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There are an increasing number of applications that require more support from the network nodes 

besides the storage and forwarding of bits that the nodes presently provide. These applications 

include group communication strategies, scalable network management, provisioning for quality 

of service, efficient routing protocols and congestion control mechanisms. Active networks 

provide a new networking platform that is flexible and extensible at runtime and supports the 

rapid evolution and deployment of networking technologies to suit current needs. They allow the 

network nodes to perform application specific computation on the data flowing through them. 

Although, with active networking the possibilities for refining current applications and 

introducing new ones are tremendous, it is important to demonstrate the performance benefits 

accrued from an active networking platform.  

Despite research efforts in industry and academia to eliminate network congestion, the problem 

continues to persist. Furthermore, a number of applications require a constant bit rate of 

transmission while some others tend to ‘grab’ as much network bandwidth as available ignoring 

congestion related feedback from the network. We utilize the processing capabilities of active 

networks in order to effectively control bandwidth greedy connections at a congested node.  
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Traceroute is a popular network utility that discovers the route followed by an IP datagram to 

another host. Refinements in accuracy of operation and savings in network resources are achieved 

by using an active networking platform to implement traceroute. 

This thesis investigates the design of an experimental active network testbed and develops active 

services that utilize the underlying network fabric. It makes the following contributions. 

� The design and implementation of an active network testbed comprising of interconnected 

active nodes using object-oriented techniques. In our network model datagrams may select 

specific processing at the active nodes from an available set of options thus conforming to a 

menu-driven approach. 

� We have designed and evaluated a congestion control mechanism that aims to limit the 

degradation in network performance caused by bandwidth greedy applications. The 

mechanism operates by monitoring packet queues to detect a greedy connection. A process of 

recursive mobile filtering then controls the identified connection. Specifically, we install a 

packet filter for the greedy connection and use active messages to dynamically move the filter 

towards the source of the connection. By filtering packets closer to the source, the network 

resources are protected from the aggressive flow.  

� We have implemented an active traceroute utility that achieves considerable savings in time 

complexity and link utilization for achieving the same objectives as traditional traceroute.  
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Chapter 1 

Introduction 

An active network may be simplistically viewed as a set of "Active nodes" that perform 

customized operations on the data flowing through them. Traditional data networks were 

designed with the aim of transferring bits from one end system to another. The transport 

mechanism achieved its objectives with minimal computation within the network. In contrast, 

active networks allow the network nodes to perform computation on the data passing through 

them. In fact, some implementations also allow their users to inject customized programs into the 

nodes of the network that may modify, store or redirect the user data flowing through the 

network.  

An active network is a relatively new concept gaining popularity in 1996. The active networks 

program has the goal of producing a new networking platform that is flexible and extensible at 

runtime. This platform aims to support the rapid evolution and deployment of networking 

technologies to suit current needs and also help in developing services such as group 

communication strategies, scalable network management, quality of service, efficient routing 

protocols and congestion control mechanisms. The active network architecture supports a finely 

tuned degree of control over network services. The packet itself is the basis for describing, 

provisioning, or tailoring resources to achieve the delivery and management requirements. One 

such architecture makes use of a “Smart Packet” [21] as the basic message unit on the network. 

This packet is an agent with its objectives expressed through a portion of the packet called its 

"method" -- a set of instructions that can be interpreted consistently by the active nodes through 

which it traverses. The network is engineered to allow security, reliability, availability and quality 

of service to be tuned at multiple levels of granularity under a wide range of conditions. The 

active networks program involves the synthesis of work in programming languages, operating 

systems and computer networking. Figure 1.1 shows a comparison of network processing 
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between traditional networks and active networks. It has been taken from the official DARPA 

website [20]. 

 

The objectives of this thesis are: 

� To provide a ‘proof of concept’ for active network technologies. In doing so we wish to 

develop an active network testbed, design applications that utilize the added functionality of 

the testbed and present relevant results obtained. 

� To design and build an active network testbed for interconnecting lightweight active nodes. 

The testbed must be extensible, user-friendly and should efficiently accommodate traditional 

forwarding services.  

� To implement new network utilities or improve upon existing ones by using the processing 

capability of intermediate nodes and to demonstrate the effectiveness of the utilities by 

experimental evaluation.  

Figure 1.1 Comparing traditional networks with active networks 
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1.1 Background and motivation 

The fundamentals for introducing a novel computer networking architecture must be sound. In the 

following sections we outline the motivation for developing active network architectures.   

1.1.1 A lengthy process called ‘Standardization’ 

Traditional networking architectures evolve at a slow pace governed by the time taken for 

standardization and deployment of new protocols. We need to match this evolution speed with the 

speed at which new applications are being introduced into networking. The design philosophy of 

TCP/IP networks is based on a layered approach with each layer communicating with its peer 

using standardized protocols. A wide variety of high level services such as file transfer (FTP), E-

mail (SMTP, POP) and Hyper-text transfer (HTTP), and low level network technologies such as 

ATM, FDDI and Ethernet can be made to inter-operate at the network level by funneling their 

functionality’s through the static IP protocol. Thus, IP routers are configured using a hardware 

approach with the fixed IP protocol format in mind leading to the hour-glass model of TCP/IP 

networks as shown below.  

 

 

 

 

 

As the Internet grows it is increasingly difficult to maintain, let alone accelerate the pace of 

innovation [6]. Every time a sophisticated application emerges or a change in link layer network 

technology occurs we need to standardize and deploy new protocols in order to conform to the 

interoperable IP layer. Standardization and deployment of such protocols is a lengthy and time-

consuming process taking several years as RSVP (Resource Reservation Protocol) and IGMP 

(Internet Group Management Protocol) have proved. By having programmable open nodes and 

the ability to deploy programs dynamically into the node engines, network services are decoupled 

Figure 1.2 Hourglass model of TCP/IP networks 

FTP, HTTP, TCP, UDP  

FDDI, Ethernet, ATM

     IP (static) 
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from the underlying hardware. This allows new services to be demand loaded into the 

infrastructure. Instead of hard-coding the functions of the network nodes, the execution 

environments deployed for the application specific programs needs to be agreed upon so that 

innovative ideas can be rapidly inducted over the underlying substrate.  

1.1.2 Application Support 

There are an increasing number of applications that require more support from the network nodes 

besides the storage and forwarding of bits that they presently provide. Some of these applications 

are listed below. 

� The World Wide Web has a client-server design with clients establishing connections with 

servers and requesting data from them. Caching "popular" data close to "interested" parties 

reduces the latency of the data transfer and also reduces load on the server(s). However, 

deploying caches dynamically at strategic locations within the network is a non-trivial task 

and cannot be supported without the development of new protocols. 

� Multicasting takes place with the help of routers having added functionality to route IP 

packets to multiple destinations. 

� Mobility of hosts connected to the Internet requires the presence of mobile proxies in the 

network that can re-route traffic to the correct location of the host. 

� Multimedia applications like video require transcoding mechanisms at strategic locations 

within the network to convert high bit-rate streams to lower ones. The transcoder is based on 

some data characteristics such as resolution, frame rate, etc.  

� Installing firewalls in the network at administrative boundaries provides intranet security. The 

firewalls are essentially filters that examine transit traffic and allow only conforming traffic 

to pass through while blocking other traffic. The manual process of updating firewalls to 

enable the use of new applications is an impediment to the adoption of new technology and 

needs to be automated. 
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� A Network utility such as traceroute allows users to discover the route of an IP datagram 

from a one node to another. The utility assumes static routes for consecutive datagrams 

injected by the source node. We have investigated the impact of active networking 

technologies on optimizing the performance of the traceroute utility in terms of reducing 

complexity and eliminating the static route assumption. 

� Many congestion avoidance mechanisms rely on routers and end-hosts to control connections 

responsible for causing congestion so as to prevent further degradation of the network. 

However, controlling ‘bandwidth greedy connections1’ continues to remain an open problem 

in computer communications. In this thesis we will investigate a congestion control strategy 

that is aimed at detecting and isolating such connections using active networks. 

All the applications described above require some enhanced capabilities within the network to 

achieve successful operation. In the absence of architecture support, the present solution consists 

of a collection of ad-hoc approaches like installing Web proxies, multicast routers, mobile 

proxies, video gateways and firewalls to provide the above services to end-users. The obvious 

questions are "Can we have a more generic solution to support a variety of applications, some of 

which may not even exist as of today?" and if so "What is the appropriate approach?" 

1.1.3 Technological progress 

Computationally powerful machines are readily available as desktop PC’s today. We may safely 

assume that in the coming years processors will become smaller and faster. The same applies to 

network processors such as routers. Advancement in technology will help in developing a generic 

network model capable of performing customized computation within the network and not 

restricted to the end points as is done today.  

1.2 The challenges  

The world of computers and communications distinguishes between nodes used for computing 

and nodes used for communications [35]. This distinction evolved naturally since computers were 
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developed as stand alone machines that were subsequently connected by network elements.  An 

active network tends to narrow the gap between intermediate nodes and end-hosts with the 

introduction of programmable open nodes that ‘may’ be injected with code from end-hosts. 

Figure 1.3 illustrates a generic active node model and is based on the network model presented in 

[14]. It comprises of three principal components; a forwarding engine for storing and forwarding 

packets in the network, a transient execution environment for application oriented packet 

processing and an accessible storage location for the execution environment. Based on this model 

the most notable technical challenges in making the transition from the present Internet to an 

active network are network security, evaluating performance benefits, addressing interoperability 

and deployment.  

 

 

 

 

 

 

 

 

1.2.1 Network security 

Security issues are critical in active networks especially in implementations that let users load 

their own code. The origin of information needs to be authenticated and it must be protected from 

modification. Active code may have access to network resources making active networks 

particularly susceptible to malicious or defective code that could threaten the operation of the 

network. Researchers are finding ways to build networks in a way that will pre-empt defective 

programs from harming the network or interfering with other programs and other users. But this 

                                                                                                                                                                     
1 Bandwidth greedy connections are defined in chapter 4. 

Figure 1.3 Generic active node model 
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approach also leads to a dilemma since we need to carefully restrict the actions of arbitrary code 

while providing that very code with the flexibility of network level primitives.  

1.2.2 Performance evaluation 

The overhead of processing active packets at intermediate nodes in the network makes them fall 

behind traditional data networks in terms of latency and throughput. The computation required 

within the network may even tend to clog routers leading to network congestion. However, 

processing of packets is not needed at every intermediate node within the network since most 

applications require specific processing only at strategic locations within the network. Contrary to 

popular belief, despite increasing the amount of processing performed within the network, 

applications can improve overall system performance. Although throughput (a common network 

performance measure) may suffer due to processing overheads in active networks, the application 

may benefit on the whole if fewer active packets are needed to achieve the same application 

objectives. For example research presented in [37] analyzes the performance of a real time 

auction application that uses caching within the network backbone to reduce the load on the 

auction server and backbone routers in terms of server load, round trip processing time and 

network bandwidth consumption. During periods of heavy load the auction server activates filters 

within the network and periodically updates them with the current price of the popular items. The 

filtering active nodes are then authorized to reject bids that are lower than the current price. This 

active networking protocol helps in distributing the server load, reducing bandwidth consumption 

and cutting down on round-trip response time to customers during busy periods. Thus, some 

researchers point out that performance should be evaluated in terms of application specific 

metrics, which may not be positively correlated with network metrics. The cost of these 

performance improvements in Active Networking is in the increased consumption of 

computational and storage resources in the network, which may slow down other network traffic 

flowing through the busy active node. However, the competing traffic could also benefit from 
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active processing due to the overall reduction in bandwidth utilization and congestion-related 

loss. 

1.2.3 Interoperability 

Packet networks achieve interoperability by standardizing the syntax and semantics of packets. 

Internet routers support the agreed IP specifications and perform the same computation on every 

packet. In contrast active nodes can perform different computations on the packets flowing 

through them. Interoperability must be achieved at a higher level of abstraction. Rather than 

fixing the computation performed on the active packet we need to standardize the computational 

model consisting of the instruction set and resources available to the active packets. For example, 

to achieve cross-platform compatibility, a standard API could be developed to act as a common 

programming model for writing the code that is injected into active networks. This would make it 

easier to develop new applications as desired and would also reduce the program content of the 

active packet. 

1.2.4 Deployment 

Deploying a new system needs substantial justification along with backward compatibility. To 

succeed in the marketplace, proponents must develop applications, both current and future, that 

demonstrate a clear advantage as promised without rendering prior networking equipment 

useless. In order to strengthen the justification of the active networks program it is required to 

demonstrate the capabilities of middleware services2 by developing suitable applications. In this 

work we concentrate our efforts in the development of network services on an experimental 

testbed. 

1.3 Contributions  

� We have built an active network testbed comprising of interconnected active nodes. By using 

object-oriented techniques in the design of our active node we provide extensibility, re-

                                                        
2 Middleware services are those that manage system resources, describe message format and support 
data transformation. 
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usability and user-friendliness. Further, by creating a separate processing track for active 

datagrams, we have ensured minimal impact on applications requiring plain old forwarding 

service. 

� The network utilities we have developed include (a) APing for discovering if a node in the 

network is operational and (b) Atraceroute for tracing the path of a datagram in the RANI 

active network. We have highlighted the advantages of Atraceroute by testing it on our 

network and comparing it with the existing implementation on traditional networks. 

� We have addressed the problem of limiting the impact of ‘bandwidth greedy connections’ at 

congested nodes. We have designed and evaluated an intelligent congestion control 

mechanism to detect and counter such connections during periods of severe congestion. In 

our implementation we use a packet filter to discard packets belonging to the identified 

connection at the congested node and dynamically move the filter towards the source of the 

‘greedy’ connection thus protecting network resources from being overwhelmed. We 

successfully demonstrated the utility of our mobile filtering mechanism through 

experimentation. 

1.4 Thesis Overview 

Chapter 2 covers related work in which we survey some of the prevalent active network 

architectures developed by others. It also includes a comparison of the various active network 

architectures. In Chapter 3, we present our active network system architecture highlighting the 

goals we have achieved. In Chapter 4 we present the active network services that we have 

developed. The chapter begins with a description of our active traceroute and active ping utilities. 

Finally, we examine the inadequacies of a popular congestion control strategy with respect to 

bandwidth greedy connections and then explain a mobile filtering mechanism for isolating such 

connections during periods of high congestion in our active network testbed. Chapter 5 is 

dedicated to experimental evaluation of our active filtering mechanism. Chapter 6 draws 

conclusions on the effectiveness of our work, suggesting some possible future directions.  
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Chapter 2 

 Related Work 

With active networking, the network is no longer viewed as a passive mover of bits, but rather as 

a more general computation engine: information injected into the network may be modified, 

stored or redirected as it is being transported. Obviously such a capability opens up many exciting 

possibilities. However, it also raises a number of issues including security, interoperability and 

migration strategy. All of these are influenced in large part by the active networking architecture 

that defines the interface between the user and the capabilities provided by the network. The 

networking architecture adopted has a direct bearing on the utilities and applications that it may 

support. 

We have developed a simple active network testbed. We utilize the functionality of this testbed 

by implementing network utilities and by designing an intelligent congestion control mechanism. 

This chapter is devoted to giving a brief overview of the prevailing active network architectural 

models. Finally, we compare these architectures and provide the motivation for the design of our 

testbed. 

2.1 Related Active Network Architectures 

2.1.1 Smart Packets 

BBN is developing a capability for packets to carry programs that are executed at each node the 

packet visits in the network  [3]. The programs implement extended diagnostic functionality in 

the network. The Smart Packets architecture has the following goals:  

� Providing a specification for smart packet formats and their encapsulation into some network 

data delivery service. 

� Specification of a high level language, its assembly language, and a compressed encoding 

mechanism for representing the portion of a smart packet that gets executed. 
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� Developing a virtual machine resident in each networking element to provide context for 

executing the program within the smart packet. 

� Developing a secure design  

The Smart Packets project is designed to demonstrate that network management is a fruitful target 

for exploiting active network technology. Making the programmable environment too rich or 

flexible would overload the computing power of the managed node and compromise on security. 

To balance flexibility with computing power and security two important decisions were made. 

Firstly, there would be no persistent state in the network nodes. Consequently, the programs 

carried by the smart packets must be completely self-contained. Even fragmentation of the smart 

packet is not permitted. So the programming language used must be able to express meaningful 

programs in a short (1Kbyte) length. Secondly, the operating environment must be secure. Also, 

the programming language used should avoid dangerous or superfluous features like file system 

access or memory management. This goal suggests that the code should be executed within a 

virtual machine where only controlled operations are permitted.  

2.1.2 Active Node Transfer System (ANTS) 

ANTS [8] is part of a continuing research effort of the Software Devices and Systems group at 

the MIT Laboratory of Computer Science. An ANTS based network consists of an interconnected 

group of nodes that may be connected across the local or wide area by point-to-point or shared 

medium channels [7, 37]. In addition to providing IP-style routing and forwarding as the default 

network-level service, ANTS allows applications to introduce new protocols into the network. 

Applications specify the routines to be executed at the active network nodes that forward their 

messages. The various components of the ANTS architecture are presented below. 

Protocols and Capsules: The packets found in traditional networks are replaced by capsules that 

refer to the processing to be performed on their behalf at active nodes. Capsule types that share 

information within the network are grouped into protocols; a protocol provides a service and is 

the unit of network customization and protection. The most important function of the capsule 
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format is to contain an identifier for a protocol and forwarding routine within that protocol. The 

identifier is based on a fingerprint of the protocol code. Some forwarding routines are “well-

known” in that they are guaranteed to be available at every active node. Other routines may be 

“application-specific”. Typically, they will not reside at every node, but must be transferred to a 

node before the first capsules of that type can be processed. Subsequently, capsules belonging to 

a particular protocol contain the same identifier and are processed similarly at the active nodes. 

Active Nodes: The active nodes execute the capsules of a protocol and maintain protocol state 

replace selected routers within the Internet and at participating end nodes. Unlike ordinary 

routers, active nodes provide an API for capsule processing routines, and execute those routines 

safely by using operating system and language techniques. A major difficulty in designing 

programmable networks is to allow nodes to execute user defined programs while preventing 

unwanted interactions. The ANTS approach has been to execute protocols within a restricted 

environment that limits their access to shared resources. The primitives of the active nodes are -  

� Environment access; to query the node location, state of links, routing tables, local time and 

so forth; 

� Capsule manipulation; with access to both header fields and payload; 

� Control operation; to allow capsules to create other capsules and forward, suspend or discard 

themselves; 

� Storage; to manipulate a soft-store of application defined objects that are held for a short 

interval. 

The capsule format includes a resource limit that functions as a generalized TTL (Time-To-Live) 

field. This limit is carried with the capsule and is decremented by nodes as resources are 

consumed. Only active nodes may alter this field, and nodes discard capsules when their limit 

reaches zero.  

Code Distribution Scheme: In ANTS an explicit code distribution mechanism ensures that 

capsule processing routines are automatically and dynamically transferred to the active nodes 
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where they are needed. This component does not exist in traditional networks and is handled by 

the system, not the service programmer. The ANTS implementation couples the transfer of code 

with the transfer of data as an in-band function. This approach limits the distribution of code to 

where it is needed, while adapting to node and connectivity failures. The code distribution 

scheme is suited to flows, i.e., sequences of capsules that follow the same path and require the 

same processing.  

2.1.3 SwitchWare 

SwitchWare [11, 13, 16] is an active networks research effort undertaken at the Penn Department 

of Computer and Information Science and Bellcore [18].  Active Networks must balance the 

flexibility of a programmable network infrastructure against the safety and security requirements 

inherent in sharing that infrastructure. The SwitchWare active network achieves this balance 

using three layers, each having a separate language specification. The switchlet language is the 

language with which users can access the programmable features of the SwitchWare switch. The 

wire language is the form in which the switchlets are moved between switches and the 

infrastructure language programs the SwitchWare switch. An analogy of a three level language 

might be a Java program written by a user, its byte code form, and the C language programs that 

comprise the byte code interpreter.  

Components of SwitchWare include active packets, their extensions and the secure active router 

infrastructure. These are explained below. 

Active Packets: An active packet is one that contains both code and data needed to process the 

packet in the network. They replace the traditional network packet with a mobile program. The 

code part of an active packet provides the control functions of a traditional packet header, but 

does so much more flexibly, since it can interact with the environment of the router in a more 

complex and customizable way. Similarly, the data in the active packet program replaces the 

payload of a traditional packet, but provides a customizable structure that can be used by the 

program. Basic data transport can be implemented with code that takes the destination address 
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part of its data, looks up the next hop in a routing table, and then forwards the entire packet to the 

next hop. At the destination the code delivers the payload part of the data to the application.  

Active Extensions: An active extension is some code that may be loaded on a running switch to 

alter the processing of future packets. Node-resident extensions form the middle layer of the 

architecture. They can be dynamically loaded active extensions or they can be part of the base 

functionality of the router. They are not mobile – to communicate with other routers they use 

active packets. Thus extensions are base functionality or are dynamic additions rather than 

“mobile code”. If the code can only be loaded from a local persistent store, then the extension is 

referred to as a local extension. Extensions may make use of other extensions already loaded on 

the node; they need not be independent. Extensions reside on the node, e.g., in memory or on 

local disk, until they are loaded. Because they are invoked only when needed, there is no inherent 

need for the extensions to be lightweight. The key difference between active packets and 

extensions is that although extensions may be dynamically loaded across the network, they 

execute entirely on a particular node where as active packets are executed at some or all of the 

active nodes it passes through. 

Secure Active Router Infrastructure: This is the lowest layer of the architecture. While the top 

two layers emphasize support for several forms of dynamic flexibility, the lowest layer is 

primarily static. The goal of this layer is to provide a secure foundation upon which the other two 

layers build. The importance of this is clear, since no matter how much security is assured by the 

upper layers, security will be compromised if this layer creates an insecure environment. 

2.1.4 CANES (Composable Active Network Elements) 

CANES [17] is a research project at Georgia Institute of Technology. In this design, users can 

select from an available set of functions to be computed on their data, and can supply parameters 

as input to those computations. The available functions are chosen and implemented by the 

network service provider, and support specific services; thus users are able to influence the 

computation of a selected function, but cannot define arbitrary functions to be computed [31]. 
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This approach has some benefits with respect to incremental deployment as well as security and 

efficiency: Active Network functions can be individually implemented and thoroughly tested by 

the service provider before deployment, and new functions can be added as they are developed.  

2.1.4.1 Architecture Overview  

The CANES architectural model for active networks takes a menu-based approach in which the 

active node supports a fixed set of active functions and the active packets indicate the function(s) 

to be invoked and supply parameters to those functions. The basic idea behind this architecture is 

the incremental addition of user-controllable functions, where each function is precisely defined 

and supports a specific service. The function specifications include: 

� The identifier associated with the function. 

� The parameters associated with the function and the method of encoding them in the packet. 

� The semantics of the function. Ideally, the function semantics would be given in a standard 

notation or another notation developed specifically for the purpose. A standard environment, 

comprising support services such as private state storage and retrieval, access to shared state 

information (e.g. routing tables), message forwarding primitives, etc., would provide a 

foundation on which new services could be built. 

CANES delegates the addition of a new function to a network node to the network service 

provider. As with current networks, once a function is specified, each provider or vendor would 

be free to implement the functionality in a manner consistent with the specification. This 

approach corresponds roughly to the way new features are deployed in the public switched 

telephone network today; users have the option of selecting from a variety of features 

implemented by the service provider.  

2.1.5 NetScript: A language and Environment for Programmable Networks 

NetScript [19] is a programming language and environment for building networked systems. Its 

programs are organized as mobile agents that are dispatched to remote systems and executed 

under local or remote control. The goal of NetScript is to simplify the development of networked 
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systems and to enable their remote programming. NetScript could be used to build packet stream 

filters, routers, packet analyzers and multimedia stream processors. 

2.1.5.1 The NetScript Network and its target applications 

A NetScript network consists of a collection of network nodes (e.g. PCs, switches, routers) each 

of which runs one or more NetScript engines. The engine is a software abstraction of a 

programmable packet-processing device. Each NetScript engine consists of dataflow components, 

called boxes, that process packet-streams that flow through them. Packets flowing through a 

NetScript node are processed by successive boxes to perform protocol functions. The system 

consists of two components: NetScript, a textual dataflow language for composing packet-

processing protocols and the NetScript Toolkit, a set of Java classes to which the textual language 

compiles. The boxes form a reactive system in which data (in the form of packets) flows from one 

box to another. Arrival of data at one or more input ports of a box triggers computation within 

that box; otherwise the box sleeps until data arrives to trigger it. The box is the central construct 

in NetScript and the unit of program composition. A box declaration consists of four parts: the 

box name, input port and output port declarations, a declaration of internal boxes and a connect 

statement that defines the connections between internal boxes. When a box is loaded at a 

NetScript engine, NetScript will instantiate its internal contents and make connections between 

these boxes. Typical NetScript boxes do packet header analysis, packet demultipexing, or other 

protocol functions. The boxes can be dispatched to remote network engines and dynamically 

connected to other boxes that reside there to extend the network with new communication 

functions. For example, an IP router implemented in NetScript could be dynamically extended 

with firewall functions. Such a router might also be extended to monitor traffic, support content 

filtering on the edge of a network domain, or perform load balancing and traffic shaping. 

NetScript is useful in applications that process packet-streams.  

A key application of NetScript includes the support for distribution of management functions. In 

order to manage a network, applications must monitor, analyze and control elements by 
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processing their instrumentation data. Other management technologies such as SNMP [23] have 

focused on moving data from elements to a management platform where applications processed 

this data. NetScript aims to complement these technologies with one that allows a management 

platform to dispatch programs (agents) to remote elements. Rather than bringing element data in 

real time to applications, applications could be dispatched to process the data right at the 

elements. This permits localization of management control loops in managed elements; in 

contrast SNMP stretches control loops across the network.  

2.2 Comparison of architectures 

Principally, there are two ways in which the active network can support processing at 

intermediate nodes in the network. In the language-based approach the active datagrams carry 

programs that are executed in a suitable environment. Users are allowed to inject code into the 

network making the system highly dynamic and flexible. However, special care must be taken to 

safeguard the system against malicious users and buggy code. In the menu-based approach the 

active node supports a fixed set of services. Designated operators may add new services into the 

node. Active datagrams carry a reference to the type of servicing they require. The 

implementation details of services are hidden from end user applications. We believe that the 

menu-based approach gives a strict administrative control over the services that the network can 

offer and provides a secure infrastructure at the cost of reduced dynamism. Thus, we adopt the 

menu-driven approach in designing our active network.  

The current architectures are in the developmental phase and a consensus on a standard 

architecture has still not been reached. Our aim is to develop network services in an active 

networking environment and subsequently evaluate them. Hence, we have designed and 

implemented a testbed network (RANI) that is explained in Chapter 3. Table 2.1 shows a 

comparison of the active network architectures described in section 2.1. The list of contributions 

and applications is not exhaustive. 
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Architecture Approach Key Contributions Applications 

Smart 

Packets  

Language-based Mobile agents Network management 

and diagnostics 

ANTS Language-based Application specific protocol 

development 

Distributed applications 

and web caching 

SwitchWare Language-based Programming language 

development, network security 

Active bridges, 

bootstrap architectures 

CANES Menu-based Active components WAN caches, selective 

packet treatment 

NetScript Language-based Designing scripts, mobile 

agents 

Management by 

delegation 

RANI  Menu-based Design and implementation of 

an active network testbed 

Controlling bandwidth 

greedy connections, 

Active Traceroute 

 

 

 

Table 2.1 Comparison of active network architectures 
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Chapter 3 

RANI Active Network Architecture 

The Internet Protocol (IP) does not support application oriented processing of datagrams at 

intermediate nodes. For an active datagram however the node must process the contents of the 

datagram (if it supports active networking) before forwarding it. This chapter describes the design 

and implementation of the network architecture. The network testbed is used for experimental 

evaluation of our network services. 

3.1 Design overview of RANI (Rutgers Active Network Initiative) 

The RANI network consists of a number of active nodes connected to each other via virtual links. 

For the sake of simplicity, we assume that the virtual links are reliable in delivering datagrams. 

Any node can communicate with other nodes in the network by sending datagrams across the 

virtual links. Datagrams that do not need active processing are referred to as passive datagrams. 

Passive datagrams are simply stored and forwarded similar to traditional network forwarding. 

Datagrams that request additional processing at the intermediate nodes in the network are called 

active datagrams. Active servicing is requested through a field in the header of the active packet. 

Each datagram is considered an atomic element and is processed individually by the active nodes.  

3.1.1 Components of the RANI active node  

The purpose of the active node is to service the active datagrams and to forward the passive 

datagrams towards their destination. Servicing active datagrams may include forwarding them. 

Active datagrams are serviced on a best effort basis and may result in a change in the packet’s 

contents. We have divided the various functions of the active node into individiual modules that 

interoperate with each other. The Receive (Rx) and Transmit (Tx) modules handle datagram 

propagation issues in the network. Active datagrams are serviced in a suitable environment called 

the Processing (Px) module. The node resident services and programs are located in the Storage 

area. End users may inject active datagrams into the network and request a particular type of 
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service. They may also inject passive datagrams that require the traditional forwarding service. In 

order ensure speedy delivery of passive datagrams, we have created separate paths for active and 

passive datagrams as shown. 

 

 

 

 

 

 

 

3.1.2 Datagram propagation and ‘tunneling’ 

We do not expect all nodes in the network to be active nodes. The virtual links that interconnect 

active nodes need not consist of a physical connection between the nodes. Virtual links provide a 

path between the two nodes that it connects. The physical path corresponding to a virtual link 

could traverse across legacy intermediate routers. In effect the virtual link provides a tunnel for 

transferring datagrams between active nodes. 

To illustrate the use of our active network, let us consider the path of a datagram requesting 

service X, from source node S to destination node D. For this example, lets assume that the 

network nodes have been configured correctly and a virtual link between node S and node D 

exists. At node S, the datagram is sent to the processing module and X is executed on it. S 

compares its own address with the destination address of the datagram. On determining that the 

datagram has not reached its destination, S sends the datagram across the virtual link towards D. 

This action takes place at every active node along the way until it reaches D. At D the datagram is 

again serviced and finally delivered to the application. 

3.2 Implementation Details 

Figure 3.1 High-level design of the active node 
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Our active node is implemented in Java (v1.1) as a user space process on the Windows NT 

operating system. The node runs at the application layer in the TCP/IP protocol stack. Application 

oriented processing of active packets may be required at the end nodes as well as intermediate 

nodes in the network. Thus we do not distinguish between intermediate nodes and end nodes. 

 

 

 

 

 

 

 

Virtual links are implemented as a UDP (User Datagram Protocol) socket pair – one socket is 

used for receiving datagrams and the other for sending them. Active or passive packets are 

created and subsequently injected into the active network via the user interface at the node. These 

packets are propagated as UDP segments. 

3.2.1 The RANI node 

The receive module comprises of UDP receive sockets for incoming datagrams and a packet filter 

for separating active and passive packet paths. Each receive socket contains a blocking receive 

thread running in an infinite loop to pick up datagrams and deliver them to the packet filter. The 

process module comprises of an execution engine (EE) where active packets are serviced. Active 

packets are serviced on a first come first served basis by ordering the packets in a FIFO execution 

engine queue. An independent EE thread extracts the first packet from the EE queue and 

dispatches it to the EE for processing. The EE thread runs in an infinite loop extracting each 

packet till the queue empties. The Storage (Sx) module comprises of node resident services and 

tables such as the routing table. The Transmission (Tx) module consists of UDP send sockets, a 

node queue and a single transmit thread. The node queue is common to all packets (active or 

Figure 3.2 Active Node implementation 
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passive) that need to be forwarded. The transmit thread extracts packets from the node queue and 

delivers them to the next hop active node via the virtual links.  

 

 

 

 

 

 

 

 

3.2.2 Packet format within the node 

Before getting into the details of the different components as shown in the above diagram let us 

take a look at the packet format within the active node. Datagrams are propagated as UDP 

segments in byte array format across virtual links. However once inside the node, the datagram is 

converted into either a passive packet or an active packet.  

The fields of the active packet are shown below. All the packet fields are in string format and are 

initially set at the source node. In comparison to the traditional datagram format, the active packet 

has an additional Ack, Act, PrevNode, TL and TOS fields. The packets carry state information in 

the TTL and PrevNode fields since these fields must be modified in transit by the active nodes. 

The Payload field may be modified in transit depending upon the service requested by the end-

user. We have not provisioned for sequence numbering of packets since at this stage we have 

assumed that the network is reliable and have developed network services that deal with 

individual active packets.  

 

 

Figure 3.3 The RANI node 

Figure 3.4 Active packet format 
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SA (Source Address): It is the IPv4 address of the node that injects the packet into the network.  

SP (Source Port): This field identifies the port number of the virtual link at the source node 

through which the packet is injected into the network. 

DA (Destination Address): It is the IPv4 address of the destination node for the packet. 

DP (Destination Port): This field identifies the port number of the link at the destination node on 

which the packet is to be received. 

Ack (Acknowledgement): This field is true for acknowledgement packets and is false otherwise. 

Act (Active): This field is set to true if the packet is active and is false otherwise. It distinguishes 

between active and passive packets. 

TTL (Time To Live) : This field represents an upper bound on the resources that the packet can 

consume within the active network. We have kept this resource bound in terms of time. The TTL 

field is decremented by active nodes along the way upto the destination node by the amount of 

time that the packet exists at the node. If a packet requires excessive processing at a node, it will 

reside for a longer duration at the node and correspondingly a larger value will be subtracted from 

its TTL resource. An intermediate node discards a packet whose TTL has dropped to zero. The 

TTL field is used to discard stale packets by keeping an upper bound on the time that a packet 

resides in the network and for calculation of packet round trip time.  

PrevNode (Previous Node Visited): This field contains the IPv4 address of the node last visited 

by the packet and the port number of the last virtual link on which it traversed. The field is set 

just before an active node transmits the packet. Any node in the network can determine the 

previous node through which it received a packet by looking up this field. In our present 

implementation since we have assumed bi-directional reliable virtual links, this field is unused for 

applications developed so far. However, once this assumption is no longer necessarily true in 

future implementations, this field will be useful in developing network applications that rely on 

the path traversed by an active packet. 
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TL (TOS Length): This field carries the length in bytes of the TOS field. Keeping in mind the 

flexibility of introducing new services, we keep the TOS field to be of variable length.  

TOS (Type of Service): The active packet requests a particular service through this field. The 

active node provides the service requested on a best-effort basis. For example, if a packet requests 

the AtraceRoute service its TOS field is set to AtraceRoute and its TL field is set to 11. 

Payload: This field carries the payload of the active or passive packet. 

The passive packet has the same format as the active packet with the Active field set to false and 

the TL and TOS fields omitted since they do not request any service from the intermediate 

network nodes.  

3.2.3 Packet movement in the RANI network 

Figure 3.5 illustrates the mechanism of injecting packets into the active network from an active 

node. The dark line shows the physical path that a packet traverses in our active network. From 

the end user application perspective the dotted arrow shows the virtual path that the packet 

traverses. The diagram also brings out the concept of ‘tunneling’ packets through legacy 

intermediate routers. 

 

 

 

 

 

 

 

3.2.4 The receive module 

Arriving datagrams at the active node are cast into active or passive packets in the packet filter. 

An active packet resides at the node till it is completely serviced. Every packet in the node is 

subject to a destination check to ascertain if it has reached the destination node. Basically, in the 

Figure 3.5 Movement of packets in the RANI network 
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destination check, the IP address of the node is compared to the destination address field of the 

packet. If the fields match, the test is successful and the packet is delivered to the application. If 

the test is unsuccessful the packet is added to the node queue (Node Q) for forwarding. Passive 

packets are subjected to a destination check in the packet filter itself. Active packets are directly 

dispatched to the execution engine queue (EE Q) by the packet filter. The destination check for 

active packets is performed in the process module. By maintaining two separate queues for 

servicing (EE Q) and forwarding (Node Q) we create slow and fast tracks for the active and 

passive datagrams respectively. If we were to maintain a single queue, the passive packets would 

suffer from larger delays due to the longer processing time taken for active packets at the head of 

the queue.  

 

 

 

 

 

 

 

Note that when an active packet reaches the destination node it is serviced before being sent to 

the application. Passive packets are delivered directly to the application when they reach the 

destination node. Figure 3.6 shows the receive module in the RANI node. Here, the spotted 

packets are the ones that have reached their destination.  

3.2.5 The process module 

Active services are stored as loadable classes in the node. They implement the LoadableClass 

interface and contain a process method. Active packets are serviced by invoking the process 

method of the loaded service class. We maintain a list of all services loaded at the node during its 

run time. This list is implemented as a hash table containing the service name as the key and the 

Figure 3.6 Receive (Rx) Module 
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class descriptor as the value. Packet servicing occurs in the execution engine. The engine extracts 

active packets from the FIFO execution engine queue. The TOS field of the active packet is in the 

form of the service name. At the active node, the service name of the active packet is looked up in 

the hash table and one of the following cases could occur. 

Case 1: The requested service is not found in the hash table. This implies that the service has not 

been loaded. The EE attempts to load the service into the node.  

Case 1a. If service loading is successful, the hash table is updated and the process routine of the 

service class is invoked on the active packet. Henceforth, all successive active packets requesting 

this service are directly processed.  

Case 1b. In the current implementation, if the service loading is unsuccessful, the packet is 

discarded. In future implementations, we could make the node perform traditional forwarding on 

active packets that it cannot service. This implies building services that need not require 

processing at all intermediate active nodes. 

Case 2: The requested service is found in the hash table. This implies that the service has been 

previously loaded and so the execution engine directly invokes the process routine of the service 

class returned by the hash table, on the active packet. 

New services are uploaded to the active node through ‘trusted operators’. A discussion of the 

security implications on designating these operators and implementing such a scheme is beyond 

the scope of this thesis. Figure 3.7 illustrates the functioning of the process module.  

 

 

 

 

 

 

Figure 3.7 Process module  
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3.2.6 Transmission module 

The node queue may receive packets from three sources. The first source is the front-end user 

interface (described in section 3.3) through which users may inject packets in the network. The 

second source is the receive module which may add passive packets that require forwarding. 

Lastly, the execution engine adds active packets that require forwarding to the node queue. The 

transmit module extracts packets from the FIFO node queue. It then looks up the routing table 

with the destination address and port number of the packet as the key to the table. The table 

returns3 the virtual link on which the datagram must be sent. The node then converts the packet 

into a UDP datagram in byte array format and sends out the datagram on the returned link. To 

handle the special case of looping back (source and destination node fields are the same) of 

passive packets in the RANI node, a destination check on the passive packets is performed in the 

transmission module. 

 

 

 

 

 

3.3 Node operation and configuration 

We have provided a user-friendly GUI for configuring and operating the active node. Node 

operation includes injecting active or passive packets into the network, monitoring the node 

queues and testing virtual links for operation. Multiple packets can be injected with the help of a 

packet generator that simulates UDP or TCP-like sources. The user can select the number of 

packets, the average rate of injection of packets and burst size of the packets4. Node configuration 

involves creating (and destroying if necessary) virtual links, managing the routing table and 

                                                        
3 If the routing table returns null, the destination is unreachable and the packet is discarded 
4 These parameters are described in Chapter 5 
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setting the queue parameters. All nodes in the active network are identified by unique IPv4 

addresses. At run time of the active node, virtual links to other nodes are created through the user 

interface. Each link successfully created is automatically added to the routing table. The routing 

table is implemented as a hashtable containing the destination address and port number as the key 

and the virtual link object as the value. The table is automatically updated when new links are 

created or existing links are destroyed. We also provide access to manually configure the routing 

table for dynamically changing routes in the network. Shown below is an illustration of the user 

interface to our active node. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.9 Graphical User Interface  
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To explain the construction of routing tables at our active node, consider the following network 

topology. Virtual links are labeled VLINK.  

 

 

 

 

 

 

 

 

In this example, the routing table constructed for node1 and node4 are shown below. We have 

assigned arbitrary IP addresses to the active nodes and used arbitrary port numbers for the virtual 

links. 

NODE 1 NODE 4 

Key Value Key Value 

Node2   128.6.43.52:2000 VLINK1-2 Node1   128.6.43.20:6000 VLINK1-4 

Node3   128.6.30.3:4000 VLINK1-3 Node2   128.6.43.52:2000 VLINK1-4 

Node4   128.6.21.18:3000 VLINK1-4 Node3   128.6.30.3:4000 VLINK1-4 

Node5   128.6.21.19:3000 VLINK1-4 Node5   128.6.21.19:3000 VLINK4-5 

 

3.4 Summary of network features 

� The active node provides an environment for communicating with applications, packet 

processing and network communications. 

� The active node does not maintain state or flows unless programmed to do so for a specific 

purpose. 

Figure 3.10 Sample network topology 
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� The programming model of the network is based on a menu-based approach. End-users may 

request network processing through a service-ID field in the active packet. Trusted operators 

are allowed to load new services or enhance existing ones, thus minimizing security risks. 

� At run time, the active node has a user-friendly graphical user interface through which it can 

be configured and operated. Also, the active nodes may be restarted and links may be 

dynamically changed to reflect a new network topology.  

� In order to allow multiple packets to be processed simultaneously at the node, entities 

interacting with the packet such as queues, tables, threads, links and routines are 

synchronized.   

� Separate tracks are maintained for active and passive packets to speed up traditional 

forwarding. 

� The TTL field in the packet ensures an upper resource limit on the time that a packet may 

spend in the network.  

3.5 Limitations of our architecture 

Firstly, by processing packets within the active network the speed of packet transfer from end to 

end is reduced. Although end-applications may benefit from this additional network support even 

at reduced packet rates, it is important to maintain a high rate of packet transfer to prevent large 

packet queues from building up at the active nodes. Our active node is built at the application 

layer in the TCP/IP protocol stack. This makes its operation relatively slow. Secondly since the 

aim of this work was to examine active network technologies with respect to network utilities and 

congestion control we made simplifying assumptions such as reliable, bi-directional virtual links 

and static routing tables. These assumptions prevent real world scenarios from being simulated 

for other applications. Lastly, by allowing only trusted operators to load new services into the 

active we compromise on the dynamism in enabling new active services. However, these 

limitations do not undermine the contributions made in this thesis with respect to our objectives. 
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Chapter 4 

RANI Applications 

This chapter is divided into two parts. The first part describes the implementation and operation 

of RANI network utilities. The second part of this chapter addresses bandwidth greedy 

connections in the RANI network. 

4.1 Host Reachability 

In this section we first describe the implementation of the Ping network utility on traditional IP 

networks and then describe its implementation (APing) on the RANI testbed. Aping was the first 

active service that we developed as a sanity check for the RANI testbed.   

4.1.1 Ping 

The word “ping” stands for Packet InterNet Groper. The ping program is often used to test the 

reachability of another host on the Internet by sending it echo requests that it must respond to, if 

the host is operational [39]. The traditional ping program is one that sends an ICMP (Internet 

Control Message Protocol) echo request message to a host and waits for a reply. ICMP messages 

are encapsulated in IP datagrams and hence the operation of ICMP does not depend on the 

higher-level protocols such as TCP and UDP. Most TCP/IP implementations provide a ping 

program and it has proved to be a useful tool. 

4.1.2 APing 

The operation of APing along with its service routine is provided in this section. The APing 

active packet originates from a source node (S) that wishes to discover whether some other target 

node (T) in the network is alive. Intermediate nodes forward this active packet towards the target 

node. On receiving the active packet, the target node sends back an acknowledgement to the 

source. The source node  (S) on receiving the acknowledgement displays a message saying that 

the queried host is alive. Assuming that the APing service is loaded at an active node, when an 

active packet requesting this service enters the execution engine of the node, the process method 
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of the APing class is invoked with the active packet as the formal parameter. A line by line 

description of the APing.process( ) method is given below. 

process ( ActivePacket ) 

{ 

 if ( ! ActivePacket.destinationReached( ) ); // intermediate node reached 

{ 

 forward (ActivePacket); // packet forwarded to destination 

 } 

 else // Destination or Source node reached 

{ 

 if ( ! ActivePacket.getAck( ); // packet at Destination node 

 { 

  ActivePacket.sendAck( ); // Create and return an acknowledgement 

 } 

 else // packet back at Source node 

 { 

  printSuccess( ) ; // displays reachability message 

 } 

} 

} 

4.2 Route Discovery 

In this section we first describe the operation of the traceroute utility on traditional 

networks. Then we describe its design and implementation on the RANI testbed concluding with 

a comparison of the two implementations. 

4.2.1 Traceroute 

Traceroute allows users to discover the route of an IP datagram from a source node to another 

node. Traceroute uses the ICMP ‘time exceeded’ message and the TTL (Time To Live) field of 

the IP header. The utility requires end nodes to have a programming interface to the TTL field of 

an outgoing datagram. Availability of this programming interface to many networked nodes and 

simplicity of its operation make this utility popular in TCP/IP networks. Traceroute operates by 
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sending UDP datagrams to the destination node with the destination port number selected to be of 

a large value (>30000) making it highly improbable that an application at the destination is using 

that port [38]. The utility begins operation by sending a UDP datagram towards the destination 

with a TTL set to 1. The first router to receive the datagram, decrements the TTL to 0, 

subsequently discards it and then sends back an ICMP ‘time exceeded’ message to the source. 

The source node thus identifies the first router in the path to the destination. Now, traceroute 

sends a UDP datagram with a TTL of 2, thus discovering the second router in the path to the 

destination node. This process continues till all routers upto the destination node is identified. 

When the destination receives a datagram with the TTL of 1, it does not discard it since no further 

forwarding is required. Instead, the node attempts to deliver the datagram to the ‘unusually high’ 

port number which is almost certain to be unused by any application. This results in an ICMP 

‘port unreachable’ message being sent back by the destination to the source node. The utility 

running at the source node distinguishes between the ICMP ‘time exceeded’ and ‘port 

unreachable’ messages to terminate route tracing. 

A technical point overlooked above is that for each value of TTL, the utility sends three 

datagrams and prints the roundtrip times of the received ICMP messages. If no response is 

received within 5 seconds, the utility prints an asterisk and continues operation.  

Note: 

� The traceroute utility assumes that consecutive datagrams from the same source to the same 

destination follow the same route.  

� Time complexity of operation of traceroute is O (n2) where n is the number of hops between 

source and destination nodes.  

� Resource complexity in terms of links traversed is O (n2).  

� The source node transmits successive IP datagrams towards the destination with incremental 

TTL field values till the destination node is reached. 

4.2.2 Atraceroute  
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4.2.2.1 Objectives 

� To accurately determine the forward path of an active packet from a source node to any other 

node in our active network.  

� To discover the node-resident time of the active packet at each active node in transit. The 

processing delay and queuing delay constitute the node-resident time of the active packet and 

enable us to determine the overheads involved in active processing. 

4.2.2.2 Operational details  

Atraceroute operates by injecting a single active packet requesting the Atraceroute service. This is 

expressed in the packet’s Type of Service field. When the first active node in transit receives the 

packet, it forwards the active packet it received and sends back a description of its IP address and 

the packet processing time in the form of an active packet to the source node. The source node on 

receiving the descriptive packet discovers the first node in transit. When the second node receives 

the ‘originating’ active packet, it similarly executes the Atraceroute service by forwarding the 

received packet to the destination and sending back a descriptive packet to the source node.  

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1 Operation of Atraceroute 
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This process continues till the destination node is reached. The destination node sends back a 

descriptive packet to the source and discards the originating active packet. Thus the source node 

discovers all active nodes in the path of the original active packet.  

4.2.2.3 Taking a closer look at Atraceroute 

� Figure 4.4 shows the forward and reverse paths of the active packet to be identical since our 

implementation assumes bi-directional virtual links. However this assumption is not 

necessary for successful operation of Atraceroute. 

� The destination for the originating packet is the D node where as the destination for 

descriptive packets is the S node. 

� The originating and descriptive packets both request Atraceroute servicing. But, the 

originating packet has its ack field set to false where as the descriptive packet has its ack field 

set to true. Active nodes in transit use the ack field to distinguish between originating and 

descriptive packets. A node receiving an originating packet creates a descriptive packet and 

sends it back to the source of the originating packet. A node receiving a descriptive packet 

simply forwards it to the destination. 

� An interesting scenario would be to tackle re-ordering of packets at the source node in the 

eventuality that descriptive packets overtake each other on the return path. A possible 

solution could be to force the originating packet to carry state information regarding the node 

that it visits in the forward path. So when the originating packet is injected into the network it 

starts off with its state set to one. When Node1 receives this packet it echoes a descriptive 

packet carrying this state (one) and forwards the originating packet with the state modified to 

two. Now Node2 receives the originating packet with state two. Hence it echoes back a 

descriptive packet with this state, increments the state in the originating packet and forwards 

it. This process ensures that returning descriptive packets carry the corresponding number of 

the node visited by the originating packet making it possible to re-order the descriptive 
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packets at the source node. In Figure 4.4, the numbers mentioned on the packets represent the 

state information they could carry. However, in our implementation the bi-directional virtual 

link assumption prevents packets from being re-ordered in the network.  

4.2.2.4 Implementation of Atraceroute  

The process routine of the Atraceroute service is shown with appropriate comments below. 

process ( ActivePacket ) 

{ 

 if ( ! ActivePacket.destinationReached( ) ); // intermediate node reached 

 { 

  if ( ! ActivePacket.getAck( ) ) // implies ‘originating’ packet received 

  { 

   forward (ActivePacket); // ‘originating’ packet forwarded 

sendDescriptivePkt( ); // ‘descriptive’ packet created and returned 

  } 

  else //  descriptive packet received from some node upstream 

  { 

   forward ( ActivePacket ); // the packet is simply forwarded 

  } 

 } 

 else // Destination ( Source or Destination ) node reached 

 { 

  if ( ! ActivePacket.getAck( ) ) // ‘originating’ packet at Destination node D 

  { 

   sendDescriptivePkt( ); 

  } 

  else // ‘descriptive’ packet at Source node S  

  { 

   printPacketPayload( ); // Prints out contents of descriptive packet 

  } 

 } 

} 
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4.2.2.5 Features 

� The Atraceroute utility injects only one active packet into the network. Hence, we do not 

assume static routes from the source to the destination.  

� Time complexity of operation of Atraceroute is O(n) and the link utilization is O(n2), where n 

is the number of hops between the source and destination nodes. Details are presented in 

Appendix A. 

� The node resident time of the originating packet at each active node in transit is 

determined. 

4.3 Network congestion and unresponsive connections 

The past few decades have seen the merging of computers and communications leading to the 

development of computer networks. Rapid progress in technology coupled with the immense 

popularity of the Internet has seen an exponential growth in networked systems over the past few 

years. Formally, a computer network means an interconnected collection of autonomous 

computers [1]. The principle aim of a networked system has been information gathering, 

processing and distribution. Ideally, we would like to design and organize the network such that 

all information should be delivered reliably to any networked location within an acceptable time 

frame. Users of this ideal network would then derive maximum utility. However, the real world is 

far from ideal, leading to the development of networks that fail to satisfy one or more of the 

above criteria. A prominent cause that widens the gap between the ideal and real world scenarios 

is network congestion. Despite research efforts in industry and academia to eliminate network 

congestion, the problem continues to persist.  

In [5] Yang and Reddy have broadly classified a range of congestion control algorithms into open 

loop and closed loop control mechanisms based on control theory. In the open loop algorithms, 

the transmitting sources carefully regulate the effective rate of transmission to prevent congestion 

from developing in the network. Such mechanisms cannot be relied upon completely due to the 
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dynamic nature of network traffic and network parameters. In the closed loop control 

mechanisms, it is the network that provides feedback to the transmitting sources either when it is 

congested or when congestion is building up. The transmitting sources then reduce their effective 

transmission rates in order to prevent clogging up the network. Both these mechanisms rely on 

the transmitting sources to exercise control. A growing number of applications require a constant 

rate of transmission (they cannot function without a minimum application-specific bandwidth 

requirement) while some others tend to ‘grab’ as much network bandwidth as available ignoring 

congestion notification. These applications fail to implement a transport mechanism that is 

responsive to the congestion status fed back to them from the network. Going by the nature of 

such applications we refer to them as ‘unresponsive connections’. Formally, an unresponsive 

connection is one that ignores or underplays feedback information regarding congestion status of 

the network. Examples of such applications include streaming multi-media services, Voice 

transmissions and web radio broadcasts.  

Internet traffic measurements taken in mid-April 1998 on OC-3 links within nodes on the iMCI 

backbone data have revealed “Web traffic constitutes 75% of the bytes, 70% of the packets and 

70% of the flows when client and server traffic are considered together” [24]. Let us consider one 

constituent of Web traffic - streaming media applications. A recent article in the New York Times 

[34] claims, “In 10 years, movies and commercial television might very well be carried over 

Internet channels. This increasing demand will add vast amounts of streaming traffic to the 

Internet and could lead to what Van Jacobson (chief scientist for Cisco Systems Inc.) calls 

"congestion collapse" – the Internet equivalent of gridlock”. The article continues to describe the 

bandwidth greedy nature of such applications. “By its very nature, streaming media has to flow 

continuously to the user's computer, so it cannot follow the same traffic rules as conventional 

data. But even so, it is possible for packets of streaming data to interact civilly with other traffic 

on the Internet. The reason they do not, Jacobson said, is that streaming media providers have no 

incentive to comply with traffic rules.”  
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4.4 Understanding a congested network  

Although a large number of definitions for network congestion exist in computer literature, we 

consider the following to be precise. 

� A network is said to be congested from the perspective of user i if the utility of i 

decreases due to an increase in network load (where utility refers to a users preference for 

a set of resources) [36]. In this definition congestion is classified as an end-user perception of 

the state of the network. If a specific user’s demands on the network are not affected, even 

under highly loaded conditions, for him the network is still uncongested though other users 

whose utility may have been adversely affected will perceive the network to be congested. 

� If, for any interval of time, the total sum of demands on a resource is more than its 

available capacity, the resource is said to be congested for that interval [26]. This 

definition uses a demand-supply relation to identify congested periods in the network. The 

demand consists of delivering information from end-to-end and satisfying user constraints 

such as allowable delays and reliability. The supply includes (but is not limited by) network 

resources such as buffer space, link bandwidth and processor speed. Only if all demands are 

met, the network is uncongested. Jain also explains with examples how congestion is in fact 

worsened by an ad-hoc increase in these network resources. Rather than considering 

congestion to be a supply related issue, we need to control it by a sound design strategy. 

4.5 Background 

4.5.1 Introduction 

In this section we discuss two relevant schemes for congestion avoidance; Random Early 

Detection [27] and Explicit Congestion Notification [28]. RED gateways signal congestion by 

marking or dropping packets. ECN is a specific implementation of RED in which packets are 

marked to minimize packet loss during congestion at the gateway. RED has been proven to be 

ineffective in controlling bandwidth greedy connections as explained in Section 4.5.2. We aim to 

extend RED in order to control greedy connections using the RANI active network testbed. 
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4.5.2 RED (Random Early Detection) gateways 

RED gateways have a packet queue that is closely monitored to detect the build up of congestion. 

Based on queue occupancy, the average queue length (avg) is computed using a low pass filter 

with an exponentially weighted moving average. The gateway notifies connections of congestion 

either by dropping or marking packets arriving at the gateway. If a packet arrives to a full queue it 

is discarded. The gateway has two pre-set thresholds called minth (minimum threshold) and maxth 

(maximum threshold). With every arriving packet, the avg is computed and compared to these 

two thresholds. If avg is less than minth, arriving packets are not dropped or marked. If the 

computed avg exceeds maxth, all arriving packets are marked or dropped. If the computed avg lies 

between minth and maxth, the gateway notifies a connection of congestion with a probability that 

is roughly proportional to that connections share of the bandwidth through the gateway. The 

average packet queue size (avg) is computed as follows: 

avg  =  (1-w)*avg  +  w*q 

where  

w < 1 is a queue weight that determines the degree of burstiness permissible by the   

gateway 

q is the number of packets in the queue 

The value of avg is computed with every packet arrival at the gateway. However, when a packet 

arrives to an empty queue (q = 0), avg is calculated differently. The gateway first calculates the 

idle time for the packet queue as the difference between the time at which the packet arrived and 

the time at which the queue length became zero. The average packet queue (avg) is then 

computed as if the gateway had transmitted m packets during the idle time. The factor m is 

linearly dependent on the time for which the queue was idle. Thus for an empty queue, 

m  =  f ( time  -  q (time) )    

avg  =  ((1-w)**m)*avg 

where  
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q (time) is the time at which q became zero  

time is the time at which a packet arrives to the empty queue 

 time – q(time) is the idle time of the packet queue 

f ( ) is a linear function representing the rate at which the packet queue is drained 

A detailed explanation of the RED algorithm can be found in [27].  

The advantage of RED gateways is that they help in keeping the average queue size low, allow 

occasional packet bursts and prevent global synchronization of packet sources due to the 

randomness of the RED algorithm in marking or dropping packets at a congested node. However, 

it has been proven through simulations that an unresponsive bandwidth greedy connection gets a 

larger than fair share of the bandwidth at a RED gateway when competing with responsive 

connections [2]. But the congestion avoidance schemes suggested in [2] require multiple queues 

to be maintained at the intermediate nodes of the network. We propose a mechanism using the 

RANI network to maintain a single FIFO queue at the intermediate active nodes.  

4.5.3 ECN (Explicit Congestion Notification) capable gateways 

Explicit congestion notification [28] is a mechanism that notifies transmitting sources of incipient 

congestion by setting a bit in the IP header of the packet (called packet marking). When the 

marked’ packet reaches the destination, congestion notification is echoed back to the sender via 

the acknowledgement packet. The sender is then expected to cut back the packet transmission 

rate. However, the connections need to be ECN capable; the end hosts must be capable of 

responding to marked packets for the scheme to work. 

4.6 Aims of our congestion control strategy 

� The algorithm must be simple and easily deployable in the RANI active network testbed. 

Congestion leads to performance degradation of a network. Deploying a complex algorithm 

would amount to consuming network resources at a time when resources are scarce. 
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� The designed algorithm must be efficient and effective. An efficient algorithm would have 

minimal overheads. The effectiveness of the algorithm must be justified through 

experimentation.  

� The algorithm must accurately detect bandwidth greedy connections at a congested node. In 

section 4.3 we highlighted the growing popularity of unresponsive connections. However, it 

is important to note that unresponsive connections are not necessarily bandwidth greedy. If 

that were the case our algorithm would restrict all UDP connections in the active network. 

Our aim is to limit the degradation in network performance caused by transport mechanisms 

that tend to increase or maintain their effect rate of transmission of packets, despite being 

asked to cut back during periods of congestion. 

� The algorithm should provide a negative incentive to greedy connections in order to limit 

their popularity.  

� The algorithm must scale well. It should be capable of handling multiple greedy connections 

through a congested node. 

4.7 High level design of algorithm  

Our congestion control strategy is optimized for the reservationless packet switched RANI active 

network described in Chapter 3 and could be implemented in other active network architectures 

as described in Chapter 2. The high level design is illustrated as a flow chart in Figure 4.1. We 

have used the words flow and connection interchangeably and have described the characterization 

of a flow in the implementation details. 

� Monitoring the system to detect congestion: When the demand on the network exhausts its 

resources, the network nodes are the first to be affected. Specifically, when a node gets 

congested the packet queue gets heavily occupied eventually forcing the node to drop packets 

that overflow the queue. Hence, packet queues at the intermediate nodes in a network are the 

ideal location for detecting the build up of congestion. 
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� Distributing the congestion-related information to places that can control deterioration 

of system performance: We divide the set of connections through a congested node into two 

distinct categories viz. non-greedy and greedy connections. Non-greedy sources either 

respond to congestion notification or do not make a heavy demand on network bandwidth 

during congested periods. In the case of non-greedy sources the control loop is stretched from 

the congested node to the packet source. We rely on RED mechanisms and the packet source 

to reduce the rate at which packets enter the congested node. Bandwidth greedy sources 

underplay or ignore the fed back congestion related information in the form of dropped or 

marked packets. Controlling such sources is the focus of our algorithm. Stretching the control 

loop to the packet source is ineffective and hence congestion caused by greedy sources is 

controlled at the congested node itself and not by relying on the greedy sources to cut back 

their effective rate of packet transmission. 

� Correcting system operation: Demand on a network node is gauged by the effective rate of 

arrival of packets at the node. In order to eliminate congestion at a node, the effective rate of 

packet flow through the node needs to be reduced. During severe congestion, the packet 

arrival rate from greedy connections is controlled by a mobile filtering mechanism. In this 

mechanism a packet filter is installed at the congested node for the identified greedy 

connection. The filter is then progressively migrated towards the source of the greedy 

connection using active messages. In doing so, the packet drops are made early and causes 

lesser wastage of network resources. Filtering packets belonging to a flow is a relatively 

harsh mechanism of controlling congestion but is deemed necessary, taking into account the 

damage that can be done to network resources by the greedy connection. Keeping in mind 

that multiple flows could be identified as bandwidth greedy, we pick out the greediest flow 

and dynamically filter packets belonging to it. However, if congestion is not controlled 

despite filtering the greediest flow, the algorithm continues to successively pick out flows in 

order of their greediness.   
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In summary, our algorithm must first detect when a node’s packet queue is about to overflow due 

to increased demand. It must then correctly identify greedy connections (if any) that may be 

responsible for this extreme condition. Subsequently, by using the processing capabilities of the 

active network nodes in the path of the greedy connection(s), the algorithm must effectively 

control the rate at which packets from the greedy connection(s) enter the congested node. 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.8 Implementation  

We have labeled our implementation of the algorithm described in section 4.5 as the LGC 

(limiting greedy connections) algorithm. 

 4.8.1 Monitoring the active node’s packet queue to isolate a greedy connection 

In [9], Dong et. al have demonstrated through simulations that in RED gateways the bandwidth 

consumed by greedy connections is greater than its fair share. In fact, bandwidth consumption is 

directly related to the queue occupancy of the connection. A connection with a large share of 

Figure 4.2 Flowchart for high level design of our congestion control algorithm 
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bandwidth consumption on a link has a correspondingly larger share of packet queue occupancy 

at the node. Thus, we use queue occupancy metrics to detect a greedy connection.  

In RED gateways when avg exceeds maxth, all packets arriving at the node are marked or 

dropped. In this state, the nodes packet queue is close to overflow and we label the node to be in a 

‘severely congested’ state. We have observed that maximum disparity between queue occupancy 

for non-greedy and greedy connections occurs at this time. To ensure accuracy in identification of 

greedy connections, our algorithm is triggered in the severely congested state of the node. For 

simplicity we identify a connection by a source IP address, source port tuple although it would be 

more accurate to identify connections by a source IP address, source port number, destination IP 

address, destination port number, IP protocol tuple. 

To identify the greedy connection at a severely congested node, first we need to determine the 

fair share (f) of a packet queue. Consider an active node having a total packet queue occupancy of 

75 packets with 5 connections competing for a share of the bandwidth. The fair share in terms of 

packet queue occupancy would be given by 

f = Total queue occupancy(p) / number of connections represented in the queue(n)     [a] 

 i.e.  f = 75/5 = 15 packets 

Ideally, to ensure a fair distribution of bandwidth, each connection should not have more than 15 

packets buffered at the node. But a responsive connection may have more than its fair share of 

packets buffered at the node due to several reasons. Some of the prominent reasons cited in [29] 

are the bursty nature of Internet traffic, a possibility of high delay-bandwidth links on the receive 

port of the node and connections being in different phases of operation. We provision for these 

discrepancies by a factor ‘k’ > 1. The value for k is selected to be loge(3n). The factor k decides 

the degree of permissible disparity between greedy and non-greedy sources. Selecting a small 

value of k may cause the algorithm to wrongly classify a responsive source as greedy, where as 

selecting k to be too large will make it nearly impossible for the algorithm to detect a greedy 

connection. A similar value is chosen in [29] for identifying flows using disproportionate 
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bandwidth. However that scheme also relies on the characterization of a conformant TCP source 

based on an assumed value of round trip time for the connection. Our approach to detect an 

unresponsive connection is purely based on the queue occupancy of the connections when a node 

is severely congested.  

Assuming that the separation between minth and maxth is large, avg is unlikely to increase from 

minth to maxth before providing ample time for the responsive connections to back off. In this 

scenario, when average queue size exceeds the maximum threshold, and a large disparity occurs 

between queue occupancies of competing connections it is safe to assume that the connection 

with an exceptionally large number of packets buffered at the severely congested node is 

bandwidth greedy. Continuing with our example, k = loge (15) or k = 2.708 

We calculate the responsive share (r) of the packet queue occupancy as  

    r = k*f           [b] 

            or r = 2.708 *15 = 40.62 

So in this example, a connection that has at most 41 packets in the queue (i.e.54.66% of queue 

occupancy) during its severely congested state is assumed to be responsive. All connections 

having more than a responsive share of the packet queue are assumed to be unresponsive. 

Amongst the unresponsive connections identified, the one having the maximum number of 

packets buffered at the severely congested node is singled out as the ‘greedy’ connection.  

Combining (a) and (b) we have,   

r =  ( loge(3n)*p)/n 

           i.e. r = p*(loge(3n))/n   

The permissible queue occupancy expressed as a percentage is then given as: 

qo= 100*r/p = 100* loge(3n)/n      [c] 

Figure 4.2 shows the permissible queue occupancy expressed as a percentage (qo) plotted against 

the number of connections (n) represented in the queue. The slope of the graph is steep for 
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smaller values of n and becomes a gradual decline as n increases. This implies that a larger 

variation in queue occupancy is permitted when fewer connections cause severe congestion at a 

node. One anomaly that appears is that for the special case of n=1, a connection will not be 

classified as greedy even if it exhausts the entire packet buffer at the node. This is in fact 

necessary, so that a single connection will never be filtered, since there is no competing 

connection. 
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4.8.2 Controlling the greedy connection 

When the node is severely congested, reducing buffer occupancy is of utmost importance or the 

buffer will overflow causing all arriving packets to be dropped and the RED gateway will reduce 

to a drop-tail gateway. The disadvantages of drop-tail gateways are explained in [4, 27]. To 

prevent the node to degrade into a drop-tail node, it becomes imperative to prevent the buffer 

from overflowing. We feel that the only effective way to control the inflow of packets from a 

greedy connection is by actively filtering packets belonging to the connection. The packet 

filtering must continue until such a time that the queue occupancy of the packet buffer at the 

severely congested node is reduced to acceptable levels. Once this happens the responsive 

connections may compete for a fair share of the bandwidth that they were previously denied. 

Figure 4.3 Percentage of permissible queue occupancy v/s number of connections 
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Also, the packet filtering can take place anywhere along the path of the connection from the 

source to the congested node.  

We control greedy connections by a process of mobile filtering. A packet filter for the greedy 

connection is installed at the congested node. This filter migrates towards the source of the greedy 

connection and stops at the first hop node of the connection. At the first hop node, the packet 

filter is installed for a pre-programmed interval of time. In our implementation migration of the 

filter is possible due to the assumption of bi-directional virtual links. In future implementations, 

the PrevHop field of the packet may be used to move the packet filter towards the source of the 

greedy connection. 

4.8.3 Operation of the mobile filter – The active filter service 

The process of mobile filtering begins with the congested node extracting a packet belonging to 

the greedy connection from its packet buffer. This packet reveals the source of the greedy 

connection. A greedy connection identifier (GCI) consisting of the source IP address and port 

number is formed. Next, the virtual link object connecting the congested node to the greedy 

source is obtained from the routing table using the GCI. The node uses the GCI to create a packet 

filter on the receive thread of the virtual link. The packet filter drops packets originating from the 

identified greedy connection. The virtual link object reveals the active node to which it connects. 

The IP address and port number of this active node is called the previous hop identifier (PHI). 

The node then creates an active packet destined for the previous hop requesting the ActiveFilter 

service.  

Figure 4.3 shows a network topology to illustrate the operation of LGC. Consider a greedy 

connection G identified (by the procedure described in section 4.8.1) at the severely congested 

node N4. This connection G competes with four other responsive sources (R) for link V9. N4 

extracts a packet belonging to G from its packet queue and forms the GCI. Using the GCI and by 

looking up its routing table, node N4 learns that the packet was received over link V6. N4 creates 

a packet filter on the receive thread of link V6 to drop packets belonging to G. Link V6 reveals 
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that it is connected to node N3. In effect, N3 is the previous hop node for the identified greedy 

connection G. Now N4 sends an active packet to N3 with its payload carrying the GCI, requesting 

the active filter service. N3 on receiving the active filter message similarly installs a packet filter 

for the mentioned GCI and propagates the active filter message to the next hop closer to G’s 

source that is to node N2.  

 

 

 

 

 

 

 

 

 

 

This process continues till the first hop node N1 for the greedy connection is reached. A minor 

technicality overlooked in the example above was the assumption that a node can automatically 

learn if it is the first hop node and stop propagating the mobile filter. This is because prior to 

creating the active filter message each active node performs a previous hop check. The check 

consists of a comparison of the GCI and the PHI fields. If they match it means that the filter has 

reached the first hop node for the connection G. The packet filter is then installed for a longer 

duration of time and the node does not propagate the active filter message any further. Sending 

the active filter message to the source of a greedy connection would be futile for reasons 

explained in section 4.3. Continuing with the above example when the active filter message 

reaches node N1, the Previous Hop Identifier and the Greedy Connection Identifier are both G. 

Thus no further active filter messages are sent in the network. 

Figure 4.4 Mobile filtering mechanism 
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Once a greedy connection is identified and filtered at the congested node the packet queue 

occupancy is expected to drop. However, due to the low pass filtering mechanism used in the 

calculation of avg, its value might continue to be greater than maxth even after the queue 

occupancy has decreased. This will again trigger the LGC algorithm. To ensure that LGC is not 

triggered multiple times in a short interval of time, a minimum idle period is chosen between two 

consecutive triggers of LGC.  

4.8.4 The LGC algorithm   

Variables used 

� avg – Calculated average queue size  

� maxth – Upper threshold for node queue 

� Suspend_LGC – A Boolean variable used to ensure a minimum idle time between 

consecutive triggers of LGC 

� ITime – The time for which the packet filter for the greedy connection is installed at an 

intermediate node 

� FHTime – The time for which the packet filter for the greedy connection is installed at the 

First Hop Node. 

� Tx – The minimum idle time between successive triggers of the LGC algorithm  

Initialization 

avg = 0, Suspend_LGC = false 

maxth, lTime, FHTime and Tx are pre-set and configurable. 

The average (avg) is calculated when a packet is added to the packet queue. The LGC algorithm 

is shown below: 

If ( avg ≥  maxth  &&  ( !Suspend_ESC ) )  { 

   Set Suspend_ESC to true for Tx 

  Find out responsive share of packets for a connection (r)  

  Determine the greedy connection and corresponding GCI 

  Determine virtual link on which its packets arrive and PHI 
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   If (GCI != PHI){ 

Install filter for GCI for ITime on virtual link  

Send filter message to previous hop node 

  } 

 Else 

   Install filter for FHTime for GCI 

 } 

The process routine of the active filter message is shown below: 

 Process (active_filter message) { 

Extract GCI from payload of active packet received 

Determine the virtual link on which its packets arrive and PHI  

If (GCI != PHI){ 

Install packet filter for GCI for ITime on virtual link  

Send filter message to previous hop node 

  } 

 Else 

   Install filter for FHTime for GCI  

4.8.5 Importance of timing parameters in LGC 

ITime : Referring to Figure 4.3 lets examine the sequence of events during the migration of the 

filter from node N4 to its previous hop node N3.  

a) Packet filter installed at N4 at time t0. 

b) Packet filtering begins at N4 at time t1 

c) Active message sent to N3 at time t2. 

d) Active message reaches N3 at time t3. 

e) Filter installed at N3 at time t4. 

f) Filtering begins at N3 at time t5. 

Once the filter is installed at N3 for the greedy connection it may be discarded at N4. The time it 

takes for the filtering operation to migrate from N4 to N3 is T = t5 – t0. So, after time T the filter 

may be discarded at N4. However, the time it takes for the message to be propagated from a node 
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to the previous hop node (t3 –t2) is dependent on physical characteristics of the network. Thus we 

set ITime to about 5 seconds for our implementation assuming that t5-t0 < 5 seconds. Further, by 

selecting a slightly large value for ITime we can be sure that the packet filter for the greedy 

connection will be installed at node N4 until such a time that all packets belonging to that 

connection are drained from node N3.  

FHTime: When the filter reaches the first hop node, it stops migrating and is then installed for 

FHTime seconds. If we keep FHTime too small the unresponsive connection will not be filtered 

long enough and could congest the network again. If we keep it too large the connection may 

close but the packet filter will continue to exist adding unnecessary overheads at the gateway at 

which it is installed. We set FHTime to about 100 seconds in the RANI testbed. 
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Chapter 5 

Experimental Evaluation 

5.1 Evaluating the LGC algorithm 

In this chapter we evaluate the utility of the mobile filtering mechanism and the LGC algorithm 

by experimentation on the RANI testbed in a configurable environment, followed by an analysis 

of the results obtained. Since the LGC algorithm is triggered only during severe congestion, this 

state of the node becomes the starting point for our experimental evaluation. In all our 

experiments we force a node into severe congestion and observe the relevant values of the node 

parameters to deduce the events occurring at the node. The aim of the LGC algorithm is to control 

greedy connections. Also, in order to reduce complexity in the implementation we do not 

implement the RED algorithm in its entirety. 

5.1.1 Experimental Environment 

The machines used in the experiment had an Intel Pentium II 300 MHz processor. These 

machines were interconnected via a 10BaseT Ethernet LAN at the data link layer. The RANI 

network was built on the Windows NT operating system substrate.  

5.1.2 Source simulation 

To bring out the effectiveness of the LGC algorithm we simulate responsive and unresponsive 

connections. The sources are simulated with the help of a packet generator that can be selected to 

behave as a responsive or a greedy source.  

 

 

 

 

 

 

Figure 5.1 The active node at runtime 
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The transport mechanism for a responsive connection is simulated as a rough approximation of a 

TCP source. A detailed explanation of the implementation of TCP can be found in [22]. In this 

section we briefly describe our implementation of the relevant parameters of the TCP window. 

Our TCP-like source contains common parameters as implemented in TCP such as the slow start 

threshold (ssth) and congestion window (cwnd). The slow start threshold parameter for the 

responsive source is set through the user interface. The packet generator begins in a slow start 

phase in which the congestion window (initially set to one) is doubled every round trip time 

(similar to TCP’s exponential increase in cwnd) until it equals the threshold. Now the generator 

enters the congestion avoidance phase in which the congestion window is incremented by one 

packet every round trip time (similar to TCP’s linear increase in cwnd). The transport mechanism 

for an unresponsive connection is simulated by a constant packet-rate source. The end user can 

configure the total number of packets, the number of bursts and the inter-burst spacing in 

milliseconds through the user-interface. For example the end user may select the total number of 

packets as 200, the number of bursts as 8 and the inter-burst spacing as 300msec. 

Correspondingly, the packet generator will inject 25 back to back packets, pause for 300 

milliseconds, inject the next 25 packets back to back, then pause again for 300 milliseconds, and 

so on until all 200 packets are sent.  

5.1.2 Network Topology and active node parameters 

The active network topology comprises of the number of source nodes, interconnecting nodes, 

sink nodes and the virtual links interconnecting these nodes. The active node parameters consist 

of the time-to-live field set in the packets and the node queue parameters defined by the size of 

the buffer, the weight (w) used for calculating the average queue size and the maximum threshold 

(maxth) of the nodes packet queue (Node Q).  

For each experiment we select a topology that tests a particular aim of the LGC algorithm and 

select node parameters such that at least one of the intermediate nodes gets severely congested in 
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order to trigger the LGC algorithm. To prevent packet loss we select a large buffer size at the 

intermediate node targeted for severe congestion.  

5.1.3 Presenting results 

Results are presented in the form of graphs, tables and statements for the following: 

� The throughput observed for each of the sources is expressed as a percentage of packets 

successfully reaching the destination node 

� Installation and mobility of active filters (if any) for the identified greedy connections 

� Actual queue size measurements and average queue size measurements for a given set of 

active node parameters.  

5.1.4 Experiment 1 – Basic operation 

In this experiment we test the ability of the LGC algorithm to correctly identify and filter a 

greedy connection. The test network consisting of six responsive sources, one greedy source, one 

interconnecting node and a sink node is shown in Figure 5.2. 

 

 

 

 

 

 

 

 

 

 

Node 1 is the greedy source and nodes 2,3,4,5,6 and 7 are responsive sources. Node 7 behaves as 

a responsive source and is targeted for severe congestion. Node 8 is the common sink for all the 

sources. Virtual links are shown as double-ended arrows. Node 7 is forced into a severely 

Figure 5.2 Network topology for Experiment 1 
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congested state by having all the sources transmit packets at approximately the same time. To 

prevent packet drops due to expiration of the TTL field, all packets injected into the network have 

an initial TTL of 10 seconds. The queue parameters for node 7 are set with queue weight = 0.02, 

maxth (Upper threshold) = 25 and buffer size = 50. The responsive sources inject 50 packets each 

with an initial TCP slow-start threshold set to 16. The greedy source injects 200 packets in 5 

bursts with an inter-burst duration of 1 second.  

In Figure 5.3, the x-axis shows the packets arriving at node 7 and the y-axis shows the queue size 

measured in packets. The solid line (y = 25) represents the configured value of maxth at the node. 

Notice that the low pass filtering mechanism of RED causes the average queue size to change 

slowly in comparison to the actual queue size. For brevity, the first few packet arrivals have been 

omitted in Figure 5.3. Initially as the responsive sources open up their windows, the actual queue 

size remains low (<10). Once the competing sources have sufficiently large windows, the actual 

queue size increases rapidly. When the average queue size crosses maxth viz. 25 in this case, the 

LGC algorithm is triggered. 

 

 

 

 

 

 

 

 

 

Figure 5.3 Plot of queue size v/s packet arrivals for Node 7 
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From the nodes packet queue we observe that the total queue occupancy is 39 packets. Of these 

21 packets belong to connection 1, 4 packets belong to connection 2, 5 packets belong to 

connection 3, 3 packets belong to connection 4 and 2 packets each to belong connections 5,6 and 

7. Totally there are seven active connections at node 7. Fair queue occupancy is 39/7 = 5.57. With 

a permissible factor k of loge(21), the permissible queue occupancy is 5.57 *3.0445  = 17 

packets. Connection 1 had 21 packets in the node queue and was correctly identified as an 

unresponsive connection. Since Node 7 is the first-hop node for this connection, the migration of 

the packet filter was not necessary and a packet filter for connection 1 was installed at Node 7 for 

a duration T_FirstHop(100) seconds. Subsequently all packets arriving from connection 1 were 

filtered out at node 7. The throughput for responsive connections was observed to be 100% after 

the LGC algorithm came into effect, but the greedy connection had a throughput of 53.5% due to 

active filtering at node 7. If the RED algorithm were implemented in its entirety, the throughput 

observed for the responsive sources would be lesser than 100% since the algorithm would drop 

all packets arriving at the node when it is severely congested. However, this technicality is 

overlooked in the evaluation of LGC since RED is not implemented in its entirety i.e. arriving 

packets at the node under severe congestion are not dropped or marked. We only wish to isolate 

the greedy connections and dynamically filter them to prove that the algorithm is successful. 

Due to the bandwidth greedy nature of connection 1, we observe a sudden drop in the queue 

occupancy once this connection is filtered. This can be observed in the region of the graph just 

after the LGC algorithm is triggered. Eventually the queue size is controlled at point B. The time 

lapse (marked as T in Figure 5.3) between the LGC algorithm coming into effect (point A) and 

the reduction in average queue occupancy (point B) occurs due to the low pass filtering 

mechanism in the calculation of the average queue size. It confirms the requirement for the 

presence of an idle time (Tx > T) between two successive triggers of the LGC algorithm. If the 

LGC algorithm were not suspended for time Tx, it would be triggered multiple times since avg 

exceeds maxth for duration T, despite active filtering of the greedy connection. 
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The LGC algorithm must also ensure that non-greedy unresponsive connections must not be 

filtered. To verify this requirement we repeated the above experiment with source node 1 

injecting 200 packets in 15 bursts with an inter-burst duration of 3 seconds. Node 1 now 

simulates a constant packet-rate source making a moderate demand on network bandwidth at the 

congested node 7. Figure 5.4 shows the actual and average queue sizes plotted against packet 

arrivals at node 7. The bursty nature of the connections causes the spikes in the value of 

instantaneous queue size at the intermediate node 7.  

 

 

 

 

 

 

 

Here, we observe that the average queue size at node 7 remains below 10 at all times implying 

that demand on resources does not exceed supply. Thus node 7 does not get congested and LGC 

is not triggered. Since queue occupancy remains low (<25), there is no packet loss and throughput 

is 100% for all the seven connections.  

5.1.5 Experiment 2 – Mobility of the active filter 

After the LGC algorithm identifies and filters a greedy connection at the congested node, it uses 

active messages to move the filter dynamically towards the source of the identified connection. In 

doing so, packets belonging to the greedy connection are filtered ‘closer’ to their source, thereby 

reducing the wastage in network resources. In this experiment we study the movement of the 

Figure 5.4 Plot of queue size v/s packet arrivals for non-greedy connections 
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mobile filter towards the source of the greedy connection and the effect of installing the mobile 

filter at a node. The network topology for the experiment is shown in Figure 5.5. 

Node 1 is an unresponsive packet source. Nodes I1, I2 and I3 are interconnecting nodes that 

forward packets. Node S is the sink for all the packet sources. Nodes 2,3,4 and 5 are responsive 

packet sources that provide cross traffic to congest I3. Node I3 has a buffer size of 100, maxth set 

to 35 and w set to 0.02. All sources inject 250 packets with the responsive sources having an 

initial TCP slow-start threshold set to 32. 

 

 

 

 

 

 

 

 

In order to monitor the packet flow in the network we label the packets from the various sources 

as follows. Packets from source 1 are labeled a1 through a250. Packets from source 2 are labeled 

b1 through b250. Packets belonging to sources 3,4 and 5 are labeled similarly. 

First, we consider the activities at node I3. In Figure 5.6, the x-axis shows the packets arriving at 

node I3 and the y-axis shows the queue size measured in packets. For brevity, the first few packet 

arrivals have been omitted in the chart. When the average queue size crosses 35, the LGC 

algorithm is triggered. At this time, I3 had received and forwarded 122 packets belonging to 

source 1, 84 packets belonging to source 2, 91 packets belonging to source 3, 85 packets 

belonging to source 4 and 66 packets belonging to source 5, making a total of 448 packets. This is 

shown by the dotted line in Figure 5.6.  

 

Figure 5.5 NetworkTopology for Experiment 2 
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Based on queue occupancy at the node, source 1 is identified as ‘bandwidth greedy’. 

Consequently a packet filter for source 1 is installed for T_Intermediate seconds. I3 also sends an 

active filter message to the previous hop node I2. Now, packets belonging to source 1 are dropped 

at I3 as long as the packet filter remains in operation. Soon, node I2 installs a similar packet filter 

and the responsibility of controlling the greedy source 1 shifts one hop closer to the source. This 

process continued till the filter migrates to the first hop node. These actions are deduced from the 

packet drops for source 1 which occur successively at nodes I3 followed by I2 and finally at I1. 

 

 

 

 

 

 

 

Figure 5.6 Plot of queue size v/s packet at NodeI3 

Figure 5.7 Packet flow in Experiment 2 after LGC has been triggered 
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In Figure 5.7, the y-axis represents the number of packets and the x-axis marks the nodes I1, I2, 

I3 and the sink. The bars represent the arrival and departure of packets belonging to source 1 at 

the nodes I1, I2 and I3. Lets start with node I3 where packet filtering begins. When the LGC 

algorithm was triggered, I3 had received and forwarded packets a1 through a122. It then installs 

the packet filter for source 1 and sends an active filter message to I2.  I3 then drops packets a123 

through a135 due to active filtering. Now, I2 installs a packet filter for source 1 and propagates 

the filter message to node I1. Subsequently I2 drops packets a136 through a173 and packets a174 

through a250 were filtered at I1. Totally packets a123 through a250 are dropped after LGC is 

triggered. 

5.1.6 Experiment 3 - Multiple bandwidth greedy connections  

In this experiment we test the ability of the LGC algorithm to handle multiple bandwidth greedy 

connections. The network topology for this experiment is shown in Figure 5.3. Nodes 1 and 3 are 

greedy sources where as nodes 2, 4 and 5, 6 and 7 are unresponsive connections making a 

moderate demand on the network. Node 8 is the common sink for all the sources. Node 1 injects 

300 packets in a single burst and node 3 injects 300 packets in 3 bursts with an inter-burst spacing 

of 3 seconds. The other nodes (2,4,5,6 and 7) inject 120 packets each in 30 bursts with a 2 

seconds inter-burst period.  

 

 

 

 

 

 

 

 

 

Figure 5.8 Network Topology for Experiment 3 
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The queue parameters for node 7 are set with queue weight = 0.04, maxth = 35 and buffer size = 

250. A large buffer size is deliberately chosen to observe the queue occupancy at node 7 and 

prevent tail dropping of packets. 

In Figure 5.9, the x-axis shows the packets arriving at node 7 and the y-axis shows the 

instantaneous and average queue sizes measured in packets. The line (y = 35) represents maxth. 

For brevity, the first 110 packet arrivals at node 7 have been omitted in the chart. Initially the 

average queue size remains low (<10). Once the greedy source begins injecting packets, the 

average queue size increases till maxth is crossed (point A). Now, the LGC algorithm is triggered 

and active filtering of greedy source 1 begins.  

At this point the queue size drops but the available bandwidth is soon taken up by the second 

greedy source. This is observed within the Tx portion of the graph at point D. The difference here 

is that although the average queue size crosses the upper threshold (35 in this case), the LGC 

algorithm is not triggered. The reason being that a minimum time lapse of Tx is maintained 

between successive triggering of the LGC algorithm. After the Tx timer expires (point B), the 

LGC algorithm successfully identifies and filters the second greedy source. Queue occupancy is 

now controlled and the node emerges from its congested state (point C). 

Packets arriving at the common sink node 8 reveal that throughput for the moderate connections 

were 100% each (mainly due to the large buffer size at node 7). Greedy connection 1 had a 

throughput of 57.33% and greedy connection 2 had a throughput of 46% due to active filtering at 

node 7. 
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5.2 Observations of LGC 

� At the congested node, if there are a large number of connections represented in the node 

queue, it is observed that the greedy connection tends to shut out the responsive connections 

and grab a large share of the bandwidth making it easier to identify greedy connections.  

� There may be some cases in which multiple greedy connections compete for a limited share 

of the bandwidth in such a way that they restrict other responsive connections, but all of the 

greedy connections have individual queue occupancies within permissible limits. In this 

scenario the active node gets congested but the LGC algorithm fails to detect the greedy 

connections. For example, lets assume that there are ten connections through a node of which 

five are non-greedy and five are greedy sources. It is possible that when avg ≥ maxth each of 

the greedy sources have taken up 15% of the queue leaving the remaining 25% of the queue 

to be shared amongst the five responsive sources. The permissible value of queue occupancy 

is obtained from eq. [c] in section 4.8.1. Thus,  

Figure 5.9 Queue size v/s packet arrivals for multiple bandwidth greedy sources 

A – Active filtering of greedy source 1 begins 
B – Active filtering of greedy source 2 begins 
C – Node relieved from congested state 
D – Second greedy source congests the node 
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    qo = 100* loge(3*n)/n = 100*loge(30)/10 = 34.01%  

 Since all the connections including the greedy connections have queue occupancy well below 

this limit, the LGC algorithm does not detect them and the five responsive connections 

continue to receive a disproportionate share of the bandwidth. Although this example 

demonstrates a shortcoming of the LGC algorithm we note that such scenarios are the 

exception rather than the rule. It is a rare occurrence for multiple greedy connections to 

congest a particular node at the same time and get synchronized in such a way that they make 

identical demands on network bandwidth.  

� The overheads of the LGC algorithm include maintaining timers and connection identifiers 

when the node is severely congested. However, these overheads are minimal in comparison to 

the benefits accrued in limiting greedy connections and relieving the node from its congested 

state. If extreme measures such as actively filtering out the greedy connections are not taken 

there is a high possibility of the node buffer being reduced to a drop-tail queue. 

� If the packet filter were to be statically positioned at the congested node, the node would 

suffer the overhead of filtering packets at a time when its resources were scarce. Secondly, 

network resources such as processing time and bandwidth would be wasted between the 

source and the congested node at which the packets are being filtered. For the above reasons 

we considered it beneficial to use active network technologies to migrate the packet filter 

towards the source of the greedy connection and protect network resources.  
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Chapter 6 

Conclusion and Future Work 

6.1 Summary  

This thesis has presented the design, implementation and evaluation of an active network 

architectural framework along with two popular network utilities and a mobile filtering 

mechanism targeted at limiting the impact of bandwidth greedy connections on congested nodes 

in the network. The active nodes in the network support a menu-based processing model in which 

end-users may select a packet processing service from an available set of possible services. The 

node does not maintain state as regards a particular flow but could be programmed to do so under 

exceptional circumstances as in the case of the LGC algorithm actively filtering packets 

belonging to an identified greedy connection. The active datagrams injected into the network 

contain a reference to the type of servicing they require and the network nodes provide this 

service on a best effort basis. The active nodes are implemented in Java as a user space process 

and execute at the application layer in the TCP/IP protocol stack. In our implementation we do 

not distinguish between end-nodes and intermediate nodes of the network. We have provided a 

user friendly GUI for configuring, operating and managing the active node.  

6.2 Future Work 

Our current work was focused on implementing utilities and control mechanisms on an 

experimental active network testbed. In this work we have borrowed many concepts from existing 

implementations on traditional IP networks such as Ping, Traceroute, RED and ECN. It will be 

interesting to pursue applications that simply cannot be supported by traditional store and forward 

networks; applications that must rely on intelligence within the network for their successful 

operation. If it can be proved that such applications significantly improve end-user satisfaction 

and at the same time consume network resources modestly, the active networks project is certain 
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to gain a wider acceptance. The future directions of this work will be in pursuing the development 

of such ‘killer’ applications. We summarize some of the future directions below: 

� Designing the node to operate at the network layer will ensure that the end-to-end latency 

addition due to application specific packet processing within the active network will be 

minimized. The performance of our active network will then become comparable to 

traditional networks.   

� Our present active network implementation assumes that the virtual links interconnecting the 

active nodes are bi-directional in order to reduce the complexity of the active services built on 

the underlying network fabric. In future implementations we wish to eliminate such 

simplifying assumptions so that an empirical analysis of our system will yield results that 

closely emulate real-world scenarios. 

� A wide range of work in the development of end-user application services for active networks 

is currently being done. This includes Active Reliable Multicast [25],  improvements in 

network caching [15, 32], Network Security [10], Active Bridging [12], data fission and 

fusion techniques within the network [37] and application oriented congestion control 

mechanisms [30, 33, 35]. In future implementations we wish to take a closer look at user-

level application services that can directly benefit from the underlying intelligence provided 

by an active network. 
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Appendix A 

In order to compare the theoretical performance of traceroute and Atraceroute we make some 

basic assumptions as regards the network topology.  

A.1 Assumptions:  

i. Symmetrical routes between the source and destination node since it is a requirement for 

the successful operation of traceroute. 

ii. All links that interconnect the network nodes have identical network metrics such as 

bandwidth, delay, etc. to aid in calculations. 

iii. All nodes in the network have a constant processing time Tx, for an incoming packet. 

This means that the time interval between a packet entering and leaving a node is Tx and 

remains the same for active or passive packets. 

iv. Traceroute and Atraceroute packets have the same size. 

A.2 Comparison of the time complexity for traceroute and Atraceroute 

Based on the above assumptions, the time taken for a packet to travel from one node to the next is 

a constant. Let this time be d. From assumption iii, the node resident time of the traceroute and 

Atraceroute packets is the same and is ignored in future calculations.  

Traceroute: The first packet sent out by the source node has its TTL set to 1. The time lapse 

between sending out this packet and receiving a ‘time exceeded’ response is 2d. In general, the 

time lapse between sending out the nth packet and receiving the nth ‘time-exceeded’ response is 

2(n)d. Since traceroute operates by sequentially probing and discovering nodes in the network 

upto the destination node, the total time (D) in discovering a node that is n hops away is 

D = 2(d) + 2(2)d + 2(3)d + ……. + 2(n-1)d + 2(n)d 

D = (d)(n)(n+1) …………………………………[I] 
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Atraceroute: In this case only one ‘originating’ packet is inserted into the network and it 

successively probes the nodes in the network till the destination node is reached. Referring to 

Figure 4.3, the time taken to discover a node that is n hops away is  

    D = 2(n)d ………………………………………[II] 

From [I] and [II] it is evident that based on identical network metrics and conditions, the time 

complexity for traditional traceroute is O(n2) and for Atraceroute it is O(n). 

A.3 Comparison of the link utilization for traceroute and Atraceroute 

In the case of traceroute, the total number of links traversed by packets belonging to the 

traceroute utility is obtained from [I] as   

N = n(n+1) ………………………………..……[III] 

Referring to Figure 4.4, in the case of Atraceroute the total number of links traversed by the 

‘originating’ packet is n. The ‘descriptive packet’ from the nth node traverses n links. Thus the 

total number of links traversed by the original and descriptive packets are : 

    N = n + 1 + 2 +…… + n  

    N = ½(n)(n+3) ………………………..…….….[IV] 
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Figure A.1 Comparison of link utilization  
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Figure A.1 shows a plot for equations [III] and [IV]. We observe that as n increases the link 

utilization of Atraceroute is modest in comparison with traceroute, although both have 

complexity of O(n2). 

  

 

 

 

 

 

 

 

 

 

 


