960s. By integrating the modules developed in nearly 15

years since the foundation of Laboratory for Visiometrics & Modeling, 1989, with many

new modules implemented during this thesis work, we prototype a comprehensive

visiometrics pipeline. Parallel AMR dataset brings more challenges to visiometrics and is

also addressed in this thesis.

8

Table 1.1 summarize the main parallel architectures investigated in this thesis. We give

an approximate weight factor to all the machines with regard to the E10K Sparc II CPU.

1.4 Layout of the thesis

Chapter 2 focus on the introduction and some detail implementation of AMR scheme in

to AIF environment, and some related high performance computing issues. In Chapter 3

we present the concept and illustrate the key technology underlying visiometrics.

Chapter 4 discuss some important discoveries of verification and validation underlying

HPC scheme, under our visiometrics mode of working. And Chapter 5 shows the

application of visiometrics to uncertainty quantification. In Chapter 6 we conclude.

9

 Laser energy

 Blowoff

 Inward transported thermal energy

(d) (c) (b) (a)

Fig. 1.1 Basic concept of inertial confinement (laser) fusion: a) Atmosphere formation: Laser

beams rapidly heat the surface of the fusion target forming a surrounding plasma envelope. b)

Compression: Fuel is compressed by the rocket-like blowoff of the hot surface material. c)

Ignition: During the final part of the laser pulse, the fuel core reaches 20 times the density of lead

and ignites at 100,000,000 degrees Celsius. d) Burn: Thermonuclear burn spreads rapidly

through the compressed fuel, yielding many times the input energy [GA Web, 2003].

M

ρ1 ρ2

a

(a)

ρ1

ρ2 < ρ1

gc

(c)

ρ2

(e)

ρ2
or ρ2 orr

ρ2ρ1

M

ρ1 ρ2ρ2

(d)

or or
M

ρ1 ρ2 ρ1

(b)

α

ρ2ρ1

M

Fig. 1.2 Major geometries of interests in studying AIFs flows. (a). Sinusoidal interface; (b) Inclined

interface; (c) Accelerated tank; (d) Curtain (inclined, sinusoidal and chevron); (e) bubble

(cylinder/sphere, double cylinder/sphere & ellipse).

10

Machines

(Abbrevation)

versicolor

(SGI)

mphase

(LAMD)

Teal (SE10K) Green

(SF12K)

OS Onyx VTX Linux Sun OS Sun OS

CPU type SGI R10000 AMD MP Sparc II Sparc III

CPU numbers 8 44 32 36

CPU speed 194MHz 1.6GHz 400 MHz 900 MHz

Scale factor

(w.r.t. E10K)
W

0.2 1.5 1.0 2.8

Queue
System

n/a SGE LSF SGE

RAM Shared
512MB

Distributed
512MB/per

Shared 16GB shared 72 GB

Network
Bandwidth

100MB 100 MB 12.8Gbytes 12.8 Gbytes

Tab. 1.1 Hardware configurations

11

Chapter 2 GrACE & FLASH: Adaptive mesh refinement (AMR) in

high performance numerical simulation environment

2.1 AIFs and AMR: introduction

One main feature in AIFs is the inhomogeneity throughout the flow field, i.e., stratified

flows. In most of the cases, the major physical activities, characterized by evolving and

deforming density bubbles and interfaces (e.g., shocks), is highly localized to small

fraction of the entire computational domain, while the bulk region of the simulated

domain are relatively quiet. Due to the existence of the interface between gases, the

localized regions usually require being highly resolved with a large number of numerical

meshes. In the traditional uniform mesh simulation, the large amount of meshes in the

vast “quiet” regions is a waste of resources. AMR scheme is a natural approach in

solving the problem in the most computational time and memory efficient manner.

2.2 AMR: main concept and review

Adaptive mesh refinement is a scheme for finite difference and finite element codes

wherein the size and distribution of the computational mesh is changed dynamically so

that the solution complies with some specific constraint. Take 2D as an example, Figure

2.1 illustrates AMR scheme and the corresponding data structure [Berger & Oleger, 85].

The basic idea is the dynamic adaptation of the computational mesh to concentrate

additional computational effort and resources to only those regions that require them.

The method yields highly advantageous cost/accuracy ratio and makes larger scale

simulations possible on a given set of resources comparing to static methods.

12

The superimposed meshes are generated in an autonomous fashion by computing the

local error and comparing it with a preset refinement criteria. The error is usually

associated with the gradient of certain variables of the flow field. The simulation starts at

a certain coarse resolution, which we defined as base mesh, or AMR level 1. According

to the refinement criteria, the simulation might put more meshes on the regions with

large gradient activity during the evolution, by recursively dividing the mesh size into

half. For example, if the level one mesh size is 1.0 cm, level two mesh size will be 0.5

cm, and, level three zone size will be 0.25 cm, and so forth. This could be expressed as:

12
)(−

∆
=∆ nn

xx (2.1)

Where is the base mesh resolution (AMR level 1), n is the refine level, and x∆ nx)(∆ is

the mesh size resolution at level n. Or the other way around, by pre-defining a de-

refinement criteria, the simulation might decide that the finer mesh is not necessary any

more and hence remove them.

All AMR decisions are subject to the following two additional constraints: 1) each zone

can be refined by a factor of two, i.e., one level, during each time step, and 2) adjacent

cells can differ by at most one level of refinement.

Fig. 2.2 shows a typical adaptive mesh hierarchy of a shock cylindrical bubble interaction

simulation at t=0. The density is displayed together with grid boxes, each corresponds to

a 8x8 mesh patch (ParaMesh implementation). The left column displays the visualization

for each level and the right shows an integrated image for all levels. There are five AMR

levels, with 8x16 base mesh and 128x256 final mesh. Note the localized mesh

distribution at level five. The black regions indicate the savings of computation.

2.3 Computational steering

13

The goal of computational steering is to design a common data structure for execution of

interaction, visualization and analysis operations with the simulation. It has a lot of

advantages, for examples, runtime control operations can now be directly performed on

applications objects such as grids, meshes and trees through their visualization.

Parallelization on post processing also becomes straightforward since the data structure

is already in a distributed manner [Parashar & Browne, 98]. This is especially important

in AMR applications.

In general, the steering environment is object oriented and usually takes modular

structure, which allows addition of more HPC or CFD modules easily. In this thesis, two

computational steering environments are explored: GrACE-PPM and FLASH.

Fig. 2.3 illustrates the necessity of computational steering with a typical AIF simulation: a

shock wave interacting with a gas curtain. As we stated in the previous paragraph, we

can see the main physics is highly confined in a small fraction of the simulation domain.

Note the vast red region where indicating nothing significant is happening, and hence

doesn’t need as high resolution as the localized (blue) regions. Dynamically adjusted

refinement mesh is a good solution to this type of flow environment.

Let’s assume we are running this simulation with two processors. At t=0, we prefer the

simulation being partitioned vertically, allowing equivalent distribution of the mesh. At

t=23.76, however, the gas curtain evolves into a boundary layer confine to the upper

wall, hence a horizontal partitioning is preferable. The preferable partitioning is

constantly changing in time. Because static partitioning suffers from imbalanced load,

dynamic scheme is required, which is an important feature introduced by computational

steering.

14

2.4 GrACE & GrACE-PPM

Grid Adaptive Computation Engine (GrACE, former DAGH, distributed adaptive grid

hierarchy), is one of earliest computational steering environment. Like most of the

popular AMR package, this C++ parallel hierarchical AMR package implements the

original Berger-Oliger scheme [Berger & Oliger, 84], with coarse grained SPMD (single

process multiple data) data parallelism model.

Designed as high-level programming abstractions and a general-purpose data

management infrastructure, GrACE provides the interface to the application-general

features, and leaves application-specific features to be user specified. It has the

advantages of scalability, locality, and portability, as well as coarse-grained data

parallelism and Fortran compliant data storage.

2.4.1 GrACE performance

As any other the advanced schemes, the computational efficiency and high level

steering ability are at the cost of more complex data structure. To validate GrACE

environment and evaluate its performance, we introduced a simple convection system:

0=++
dy
du

dx
du

dt
du

 (2.2)

resolved by a Cartesian computational domain. The field is initialized with Gaussian

distribution:

))/))exp(((2
0

5.022
0 σε tyxu −−+=

And the algorithm is MacCormack (predictor-corrector) method. We fix the number of

iterations as 130 and boundaries as outflow.

15

We study mainly the overhead introduced by the SPMD data parallelism model and the

AMR. Two codes solving the convection system are studied: a). sequential uniform grid

code, and b). Parallel AMR code interfaced with GrACE. The algorithm of the interface

driver is:

Define adaptive grid structure

Define grid functions: containing information for the coordinate

Initialize grid functions: data parallel model, call Fortran CFD initialization

Repeat NumTimeSteps

a. if (RefineTime) Refine at Level

b. Evolve at Level: call Fortran CFD kernel

c. if (Level+1 exists)

Evolve at Level+1

Update Level from Level+1

End Repeat

Visualization pipeline: 1D xgraph

We also compare the SGI cluster running MPICH and the SUN HPC machine.

We first examine the overhead introduced by the data parallelism in GrACE, by

comparing it with sequential code. Note both codes are using a uniform mesh here. Fig.

2.4 shows the run statistics. The overheads introduced by parallelelism are decreasing

as the problem size growing. For example, on the SGI64 machine, the uniform grid

GrACE run gives (1610-380)/380 = 324 % of overhead for a 64x64 run and (12381-

9650)/9650=28.3% of overhead for a 320x320 run. In terms of parallel machine

performance, Sun E10k has very good scalability, as shown in Fig. 4.6 with speedup

16

3.67/4=92% of ideal speedup (comparing to 64.5% speedup on SGI64), although it

performs poorly in sequential jobs, an anomaly we don’t yet fully understand, but we

believe it is associated with the system configuration. It is also shown in Fig. 2.5 that

smaller problem has poorer speedups as well as poorer scalability.

We further investigate the overhead introduced by AMR engine in GrACE, by again

comparing with the uniform mesh version with the same effective mesh, i.e., the 32x32

AMR run with 3 refinement levels corresponds to 128x128 uniform mesh, according to

Eqn. 2.1, shown in Fig. 2.6. Note the AMR run on 1 CPU runs much longer than its

uniform mesh correspondence, which is due to:

• The small size of the domain. A significant percentage of the time are wasted on

MPI and AMR initialization, communication and synchronization (see the

synchronization and recompose time in the table).

• The less scalability of the SGI’s, as shown in the previous figures.

2.4.2 GrACE PPM implementation

GrACE provides the opportunity of adding HPC modules and computational steering

functionality on top of a existing CFD solver, which is VH1 PPM code in our case. Good

understandings on both the GrACE environment and the PPM algorithms are required.

The object-oriented feature in GrACE has the potential of user-friendly interface with any

hyperbolic PDE system. The general structure of GrACE-PPM is shown in Fig. 2.7,

which has four layers. The lowest layer is the distributed data structures, indexed with

space filling curves, as shown in Fig. 2.8. The space filling curve is inexpensive

computationally and self-similar (recursive), which makes the original multi-dimensional

space being easily encoded. The index corresponding to the right-most figure bottom is

17

shown at the bottom, with the under-line part corresponding to the refined region in the

center.

Next level in the GrACE-PPM structure (Fig. 2.7) is high-level programming abstractions.

Three classes are implemented, containing the application fields (Grid Function

Abstraction), Grid structure specification (Grid Hierarchy Abstraction) and Grid/Fields

correlation (Grid Geometry abstraction).

These abstractions allow the application being interfaced with the lower layer data

structure without detail knowledge of the data structure. Between the top layer (PPM

application) and the abstractions, there are computational steering modules as the

interface, which involves:

1. Multi-grid hierarchy and grid function definition and initialization. A main-shadow

structure is used, where the shadow is one level finer mesh.

2. Boundary and initial conditions alignments:

• Physical boundary condition, which is integrated with the hydrodynamic

evolution in the original PPM algorithm. This is a special requirement by the

inflow/outflow boundary condition – certain number of ghost zones outside the

real physical boundary are crucial to absorb the perturbations produced by

physical quantities flowing out of domain. In GrACE-PPM, the physical boundary

should be categorized into interior mesh (with boundary condition provided by

the neighbor grids) and the boundary mesh (with boundary condition provided by

the true physical boundary).

• Inter-AMR-level boundary, which is implemented by prolongations (from coarser

to finer levels) and restrictions (from finer to coarser levels);

• Inter-CPU boundary;

18

• Alignment of time evolution in GrACE and time evolution for PPM, which

requires the time step not too big, AND not too small.

Fig. 2.9 shows these boundary alignment issues in GrACE-PPM implementation.

3. Perform local error estimation. Aside from using density field as a refinement criteria,

vortex paradigm suggests that vorticity field is another important criteria. The error is

calculated as local second order gradient (e.g., density, vorticity, or both), clustered in a

region pre-set by a cluster threshold, and compared with a preset refinement threshold.

If it is greater than the threshold, the refinements to a finer level is performed.

4. System dependency, programming language dependency, compiler dependency,

initial geometry dependency.

After setting up GrACE environment and the supporting software, most commonly,

parameter parser, MPI and HDF input/output, we use the following interface driver

algorithm:

Initialize Grid Hierarchy

Initialize Grid Function

Initialize MPI

Initialize physical domain over all AMR levels, with proper ghost zones

Recursive_evolve(Level) {
 if (level==0) #Iterations = 1;

 else #Iterations = RefinementFactor;
 Loop over #Iterations {
 if(RegridTime(level)) {
 Evaluate Local Truncation Error(Level);
 Cluster Errors and Regrid current Level;

 }

 CFD Kernel (PPM: sweeping Reimann Solver);

 Update boundary;

 If (Level + 1exists) call recursive_evolve(Level+1);

19

 }

 Increment Timestep on current Level;
 If(Level+1) exists) restrict solution from Level +1 to Level
}

IO/Interactive Viz

2.4.3 GrACE-PPM: verification

We use a few AIF geometries introduced in Fig. 1.2 to test our GrACE-PPM

implementation, comparing with the uniform mesh PPM code VH1.

Fig. 2.10 shows the verification comparison. Note 2D images are good for qualitative

comparison but not enough for quantitative comparison. Hence we use projection

concepts in our visiometrics environment (which will be discussed in depth in section

4.3) and show comparison of the horizontal slice. All the features during the shock

traversing through the gas curtain are captured in the GrACE-PPM implementation, even

at late time. Note the figures for the two runs are not to scale.

Fig. 2.11 shows a 2D test run on shock-inclined interface interaction. Here we examine

the computational steering issues. Visualization of various domains and boundaries: real

physical boundaries; boundaries between refinement levels; and boundaries between

different processors. This is for an AMR, distributed, dynamic data set. We see the

initial condition of a shock inclined interface interaction, with 8 CPU, 3 AMR levels, and

128x32 base mesh. The mesh re-gridding is according to local density gradient. Note

features:

• AMR: different color meshes represent different AMR levels (1st level has

the same color as the bounding box; 2nd black; 3rd yellow);

• Distributed: different color of bounding boxes represent different

processors;

20

• Dynamic data structure: note the light blue color, balance of data locality

and load balance;

Fig. 2.12 and 2.13 shows test runs on shock curtain interaction, in 2D and 3D,

respectively. Fig. 2.14 gives a statistics of the GrACE-PPM’s parallel performance in 3D.

2.5 FLASH

FLASH is another computational steering environment. It is a modular, adaptive-mesh,

parallel simulation code capable of handling general compressible flow problems, mainly

in astrophysical environment. FLASH is designed to allow users to configure initial

condition and boundary conditions, change CFD kernels, and add new physics modules,

all with minimal effort. It uses the PARAMESH library to manage a block-structured

adaptive grid. FLASH also uses MPI library to achieve portability and scalability on a

variety of different parallel computers. In addition, it has many properties, e.g., MHD,

physical viscosity and multi-species diffusion, and is supported by Department of Energy

(DoE) ASCI program.

Fig. 2.15 [FLASH, 03] shows the modular FLASH structure. And Fig. 2.16 shows a

typical mesh evolution of FLASH juxtaposed with the density field visualization. The

simulation is a shock-cylinder interaction configuration. Note in ParaMesh AMR scheme,

the mesh box sizes are uniform, an important difference from GrACE AMR scheme and

will be addressed later.

We are the first group ported FLASH to SUN HPC system. Fig. 2.17 shows a hardware

performance study on three newest architectures, which gives a benchmark of the

different architecture and the level of optimization (whether the hardware achieved the

expected performance). The machine abbreviations are defined in Tab. 1.1. The

specification of the run is:

21

• FLASH2.1, viscous, shock-cylinder, M=2.0, base resolution 8x16, 3 AMR, 2496

time subintervals

For a reasonable comparison, 8 processors are used, which is not overloading any of

these systems.

It is obvious in Fig. 2.17a that SF12K is the fastest (about twice the E10K). However, if

we consider weighting factors, we found that SF12K is not optimized to the its ideal

performance (which is suppose to be 2.8 times faster than E10K).

We summarize itemized timing (% of total) in Fig. 2.17b. Note The main items of the

timing statistics are: Initialization, I/O and Evolution. The rest are itemized evolution

term. It is a very interesting result. Item 2 (i/o), 6 (guard cell update), 9 (data base

updating), 14 (refinement update), and 15 (tree structure update), are all communication

(MPI) related, and have significant occupation of the total computing time on Linux AMD

clusters, which reflect the bandwidth bottleneck on the privately networked clusters

versus HPC platform.

Fig. 2.18 shows performance on SGI machine. The simulation setups are:

• FLASH2.1, 2D sod shock tube problem 6 AMR levels,. 8x8 base level,

tmax=0.01, tplot=0.005, time subintervals: 122

And the items are defined the same as in Fig. 2.17b. Note:

1. The three main terms doesn’t sum to 100% because the coupling in timing;

2. The IO scheme influence its percentage;

3. From Fig. 2.18b, we can see the percentage of time in evolution reduced in

parallel runs, but I/O increased. The balanced result gives the nearly linear scale

in Fig. 2.18a.

22

4. In general, FLASH gives very good scaling in terms of time distribution among

tasks and parallel.

5. Great AMR behavior is taken advantage of: on 2 CPU, the run takes 318.269.

However, if the domain is doubled, it only takes 323.841s. The rectangular

domain is always necessary for AIFs due to the acceleration in one direction, and

stretching bubble/interface. AMR is great for this type of problems.

2.6 Summary

Here we summarize the main technical efforts on HPC in this thesis:

1. GrACE-PPM: Interface AMR scheme with an existing 3D Eulerian hydro code

[Zhang et. al., 01];

2. Maintain and upgrade the FLASH code on Sun system;

3. Validate the AMR hydro code: GrACE-PPM and FLASH.

4. Performance study of AMR and HPC.

5. Visiometrics of HPC data set.

In Tab. 2.1 we summarize the code used/implemented/updated in this thesis and their

main features. VH1 and FLASH are used as the main working codes in this thesis.

23

Fig 2.1 AMR Concept: Adaptive Grid Hirarchy (2D)

Level 1

Level 2

Level 3 Level 4 Level 5

 Fig. 2.2 A typical adaptive mesh hierarchy: Shock Gas Bubble Interaction, 5 AMR
levels, Level 1: 8x16; Level 5: 128x256

24

Preferred partitioning

Lower Reflecting Boundary:

p1,ρ1

x

y

H

0.427H Gas
Layer

30°
p1, ρ1

p2, ρ2

At t=23.76

shock

 At t=0 Upper Reflecting Boundary

Fig. 2.3 AIFs and AMR: static and dynamic partitioning

25

Resolution : 64x64

Iteration: 130 SGI64 time total SUNE10K time total

sequential 380 380 960 960

Unigrid (1CPU) 1610 1610 1320 1320

Unigrid (2CPU) 1364 2800 959 1931

Unigrid (4CPU) 2007 8140 747 3001

a. Parallel overheads ---- 64x64

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

SGI64

tim
e t

ota
l

SUNE10
K

tim
e t

ota
l

time(ms)
sequential
Unigrid (1CPU)
Unigrid (2CPU)
Unigrid (4CPU)

Resolution : 320*320

Iteration: 130 SGI64 time total SUNE10K time total

sequential 9650 9650 26300 26300

Unigrid (1CPU) 12381 12381 16143 16143

Unigrid (2CPU) 6754 13552 8194 16420

Unigrid (4CPU) 4860 19582 4404 17644

26

b. Parallel overhead ---- 320x320

0
5000

10000
15000
20000
25000
30000

SGI64

tim
e t

ota
l

SUNE10
K

tim
e t

ota
l

time
(ms)

sequential
Unigrid (1CPU)
Unigrid (2CPU)
Unigrid (4CPU)

Fig. 2.4 Run statistics examining parallel overhead in GrACE.

speedups 64*64(SGI) 64*64(SUN) ideal 320*320(SGI) 320*320(SUN)

2CPU 1.18 1.38 2 1.83 1.97

4CPU 0.8 1.78 4 2.58 3.67

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

2CPU 4CPU

64*64(SGI)
64*64(SUN)
ideal
320*320(SGI)
320*320(SUN)

Fig. 2.5 Speedups on uniform grids.

27

AMR(3 levels):
32*32 p1 time p2 time p3 time p4 time total time syn time

recompose
time

sequential
(32*4 * 32*4) 5.95 5.95

1CPU 55.974 0 0 0 55.974 24.156 9.719

2CPU 34.767 34.817 0 0 69.584 15.124 9.126

4CPU 33.116 33.147 33.116 33.118 132.497 16.027 9.995

0
10
20
30
40
50
60

sequential
(32*4 *
32*4

1CPU 2CPU 4CPU

t(s)

p1 time
p2 time
p3 time
p4 time

Fig. 2.6 AMR engine performance

28

Fig. 2.7 General structure of GrACE-PPM

Fig. 2.8 Hierarchical space-filling mappings (Peano-Hilbert)

Level 2

Level 1

Level 0

Fig. 2.9 Boundary alignments in GrACE-PPM implementation

29

 4

0

(a). Sequential u

2
2

 (b). GrACE-PPM, 2 AMR levels, 2 CPU

6

(d). VH1, Sequential, resolution 20

Fig. 2.10 GrACE-PPM verifica
t

niform

, 50x2

0x80

tion –
t2
mes

0

2D

 t3

h, resolution 2

(c). GrACE

(e). GrACE-

 shock curtai
t5
00x80, t0-t5

4

-PPM, AMR, 2 levels, 2 CPU, 50x20

6
t
PPM, AMR, 2 lev

n interaction, ce
t

t
 t
t
t

5
t

els, 2 CPU, 50x20

nter slice.

30

Fig. 2.11 Visualization of various domains and boundaries: real physical; refinement
levels; and different processors.

8

7

6
5

4

3 2
1

a. density

b. vorticity

Fig. 2.12 GrACE-PPM test: shock curtain interaction at intermediate time, resolution 128x512,
with 3 AMR levels, 8 CPUs. Labels in density image are processor numbers.

31

c.

b.

a.

Fig. 2.13 3D GrACE-PPM test: resolution: 128x32x32, 2 AMR Levels, 8 CPUs. (a).
density isosurface, with AMR meshes; (b). two slices at j = 10 and 110, respectively; (c).

A zoom of slice j=10. Note the transmission and reflection wave front and post shock
compression of the curtain mass.

32

Aifs case study 3D with GrACE-PPM:
128*32*32, 2 AMR levels

0

200

400

600

800

1000

1200

1400

1600

1 2 4 8 16 32
CPU #

C
P

U
 ti

m
e

total time sync time recompose time

Fig. 2.14 parallel performance of 3D GrACE-PPM simulation

Component interface layer

ChomboVis

Figure 2.15 Modular hierarchy of FLASH: dynamic degree of complexity.

33

 t=750e-6 t=500e-6 t=250e-6

Figure 2.16 A typical mesh evolution in FLASH: 3 AMR levels.

0

500

1000

1500

2000

2500

3000

3500

SF12K LAMD SE10K

Ttotal

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

F12K LAMD E10K

b. Itemized performance a. 8 CPU Performance on 3 machines

Itemize:

1 initialization 11 diffusion
2 i/o 12 flux conservation
3 evolution 13 eos
4 source terms 14 update refinement
5 hydro 15 tree
6 guard cell 16 guard cell (tree)
7 hydro sweep 17 eos (tree)
8 hydro_1d
9 dbase
10 update_soln

Fig. 2.17 Performance scaling through different hardware: E10K, F12K and AMDMP.
c. Itemized timing

34

0

100

200

300

400

500

600

70

1 2 4
of CPUs

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 CPU 4 CPU

0Time (s)

 a. Parallel performance b. Itemized timing (%)
Fig. 2.18 Performance of a typical FLASH run on SGI. a. parallel performance; b. timing.

Codes CFD Kernel AMR Parallel Accuracy Function in this thesis
VH1 PPMLR No Yes O(3rd) in S and

O(2nd) in T
Main code +
Validation testbed

FLASH PPMDE Yes Yes O(3rd) in S and
O(2nd) in T

Main code

GrACE-PPM PPMLR Yes Yes O(3rd) in S and
O(2nd) in T

Validation testbed

GrACE-RM3D Godnov Yes Yes O(2nd) in S and
O(2nd) in T

Validation testbed

WENO WENO No Yes O(7th) in S and
O(3rd) in T

Validation testbed

Tab. 2.1 Summary of codes.

35

Chapter 3 Visiometrics

3.1 Introduction

Modern computer simulations usually produce large datasets. It is crucial to interpret

these datasets through visualization and analysis to obtain physical insight. Visiometrics

is our special methodology to accomplish this task.

By visiometrics, we mean the comprehensive data pipeline of visualization, juxtaposition

and quantification with modern computers architectures and algorithms. It is a cogent

way to explore the dataset for physical and mathematical understanding of phenomena.

The discovery of "Soliton"[Zabusky & Kruskal, 65] via numerical study of Korteweg-de

Vries (KdV) equation is the first success of visiometrics, pure academically at the time.

"Soliton" is now playing a crucial role in optical telecommunication industry. The

dispersion managed soliton technology, once converted to industrial productivity, is

impacting our life with 10 Gbit/s optical telecommunications systems, with researches on

the future evolution towards multi wavelength 40 Gbit/s transmission systems.

The term "Visiometrics" is first made official by the foundation of "Laboratory for

Visiometrics and Modeling" (Vizlab) at Rutgers and a keynote paper [Bitz & Zabusky,

90]. Vizlab is an interdisciplinary research lab among aerospace engineering, computer

engineering, computer science, physics and applied mathematics. Many new physical

discoveries were made in the lab under visiometrics mode of working. To name a few in

recent years: secondary circulation enhancement [Zabusky & Zhang, 02], baroclinally

forced inhomogeneous turbulence [Zhang et. al., 02], and uncertainty quantification

[Zhang et.al., 03]. Some of the above examples will be discussed later in this thesis. At

36

the same time, many new algorithms and software packages were designed and

implemented, e.g., Data Visualization and Diagnostics (DAVID) and Visiometrics 1.0.

More interestingly, the visiometrics concept, mainly popularized in academia, is catching

up in industry by the idea "data mining". It becomes a common belief among spacious

researches, both in industry and academia, that a smart way of exploring and presenting

the data will be one of the most important research focuses in this information explosive

world.

3.2 Scientific visualization in fluid flow

Visualization is one of the most effective tools for flow analysis in both experiments and

simulations. It is actually the oldest candidate for visualization ---- the transparent nature

of fluid flow and its complexity require smartly designed schematic to reveal the fluid

physics without much interference. In terms of computer simulation, visualization could

help in revealing scientific insight, as well as in assigning artistic flavors of science in

terms of, for example, manipulating colors [Zabusky, 00].

How to visualize the data and which quantities to visualize may determine whether new

physics can be discovered, or how much understandings could be obtained from the

data. Transformation functions or filters can be applied to flow field variables to generate

visual images [Samteney & Zabusky, 00]. Differentiation and threshold are two of the

most straightforward and fundamental ones. Take the example of density field. First

order differentiation of density filters out the smooth density background and is one of

the common methods to visualize the high-gradient density region like contact

discontinuity. This method has analogue from both experiment (called schlieren) and

image processing (called edge detector). The density gradient field can be further used

as the input to more advanced visualization techniques such as skeleton extraction, e.g.,

37

we used the method in [Chang, 02] to extract skeleton of density gradient magnitude

field for our Richtmyer-Meshkov interface simulation [Zabusky & Zhang, 02].

The second order differentiation or Laplacian of density is another technique to visualize

the high-gradient regions. We call it numerical shadowgraph in analogy with

experimental shadowgraph technique. It is a high-pass filter in imaging processing.

Density gradient and density Laplacian visualizations for the interface are smeared over

a pretty large space, and consequently are hard for use in further quantitative analysis.

One solution to extract the desired curve is the zero crossing of the Laplacian density

field [Peng, 03].

For our shock pattern analysis, we use the divergence of velocity field. This will capture

only the highly compressed region. Instead, the Laplacian of density can be used to

visualize both the shock wave and interface regions at the same time.

[Post et. al., 03] reviewed scientific visualization advances in the past decades, with

emphasis on feature-based visualization, a subject in our later discussions. These pre-

processing schemes directly associated with visualization are the first step of our

visiometrics methodology, and its importance is widely accepted.

3.3 Importance of quantification

Quantification is a step further to the physical understanding and modeling. It is crucial to

get physics and mathematics out of the system. There are two categories of

quantifications: global and local.

Global quantification measures the total quantities, for examples, circulation, integrated

enstrophy, distribution or histogram, power density spectra, moments of statistical

quantities (e.g. skewness, flatness et al) and so on. To avoid numerical noise that

always associated with the numerical implementation of the boundary condition,

38

particularly inflow and outflow, we introduce the diagnostic box surround the region of

interest to perform global quantification accurately.

Local quantification characterizes the space-time topologies of coherent structures in an

appropriate moving frame, including: evolution of critical scales; space-time diagram of

integrated vorticity and density; slopes, normals and curvatures of interfaces; and other

localized quantities through feature extraction and tracking.

For AIFs and other multi-fluid flows, it is important to extract the localized features for

local quantification. These localized features could be coherent vortex structures or the

interface curve. Extraction is usually a stand-along post-processing process, but could

also be online with the simulations.

We’ll discuss the definition of these quantifications at the place we use them, and

summarize the details of the procedure on how to get these quantifications in the next

section.

3.4 Visiometrics: the comprehensive pipeline

The visiometrics pipeline mainly consists of four stages:

OBTAIN & ASSIMILATE DATA: From numerical simulations, laboratory/filed

experiments, and/or observations (e.g., space telescope), with appropriate

preprocessing (reduction, filter, statistical modeling and juxtaposition).

VISUALIZE DATA: Use interactive environments and animation, with proper

choice of visual/graphics effects, e.g., colormaps.

QUANTIFY DATA:

39

• Project fields (time evolving scalar, vector and tensor in nD) to lower

dimensions (3D, 2D or 1D) by integrating with respect to an appropriate

kernel;

• Transform field by taking slices, space-time diagrams and volumes, or

with wavelets, etc;

• Identify, extract, juxtapose and track coherent objects and particles

(features and trends);

MATHEMATIZE: Obtain reduced models or statistical properties; Find scaling

laws, simpler equations of motion and/or simple formulas.

In the following we define a few key technologies underlying these modules. Note our

definitions of these technologies are really dynamic: the technique is developing and

expected to be enriched.

3.4.1 Data Juxtaposition

Data juxtaposition ---- Combine and compare data to build correlation, from

1.Different source (experiments, simulations, field observations);

2.Different quantities (independent or derived) and/or at different time;

3.Different preprocessing procedure; etc…

In complex physical processes, different factors usually interact, correlate and compete

with each other. We can obtain different visualization and quantification results from

different perspectives. Juxtaposition is a synthetic comparison for insightful analysis by

putting side by side different but potentially correlated results (visualized and quantified)

of different or similar functions. This is especially true in juxtaposing primary quantity

40

(e.g., density) with carefully structured quantities (e.g., vorticity). We can also validate

the simulation by juxtaposing the experimental results with simulations.

Juxtaposition allows one looking at different aspect of a complex system and derives

innovative insights such as correlations and causes.

3.4.2 Data projection

Data projection ---- Project data with regard to appropriate kernel and reduce the

dimension. The most popular projection methods are:

1.Slice the data (0th order approach);

2.Integrated with regard to a kernel to project the data to lower dimensions

(higher order approach);

3.Statistical distributions and correlations; etc…

Project one quantity to the axis reduces the dimension (2D->1D) and makes it possible

to juxtapose values of a 2D quantity from different time to capture its time evolution. Fig.

3.1 illustrates an example of a 1st order projection.

Note projection reduces the dimension of the data and make it feasible to juxtapose at

this more abstracted level.

3.4.3 Space-time analysis

Space-time analysis ---- Assimilate the evolution of the data in one parameter space

(e.g. temporal) with the other (e.g., spatial).

• In 1D, it gives a 2D space-time diagram with no data reduction;

• In 2D, it gives a 3D space-time volume with no data reduction or 2D S-T

diagram with 1 projection;

41

• In nD, it gives a 3D space-time volume with n-2 projection/slice or 2D S-T

diagram with n-1 projections.

The discovery of soliton is a good example to illustrate the main concept of space-time

diagram, as in Fig. 3.2. More complex space-time analysis used later-on in the thesis

leads to many new discoveries.

The basic idea in space-time analysis is dimensional transformation, in our case,

transformation of spatial dimensions (upon projection) to temporal dimension.

KdV equation is considered the champion of model equations of nonlinear waves. In Fig.

3.2, we can see the PDE system and numerical configurations are on the top. The right

column is a sequence of graphs showing the solutions at different times, a set of curves

that Korteweg and de Vries were looking at in the 19th century, and hereafter by all the

researchers for nearly seven decades.

To the left, a space-time diagram of the same solution is shown, by packaging the

curves from all time steps along time axis, and using a appropriate colormap to

represent the value of the function (velocity in this case). The eye-capturing large

streaks in the diagram are solitons, with some of their mathematical features such as

strength, phase shift after intersection, etc, being geometrically visualized.

Through data summarization with space-time diagram, the spatial and temporal

evolution is captured together. Important features and their characteristics are easily

identified.

Note the extension of the orthogonal Cartesian space to parameter space will be of

crucial importance in the extension of using visiometrics to non-scientific data, e.g.,

business data.

42

3.4.4 Feature analysis

Features, or patterns, are of crucial importance in any scientific disciplines. This is

especially true in AIFs flows, where the gas inhomogeneity is always rolled up by a

strong vortex projectile and forms a mushroom dipolar jet as shown in Figure 1.2. The

features of interests in fluid dynamics are:

• Vortices

• Shock waves

• Material interfaces (contact discontinuities)

• Separation and attachment lines

• Recirculation zones

• Boundary layers

Etc…

They can be primarily categorized into two groups: volumetric features (e.g., vortices)

and interface/line features (e.g., shocks, CDs). Note transformation of the feature from

one category to another is always possible, e.g., 3D vortex tube to vortex core line.

Possible events of these time evolving features are summarized in Fig. 3.3. [Zabusky,

99] has a more detail summary of interactions of fluid dynamical features. Clearly, it is

very important to ask what happened in the evolution of the features qualitatively (event

query) and quantitatively. This could be only answered by tracking algorithms, i.e.,

correspondence problem. Two main approaches to solve the correspondence problem

are: 1. attribute correspondence [Samteney et. al., 92]; 2. full volume correspondence

[Silver & Wang, 97]. The former is efficient because it uses the feature attributes as

reduced model of the feature and calculates the correspondence of these attributes.

43

However, it has difficulty in handling features with high complexity, e.g., highly curved

features. We use full volume feature correspondence in this thesis.

Fig. 3.4 shows a feature analysis pipeline. The basic steps are: 1. Obtain data from

experiments, simulations or observations, with appropriate preprocessing (e.g.,

transformation and juxtaposition); 2. Visualize (in traditional way) the simulation data,

quantify fields globally and identify main feature of interests (vortices and mass bubbles

in this case); 3. Extract these features and quantify them to get abstract description; 4.

Track the time evolution of these features; 5. Isolate individual features (interactively) to

obtain evolution quantification.

Details on feature extraction and tracking algorithms could be found in [Silver & Wang,

97]. And Fig. 3.5 shows a diagram of using the feature-tracking package.

[Chen et. al., 02] [Chen et. al., 03] extended this package to parallel environment and

addressed the correspondance problem of adaptive mesh data.

Aside from extraction and tracking of the volumetric features, the material interfaces

between different fluids, referred to as CD, and shock waves, are also of practical

interests for extraction and tracking.

[Samtaney & Zabusky, 99] examined the accuracy of zero crossing of the Laplacian

density in quantifying the shock and contact discontinuity locations. [Peng, 03] extended

this method to initially diffuse interface and developed a simplified interface extraction

algorithm using the zero crossing of Laplacian of density in high-density gradient field.

Other interfacial-tracking scheme includes media-axis work by [Chang, 02] and those in

level set method literature.

3.5 Unique features of visiometrics

Visiometrics has the following features different from the usual visualization:

44

1.Data abstraction

• Visiometrics increases the information content by abstract representation of the

data (with features) and projections/transformations/juxtapositions;

• Visiometrics could reduce the data by the order of 103, with high scalability in

parallel environment; this data reduction allows real-time interaction between the

viz and CFD simulation;

• Visiometrics reduces visual clustering for easier viz;

2.Visiometrics leads to effective physics representation by allowing physicists to

relate visual observation to conceptual framework;

3.Feature analysis allows access to the localized features and makes the

quantification and reduced mathematical modeling feasible;

3.6 Environments: DAVID & Visiometrics 1.0

The first implementation of visiometrics toolbox is by [Bitz & Zabusky, 90] and [Feher &

Zabusky, 95] created and augmented the DAVID environment [DAVID, 96] for facile

interactive visualization and quantification of simulation data-- single frames of a variable

in 2D or a slice from 3D. They introduced the idea of a “diagnostic box” and were able to

extract and project coherent structures on which quantifications were done.

A new visiometrics toolbox developed in this thesis dealing with the HPC dataset is

visiometrics1.0. It has the following emphasis:

1. It has enhanced features in visualizing, quantifying, scaling and reduced

modeling the properties of evolving coherent structures of density, density

gradients, velocity, vorticity (or domain circulations and enstrophy), velocity-

divergence and baroclinic generation, particularly emphasizing on obtaining

45

insight to late time turbulent decay and mixing with feature based analysis:

feature (volumetric and interfacial) extraction and tracking.

2. It has the ability of handling large, time-varying, parallel, adaptive mesh

datasets.

3. It is extended to 3D visiometrics under vortex paradigm framework, to address

3D effect and obtain quantitative insight of 3D physics in AIF.

3.7 Visiometrics for AMR data set – ChomboVis environment.

We discussed in section 4.2 that AMR is a valuable scheme for large multi-scale

simulations. However, the significant increase of data structure complexity, across many

processors with dynamic features (for load balancing), make it very difficult for

visiometrics. For example, data “alignment” is extremely important for visualization and

made difficult by various boundaries: real physical boundaries; boundaries of refinement

level; and boundary between different processors. We use and augment AMR modules

from ChomboVis, a Lawance Berkeley National Laboratory environment [ChomboVis,

03], to visualize AMR data from FLASH and GrACE-PPM.

Figure 4.25 use FLASH data structure as an example to show how FLASH data, with

AMR structures, has been processed and visualized. The first approach, Fig. 3.6a, is to

output our simulation data with regular HDF5 format, and write a routine to convert the

regular HDF5 data to ChomboVis HDF5 format. The second approach is to output

ChomboVis HDF5 format directly, as shown in Fig. 3.6b.

Both approaches involves ChomboVis HDF5 data structure, which we’ll discuss in the

following.

46

3.7.1 ChomboVis HDF5 data structure

ChomboVis is a program for visualization of 2D and 3D AMR data sets. It is layered on

top of the Visualization Toolkit (VTK) and provides a graphical and programmable user

interface for interacting with the data set. The primary function is imlemented with C++,

but the interface driver is written in Python.

Before we discuss the data structure, we first summarize the datastructure. More details

could be found at [ChomboVis, 03].

ChomboVis uses the native data type internally, which allows HDF5 to make efficient

conversions between binary data representations. Every NATIVE data type translates to

a real data type for particular computer architecture.

ChomboVis also defines two new composite HDF5 data types for IntVect and Box

(which depend on the dimensionality of the Chombo HDF5 file). An typical 3D

description is:

DATATYPE ``intvect_id'' {

 H5T_NATIVE_INT "intvecti";

 H5T_NATIVE_INT "intvectj";

 H5T_NATIVE_INT "intvectk";

 }

DATATYPE ``box_id''{

 H5T_NATIVE_INT "lo_i";

 H5T_NATIVE_INT "lo_j";

 H5T_NATIVE_INT "lo_k";

 H5T_NATIVE_INT "hi_i";

 H5T_NATIVE_INT "hi_j";

 H5T_NATIVE_INT "hi_k";

 }

With the above definitions, the file format could be break-down into the following:

GROUP "/" {

 ATTRIBUTE "time" [OPTIONAL]{

 DATATYPE { H5T_NATIVE_DOUBLE }

47

 DATASPACE { SCALAR }

 }

 ATTRIBUTE "iteration" [OPTIONAL] {

 DATATYPE { H5T_NATIVE_INT }

 DATASPACE { SCALAR }

 }

 ATTRIBUTE "max_level" {

 DATATYPE { H5T_NATIVE_INT }

 DATASPACE { SCALAR }

 }

 ATTRIBUTE "num_levels" {

 DATATYPE { H5T_NATIVE_INT }

 DATASPACE { SCALAR }

 }

 ATTRIBUTE "num_components" {

 DATATYPE { H5T_NATIVE_INT }

 DATASPACE { SCALAR }

 }

 [for n=0,num_components

 ATTRIBUTE "component_n" {

 DATATYPE {

 { STRSIZE ;

 STRPAD H5T_STR_NULLTERM;

 CSET H5T_CSET_ASCII;

 CTYPE H5T_C_S1;

 }

 }

 DATASPACE { SCALAR }

 }]

 GROUP "Chombo_global" {

 ATTRIBUTE "testReal" {

 DATATYPE {H5T_NATIVE_DOUBLE }

 DATASPACE { SCALAR }

 }

 ATTRIBUTE "SpaceDim" {

 DATATYPE { H5T_NATIVE_INT }

 DATASPACE { SCALAR }

 }

 }

 [for n=0,num_levels

 GROUP "level_n" {

 ATTRIBUTE "dt" [OPTIONAL] {

 DATATYPE {H5T_NATIVE_DOUBLE }

48

 DATASPACE { SCALAR }

 }

 ATTRIBUTE "dx" {

 DATATYPE {H5T_NATIVE_DOUBLE }

 DATASPACE { SCALAR }

 }

 ATTRIBUTE "ref_ratio" {

 DATATYPE { H5T_NATIVE_INT }

 DATASPACE { SCALAR }

 }

 ATTRIBUTE "prob_domain" {

 DATATYPE box_id

 DATASPACE { SCALAR }

 }

 DATASET "boxes" {

 DATATYPE box_id

 DATASPACE { SIMPLE 1D }

 } # see section 'Data Flattening'

 DATASET "data:datatype=0" {

 DATATYPE {H5T_NATIVE_DOUBLE }

 DATASPACE { SIMPLE 1D }

 } # see section 'Data Flattening'

 GROUP "data_attributes" {

 ATTRIBUTE "ghost" {

 DATATYPE intvect_id

 DATASPACE { SCALAR }

 }

 ATTRIBUTE "comps" {

 DATATYPE { H5T_NATIVE_INT }

 DATASPACE { SCALAR }

 }

 ATTRIBUTE "objectType" {

 DATATYPE {

 { STRSIZE ;

 STRPAD H5T_STR_NULLTERM;

 CSET H5T_CSET_ASCII;

 CTYPE H5T_C_S1;

 }

 }

 DATASPACE { SCALAR }

 }

 }

 }]

49

 }

The floating point data is stored in the single large data array in /level_*/data:datatype=0.

The primary data holder used for each grid in an AMR calculation is defined as:

struct FArrayBox

{

 Real* dataPtr;

 int comps;

 Box region;

}

which is accessed in Fortran-ordering fashion with component indexing being the outer

index, and zero indexing:

for(int comp=0; comp < fab.comps; ++comp, index+=fab.region.numPts())

 for(int k=0 ; k < fab.region.size(2); ++k,

 index+=fab.region.size(0)*fab.region.size(1))

 for(int j=0 ; j < fab.region.size(1); ++j, index+=fab.region.size(0))

 for(int i=0 ; i < fab.region.size(0); ++i, ++index)

 printf(``fab[%i,%i,%i,%i] = %d'',

 i,j,k,comp,fab.dataPtr[index]);

For every level of AMR data, the number of components is stored once in

/level_n/data_attribtues/comps. All of the Real data per level is then stored in one giant

1D array called /level_n/data:datatype=0. Each FArrayBox data is written as a

50

contiguous section (an HDF5 hyperslab) of this large 1D array Along the 1D data array,

the order which things vary is i, then j, k, component, and finally FArrayBox index.

3.7.2 ChomboVis requirements

ChomboVis are primarily tested on Linux. In this thesis, we have succeeded in building

and running ChomboVis on Sun Sparc architecture.

Before building and running ChomboVis, a number of supporting packages need to be

installed first, include:

• HDF5 1.4.2 - used by FLASH and GrACE-PPM to write data and by ChomboVis

to read that data.

• Tcl 8.3.3 and Tk 8.3.3

• Python 2.2

• Pmw.0.8.5 - Python megawidgets.

• Mesa 3.4.2 (if you don’t have OPENGL).

• VTK 3.2

Note the version number is extremely important. A number of packages that are almost

universally installed are also necessary, e.g., GNU make (v3.77 or higher), GNU zip,

autoconf, and text tools like grep, sed, and awk. In addition, GNU C++ (gcc), version

2.95 or later, except version 2.96 is required.

3.7.3 Interface function and parameters

Although ChomboVis was designed to use together with Chombo package (A variety of

ParaMesh), the only point of contact between the two is that ChomboVis reads the

HDF5 file format that Chombo writes. Any package could write out ChomboVis

compatible data as far as it follows the data structure. The most important step is

51

knowing where in the large 1D data array to start a read or a write for a particular

FArrayBox. Offset calculation and hyperslab construction is a large part of the code

complexity in the ChomboVis HDF5 (combined with the complexity of the flexible HDF5

binary portability). Upon completely reading in all the region information from the "boxes"

data set, and reading the number of components, then one can calculate where to start

any particular read/write operation. This is also an essential element of how to perform

I/O in parallel, with every processor individually figuring out where in the giant array to

write its particular data sections.

As pointed out in the previous sections, an important difference between ParaMesh

based AMR package (e.g., FLASH and Chombo) and GrACE based package (e.g.,

GrACE-PPM) is that the former has uniform size for all blocks. This makes it significantly

easier for the offset calculation in visualizing ParaMesh based data than GrACE based

data.

For non-uniform grid size, we need to retrieve the box information as part of the Grid

Hierarchy as well as part of Grid Function. Then at the time we are allocating memory for

the 1D array, we also had the information of the box size and assign the memory

accordingly.

In the following, we show a typical interface function:

void write_block_to_chombo_file (int* block_tot, // accumulating: total number of blocks

been processed, for file close control

 int* no_at_level, // accumulating: number of blocks at current level been

processed, for computing offset of HDF5 dataspace

 char* fileout2, // filename

52

 int* tot_blocks, // total number of blocks, for file close control together with

block_tot

 int* numLevels, // total number of levels, for initialize and close level-

wise HDF5 memdataspace

 int* ndim, // number of dimensions

 int* nvar, // number of variables

 int* nxb, // size of the box

 int* nyb,

 int* nzb,

 int* lrefine, // current level

 int* min_coordinate[ndim], //index coordinates of current box

 int* max_coordinate[ndim],

 double* unk[ndim[0],ndim[1],ndim[2],nvar], // Data: note the order (i, j,

k, nvar)

 double* simtime, // simulation time

 double* dt, // time step

 int* first_call, // boolean controling the file to be open only once for each

time step

 int* no_at_level_tot[numLevels], // An array contents total number of

blocks at each level, for memdataspace allocation

 double* dx[numLevels], // An array contents step size at each level

 char* compNames // An array contents name of components);

53

Two block indexes is required to build the 1D array, as shown in Fig. 3.7:

1). The total number of blocks for book-keeping: block_tot (accumulating) and

tot_blocks (=6) in this case.

2). The number of blocks at each level for dataspace memory allocation

no_at_level_tot.

The interface algorithm outputting FLASH data (different levels, multiple grid function) at

each time step to one file in ChomboVis HDF5 format is summarized as following:

1. Open file if called the first time (controlled by first_call);

2. Define and insert compound data strcture, including box, attibute (ndim,

numLevels, nvar, simtime);

3. Open and write out CHOMBO HDF5 level-wise: a data space is created for

each level, and allocated with the size: no_at_level_tot[i]* *nvar * *nxb * *nyb;

(Step 1, 2, 3 is within chomboinitializedfile)

4. Compute level-wise offset of the data in the data space;

5. plug the data into the appropriate data space according to the computed

offset;

6. Close the file if all the block numbers have been processed

3.7.4 Examples

Fig. 3.8 shows a typical ChomboVis visualization interface. Most of AMR visualization in

this thesis is based on ChomboVis, however, the GUIs are omitted for all other cases.

54

Figure 4.xxx An illustration of data projection

Fig. 3.1 An Illustration of data projection

Density ρ

Massy =∫ρdy

Project to axis: 1st order approach

Phase
shift

A
ssign C

olorm
ap

Fig. 3.2 KdV soliton: an example of space time diagram.

55

Fig. 3.3 Events in 2D turbulent mixing.

Data transformation,
juxtaposition &

visualization

ρ

u×∇=ω

Enhanced
Visualization

t2 t1

II
I

IIII
I

t2
I

t1

t2 t1

Vorticity

Density

Decay study:
• Power law
• Spectrum

Mixing study:
• Events query
• Correlation
• Scales

Feature identification

Feature Extraction

Feature Description

Feature Tracking

Feature Isolation

Evolution

Fig. 3.4 Feature based analysis in AIF study

56

Fig. 3.5 Diagram of the feature tracking package usage.

FLASH2.1 HDF5 OUTPUT
HDF5

Runtime lib flash2chombo

VTK

TCL/TK

OPENGL/MESA

Python
0

Visiometrics 1.0

CHOMBO HDF5

a. Pro

Python

OPENGL/MESA

TCL/TK

VTK

H
FLASH2.1

 b. Pr

Fig. 3.6 Typical processing diagra
italic modules are software suppor
 CHOMBOVIS2.

c

m

AMR Viz/Monitor

essing FLASH AMR data: approach 1

AMR Viz/Monitor

CHOMBOVIS2.0

chombo IO

DF5 Runtime lib

ocessing FLASH AMR data: approach 2

 for HPC data: FLASH AMR data as an
t implemented or imported or updated by
Physical Analysis
Physical Analysis

Visiometrics 1.0

CHOMBO HDF5

 example. Note the
 this thesis.

57

no_at_level_tot[2]

no_at_level_tot[1]

no_at_level_tot[0]

Fig. 3.7 Level-wise block indexes in ChomboVis HDF5 data.

Fig. 3.8 ChomboVis GUI.

58

Chapter 4 Verification and validation

4.1 Introduction

Verification and validation, referred as V&V hereafter, are fundamental steps in

developing any new simulation technology. The goal is assessing the credibility of

modeling and simulation. Verification means demonstrating that a code or simulation

accurately represents the conceptual model – solves the equations right. Validation of a

simulation means demonstrating that the simulation appropriately describes nature –

solves the right equations. The scope of validation is therefore larger than that of

verification, which involves comparison of numerical results with experimental or

observational data [Calder et. al., 02].

The issue of verification and validation of a numerical scheme is very important but not

yet being addressed with enough emphasis. According to a statistics shown by Steven

Orszag at an APS Centennial Meeting, 1999, there are only 6.7% of totally 89 published

CFD papers, randomly sampled in Journal of Fluid Dynamics and Physics of Fluids from

1990 to 1999, that addressed carefully the numerical accuracy issues, while 68.5% has

little or no tests at all.

This V&V problem requires mathematical and physical insights into the problem to avoid

wrong answers. In addition, careful examinations of the output data are crucial when

theory is not available or not well-developed, which is the focus of this thesis. Here we

use the validation of PPM as an example to show our vortex paradigm mode of V&V.

59

4.2 Dissipation of PPM

In this section, we examine the dissipation effect of PPM algorithm in different

implantations. These dissipations are very important to intermediate to late time

dynamics, and could be treated as a sub-grid model of turbulence.

We first study the effect of numerical precision Fig. 4.1. We define circulations as our

convergence criteria:

dxdy++ ∫=Γ ω , Γ , Γ (4.1) dxdy−− ∫= ω dxdyω∫=

The simulation we are looking at is shock curtain interaction, with M=2.0, η =7.14,

tend=200, resolution 2048x256, on SUN E10K machine. A double precision run uses

CPU Time 261,078.56 sec, while a single precision uses CPU time 192,396.91 sec.

Only starting from the end of second time epoch (eII), the influence of numerical error

becomes significant, i.e., dissipation starts at an later time in double precision run.

In Fig. 4.2, we show the convergence of circulations for runs with zero-viscosity and with

two numerical methods: PPM and Weighted essentially non-oscillatory (WENO) method

(two runs with WENO at 5th and 7th orders of accuracy respectively). The physical

conditions are an M =1.2 shock traversing a SF6 gas cylinder in a 200x800 uniform mesh

numerical shock tube. The circulation differences are unobservably small during shock

passage and within 5% for later times. These differences come from the formation of

small-scale structures beyond the intermediate time, which are also observed

experimentally. All qualitative features in density and vorticity images are common to all

the runs. Although PPM is only upto 3rd order accurate, its result is comparable to 5th

order WENO run.

60

4.3 FLASH modules: constant viscosity, gamma blending and AMR

numeric

We introduced in this thesis a constant kinematic 3.2x10-3 cm2/sec to momentum

evolution equation:

 Momentum: /)()()(uguuu ∇⋅∇+=∇+⋅∇+∂∂ νρρρ pt (4.4)

In Fig. 4.3, we show that this viscosity does affect circulation evolution in a shock

cylinder interaction simulation, with 01.0=∆x cm. Fig. 4.3a shows that a viscous flow

with viscosity 3.5x10-5 cm2/sec is essentially equivalent to an inviscid flow at this

resolution. Fig. 4.3b shows that the circulation is smaller as the viscosity in this range

increases.

Note, the FLASH compressible code omits viscosity in the energy equation and thus

provides only heuristic results for small scales at late times. For comparisons with

experiments, we do not believe that this omission and the lower viscosity used is an

important effect for the large and intermediate structures up to intermediate times. In the

future, we hope to investigate the role of physical and numerical diffusivities at late times

when the small-scale structures are be in a turbulent state.

We note that the AMR implementation and some FLASH modules which introduces

more complex physics into the simulation, e.g., gamma blending of different species,

make the simulation subjected to more numerical errors.

In Fig. 4.4, we show the error introduced by AMR comparing with the viscosity. We see

that the circulation is actually enhanced by AMR scheme, a phenomenon we will discuss

in more detail later.

In the following, we further show the solution convergence and accuracy issues on the

gamma-blending and AMR. In FLASH, the equation of state of gamma-law gases evolve

61

with different specific heat ratio, where for the gas mixture, the specific heat ratio is

defined as weighted average adiabatic index [FLASH, 02]:

∑ −
=

− i i

i

i A
X

1
1

1
1

γγ
 (4.5)

Where X i is the mass fraction of the ith element, A is atomic mass, i is 1 and 2 in our

case, for air and SF6, respectively.

Fig. 4.5 shows a convergence study of gamma blending modules in FLASH. Note for all

five runs, the net circulations are the same, which means the basic physics for all the

runs are consistent. The difference comes only from secondary structures. The hydro

solver of VH1 and FLASH are almost identical, revealed by the solid and dotted lines,

except a short region between 0.0007 ≤ t ≤ 0.0011, where FLASH circulations are

smaller. Dashed line shows the effect of multi-species, which makes second baroclinic

increase phase start at a significantly early time. Dark solid lines shows deviation from

adaptive mesh. The difference is not negligible and is under investigation. We show in

addition the simulation with a small diffusion 1.73E-5 here.

Now we switch to another geometry: curtain to examine the convergence issues at late

time while turbulence developed. Fig. 4.5 show four time steps for three shock curtain

runs:

Run 1: VH1, uniform mesh 256x2048, single species;

Run 2: FLASH, AMR (32x256, 4 AMR levels), multi-species;

Run 3: FLASH, AMR (8x64, 6 AMR levels), multi-species.

It is important to prevent the CDs from being ill-refined to different level of mesh. Hence,

an optimization study on the refinement threshold is performed and 0.2 is used for 4

AMR levels and 0.08 for 6 AMR levels.

62

Figure 4.6a shows the mesh distribution of run 8 with FLASH. Each box in the Figure

corresponds to an 8x8 mesh block. Clearly, 4 level of meshes are observed, and the

discontinuities are well refined.

Figure 4.6b captures the curtain when it is just hit by the incident shock and some shock

wave interactions. The specific heat ratio is an important factor influencing the time

scale, which result in the different position of the reflected shock wave front at the same

time for different runs. Transmitted shocks for FLASH runs are not captured because of

the colormap setups. The VBL driven curtain rolls up almost the same way for all three

runs. However, small differences in secondary structures are presented. This continue to

be true to intermediate time at t=2.5, Fig. 4.6c. But at late time, Fig. 4.6d, t=6.9, when

turbulent mixing dominants the flow, the simulations agrees only in a very qualitative

sense: the AMR runs with different γ’s are more turbulent. In addition, numerical effects

become significant, which is certainly more severe in AMR runs: even the two AMR runs

at this time do not agree well.

We amplify the above statement by showing quantifications of Run 1 and Run 2 in Fig.

4.7. In both Figs. 4.7a and b, we see that at early time, the circulation and the enstrophy

agree. However, at t> 2.5 the results diverge. In Fig. 4.7a, the positive circulation seem

to be subjected to a much stronger secondary baroclinic enhancement for the FLASH

run than the VH1 run. This phenomenon is also seen in the stronger mixing process

observed in Fig. 4.6 and the y-integrated vorticity in Fig. 4.7c, where we see locally,

there is much more positive circulation in FLASH run (dash-dot curve) than VH1 run

(solid curve). However, the negative circulation, obtained mostly from the strong

localized vortex projectiles is subjected to much less mixing,

In Fig. 4.7d we explain the above deviation by plotting the density gradient distribution.

At t=2.5, we see the gradient distributes almost identically, while at t=6.9, the

63

distributions diverges. In the high gradient region, |∇ρ|>103, VH1 has a higher gradient

value because of its intrinsic ability in maintaining contact discontinuities, that is, it is

less dissipative. In the large intermediate gradient range 10<|∇ρ|<103, we see, FLASH

gives a much wider gradient distribution, which contributes to the stronger circulation

enhancement in eII. This arises because of the stronger mixing obtained from the

different equations of state of the two gases and AMR implementations.

In summary, we find that the combined effect of gamma-blending and AMR preserves

very high gradient structures, which greatly change the circulation and enstrophy

behaviors at and beyond the intermediate times.

It is also interesting to note the difference of the two PPM implementations: PPMLR and

PPMDE. Although according to [Woodward & Collela, 84], they are almost identical, VH1

group pointed out that PPMLR is less dissipative and thus better at maintaining contact

discontinuities, which is consistently observed here by the slightly larger circulation.

4.4 AMR error exposure with visiometrics

The efficiency in time and computer resources introduced by AMR is at the sacrifice of

certain accuracy, as already shown in the global quantifications in the previous section.

The import of AMR data hierarchy requires further numerical procedure, and

consequently introduces more numerical error. For example, the time step splitting at

finer levels introduces more numerical steps and hence more round off error.

These errors are not being fully aware of by the AMR community and hence careful

validation is extremely important. This section summarizes the error exposed during the

course of this thesis and discusses the solutions.

64

4.4.1 AMR error

We further focus on the numerical artifacts introduced by AMR. In Fig. 4.8 we show a

comparison of AMR introduced numerical dissipation with viscosity. We see the error

introduced by AMR is within 1% of the circulations, and will be overwhelmed by the

constant viscosity greater than 3.5x10-5.

4.4.2 Ill-imposed initial AMR mesh: refine criteria and local error clustering

Efficient and accurate schemes for refinement and de-refinement of the variables are a

crucial element in any adaptive scheme. The refinement and de-refinement strategies

used here take advantage of the 1:2 and 2:1 ratios between parent and child cells,

allowing these processes to be carried out rapidly and in a conservative manner.

The usual procedure of refinement and de-refinement is driven by the calculation of a

local error comparing with a preset error threshold – referred to as refinement criteria. In

FLASH, the following error estimator is used [Lohner, 87]:





















∆∆
∂∂

∂
+∆

∂
∂

+
∂
∂

∆∆
∂∂

∂

=

−+∑

∑
2

2

2/12/1

2
2

]||)|||[(|

)(

321

qp
qp

pi
pq

i

pq
qp

qp
iii

xx
xx

x
xx

xx
xx

E

p

p

p

p

ρερρ

ρ

 (4.2)

where the ε term in the denominator acts as a filter, preventing refinement of small

ripples. Partial derivatives are evaluated at the center of the i1i2i3-th zone.

These errors computed at each cell were clustered to compare with the refinement

threshold. In AIFs flow, the situation illustrated in Fig. 4.8a is possible, which gives the ill-

imposed mesh because the material interface haven’t been refined to the same level.

For the type of flow that is extremely sensitive to initial condition, the boundary of

different refinement level at the interface provides a perturbation which propagates

65

through the time evolution, and result in wrong secondary instability as in Fig. 4.8b. For

comparison, the correct result is shown in Fig. 4.8c with appropriate refine criteria

(usually lower). Note the best criteria is always a result of optimization because if the

criteria is too low, it will waste a lot of mesh on refining less significant regions, with

errors coming from maybe only numerical noise.

4.4.3 Error exposure with visiometrics and anomaly

Most of the AMR convergence study is concentrated on 1D problem with known

analytical solution. The addition of AMR levels are usually shown to converge to the

analytical solution[FLASH, 02]. However, few studies have been performed further.

We set up a straightforward experiment to investigate the convergence of 2D simulation.

The strategy is: we keep the numerical resolution the same, while varying the

combination of the base mesh and AMR level, which gives the same numerical

resolution. Four runs are performed, as listed in Tab. 4.1. The VH1 run is only shown

for reference.

Figure 4.9a shows the density images for run 1 and 3. There are subtle differences in

the two runs which are hard to identify through this qualitative comparison. We need to

get quantitative with our visiometrics toolbox.

The first step, we check in Fig. 4.9b the global conservation of the run:

∫∫= dxdyttMass)()(ρ (4.3)

We note:

1. The increase of the mass is due to the compressibility of the flow, which is

balanced by the inflow/outflow boundary condition and gives mass conservation;

66

2. Mass evolution in PPMLR run (VH1) is offset a bit from the PPMDE run

(FLASH2).

3. Three AMR runs has the error around 0.1% ((0.0001/20) / 0.0045);

4. The number of refinement levels in AMR runs are guaranteed by the

refinement criteria to refine to the finest mesh, as shown in the following picture

This is the stage of most AMR validation study.

We further project the mass to the axis as in Fig. 4.9c:

∫= dyMassy ρ (4.8)

We start seeing difference between the first three runs:

1. Each peak corresponds to a roll of the vortex structure, roughly speaking;

2. AMR errors are larger inside the mixing zone;

3. AMR makes the mass less mixed

 More AMR, higher value inside the elongated bubble;

 More AMR, lower value in the mixing zone;

In Fig. 4.9d we plot the axis slice, which shows consistency with previous conclusion:

AMR produces more gradient and hence less mixing.

In Fig. 4.10, we plot the circulation budget of the runs. We note that the net circulation

(solid curves) are consistent among all FLASH runs. Hence we conclude that the

positive and negative circulation differences are due to the small-scale structures, the

same course as in the mass mixing, and also with the same trend. AMR runs are less

dissipative.

67

All the above quantifications expose the anomaly in AMR: that is, AMR runs are less

dissipative than the uniform mesh, which is conflict with the fact that AMR actually

introduces more error to the simulation and hence has larger numerical dissipation.

We leave the detail investigation of this anomaly to future study.

68

Γ

Γ -

Γ +

single precision
double precision

Γ

Γ -

Γ
+

WENO (r=5)
WENO (r=7)
PPM

Fig. 4.2 Validation of the numerical schemes:
positive, negative and net circulation evolution
for an M = 1.2 shock interaction with an SF6
bubble. The resolution is 200 X 800.

Fig. 4.1 Precision study: effect of precision
to intermediate to late time phenomena.
Use global circulation as diagnostics.

69

Inviscid
Viscous:
ν=3.5xe-5

Fig. 4.3 Validation of physical viscosity and numerical viscosity. a. test runs f
viscous flow with kinematic viscosity 3.2xe-5; b. three viscous test runs with
Note all the simulations, the resolutions are the same at 128x256.

3 AMR levels
2 AMR levels
Uniform Mesh
Double the viscosity:
3.5x10-5

Fig. 4.5 A study of F
gamma blendin

Fig. 4.4 Numerical dissipation
introduced by AMR and viscosity

3.5xe-5

3.5xe-4

3.5xe-3
or inviscid flow and
different viscosity.

VH1
FLASH
FLASH, multi-species
FLASH, multi-species,
3AMR
FLASH, multi-species,
3AMR, hydro -diffusion

LASH parameters:
g and viscosity

70

a. t=0, Run 2, Mesh & initial density profile, 4 AMR Levels, Refine criteria: 0.08

b. t=1.2 c. t=2.5

FLASH
Run 2

Reflected wave

VH1
Run 1

FLASH
Run 3

d. t=6.9

FLASH
Run 2

VH1
Run 1

 FLASH

Run 3
Fig. 4.6 VH1 vs. FLASH: species and AMR modules. Sampled density images for three
runs.

71

VH1

FLASH

(a) Circulation (b) Enstrophy

VH1, t=6.9
FLASH, , t=6.9
FLASH, t=2.5
VH1, , t=2.5

VH1
FLASH

 |

Fig. 4.7 FLASH (run 2) vs. VH1 (run 1): (a). Circulation budget; (b)
vorticity at t=6.9; (d). gradient distribution at t=2.5 and 6.9.

(c) Projected vorticity
x (Zones)

(d) Density gra

|∇ρ
. Enstrophy; (c). y-integrated
dient distribution

72

 Level 2

Level 1

 a. Ill-imposed initial AMR mesh

c. Correct r

Fig. 4.8 Error produced b

Run Code Reso
0 FLASH
1 FLASH
2 FLASH
3 VH1

128x2
Shoc
Sun E
64 bit
precis

Tab. 4.1 Simulation summary o
b. Wrong result from ill-imposed
initial mesh in a.
esult

y ill-imposed initial AMR mesh.

lution Base Mesh AMR Level
64x128 0
32x64 1
8x16 3

56
k Cylinder
10K
, Double
ion

64x128 0

f the FLASH AMR convergence study

73

of AMR levels
3
1
0
0 (With PPMLR)

64x128, No AMR

8x16, 3 AMR levels

b. Convergence study: no error (<0.1%) on

mass evolution ∫∫= dxdyttMass)()(ρ
a. Density images for two FLASH

runs, with refine threshold 0.2

d. Error exposure by projections:
Axis slice

c. Error exposure by projections:
Axis Integration = dyMass ρ
∫y

Fig. 4.9 Error exposure by visiometrics in high performance computing

74

of AMR levels
3
1
0
0 (With PPMLR)

Fig. 4.10 Circulation budget of different AMR runs.

75

Chapter 5 Experiments/Simulation comparison and uncertainty

quantification

5.1 Introduction

Laboratory studies have a lot of uncertainties: repeatability, limitation of measurements,

three dimensionality, undesired boundary layers etc. In many cases, a membrane

separates the two gases - the energy expended in breaking the membrane has been

cited as the reason for the discrepancy between numerical and experimental values.

Although advanced experimental technology has provided more accurate and detailed

measurements of the RM environment without using membrane, e.g., [Zoldi, 02] and

colleagues at Los Alamos National Laboratory investigated an M=1.2 shock cylinder

interaction with Particle Image Velocimetry (PIV) and Planar Laser Rayleigh Scattering

(PLRS), still, large discrepancies are observed between the experiments with their

simulations.

People in the field realized these issues and started addressing these uncertainties, for

example, [Benjamin, 91] modeled the membrane as a thin layer of dense gas and

concluded that the effect of the membrane should be negligible. The complexity of this

type of uncertainly, in terms of the number of uncertain parameters and the range of the

uncertainty for each parameter, demands a systematic way of addressing these

uncertainties, featured by a workshop “quantifications of uncertainties in physics

simulations” held at LANL, 2002.

Although the presence of strong shocks and density contact discontinuities (CD) make it

a challenging task to perform trustworthy simulations beyond early times, it is

76

nevertheless extremely helpful to interpreting experimental data, because of its explicit

control on the initial condition. Since the first numerical calculations [Meyer & Blewett,

72] obtained good agreements with Richtmyer’s experiments, numerical simulation

becomes a very important tool to verify the experimental conditions and analytical

results, as well as allows predictions of complex system, thanks to the advances of the

modern computers and numerical scheme.

An important conclusion from 2D numerical work is that the late—time behavior of the

RM instability is sensitive to the initial condition. [Mikaelian, 88] has reported that this

dependence at late times is weak. His computations were supposedly identical to the

experiments of [Sturtevant, 87], however, Sturtevant's experiments had ill-defined initial

conditions due to the gas separation scheme: a plate was used and withdrawn before

the shock reached the interface.

The literature shows many efforts addressing the uncertainties in initial conditions in the

experiments with simulation and analytical tools, by usually looking at one or two

particular parameters. For example, [Cloutman & Werner, 92] studied the effect of

boundary layers. An analytical treatment of the effects of viscosity was presented by

[Mikaelian, 92].

5.2 Uncertainties and Dynamic Validation

5.2.1 Optimization prototype

Verification of codes and validation against experiments is a very important issue in

numerical simulations [Calder et. al., 02]. In particular, the problem of reduction of order

of accuracy of some codes when shocks and high-gradient regions arise in the flows has

not been widely appreciated. For example, recent studies observed non-convergence

behavior under mesh refinement in Rayleigh-Taylor simulation with FLASH code [Calder

77

et. al., 02]. In the discussion just below, we assume that the code has sufficient accuracy

and resolution to solve the equations accurately and focus on the validation process.

If an experiment exists, the goal of simulations is to capture the large, intermediate and

small scale features in space and time. Often it is convenient to introduce symmetries

into the simulation, based on remarks of the experimentalist and the requirements of

simplicity (e.g., 2D vs 3D). Most often one deals with data and images in the literature

and essential information is unavailable. On the other hand, even the experimentalists

are not able to explain some phenomena, due to the limitation of experimental

technique. Some typical experimental uncertainties are:

• 3D nature of the experiment;

• Undesirable boundary effects (boundary layers, wave reflections, perturbations,

etc);

• Causes of the asymmetry in the initial bubble shape due to the setup of the

experiment;

• Thickness of ITL at shock arrival;

• Effect of seeding on initial true density and during evolution;

• Correlation of experimental visualization with physical quantities;

• Reproducibility of the initial conditions for multi-experimental study of evolutions.

5.2.2 Simulation parameter space

In Fig. 5.1, we summarize our dynamic initial condition validation process in obtaining

the good agreements with both experiments shown in previous sections. The solid

arrows indicate the process going forward from experimental data to the simulation

setup, and the dashed arrows are feedbacks of information obtained from the

visiometrics of simulated data.

78

The basic ideas are: from the experimental data and documentation, we obtain the

experimental configuration, visualization technique and time evolution from which we

choose the parameter sets. We limit the experimental uncertainties to a few parameters

by simplification and modeling. For example, we concentrate on the ITL thickness, ITL

profile, and SF6 concentration in this paper. These parameters are used as initial

condition to invoke the simulation. Evolutionary data is fed into the visiometrics

environment, where we define, extract and quantify features to modify control

parameters, e.g., the bounding box dimensions (see Figs. 7.4 and 11) and the velocity

distribution function in an extracted frame (see Figs. 7.8 and14c). The uncertainty

parameters initially fed into the simulation as initial condition are adjusted by producing

optimal agreements on these control parameters.

Two optimization cycles are defined in Fig. 5.1: Loop 1, the optimization loop explored in

this paper, and Loop 2, optimization and direct feed back from experimental initial

condition. In a proper collaboration the simulator would interact with the experimentalist

to elucidate possible experimental errors and discrepancies [Thurber & Hanson, 01]

[Baltrusaitis et. al., 96].

Note, in Zoldi’s attempt on juxtaposition with her own experiment using the Radiation

Adaptive Grid Eulerian (RAGE) code, the comparison is less comprehensive and not as

good without identifying the importance of the information feedback and optimization.

Table 5.1 shows the parameters explored in this study, which is a extended table to Tab.

2.2. The adjustment of numerical parameters is mainly for validation purpose as

discussed in the previous section. The physical parameters shown in the table

correspond exactly the range of ambiguities in the experiments.

A diffused ITL between the gas bubble and the ambient is obvious in both experiments

(Fig. 7.3a for Jacobs and Fig. 7.11a for Zoldi). The medium seeded to the original SF6

79

gas (biacetyl in Jacobs’ and glycol in Zoldi’s), necessary for laser-induced visualization

technique, makes the observation ill-informed especially at the interface. A common

assumption of the ITL profile is the error function, solution of diffusion equation.

However, other profiles such as Gaussian [Zoldi, 02] are also used based on the

assumption that the exact profile has smaller effect than the introduction of ITL itself.

The seeding medium, on the other hand, changes the density of the bubble. As a result,

the concentration of the initial bubble gas, another quantity that is difficult to measure, is

also a critical parameter, since it actually determines the initial deposition of the

baroclinic circulation by the incident shock. Variation of the concentration changes the

mass of the bubble gas too, although we keep the mass conserved while adjusting the

thickness of the ITL. Consequently, it will influence the distribution of the mass, hence

the distribution of the density gradient.

Note with initial concentration less than 100%, either because the diffusion time is so

long that all original bubble gas is diffused, or because of the seeding, it is very possible

that there are actually no pure bubble gas present initially, i.e., the whole bubble should

be modeled as an transition layer. Consequently, the exact profile of the ITL has more

ambiguity, because no diffusion law holds if one gas is completely mixed.

We choose a constant viscosity 3.2x10-3, an order of magnitude smaller than the real

SF6 viscosity, taking account of the mixing and the assumption of its negligible influence

on energy equation. We assume gamma law gas properties for both air and SF6, and

use the specific heat 1.4 for both gases.

Other parameters which are important to the experiments, but we consider them having

smaller effects includes: the flow rate of the SF6 (necessary to produce the cylinder) in

the 3rd dimension; the initial asymmetry of the gas cylinder; the percentage of the

80

seeding media in the bubble and their dynamical significance; three dimensional effect;

and wall effect.

In the following sections we discuss three of our simulations, with parameters also listed

in Tab. 5.1. Simulation cyld2 and cyld3 compare with Jocobs’ experiment at M=1.095,

and focus on the effect of ITL parameters and SF6 concentration. cyld4 compare with

Zoldi’s experiments at M=1.2, with parameters adapted from the previous simulation-

experiment comparison.

5.3. Comparison with Jacobs’ experiment and dynamic validation of

experimental initial condition

5.3.1 Validating experimental initial condition

We extract the colormap used in Jacobs’ paper [Jacobs, 93] and reconstruct it for our

simulation. We find that the profile is nearly linear and thus accounts for our cyld2, as

shown at t=0 in Fig. 5.2 We are aware that it is difficult to associate a PLIF image

precisely with the density of the carrier gas for a variety of reasons. Cyld3 is therefore

based on the validity the diffusion equation and used an error function profile.

In Fig. 5.2, we show the comparison of Cyld2 (column 2) and Cyld3 (column 3), with

Jacobs’ PLIF images (column 1). The rows correspond to different times. Note in Fig.

5.2, column 1, the original sequential marks of the experimental PLIF images are kept

for reference. They are shown at only selected times here. For column 2 and 3, each

picture is composed of two images, density (above) and the vorticity (below), except for

t=0 ms, when vorticity is zero and we show instead the initial on-axis density profiles

(ρ(x,y=0)).

For a quantitative comparison, we define three bounding box dimensions: the width,

height and neck of the evolving bubble, shown in the embedded image at upper right

81

corner in Fig. 5.3. For the experiment, we measure these scales directly from the PLIF

images. For the simulations, we use an interface extraction and tracking algorithm with

density gradient. All the measured values are normalized by the initial diameter of the

bubble, 2R.

We adjust by trial and error other parameters to get good agreements for both

simulations, for examples, radius/thickness of the ITL and SF6 concentration

[Baltrusaitis, et. al., 96]. We believe that an automatic optimization process is necessary

to make efficient initial condition validation.

Both simulations quantitatively reproduce the experiments in large and intermediate

scales as shown in Figs. 5.2 and 5.3. We now discuss the subtle differences that exist in

the two simulations and thus provide a better understanding of the initial parameters.

In Fig. 5.3, we see the solid curves for width and height from cyld2 agree well with the

first two points of Jacobs’ experiments. However, at later times there is more

disagreement, especially the height. With the same colormap, cyld3 does not compare

as well at early time but does much better at intermediate to late times, on all three

scales. Thus we conclude that cyld3 is overall a better simulation and use it for our

further simulation in next section. More details of the differences in evolutionary

phenomena are discussed in the following sub-section.

The most important inference of these subtle differences is that none of these two

analytical forms of the initial ITL is exact correspondence with the experimental

condition.

82

5.4. Comparison with Zoldi’s experiment

5.4.1 Overview

Following the previous analysis and resulting parameters, we further validate our initial

condition reconstruction process by comparing our simulation (Cyld4) to recent

experiments performed by Zoldi2002 at Los Alamos National Laboratory. With advanced

experimental technique, a stronger incident shock wave is studied (M=1.2) and more

quantitative information is available. The attempt of numerical validation with Radiation

Adaptive Grid Eulerian (RAGE) code is made, with difficulties shown, discussed but

unfortunately not completed.

With the same dynamic validation process as in the previous section, we obtain

excellent agreements with Zoldi’s experiments, even without the direct access to the

experimental data. As we shown in Tab.1, we use exactly the set of parameters used in

Cyld3, except a larger radius of the gas bubble and a stronger shock wave, both

correspond to Zoldi’s experiment.

Zoldi’s RAGE simulation uses the initial condition constructed directly from experimental

data, i.e., including the factor of initial asymmetry and CD diffusion. However, the

ambiguities are still overwhelming and the comparison is poor. With certain validation

effort, better insight is obtained and the comparison is improved. Numerical errors arise

from ill-imposed adaptive mesh, e.g., the boundary of the experimental data is refined as

a small but sharp discontinuity upon plugging into the ambient gas in the simulation.

Details of the numeric such as those associated with adaptive mesh, and the

optimization of the numerical parameter set, are beyond the scope of this paper, and

we’ll discuss in the future.

83

Aside from more careful numerical and physical setup, our FLASH simulation introduces

physical viscosity. The initial symmetry is assumed in our simulation, since the

asymmetry is smeared during time evolution in both Zoldi’s experiments and RAGE

simulation.

By defining the characteristic length scale and distributing effective mesh accordingly,

our FLASH simulation, on a SUN Enterprise 100000 machine, achieve great efficiency

(a factor of 3) than the RAGE simulation.

5.4.2 Evolution morphologies

Figure 5.4 illustrates the evolution of the major mass and vortex phenomena in our

simulation (Cyld4) comparing with the experiments. Fig. 5.4a shows the experimental

images (volume fraction of SF6). Fig. 5.4b shows the simulation result, density above

and vorticity below.

Initially, note again the asymmetry in the experimental image. The time used by Zoldi

starts after shock passage, which is ambiguous. We find a shift of 75ms is necessary to

account for the shock passage time and match the time scales between the simulation

and experiment.

The simulations represent well the large and intermediate scale features. Fig. 5.5 shows

the measurement of the bounding box dimensions: height, width and neck, as defined

for Fig. 5.3. Note the measurement for the neck for the experiment is not available, due

to the poor quality of the experimental images. The agreements in width and height are

excellent.

At t =125ms in Fig. 5.4b, our simulation captured the upstream indentation (indicated by

I in the figure), with almost exactly the same curvature as in the experiments, and the

axis downstream protuberance (P). The vorticity image at the same time reveals the

84

same VBL configuration as in lower Mach number simulations. At around time t = 325-

475ms, the secondary instabilities appear on the interfaces of the deformed bubble. Fig.

5.4c left show a zoom at t = 325ms, with vorticity above and density below.

The secondary structures correspond well with the experiment. For example, at

t=800ms, (also shown with a zoom in Fig. 5.4c right panel, vorticity above and density

below), we indicate the velocity components (arrows), and three pockets of entrained air

(marked by 1, 2, & 3). Another very important observation is associated with the

development of the outer shear layer: 1 the location of the appearance of the secondary

instability; 2 the first merger of nearby localized vortices; 3 the extension of the

downstream side.

5.4.3 Velocity field validation

In Fig. 5.6, we look into more detail of the velocity field and compare carefully with the

experiment. Fig. 5.6a shows an experimental PIV image, which is the basis of all

experimental analysis and quantification. The resolution and the windowing domain are

fixed. To match the experimental data, we extract and average

the appropriate portion of the simulation data to compute the velocity vectors which is

shown in Fig. 5.6b.

We compare in Fig. 5.6c the velocity magnitude distribution. The range of the velocity

magnitude and the value of the peak region agree extremely well. This indicates the

validity of both our data processing process and the simulation results for large and

intermediate scale features. In fact the detailed shapes of the curves are in good

agreement, as seen by shifting the simulation data to higher velocity in the inset figure

(See the arrows for close matching of features).

85

During the comparison, we conclude that the following factors will influence the final

velocity distribution result: 1). Size of the windowing domain; 2). Portion of cylinder in the

data-cut; 3). Data reduction rate (averaging); 4). Number of bins taking the distribution

(larger # of bins yields more shallower profile with lower peak value); 5). Frame velocity.

5.5 Conclusion

With comprehensive visiometrics of intermediate and late time simulation data, it is

possible to obtain a parameter space that corresponds to the experiments, i.e., validate

the experimental initial condition dynamically. In this thesis, we introduce a prototype of

this systematic approach of quantifying the uncertainties in the experiments and

integrate the visiometrics pipeline into a feedback loop to obtain excellent

simulation/experiments comparison.

86

Initial
Condition

Simulation

Experimenta
l Initial

Condition

Loop 2

Experimental Parameters and Ambiguity Identification

k

Fig. 5.1 Valida

Uncertainty of experimental conditions
Experimental visualization technique
Configuration and Conduct of experiment;
Basic Assumption

Simplification: 2D instead of 3D, outflow boundary
effects, gas properties
Choose invariant parameters: dimension of shock tube,
location and configuration of bubble
Adjust parameters: ITL profile, ITL thickness, gas
concentration
VERIFICATION and numerical parameter identification

Visiometrics

Control parameters identification

global variable quantification

Feature identification,
extraction and quantification;

colormap
quantification

Loop 1
Data juxtaposition
ρ , v, ω;

Exp/Sim; Sim/Sim;
Forward
Feedbac
ting experimental initial condition

87

Parameters Studied cyld2 cyld3 cyld4

AMR Levels: [0,5] 4 4 4 Mesh Adaptivity

Base mesh: [8,200] 16 16 16

Resolution
(HxL)

64x128; 128x256;
256x512

128x256 128x256 128x256

Numerical
parameters

Numerical
scheme

PPMLR, PPMDE,
WENO

PPMDE(FLASH) PPMDE(FLASH) PPMDE(FLAS
H)

viscosity [1.7e-5, 3.5e-2] 3.2e-3 3.2e-3 3.2e-3
ITL profile Linear, Gaussian, Error

function
smoothed linear Error Function Error Function

ITL thickness
(δ/2)

[20%,100%]R 100%R 100%R 100%R

SF6
concentration

[60%, 100%] 100% 60% 60%

Gamma law γair=γSF6=1.4

γ air =1.4, γ SF6=1.1

γair=γSF6=1.4

γair=γSF6=1.4

γair=γSF6=1.4

Radius (R) [8%,15%]H 10%H 15%H 23.4%H
Shock strength 1.095, 1.2, 1.5 1.095 1.095 1.2

Physical Parameters

Y Boundary
condition

Reflecting, outflow outflow outflow outflow

Tab. 5.1 Simulation parameter space summary.

88

Experiment: PLIF Sim 1 Sim 2

0.1Ymax
.002

.004 Slice y=0

Shock Shock
ρ

100%ρSF6

.002

0.15Ymax

60%ρSF6

Slice y=0

t = 0 ms

protuberance
ρ

ω

t = 0.22 ms
protuberance

VP
 VBL

t = 0.37 ms

t = 0.59 ms

Vorticity ColormapPLIF Colormap Density Colormap

Fig. 5.2

89

Sim 2 Sim 1 Experiment: PLIF
t=1.4 ms

Vorticity Colormap
Fig. 5.2 cont.

PLIF Colormap Density Colormap

Compare of experiment (Jacobs, 93), Cyld2 and Cyld3. Column 1: PLIF images from
experiments; Column 2: Cyld2 with linear ITL, 0.1Ymax radius, and 100% SF6 concentration;
Column 3: Cyld3 with error function ITL, 0.15Ymax radius, and 60% SF6 concentration. Each row
shows a different time, and each picture in column 2 & 3 has two panels: density above and
vorticity below, except the first row at t=0, with density above and y=0 density slice showing initial
ITL parameters.

Fig. 5.3 Measurement of macroscopic scales
embedded image at upper right corner, and n

Dimensions/Diameter

)

Neck

Height

Width

Cyld 2

Cyld 3

Experiment

Time(s

: Width, Height and Neck, as defined in the
ormalized by the initial diameter of the bubble.

90

At higher mach number: compare with LANL Zoldi’s experiment/RAGE simulation

ITL: Zoldi used Gaussian.
Initial condition: constructed from experimental image, with assumption of initial
concentration.
ulation: 100x12 with 7 AMR levels.
 (a). Experimental images

VBL

P

I

t=200ms t=125ms t=325ms t=475ms t=650ms t=800ms t=0ms

(b). Simulation images: density above and vorticity below

t=325ms

3
2

3
2 1

1
4

t=800ms

 (c). Enlarged simulation image at t=325ms and 800ms, vorticity above and density below

Fig. 5.4 Simulation and experiment compare at M=1.2.

91

Height (Zoldi)
Width (Zoldi)
Width
Height
Neck

Dimension/Diameter

Time (s)
Fig. 5.5 Measurement of macroscopic scales: Width, Height and Neck, as
defined in Fig. 5.3, and normalized by the initial diameter of the bubble.

92

b. Velocity vector field (Cyld4) a. PIV image (Experiments)

cyld4

4000 5000 3000 2000 1000

Velocity magnitude (cm/s)
 c. Velocity magnitude distribution

Fig. 5.6 velocity magnitude distribution. (a). PIV image from Zoldi’s experiments, at the resolution
of 11.7µm/pixel, and velocity vectors every 187 µm. (b). Velocity vector field from Cyld4. Note the
data is windowed and averaged according to the experimental configuration. (c) Velocity
magnitude distribution: experiments (solid) versus simulation (dashed). The embedded figure
shows the peak region after shifting a frame velocity difference between the experiment and our
simulation.

93

Chapter 6 Summary and Conclusion

Fig 6.1 shows a comprehensive HPC visiometrics framework developed in this thesis.

There are three main parts in the pipeline, the HPC modules (top part), discussed in

chapter 3, the visiometrics modules (central part), discussed in chapter 4.

The bottom part of Fig. 4.1 shows the hardware environment supporting our HPC

simulation and comprehensive visiometrics. In summary, the major visiometrics work is

done on an 8-processor (3 nodes with 2 CPU each and 2 nodes with 1 CPU) DELL

precision workstation Win2K cluster. A 16-processor (2 nodes with 4 CPU and 1 nodes

with 8 CPU) SGI IRIX64 Cluster and a 44-processor Linux cluster are mainly used as a

validation and benchmarking platform. All the major simulations are performed on a SUN

Enterprise 10000 HPC machine with 64 processors and 32 GB RAM, and most recently

SUN Fire 12K with 32 processors and 144 GB RAM, through Center for Advanced

Information Processing (CAIP) at Rutgers University.

The numerical schemes, together with the advanced computational modules, are subject

to verification (i.e., check the errors produced by the numerical approximation of

equations – whether we solved the equations correctly) and validation (i.e., check the

errors produced by the modeling of real world with the equations based on certain

assumptions – whether we solved the correct equations). The verification and validation

(V&V) issues are not addressed with enough care and are discussed in chapter 5, with

the assists of comprehensive visiometrics. Excellent comparison results are obtained

with multiple experimental date sets.

94

Quantification

Industrial applications

Storage System
>10 TB

Local Area Network
>100MB

CAIP: Sun Fire V770
4 CPU, 8GB Mem

Pittsburgh Supercomputing Center
& NCSA

SGI Onyx
Cluster
24 CPU

2GB Mem

CAIP: Sun Enterprise 10000
128 CPU, 64GB Mem

CAIP: Sun Fire 12K
36 CPU, 144GB Mem

Software support

 Tecplot

AVS
ChomboVis Viz (Local)

DELL Win2K
Cluster
8 CPU

4GB Mem

HPC (Remote)

Hardware Support

High Education

Vascular
hemodynamics

Laser Fusion
Astrophysics

(eg. supernova)
Supersonic
Combustion

Academic applications:
e.g., AIFs

 Shock waves
AIF/ RM Instability
Late time
Inhomogeneity
Turbulence
Multi-scale & mixing
Scaling
Modeling

GrACEFLASH

Computational Steering
Visiometrics 1.0

DAVID

Performance monitoring
Data locality

Dynamic load balancing

High Performance Computing

 Dynamic domain partitioning

AMRParallelization

Reduced Modeling Volume rendering
Ray-tracing

Line Integral
Convolutions

Data projections w. various kernel

Feature Skeletonization & tracking
Statistical properties

Juxtaposition and scaling
Distributions 1D & 2D

Data Transformation &
Filtering

Data Format
Interpretation

Data Projection

Data Paralleization
/integration

Juxtaposition
 Various physical quantities

Various datasets (hierarchy)

 Visualization

 2D/3D space-time

representations

 Animation
Colormap choice

Contours & surfaces

Preprocessing
 Data Compression/

Uncompression
Data Reduction

Data Access

Fig. 6.1 Comprehensive HPC visiometrics pipeline.

95

References

1. Arnett D. 2000. “The role of mixing in astrophysics”. Astrophys. J. Suppl. 127, 213-217.

2. Arnett W. D., Bahcall J. N., Kirshner R. P. and Woolsley S. E.. 1989. “Supernova 1987A”.
Ann. Rev. Astron. and Astrophys, 27:629.

3. Baltrusaitis R.M., Gittings M.L., Weaver R.P., Benjamin R.F., and Budzinski J.M. 1996.
“Simulation of shock-generated instabilities”. Phys. Fluids, 8(9):2471-2483.

4. Benjamin R. 1991. “Shock and reshock of an unstable fluid interface”. In Proceedings of the
3rd International Workshop on the Physics of Compressible Turbulent Mixing.

5. Berger M. J. & Oliger J. 1984. “Adaptive Mesh Refinement for Hyperbolic Partial Differential
Equations”, J. of Comp. Phys., pp. 484-512.

6. Bitz F.J. & Zabusky N.J., 1990. “DAVID and ‘visiometrics’: Visualizing and quantifying
evolving amorphous objects”, Computers in Physics Nov/Dec, 603-614. Cover of this issue
showing color isosurface of vorticity during 'winding reconnection.

7. Calder A. C., Fryxell B., Plewa T., Rosner R., Dursi L. J., Weirs V. G., Dupont T., Robey H.
F., Kane J. O., Remington B. A., Drake R. P., Dimonte G., Zingale M., Timmes F. X., Olson K.,
Ricker P., MacNiece P. & Tufo H. M. 2002. “On Validating an Astrophysical Simulation Code”.
Astrophys. J. Suppl. 143, 201.

8. Chang S-K. 2002. “Sketching Skeletons of Elongated Objects Using Scan Line Algorithm”,
Ph.D. Dissertation, Department of Computer Science, Rutgers University, NJ, USA.

9. Chen J. & Silver D. 2002. “Distributed feature extraction and tracking”. SPIE, Visualization
and Data Analysis Symposium.

10. Chen J., Silver D., & Parashar M. 2003. “Real time feature extraction and tracking in a
computational steering environment”. Proceedings of the High Performance Computing
Symposium, HPC2003, Society for Modeling and Simulation International, San Diego, pp 155-
160, March 2003.

11. ChomboVis Website. http://seesar.lbl.gov/anag/chombo/chombovis.html

12. Cloutman L.D. & Werner M.F. 1992. “Numerical Simulations of Richtmyer-Meshkov
instabilities”. Phys. Fluids A, 4(8):1821.

13. DAVID Website:

http://www.caip.rutgers.edu/vizlab_group_files/RESEARCH/VISIOMETRICS/DAVID/index.html

14. Feher A., and Zabusky N. J. 1996. An interactive imaging environment for scientific
visualization and quantification,. International Journal of Imaging Systems and Technology 7
121-130.

15. FLASH Group. 2002. “FLASH User’s Guide”. University of Chicago.

16. FLASH Group Website. 2003. http://flash.uchicago.edu/

17. General Atomics Website. 2003. http://web.gat.com/icf/concept/.

18. Jacobs J.W. 1993. "The dynamics of shock accelerated light and heavy gas cylinder", Phys.
Of Fluids A, 5, 2293.

19. Lindl, J. 1995. “Development of the indirect-drive approach to inertial confinement fusion and
the target physics basis for ignition and gain”. Phys. Plasmas, 2, 3933-4024.

20. Lohner, R. Comp. Meth. App. Mech. Eng., 61, 323, 1987.

http://seesar.lbl.gov/anag/chombo/chombovis.html
http://www.caip.rutgers.edu/vizlab_group_files/RESEARCH/VISIOMETRICS/DAVID/index.html
http://flash.uchicago.edu/
http://web.gat.com/icf/concept/

96

21. Meyer K.A. & Blewett P.J. 1972. “Numerical investigation of the stability of a shock-
accelerated interface between two fluids. Phys. Fluids, 15:753-759.

22. Mikaelian K.O. 1988. Numerical simulations of turbulent mixing in shock-tube experiments.
Lawrence Livermore National Laboratory, Paper, (UCRL-10098).

23. Mikaelian K.O. 1992. “Effect of viscosity on Rayleigh-Taylor and Richtmyer-Meshkov
instabilities”. Phys. Rev. E, 47:375.

24. Parashar M., & Browne J. C. 1998. “Integrated Data-Management for Computational
Steering,” 31st Annual Hawaii International Conference on System Sciences, Kohala Coast,
Hawaii, CDROM, IEEE Computer Society Press, 10 pages, January 1998.

25. Peng, G. 2003. “Richtmyer-Meshkov instability for a compressible 2D environment:
simulations and visometrics for late-interdiate times”. M.S. Thesis, Dept. of Mechanical &
Aerospace Engineering, Rutgers University.

26. Post F.H., Vrolijk B., Hauser H., Laramee R.S., Doleisch H. 2002. “Feature Extraction and
Visualization of Flow Fields”, in: D. Fellner, R. Scopigno (eds.), Eurographics State-of-the-Art
Reports, pp. 69-100 (ISSN 1017-4565).

27. Samtaney R., Silver D., Zabusky N.J., & Cao J. 1994. “Visualizing Features and Tracking
Their Evolution”. IEEE Computer, pp. 20-27.

28. Samtaney R. & Zabusky N. J. High gradient compressible flows: Visualization, feature
extraction and quantification, in Flow Visualization: Techniques and Examples, Editors T. T. Lim
and A. Smith, Imperial College Press, 2000.

29. Silver D. and Wang X. 1997. “Tracking and Visualizing Turbulent 3D Features”. IEEE
Transaction on Visualization and Computer Graphics, Volume 3, No 2.

30. Sturtevant, B. 1987. In "Shock Tubes and Waves". Edited by H. Gronig (VCH, Berlin), pp 89.

31. Thurber M.C. and Hanson R.K. 2001. "Simultaneous imaging of temperature and mole
fraction using acetone planar laser-induced fluorescence". Experiments in Fluids, 3093-101.

32. Woodward P. & Colella P. 1984. “The numerical Simulation of Two-Dimensional Fluid Flow
with Strong Shocks. J. Comp. Phys., 54:1, 115-173.

33. Yang J., Kubota T. & Zukoski E.E. 1993. “Application of shock induced-mixing to supersonic
combustion”. AIAA J. 31, 854-862.

34. Zabusky N.J. 1999. "Vortex paradigm for accelerated inhomogeneous flows: Visiometrics for
the Rayleigh-Taylor and Richtmyer-Meshkov environments". Ann. Review of Fluid Mechanics,
31:495-535.

35. Zabusky N.J.. 2000. “Scientific Computing Visualization – a new venue in the arts”. In
Science and Art Symposium 2000, Eds., A. Gyr, P. Koumoutsakos, & U. Burr. Kluwer Academic
Publishers.

36. Zabusky N. J. & Kruskal M. D. 1965. “Interaction of ‘solitons’ in a collisionless plasma and
the recurrence of initial states”. Phys. Rev. Lett. 15, 140-243.

37. Zabusky N.J. & Zhang S. 2002. “Shock planar-curtain interactions in two dimensions:
Emergence of vortex double layers, vortex projectiles, and decaying stratified turbulence”. Phys.
Fluids 14, 419-422.

38. Zabusky N.J & Zhang S. 2003. “High Performance Computing and Visiometrics
in Computational Sciences” CAIP Annul Research Review 2003.

39. Zhang Q. & Sohn S. 1997. “Nonlinear theory of unstable fluid mixing driver by shock wave”.
Phys. Fluids 9, 1106-1124.

97

40. Zhang S., Chen J. & Zabusky N.J. 2003. “Turbulent decay and mixing of accelerated
inhomogeneous flows via a feature based analysis”. SIAM Journal on Scientific Computing,
Revised Submitted.

41. Zhang S., Parashar M. & Zabusky N. J. 2001. "GrACE-PPM: A distributed dynamic adaptive
mesh CFD Environment for accelerated inhomogeneous compressible flows", The 54th Annual
Meeting of Division of Fluid Dynamics, American Physics Society, San Diego, CA.

42. Zhang S. & Zabusky N.J. 2003. " Shock–planar curtain interactions: Strong secondary
baroclinic deposition and emergence of vortex projectiles (VPs) and decaying inhomogeneous
turbulence ". Laser and Particle Beams. To appear.

43. Zhang S., Zabusky N.J., Peng G. & Gupta S. 2003. “Shock gaseous cylinder interactions:
validation of experimental initial conditions through intermediate to late time visiometrics and
vortex paradigm analysis”. Phys. Fluids. Revised submitted.

44. Zhang S., Zabusky N. J., & Nishihara K. 2003. "Vortex Structures and Turbulence Emerging
in a Supernova 1987A Configuration: Interactions of ‘Complex’ Blast Waves and
Cylindrical/Spherical Bubbles ", Laser and Particle Beams. To appear.

45. Zhang S., Zabusky N.J. & Peng G. 2002. “Vortex bilayers, vortex projectiles and decaying
inhomogeneous turbulence for shock-planar heavy curtain interactions”. J. Fluid Mech.
Submitted.

46. Zoldi C.A.. 2002. “A numerical and experimental study of a shock- accelerated heavy gas
cylinder”, PhD Thesis, SUNY Stony Brook.

	Chapter 1 Introduction
	1.1 Overview
	1.2 Accelerated inhomogeneous flows
	1.2.1 Domain of applications
	1.2.2 Important physical and numerical challenges

	1.3 Objectives and contributions
	1.3.1 High performance computing -- Adaptive Mesh Refinement in parallel environments
	1.3.2 Visiometrics

	1.4 Layout of the thesis

	Chapter 2 GrACE & FLASH: Adaptive mesh refinement (AMR) in high performance numerical simulation environment
	2.1 AIFs and AMR: introduction
	2.2 AMR: main concept and review
	2.4 GrACE & GrACE-PPM
	2.4.1 GrACE performance

	Define adaptive grid structure
	Define grid functions: containing information for the coordinate
	Initialize grid functions: data parallel model, call Fortran CFD initialization
	Repeat NumTimeSteps
	
	
	
	
	
	Evolve at Level+1

	End Repeat
	Visualization pipeline: 1D xgraph
	2.4.2 GrACE PPM implementation

	2.5 FLASH
	2.6 Summary
	
	
	
	Resolution : 64x64
	Resolution : 320*320

	Chapter 3 Visiometrics
	3.1 Introduction
	3.2 Scientific visualization in fluid flow
	3.3 Importance of quantification
	3.4 Visiometrics: the comprehensive pipeline
	3.4.1 Data Juxtaposition
	3.4.2 D
	3.4.3 Space-time analysis
	3.4.4 Feature analysis

	3.5 Unique features of visiometrics
	3.6 Environments: DAVID & Visiometrics 1.0
	3.7 Visiometrics for AMR data set – ChomboVis env
	3.7.1 ChomboVis HDF5 data structure
	3.7.2 ChomboVis requirements
	3.7.3 Interface function and parameters
	3.7.4 Examples

	Chapter 4 Verification and validation
	4.1 Introduction
	4.2 Dissipation of PPM
	4.3 FLASH modules: constant viscosity, gamma blending and AMR numeric
	4.4 AMR error exposure with visiometrics
	4.4.1 AMR error
	4.4.2 Ill-imposed initial AMR mesh: refine criteria and local error clustering
	4.4.3 Error exposure with visiometrics and anomaly

	Chapter 5 Experiments/Simulation comparison and uncertainty quantification
	5.1 Introduction
	5.2 Uncertainties and Dynamic Validation
	5.2.1 Optimization prototype
	5.2.2 Simulation parameter space

	5.3. Comparison with Jacobs’ experiment and dynam
	5.3.1 Validating experimental initial condition

	5.4. Comparison with Zoldi’s experiment
	5.4.1 Overview
	5.4.2 Evolution morphologies
	5.4.3 Velocity field validation

	5.5 Conclusion

	Chapter 6 Summary and Conclusion
	References

