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ABSTRACT OF THE THESIS

The design and evaluation of network services in an active network architectural
framework

by NIRAJ PRABHAVALKAR

Thesis Director:

Professor Manish Parashar

There are an increasing number of applications that require more support from the network nodes
besides the storage and forwarding of bits that the nodes presently provide. These applications
include group communication strategies, scalable network management, provisioning for quality
of service, efficient routing protocols and congestion control mechanisms. Active networks
provide a new networking platform that is flexible and extensible at runtime and supports the
rapid evolution and deployment of networking technologies to suit current needs. They allow the
network nodes to perform application specific computation on the data flowing through them.
Although, with active networking the possibilities for refining current applications and
introducing new ones are tremendous, it is important to demonstrate the performance benefits
accrued from an active networking platform.

Despite research efforts in industry and academia to eliminate network congestion, the problem
continues to persist. Furthermore, a number of applications require a constant bit rate of
transmission while some others tend to ‘grab’ as much network bandwidth as available ignoring
congestion related feedback from the network. We utilize the processinglitepati§ active

networks in order to effectively control bandwidth greedy connections at a congested node.



Traceroute is a popular network utility that discovers the route followed by an IP datagram to
another host. Refinements in accuracy of operation and savings in network resources are achieved
by using an active networking platform to implement traceroute.

This thesis investigates the design of an experimental active network testbed and develops active

services that utilize thenderlying network fabric. It makes the following contributions.

o The design and implementation of an active network testbed comprising of interconnected
active nodes using object-oriented technigues. In our network model datagrams may select
specific processing at the active nodes from an available set of options thus conforming to a
menu-driven approach.

o We have designed and evaluated a congestion control mechanism that aims to limit the
degradation in network performance caused by bandwidth greedy applications. The
mechanism operates by monitoring packet queues to detect a greedy connection. A process of
recursive mobile filtering then controls the identified connection. Specifically, we install a
packet filter for the greedy connection and use active messages to dynamically move the filter
towards the source of the connection. By filtering packets closer to the source, the network
resources are protected from the aggressive flow.

o We have implemented an active traceroute utility that achieves considerable savings in time

complexity and link utilization for achieving the same objectives as traditional traceroute.
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Chapter 1

Introduction

An active network may be simplistically viewed as a set of "Active nodes" that perform
customized operations on the data flowing through them. Traditional data networks were
designed with the aim of transferring bits from one end system to another. The transport
mechanism achieved its objectives with minimal computation within the network. In contrast,
active networks allow the network nodes to perform computation on the data passing through
them. In fact, some implementations also allow their users to inject customized programs into the
nodes of the network that may modify, store or redirect the user data flowing through the
network.

An active network is a relatively new concept gaining popularity in 1996. The active networks
program has the goal of producing a new networking platform that is flexible and extensible at
runtime. This platform aims to support the rapid evolution and deployment of networking
technologies to suit current needs and also help in developing services such as group
communication strategies, scalable network management, quality of service, efficient routing
protocols and congestion control mechanisms. The active network architecture supports a finely
tuned degree of control over network services. The packet itself is the basis for describing,
provisioning, or tailoring resources to achieve the delivery and management requirements. One
such architecture makes use of a “Smart Packet” [21] as the basic message unit on the network.
This packet is an agent with its objectives expressed through a portion of the packet called its
"method" -- a set of instructions that can be interpreted consistently by the active nodes through
which it traverses. The network is engineered to allow security, reliability, availability and quality
of service to be tuned at multiple levels of granularity under a wide range of conditions. The
active networks program involves the synthesis of work in programming languages, operating

systems and computer networking. Figure 1.1 shows a comparison of network processing



between traditional networks and active networks. It has been taken from the official DARPA

website [20].
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Figure 1.1 Comparing traditional networks with active networks

The objectives of this thesis are:

o To provide a ‘proof of concept’ for active network technologies. In doing so we wish to
develop an active network testbed, design applications that utilize the added functionality of
the testbed and present relevant results obtained.

o To design and build an active network testbed for interconnecting lightweight active nodes.
The testbed must be extensible, user-friendly and should efficiently accommodate traditional
forwarding services.

o To implement new network utilities or improve upon existing ones by using the processing
capability of intermediatenodes and to demonstrate the effectiveness of the utilities by

experimental evaluation.



1.1 Background and motivation

The fundamentals for introducing a novel computer networking architecture must be sound. In the
following sections we outline the motivation for developing active network architectures.

1.1.1 A lengthy process called ‘Standardization’

Traditional networking architectures evolve at a slow pace governed by the time taken for
standardization and deployment of new protocols. We need to match this evolution speed with the
speed at which new applications are being introduced into networking. The design philosophy of
TCP/IP networks is based on a layered approach with each layer communicating with its peer
using standardized protocols. A wide variety of high level services such as file transfer (FTP), E-
mail (SMTP, POP) and Hyper-text transfer (HTTP), and low level network technologies such as
ATM, FDDI and Ethernet can be made to inter-operate at the network level by funneling their
functionality’s through the static IP protocol. Thus, IP routers are configured using a hardware
approach with the fixed IP protocol format in mind leading to the hour-glass model of TCP/IP

networks as shown below.

FTP, HTTP, TCP, UDP

IP (statid

FDDI. Ethernet. ATM

Figure 1.2 Hourglass model of TCP/IP networks

As the Internet grows it is increasingly difficult to maintain, let alone accelerate the pace of
innovation [6]. Every time a sophisticated application emerges or a change in link layer network
technology occurs we need to standardize and deploy new protocols in order to conform to the
interoperable IP layer. Standardization and deployment of such protocols is a lengthy and time-
consuming process taking several years as RSVP (Resource Reservation Protocol) and IGMP
(Internet Group Management Protocol) have proved. By having programmable open nodes and

the ability to deploy programs dynamically into the node engines, network services are decoupled



from the underlying hardware. This allows new services to be demand loaded into the

infrastructure. Instead of hard-coding the functions of the network nodes, the execution

environments deployed for the application specific programs needs to be agreed upon so that

innovative ideas can be rapidly inducted over the underlying substrate.

1.1.2 Application Support

There are an increasing number of applications that require more support from the network nodes

besides the storage and forwarding of bits that they presently provide. Some of these applications

are listed below.

Q

The World Wide Web has a client-server design with clients establishing connections with

servers and requesting data from them. Caching "popular” data close to "interested" parties

reduces the latency of the data transfer and also reduces load on the server(s). However,
deploying caches dynamically at strategic locations within the network is a non-trivial task
and cannot be supported without the development of new protocols.

Multicasting takes place with the help of routers having added functionalitpute IP

packets to multiple destinations.

Mobility of hosts connected to the Internet requires the presence of mobile proxies in the

networkthat can re-route traffic to the correct location of the host.

Multimedia applications like video require transcoding mechanisms at strategic locations

within the networkto convert high bit-rate streams to lower ones. The transcoder is based on

some data characteristics such as resolution, frame rate, etc.

Installing firewalls in the network at administrative boundapiess/ides intranet security. The

firewalls are essentially filters that examine transit traffic and allow only conforming traffic
to pass through while blocking other traffic. The manual process of updating firewalls to
enable the use of new applications is an impediment to the adoption of new technology and

needs to be automated.



o A Network utility such as traceroute allows users to discover the route of an IP datagram
from a one node to another. The utility assumes static routes for consecutive datagrams
injected by the source node. We have investigated the impact of active networking

technologies on _optimizing the performance of the traceroute uitilityerms of reducing

complexity and eliminating the static route assumption.
o Many congestion avoidance mechanisms rely on routers and end-hosts to control connections
responsible for causing congestion so as to prevent further degradation of the network.

However, controlling ‘bandwidth greedy connectibm®ntinues to remain an open problem

in computer communications. In this thesis we will investigate a congestion control strategy
that is aimed at detecting and isolating such connections using active networks.
All the applications described above require some enhancediltagsalvithin the network to
achieve successful operation. In the absence of architecture support, the present solution consists
of a collection of ad-hoc approaches like installing Web proxies, multicast routers, mobile
proxies, video gateways and firewalls to provide the above services to end-users. The obvious
guestions are "Can we have a more generic solution to support a variety of applications, some of
which may not even exist as of today?" and if so "What is the appropriate approach?"
1.1.3 Technological progress
Computationally powerful machines are readily available as desktop PC’s today. We may safely
assume that in the coming years processors will become smaller and faster. The same applies to
network processors such as routers. Advancement in technology will help in developing a generic
network model capable of performing customized computation within the network and not
restricted to the end points as is done today.
1.2 The challenges
The world of computers and communications distinguishes between nodes used for computing

and nodes used for communications [35]. This distinction evolved naturally since computers were



developed as stand alone machines that were subsequently connected by network elements. An
active network tends to narrow the gap between intermediate nodes and end-hosts with the
introduction of programmable open nodes that ‘may’ be injected with code from end-hosts.
Figure 1.3 illustrates a generic active node model and is based on the network model presented in
[14]. It comprises of three principal components; a forwarding engine for storing and forwarding
packets in the network, a transient execution environment for application oriented packet
processing and an accessible storage location for the execution environment. Based on this model
the most notable technical challenges in making the transition from the present Internet to an
active network are network security, evaluating performance benefits, addressing interoperability

and deployment.

Transient Execution

Environment

Packet iput

k Packet putput
|:> Forwarding Engine |:>

Figure 1.3 Generic active node model

1.2.1 Network security

Security issues are critical in active networks especially in implementations that let users load
their own code. The origin of information needs to be authenticated and it must be protected from
modification. Active code may have access to network resources making active networks
particularly susceptible to malicious or defective code that could threaten the operation of the
network. Researchers are finding ways to build networks in a way that will pre-empt defective

programs from harming the network or interfering with other programs and other users. But this

! Bandwidth greedy connections are defined in chapter 4.



approach also leads to a dilemma since we need to carefully restrict the actions of arbitrary code
while providing that very code with the flexibility of network level primitives.

1.2.2 Performance evaluation

The overhead of processing active packets at intermediate nodes in the network makes them fall
behind traditional data networks in terms of latency and throughput. The computation required
within the network may even tend to clog routers leading to network congestion. However,
processing of packets is not needed at every intermediate node within the network since most
applications require specific processing only at strategic locations within the network. Contrary to
popular belief, despite increasing the amount of processing performed within the network,
applications can improve overall system performance. Although throughput (a common network
performance measure) may suffer due to processing overheads in active networks, the application
may benefit on the whole if fewer active packets are needed to achieve the same application
objectives. For example research presented in [37] analyzes the performance of a real time
auction application that uses caching within the network backbone to reduce the load on the
auction server and backbone routers in terms of server load, round trip processing time and
network bandwidth consumption. During periods of heavy load the auction server activates filters
within the network and periodically updates them with the current price of the popular items. The
filtering active nodes are then authorized to reject bids that are lower than the current price. This
active networking protocol helps in distributing the server load, reducing bandwidth consumption
and cutting down on round-trip response time to customers during busy periods. Thus, some
researchers point out that performance should be evaluated in terms of application specific
metrics, which may not be positively correlated with network metrics. The cost of these
performance improvements in Active Networking is in the increased consumption of
computational and storage resources in the network, which may slow down other network traffic

flowing through the busy active node. However, the competing traffic could also benefit from



active processing due to the overall reduction in bandwidth utilization and congestion-related
loss.

1.2.3 Interoperability

Packet networks achieve interoperability by standardizing the syntax and semantics of packets.
Internet routers support the agreed IP specifications and perform the same computation on every
packet. In contrast active nodes can perform different computations on the packets flowing
through them. Interoperability must be achieved at a higher level of abstraction. Rather than
fixing the computation performed on the active packet we need to standardize the computational
model consisting of the instruction set and resources available to the active packets. For example,
to achieve cross-platform compatibility, a standard API could be developed to act as a common
programming model for writing the code that is injected into active networks. This would make it
easier to develop new applications as desired and would also reduce the program content of the
active packet.

1.2.4 Deployment

Deploying a new system needs substantial justification along with backward compatibility. To
succeed in the marketplace, proponents must develop applications, both current and future, that
demonstrate a clear advantage as promised without rendering prior networking equipment
useless. In order to strengthen the justification of the active networks program it is required to
demonstrate the capabilities of middleware serfibgsdeveloping suitable applications. In this

work we concentrate our efforts in the development of network services on an experimental
testbed.

1.3 Contributions

o We have built an active network testbed comprising of interconnected active nodes. By using

object-oriented techniques in the design of our active node we provide extensibility, re-

2 Middleware services are those that manage system resources, describe message format and support
data transformation.



usability and user-friendliness. Further, by creating a separate processing track for active
datagrams, we have ensured minimal impact on applications requiring plain old forwarding
service.

o The network utilities we have developed include (a) APing for discovering if a node in the
network is operational and (b) Atraceroute for tracing the path of a datagram in the RANI
active network. We have highlighted the advantages of Atraceroute by testing it on our
network and comparing it with the existing implementation on traditional networks.

o We have addressed the problem of limiting the impact of ‘bandwidth greedy connections’ at
congested nodes. We have designed and evaluated an intelligent congestion control
mechanism to detect and counter such connections during periods of severe congestion. In
our implementation we use a packet filter to discard packets belonging to the identified
connection at the congested node and dynamically move the filter towards the source of the
‘greedy’ connection thus protecting network resources from being overwhelmed. We
successfully demonstrated the utility of our mobile filtering mechanism through
experimentation.

1.4 Thesis Overview

Chapter 2 covers related work in which we survey some of the prevalent active network

architectures developed by others. It also includes a comparison of the various active network

architectures. In Chapter 3, we present our active network system architecture highlighting the
goals we have achieved. In Chapter 4 we present the active network services that we have
developed. The chapter begins with a description of our active traceroute and active ping utilities.

Finally, we examine the inadequacies of a popular congestion control strategy with respect to

bandwidth greedy connections and then explain a mobile filtering mechanism for isolating such

connections during periods of high congestion in our active network testbed. Chapter 5 is
dedicated to experimental evaluation of our active filtering mechanism. Chapter 6 draws

conclusions on the effectiveness of our work, suggesting some possible future directions.



Chapter 2

Related Work

With active networking, the network is no longer viewed as a passive mover of bits, but rather as

a more general computation engine: information injected into the network may be modified,

stored or redirected as it is being transported. Obviously such a capability opens up many exciting

possibilities. However, it also raises a number of issues including security, interoperability and

migration strategy. All of these are influenced in large part by the active networking architecture

that defines the interface between the user and the capabilities provided by the network. The

networking architecture adopted has a direct bearing on the utilities and applications that it may

support.

We have developed a simple active network testbed. We utilize the functionality of this testbed

by implementing network utilities and by designing an intelligent congestion control mechanism.

This chapter is devoted to giving a brief overview of the prevailing active network architectural

models. Finally, we compare these architectures and provide the motivation for the design of our

testbed.

2.1 Related Active Network Architectures

2.1.1 Smart Packets

BBN is developing a capability for packets to carry programs that are executed at each node the

packet visits in the network [3]. The programs implement extended diagnostic functionality in

the network. The Smart Packets architecture has the following goals:

o Providing a specification for smart packet formats and their encapsulation into some network
data delivery service.

o Specification of a high level language, its assembly language, and a compressed encoding

mechanism for representing the portion of a smart packet that gets executed.
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o Developing a virtual machine resident in each networking element to provide context for
executing the program within the smart packet.
o Developing a secure design
The Smart Packets project is designed to demonstrate that network management is a fruitful target
for exploiting active network technology. Making the programmable environment too rich or
flexible would overload the computing power of the managed node and compromise on security.
To balance flexibility with computing power and security two important decisions were made.
Firstly, there would be no persistent state in the network nodes. Consequently, the programs
carried by the smart packets must be completely self-contained. Even fragmentation of the smart
packet is not permitted. So the programming language used must be able to express meaningful
programs in a short (1Kbyte) length. Secondly, the operating environment must be secure. Also,
the programming language used should avoid dangerous or superfluous features like file system
access or memory management. This goal suggests that the code should be executed within a
virtual machine where only controlled operations are permitted.
2.1.2 Active Node Transfer System (ANTS)
ANTS [8] is part of a continuing research effort of the Software Devices and Systems group at
the MIT Laboratory of Computer Science. An ANTS based network consists of an interconnected
group of nodes that may be connected across the local or wide area by point-to-point or shared
medium channels [7, 37]. In addition to providing IP-style routing and forwarding as the default
network-level service, ANTS allows applications to introduce new protocols into the network.
Applications specify the routines to be executed at the active network nodes that forward their
messages. The various components of the ANTS architecture are presented below.
Protocols and CapsulesThe packets found in traditional networks are replaced by capsules that
refer to the processing to be performed on their behalf at active nodes. Capsule types that share
information within the network are grouped into protocols; a protocol provides a service and is

the unit of network customization and protection. The most important function of the capsule
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format is to contain an identifier for a protocol and forwarding routine within that protocol. The
identifier is based on a fingerprint of the protocol code. Some forwarding routines are “well-
known” in that they are guaranteed to be available at every active node. Other routines may be
“application-specific”. Typically, they will not reside at every node, but must be transferred to a
node before the first capsules of that type can be processed. Subsequently, capsules belonging to
a particular protocol contain the same identifier and are processed similarly at the active nodes.
Active Nodes The active nodes execute the capsules of a protocol and maintain protocol state
replace selected routers within the Internet and at participating end nodes. Unlike ordinary
routers, active nodes provide an API for capsule processing routines, and execute those routines
safely by using operating system and language techniques. A major difficulty in designing
programmable networks is to allow nodes to execute user defined programs while preventing
unwanted interactions. The ANTS approach has been to execute protocols within a restricted
environment that limits their access to shared resources. The primitives of the active nodes are -
o Environment access$p query the node location, state of links, routing tables, local time and
so forth;
o Capsule manipulationwith access to both header fields and payload;
o Control operationito allow capsules to create other capsules and forward, suspend or discard
themselves;
o Storage;to manipulate a soft-store of application defined objects that are held for a short
interval.
The capsule format includes a resource limit that functions as a generalized TTL (Time-To-Live)
field. This limit is carried with the capsule and is decremented by nodes as resources are
consumed. Only active nodes may alter this field, and nodes discard capsules when their limit
reaches zero.
Code Distribution Scheme In ANTS an explicit code distribution mechanism ensures that

capsule processing routines are automatically and dynamically transferred to the active nodes
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where they are needed. This component does not exist in traditional networks and is handled by
the system, not the service programmer. The ANTS implementation couples the transfer of code
with the transfer of data as an in-band function. This approach limits the distribution of code to
where it is needed, while adapting to node and connectivity failures. The code distribution
scheme is suited to flows, i.e., sequences of capsules that follow the same path and require the
same processing.

2.1.3 SwitchWare

SwitchWare [11, 13, 16] is an active networks research effort undertakerParth®epartment

of Computer and Information Scienead Bellcore [18]. Active Networks must balance the

flexibility of a programmable network infrastructure against the safety and security requirements
inherent in sharing that infrastructure. The SwitchWare active network achieves this balance
using three layers, each having a separate language specificatioswildigetlanguage is the
language with which users can access the programmable features of the SwitchWare switch. The
wire language is the form in which the switchlets are moved between switches and the
infrastructurelanguage programs the SwitchWare switch. An analogy of a three level language
might be a Java program written by a user, its byte code form, and the C language programs that
comprise the byte code interpreter.

Components of SwitchWare include active packets, their extensions and the secure active router
infrastructure. These are explained below.

Active Packets An active packet is one that contains both code and data needed to process the
packet in the networkl'hey replace the traditional network packet with a mobile program. The
code part of an active packet provides the control functions of a traditional packet header, but
does so much more flexibly, since it can interact with the environment of the router in a more
complex and customizable way. Similarly, the data in the active packet program replaces the
payload of a traditional packet, but provides a customizable structure that can be used by the

program. Basic data transport can be implemented with code that takes the destination address
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part of its data, looks up the next hop in a routing table, and then forwards the entire packet to the
next hop. At the destination the code delivers the payload part of the data to the application.

Active Extensions An active extension is some code that may be loaded on a running switch to
alter the processing of future packdiode-resident extensions form the middle layer of the
architecture. They can be dynamically loaded active extensions or they can be part of the base
functionality of the router. They are not mobile — to communicate with other routers they use
active packets. Thus extensions are base functionality or are dynamic additions rather than
“mobile code”. If the code can only be loaded from a local persistent store, then the extension is
referred to as a local extension. Extensions may make use of other extensions already loaded on
the node; they need not be independent. Extensions reside on the node, e.g., in memory or on
local disk, until they are loaded. Because they are invoked only when needed, there is no inherent
need for the extensions to be lightweight. The key difference between active packets and
extensions is that although extensions may be dynamically loaded across the network, they
execute entirely on a particular node where as active packets are executed at some or all of the
active nodes it passes through.

Secure Active Router Infrastructure: This is the lowest layer of the architecture. While the top

two layers emphasize support for several forms of dynamic flexibility, the lowest layer is
primarily static. The goal of this layer is to provide a secure foundation upon which the other two
layers build. The importance of this is clear, since no matter how much security is assured by the
upper layers, security will be compromised if this layer creates an insecure environment.

2.1.4 CANES (Composable Active Network Elements)

CANES [17] is a research project at Georgia Institute of Technology. In this design, users can
select from an available set of functions to be computed on their data, and can supply parameters
as input to those computations. The available functions are chosen and implemented by the
network service provider, and support specific services; thus users are able to influence the

computation of a selected function, but cannot define arbitrary functions to be computed [31].
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This approach has some benefits with respect to incremental deployment as well as security and
efficiency: Active Network functions can be individually implemented and thoroughly tested by
the service provider before deployment, and new functions can be added as they are developed.
2.1.4.1 Architecture Overview

The CANES architectural model for active networks takes a menu-based approach in which the

active node supports a fixed set of active functions and the active packets indicate the function(s)

to be invoked and supply parameters to those functions. The basic idea behind this architecture is
the incremental addition of user-controllable functions, where each function is precisely defined
and supports a specific service. The function specifications include:

o Theidentifier associated with the function.

o Theparametersassociated with the function and the method of encoding them in the packet.

o Thesemanticof the function. Ideally, the function semantics would be given in a standard
notation or another notation developed specifically for the purpose. A standard environment,
comprising support services such as private state storage and retrieval, access to shared state
information (e.g. routing tables), message forwarding primitives, etc., would provide a
foundation on which new services could be built.

CANES delegates the addition of a new function to a network node to the network service

provider. As with current networks, once a function is specified, each provider or vendor would

be free to implement the functionality in a manner consistent with the specification. This
approach corresponds roughly to the way new features are deployed in the public switched
telephone network today; users have the option of selecting from a variety of features
implemented by the service provider.

2.1.5 NetScript: A language and Environment for Programmable Networks

NetScript [19] is a programming language and environment for building networked systems. Its

programs are organized as mobile agents that are dispatched to remote systems and executed

under local or remote control. The goal of NetScript is to simplify the development of networked
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systems and to enable their remote programming. NetScript could be used to build packet stream
filters, routers, packet analyzers and multimedia stream processors.

2.1.5.1 The NetScript Network and its target applications

A NetScript network consists of a collection of network nodes (e.g. PCs, switches, routers) each
of which runs one or more NetScript engines. The engine is a software abstraction of a
programmable packet-processing device. Each NetScript engine consists of dataflow components,
called boxes, that process packet-streams that flow through them. Packets flowing through a
NetScript node are processed by successive boxes to perform protocol functions. The system
consists of two components: NetScript, a textual dataflow language for composing packet-
processing protocols and the NetScript Toolkit, a set of Java classes to which the textual language
compiles. The boxes form a reactive system in which data (in the form of packets) flows from one
box to another. Arrival of data at one or more input ports of a box triggers computation within
that box; otherwise the box sleeps until data arrives to trigger it. The box is the central construct
in NetScript and the unit of program composition. A box declaration consists of four parts: the
box name, input port and output port declarations, a declaration of internal boxes and a connect
statement that defines the connections between internal boxes. When a box is loaded at a
NetScript engine, NetScript will instantiate its internal contents and make connections between
these boxes. Typical NetScript boxes do packet header analysis, packet demultipexing, or other
protocol functions. The boxes can be dispatched to remote network engines and dynamically
connected to other boxes that reside there to extend the network with new communication
functions. For example, an IP router implemented in NetScript could be dynamically extended
with firewall functions. Such a router might also be extended to monitor traffic, support content
filtering on the edge of a network domain, or perform load balancing and traffic shaping.
NetScript is useful in applications that process packet-streams.

A key application of NetScript includes the support for distribution of management functions. In

order to manage a network, applications must monitor, analyze and control elements by
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processing their instrumentation data. Other management technologies such as SNMP [23] have
focused on moving data from elements to a management platform where applications processed
this data. NetScript aims to complement these technologies with one that allows a management
platform to dispatch programs (agents) to remote elements. Rather than bringing element data in
real time to applications, applications could be dispatched to process the data right at the
elements. This permits localization of management control loops in managed elements; in
contrast SNMP stretches control loops across the network.

2.2 Comparison of architectures

Principally, there are two ways in which the active network can support processing at
intermediate nodes in the network. In thaguage-basedpproachthe active datagrams carry
programs that are executed in a suitable environment. Users are allowed to inject code into the
network making the system highly dynamic and flexible. However, special care must be taken to
safeguard the system against malicious users and buggy code.nheribebasedpproach the

active node supports a fixed set of services. Designated operators may add new services into the
node. Active datagrams carry a reference to the type of servicing they require. The
implementation details of services are hidden from end user applications. We believe that the
menu-based approach gives a strict administrative control over the services that the network can
offer and provides a secure infrastructure at the cost of reduced dynamism. Thus, we adopt the
menu-driven approach in designing our active network.

The current architectures are in the developmental phase and a consensus on a standard
architecture has still not been reached. Our aim is to develop network services in an active
networking environment and subsequently evaluate them. Hence, we have designed and
implemented a testbed network (RANI) that is explained in Chapter 3. Table 2.1 shows a
comparison of the active network architectures described in section 2.1. The list of contributions

and applications is not exhaustive.
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Architecture | Approach Key Contributions Applications
Smart Language-based Maobile agents Network manageme
Packets and diagnostics
ANTS Language-based Application specific protocal Distributed applications
development and web caching
SwitchWare | Language-based Programming language | Active bridges,
development, network securitybootstrap architectures
CANES Menu-based Active components WAN caches, select
packet treatment
NetScript Language-based Designing scripts, mobile | Management by
agents delegation
RANI Menu-based Design and implementation

an active network testbed

oControlling bandwidth
greedy connections,

Active Traceroute

ve

Table 2.1 Comparison of active network architectures
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Chapter 3

RANI Active Network Architecture

The Internet Protocol (IP) does not support application oriented processing of datagrams at
intermediate nodes. For an active datagram however the node must process the contents of the
datagram (if it supports active networking) before forwarding it. This chapter describes the design
and implementation of the network architecture. The network testbed is used for experimental
evaluation of our network services.

3.1 Design overview of RANI (Rutgers Active Network Initiative)

The RANI network consists of a number of active nodes connected to each other via virtual links.
For the sake of simplicity, we assume that the virtual links are reliable in delivering datagrams.
Any node can communicate with other nodes in the network by sending datagrams across the
virtual links. Datagrams that do not need active processing are referred to as passive datagrams.
Passive datagrams are simply stored and forwarded similar to traditional network forwarding.
Datagrams that request additional processing at the intermediate nodes in the network are called
active datagrams. Active servicing is requested through a field in the header of the active packet.
Each datagram is considered an atomic element and is processed individually by the active nodes.
3.1.1 Components of the RANI active node

The purpose of the active node is to service the active datagrams and to forward the passive
datagrams towards their destination. Servicing active datagrams may include forwarding them.
Active datagrams are serviced on a best effort basis and may result in a change in the packet’s
contents. We have divided the various functions of the active node into individiual modules that
interoperate with each other. The Receive (Rx) and Transmit (Tx) modules handle datagram
propagation issues in the network. Active datagrams are serviced in a suitable environment called
the Processing (Px) module. The node resident services and programs are located in the Storage

area. End users may inject active datagrams into the network and request a particular type of
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service. They may also inject passive datagrams that require the traditional forwarding service. In
order ensure speedy delivery of passive datagrams, we have created separate paths for active and

passive datagrams as shown.

Rx STORAGE T

:

» PxMODULE >

Active packet path

Passive packet path

Figure 3.1 High-level design of the active node

3.1.2 Datagram propagation and ‘tunneling’

We do not expect all nodes in the network to be active nodes. The virtual links that interconnect
active nodes need not consist of a physical connection between the nodes. Virtual links provide a
path between the two nodes that it connects. The physical path corresponding to a virtual link
could traverse across legacy intermediate routers. In effect the virtual link provigeseéfor
transferring datagrams between active nodes.

To illustrate the use of our active network, let us consider the path of a datagram requesting
service X, from source node S to destination node D. For this example, lets assume that the
network nodes have been configured correctly and a virtual link between node S and node D
exists. At node S, the datagram is sent to the processing module and X is executed on it. S
compares its own address with the destination address of the datagram. On determining that the
datagram has not reached its destination, S sends the datagram across the virtual link towards D.
This action takes place at every active node along the way until it reaches D. At D the datagram is
again serviced and finally delivered to the application.

3.2 Implementation Details
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Our active node is implemented in Java (v1.1) as a user space process on the Windows NT
operating system. The node runs at the application layer in the TCP/IP protocol stack. Application
oriented processing of active packets may be required at the end nodes as well as intermediate

nodes in the network. Thus we do not distinguish between intermediate nodes and end nodes.

Communication Our Implementation Transmission Format
Layers

Application Active Node Active/Passive Packet
Tranport UDP UDP Segment
Network P IP Datagram

Data Link & Ethernet 10BaseT]| Frame/Bits
Physical

Figure 3.2 Active Node implementation

Virtual links are implemented as a UDP (User Datagram Protocol) socket pair — one socket is
used for receiving datagrams and the other for sending them. Active or passive packets are
created and subsequently injected into the active network via the user interface at the node. These
packets are propagated as UDP segments.

3.2.1 The RANI node

The receive module comprises of UDP receive sockets for incoming datagrams and a packet filter
for separating active and passive packet paths. Each receive socket contains a blocking receive
thread running in an infinite loop to pick up datagrams and deliver them to the packet filter. The
process module comprises of an execution engine (EE) where active packets are serviced. Active
packets are serviced on a first come first served basis by ordering the packets in a FIFO execution
engine queue. An independent EE thread extracts the first packet from the EE queue and
dispatches it to the EE for processing. The EE thread runs in an infinite loop extracting each
packet till the queue empties. The Storage (Sx) module comprises of node resident services and
tables such as the routing table. The Transmission (Tx) module consists of UDP send sockets, a

node queue and a single transmit thread. The node queue is common to all packets (active or
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passive) that need to be forwarded. The transmit thread extracts packets from the node queue and

delivers them to the next hop active node via the virtual links.

Services and Tabled Drawing conventions used
1. Threads — curved arrows
2 2. Queues — cylinders
EE Oueue 3. Sockets — capsules
1 4. Components — blocks
4 5. Input/ Output - Arrows
Packet Filter Node Queu

Figure 3.3 The RANI node

3.2.2 Packet format within the node

Before getting into the details of the different components as shown in the above diagram let us
take a look at the packet format within the active node. Datagrams are propagated as UDP
segments in byte array format across virtual links. However once inside the node, the datagram is
converted into either a passive packet or an active packet.

The fields of the active packet are shown below. All the packet fields are in string format and are
initially set at the source node. In comparison to the traditional datagram format, the active packet
has an additional Ack, Act, PrevNode, TL and TOS fields. The packets carry state information in
the TTL and PrevNode fields since these fietdsst bemodified in transit by the active nodes.

The Payload fieldnay bemodified in transit depending upon the service requested by the end-
user. We have not provisioned for sequence numbering of packets since at this stage we have
assumed that the network is reliable and have developed network services that deal with

individual active packets.

SA | SP | DA DP Ack Act | TTL PrevNode | TL | TOS | Payload

Figure 3.4 Active packet format
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SA (Source Address)lt is the IPv4 address of the node that injects the packet into the network.

SP (Source Port) This field identifies the port number of the virtual link at the source node
through which the packet is injected into the network.

DA (Destination Address) It is the IPv4 address of the destination node for the packet.

DP (Destination Port) This field identifies the port number of the link at the destination node on
which the packet is to be received.

Ack (Acknowledgement) This field is true for acknowledgement packets and is false otherwise.
Act (Active): This field is set to true if the packet is active and is false otherwise. It distinguishes
between active and passive packets.

TTL (Time To Live): This field represents an upper bound on the resources that the packet can
consume within the active network. We have kept this resource bound in terms of time. The TTL
field is decremented by active nodes along the way upto the destination node by the amount of
time that the packet exists at the node. If a packet requires excessive processing at a node, it will
reside for a longer duration at the node and correspondingly a larger value will be subtracted from
its TTL resource. An intermediate node discards a packet whose TTL has dropped to zero. The
TTL field is used to discard stale packets by keeping an upper bound on the time that a packet
resides in the network and for calculation of packet round trip time.

PrevNode (Previous Node Visited)This field contains the IPv4 address of the node last visited

by the packet and the port number of the last virtual link on which it traversed. The field is set
just before an active node transmits the packet. Any node in the network can determine the
previous node through which it received a packet by looking up this field. In our present
implementation since we have assumed bi-directional reliable virtual links, this field is unused for
applications developed so far. However, once this assumption is no longer necessarily true in
future implementations, this field will be useful in developing network applications that rely on

the path traversed by an active packet.
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TL (TOS Length): This field carries the length in bytes of the TOS field. Keeping in mind the
flexibility of introducing new services, we keep the TOS field to be of variable length.

TOS (Type of Service) The active packet requests a particular service through this field. The
active node provides the service requested on a best-effort basis. For example, if a packet requests
the AtraceRoute service its TOS field is set to AtraceRoute and its TL field is set to 11.

Payload This field carries the payload of the active or passive packet.

The passive packet has the same format as the active packet with the Active field set to false and
the TL and TOS fields omitted since they do not request any service from the intermediate
network nodes.

3.2.3 Packet movement in the RANI network

Figure 3.5 illustrates the mechanism of injecting packets into the active network from an active
node. The dark line shows the physical path that a packet traverses in our active network. From
the end user application perspective the dotted arrow shows the virtual path that the packet
traverses. The diagram also brings out the concept of ‘tunneling’ packets through legacy

intermediate routers.

Source ®—» Physical path Destination
Node =P Virtual path Node
Virtual link
o /ctive Node Dttt »|  Active Node
A
uDP Legacyintermediate router uDP
P 1= P
Ethernet Ethernet Ethernet
10BaseT 10BaseT 10BaseT
A4 ®

Figure 3.5 Movement of packets in the RANI network
3.2.4 The receive module
Arriving datagrams at the active node are cast into active or passive packets in the packet filter.
An active packet resides at the node till it is completely serviced. Every packet in the node is

subject to a destination check to ascertain if it has reached the destination node. Basically, in the
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destination check, the IP address of the node is compared to the destination address field of the
packet. If the fields match, the test is successful and the packet is delivered to the application. If
the test is unsuccessful the packet is added to the node queue (Node Q) for forwarding. Passive
packets are subjected to a destination check in the packet filter itself. Active packets are directly
dispatched to the execution engine queue (EE Q) by the packet filter. The destination check for
active packets is performed in the process module. By maintaining two separate queues for
servicing (EE Q) and forwarding (Node Q) we create slow and fast tracks for the active and
passive datagrams respectively. If we were to maintain a single queue, the passive packets would

suffer from larger delays due to the longer processing time taken for active packets at the head of

the queue.
Delivery to application = Pasgive Packets
(@ Active Packets
& @ Destination packets
&
Rx Sockets Packet Filter Fast Track — to Node Q
o OO—O— 1O >
NN H=N 1=
@
Rx Thread S 33 =3P
e Slow Track - to EE Q

Figure 3.6 Receive (Rx) Module

Note that when an active packet reaches the destination node it is serviced before being sent to
the application. Passive packets are delivered directly to the application when they reach the
destination node. Figure 3.6 shows the receive module in the RANI node. Here, the spotted
packets are the ones that have reached their destination.

3.2.5 The process module

Active services are stored as loadable classes in the node. They implemeoadaéleClass
interface and contain processmethod. Active packets are serviced by invoking phecess

method of the loaded service class. We maintain a list of all services loaded at the node during its

run time. This list is implemented as a hash table containing the service name as the key and the
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class descriptor as the value. Packet servicing occurs in the execution engine. The engine extracts
active packets from the FIFO execution engine queue. The TOS field of the active packet is in the
form of the service name. At the active node, the service name of the active packet is looked up in
the hash table and one of the following cases could occur.

Case 1: The requested service is not found in the hash table. This implies that the service has not
been loaded. The EE attempts to load the service into the node.

Case 1a. If service loading is successful, the hash table is updated prut#ssroutine of the

service class is invoked on the active packet. Henceforth, all successive active packets requesting
this service are directly processed.

Case 1b. In the current implementation, if the service loading is unsuccessful, the packet is
discarded. In future implementations, we could make the node perform traditional forwarding on
active packets that it cannot service. This implies building services that need not require
processing at all intermediate active nodes.

Case 2: The requested service is found in the hash table. This implies that the service has been
previously loaded and so the execution engine directly invokggdbessroutine of the service

class returned by the hash table, on the active packet.

New services are uploaded to the active node through ‘trusted operators’. A discussion of the
security implications on designating these operators and implementing such a scheme is beyond

the scope of this thesis. Figure 3.7 illustrates the functioning of the process module.

» Stored services 8 Packet requesting
* unavailable service
EE — Execution Emne
Loaded s Ilm;]
: —
Class services 1b
Loader , Dropped packets
A ila
1 == = =
— — ® To application
CACH 8D 2 > Process(X® ol )
a »
K/_%TO Node Q

Figure 3.7 Process module
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3.2.6 Transmission module

The node queue may receive packets from three sources. The first source is the front-end user
interface (described in section 3.3) through which users may inject packets in the network. The

second source is the receive module which may add passive packets that require forwarding.
Lastly, the execution engine adds active packets that require forwarding to the node queue. The
transmit module extracts packets from the FIFO node queue. It then looks up the routing table

with the destination address and port number of the packet as the key to the table. The table
returng the virtual link on which the datagram must be sent. The node then converts the packet

into a UDP datagram in byte array format and sends out the datagram on the returned link. To

handle the special case of looping back (source and destination node fields are the same) of
passive packets in the RANI node, a destination check on the passive packets is performed in the
transmission module.

Active packet from
execution egine

g
E:é:rket from 43 2 1 0
—p
interface — O | DF‘ FFE|

To Tx
module

Passive packet fro
fast track
Figure 3.8 Node Queue

3.3 Node operation and configuration

We have provided a user-friendly GUI for configuring and operating the active node. Node
operation includes injecting active or passive packets into the network, monitoring the node
gueues and testing virtual links for operation. Multiple packets can be injected with the help of a
packet generator that simulates UDP or TCP-like sources. The user can select the number of
packets, the average rate of injection of packets and burst size of the hatsatsconfiguration

involves creating (and destroying if necessary) virtual links, managing the routing table and

% If the routing table returns null, the destination is unreachable and the packet is discarded
* These parameters are described in Chapter 5
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setting the queue parameters. All nodes in the active network are identified by unique IPv4
addresses. At run time of the active node, virtual links to other nodes are created through the user
interface. Each link successfully created is automatically added to the routing table. The routing
table is implemented as a hashtable containing the destination address and port number as the key
and the virtual link object as the value. The table is automatically updated when new links are
created or existing links are destroyed. We also provide access to manually configure the routing

table for dynamically changing routes in the network. Shown below is an illustration of the user

interface to our active node.

Active node interface
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1 Active  Packet Generator | Insert Packet |
I Stop Transmit Thread This box displays the contents
View Node G of the nodeueue
| Create Link | | Manage Routing | | amanager
/
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Figure 3.9 Graphical User Interface
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To explain the construction of routing tables at our active node, consider the following network

topology. Virtual links are labeled VLINK.

VLINK1-3

Figure 3.10 Sample network topology

VLINK1-4

VLINK4-5

In this example, the routing table constructed for nodel and node4 are shown below. We have

assigned arbitrary IP addresses to the active nodes and used arbitrary port numbers for the virtual

links.
NODE 1 NODE 4
Key Value Key Value
Node2 128.6.43.52:2000 VLINK1-2 Nodel 128.6.43.20:6000 VLINK1-4
Node3 128.6.30.3:4000 VLINK1-3 Node2 128.6.43.52:2000 VLINK1-4
Noded4 128.6.21.18:3000 VLINK1-4 Node3 128.6.30.3:4000 VLINK1-4
Node5 128.6.21.19:3000 VLINK1-4 Node5 128.6.21.19:3000 VLINK4-5

Table 3.1 Sample routing table

3.4 Summary of network features

o The active node provides an environment for communicating with applications, packet
processing and network communications.

o The active node does not maintain state or flows unless programmed to do so for a specific

purpose.
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o The programming model of the network is based on a menu-based approach. End-users may
request network processing through a service-ID field in the active packet. Trusted operators
are allowed to load new services or enhance existing ones, thus minimizing security risks.

o Atrun time, the active node has a user-friendly graphical user interface through which it can
be configured and operated. Also, the active nodes may be restarted and links may be
dynamically changed to reflect a new network topology.

o In order to allow multiple packets to be processed simultaneously at the node, entities
interacting with the packet such as queues, tables, threads, links and routines are
synchronized.

o Separate tracks are maintained for active and passive packets to speed up traditional
forwarding.

o The TTL field in the packet ensures an upper resource limit on the time that a packet may
spend in the network.

3.5 Limitations of our architecture

Firstly, by processing packets within the active network the speed of packet transfer from end to

end is reduced. Although end-applications may benefit from this additional network support even

at reduced packet rates, it is important to maintain a high rate of packet transfer to prevent large
packet queues from building up at the active nodes. Our active node is built at the application
layer in the TCP/IP protocol stack. This makes its operation relatively slow. Secondly since the
aim of this work was to examine active network technologies with respect to network utilities and
congestion control we made simplifying assumptions such as reliable, bi-directional virtual links
and static routing tables. These assumptions prevent real world scenarios from being simulated
for other applications. Lastly, by allowing only trusted operators to load new services into the
active we compromise on the dynamism in enabling new active services. However, these

limitations do not undermine the contributions made in this thesis with respect to our objectives.
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Chapter 4

RANI Applications

This chapter is divided into two parts. The first part describes the implementation and operation
of RANI network utilities. The second part of this chapter addresses bandwidth greedy
connections in the RANI network.

4.1 Host Reachability

In this section we first describe the implementation of the Ping network utility on traditional IP
networks and then describe its implementation (APing) on the RANI testbed. Aping was the first
active service that we developed as a sanity check for the RANI testbed.

4.1.1 Ping

The word “ping” stands for Packet InterNet Groper. The ping program is often used to test the
reachability of another host on the Internet by sending it echo requests that it must respond to, if
the host is operational [39]. The traditional ping program is one that sends an ICMP (Internet
Control Message Protocol) echo request message to a host and waits for a reply. ICMP messages
are encapsulated in IP datagrams and hence the operation of ICMP does not depend on the
higher-level protocols such as TCP and UDP. Most TCP/IP implementations provide a ping
program and it has proved to be a useful tool.

4.1.2 APing

The operation of APing along with its service routine is provided in this section. The APing
active packet originates from a source node (S) that wishes to discover whether some other target
node (T) in the network is alive. Intermediate nodes forward this active packet towards the target
node. On receiving the active packet, the target node sends back an acknowledgement to the
source. The source node (S) on receiving the acknowledgement displays a message saying that
the queried host is alive. Assuming that the APing service is loaded at an active node, when an

active packet requesting this service enters the execution engine of the node, the process method
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of the APing class is invoked with the active packet as the formal parameter. A line by line
description of the APing.process( ) method is given below.

process ( ActivePacket )

{
if (! ActivePacket.destinationReached( ) ); // intermediate node reached
{
forward (ActivePacket); // packet forwarded to destination
}
else // Destination or Source node reached
{
if (! ActivePacket.getAck(); // packet at Destination node
{
ActivePacket.sendAck( ); // Create and return an acknowledgement
}
else // packet back at Source node
{
printSuccess( ) ; // displays reachability message
}
}
}

4.2 Route Discovery

In this section we first describe the operation of the tracerotilly on traditional
networks. Then we describe its design and implementation on the RANI testbed concluding with
a comparison of the two implementations.

4.2.1 Traceroute

Traceroute allows users to discover the route of an IP datagram from a source node to another
node. Traceroute uses the ICMP ‘time exceeded’ message and the TTL (Time To Live) field of
the IP header. The utility requires end nodes to have a programming interface to the TTL field of
an outgoing datagram. Availability of this programming interface to many networked nodes and

simplicity of its operation make this utility popular in TCP/IP networks. Traceroute operates by
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sending UDP datagrams to the destination node with the destination port number selected to be of

a large value (>30000) making it highly improbable that an application at the destination is using

that port [38]. The utility begins operation by sending a UDP datagram towards the destination

with a TTL set to 1. The first router to receive the datagram, decrements the TTL to O,

subsequently discards it and then sends back an I@MP éxceedeédnessage to the source.

The source node thus identifies the first router in the path to the destination. Now, traceroute

sends a UDP datagram with a TTL of 2, thus discovering the second router in the path to the

destination node. This process continues till all routers upto the destination node is identified.

When the destination receives a datagram with the TTL of 1, it does not discard it since no further

forwarding is required. Instead, the node attempts to deliver the datagram to the ‘unusually high’

port number which is almost certain to be unused by any application. This results in an ICMP

‘port unreachable’message being sent back by the destination to the source node. The utility

running at the source node distinguishes between the ICivifie ‘exceedédand ‘port

unreachablémessages to terminate route tracing.

A technical point overlooked above is that for each value of TTL, the utility sends three

datagrams and prints the roundtrip times of the received ICMP messages. If no response is

received within 5 seconds, the utility prints an asterisk and continues operation.

Note:

o The traceroute utility assumes that consecutive datagrams from the same source to the same
destination follow the same route.

o Time complexity of operation of traceroute is G)(where n is the number of hops between
source and destination nodes.

o Resource complexity in terms of links traversed is § (n

o The source node transmits successive IP datagrams towards the destination with incremental
TTL field values till the destination node is reached.

4.2.2 Atraceroute
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4.2.2.1 Objectives

o To accurately determine the forward path of an active packet from a source node to any other
node in our active network.

o To discover the node-resident time of the active packet at each active node in transit. The
processing delay and queuing delay constitute the node-resident time of the active packet and
enable us to determine the overheads involved in active processing.

4.2.2.2 Operational details

Atraceroute operates by injecting a single active packet requesting the Atraceroute service. This is

expressed in the packet’s Type of Service field. When the first active node in transit receives the

packet, it forwards the active packet it receigad sends back a description of its IP address and

the packet processing time in the form of an active packet to the source node. The source node on

receiving the descriptive packet discovers the first node in transit. When the second node receives

the ‘originating’ active packet, it similarly executes the Atraceroute service by forwarding the

received packet to the destination and sending back a descriptive packet to the source node.

Source (S) Nodel Node2 Destination (D)

m=z — -
N

DISTANCE

\3.\
/ 4/'3/

® ‘originating’ active packet requesting Atraceroute service

© ‘Descriptive’ active packet returned by visited active nodes

Figure 4.1 Operation of Atraceroute
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This process continues till the destination node is reached. The destination node sends back a

descriptive packet to the source and discards the originating active packet. Thus the source node

discovers all active nodes in the path of the original active packet.

4.2.2.3 Taking a closer look at Atraceroute

Q

Q

Figure 4.4 shows the forward and reverse paths of the active packet to be identical since our
implementation assumes bi-directional virtual links. However this assumption is not
necessary for successful operation of Atraceroute.

The destination for the originating packet is the D node where as the destination for
descriptive packets is the S node.

The originating and descriptive packets both request Atraceroute servicing. But, the
originating packet has its ack field set to false where as the descriptive packet has its ack field
set to true. Active nodes in transit use the ack field to distinguish between originating and
descriptive packets. A node receiving an originating packet creates a descriptive packet and
sends it back to the source of the originating packet. A node receiving a descriptive packet
simply forwards it to the destination.

An interesting scenario would be to tackle re-ordering of packets at the source node in the
eventuality that descriptive packets overtake each other on the return path. A possible
solution could be to force the originating packet to carry state information regarding the node
that it visits in the forward path. So when the originating packet is injected into the network it
starts off with its state set to one. When Nodel receives this packet it echoes a descriptive
packet carrying this state (one) and forwards the originating packet with the state modified to
two. Now Node2 receives the originating packet with state two. Hence it echoes back a
descriptive packet with this state, increments the state in the originating packet and forwards
it. This process ensures that returning descriptive packets carry the corresponding number of

the node visited by the originating packet making it possible to re-order the descriptive
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packets at the source node. In Figure 4.4, the numbers mentioned on the packets represent the
state information they could carry. However, in our implementation the bi-directional virtual
link assumption prevents packets from being re-ordered in the network.

4.2.2.4 Implementation of Atraceroute

The process routine of the Atraceroute service is shown with appropriate comments below.

process ( ActivePacket )

{
if (! ActivePacket.destinationReached( ) ); // intermediate node reached
{
if (! ActivePacket.getAck() ) // implies ‘originating’ packet received
{
forward (ActivePacket); // ‘originating’ packet forwarded
sendDescriptivePkt( ); // ‘descriptive’ packet created and returned
}
else /I descriptive packet received from some node upstream
{
forward ( ActivePacket ); // the packet is simply forwarded
}
}
else // Destination ( Source or Destination ) node reached
{
if (! ActivePacket.getAck( ) ) // ‘originating’ packet at Destination node D
{
sendDescriptivePkt( );
}
else // ‘descriptive’ packet at Source node S
{
printPacketPayload( ); // Prints out contents of descriptive packet
}
}
}
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4.2.2.5 Features
o The Atraceroute utility injects only one active packet into the network. Hence, we do not
assume static routes from the source to the destination.
o Time complexity of operation of Atraceroute is O(n) and the link utilization i$)Ofere n
is the number of hops between the source and destination nodes. Details are presented in
Appendix A.
o The node resident time of the originating packet at each active node in transit is
determined.
4.3 Network congestion and unresponsive connections
The past few decades have seen the merging of computers and communications leading to the
development of computer networks. Rapid progress in technology coupled with the immense
popularity of the Internet has seen an exponential growth in networked systems over the past few
years. Formally, a computer network means an interconnected collection of autonomous
computers [1]. The principle aim of a networked system has been information gathering,
processing and distribution. Ideally, we would like to design and organize the network such that
all informationshould be delivererkliably to any networked locatiowithin anacceptable time
frame Users of this ideal network would then derive maximum utility. However, the real world is
far from ideal, leading to the development of networks that fail to satisfy one or more of the
above criteria. A prominent cause that widens the gap between the ideal and real world scenarios
is network congestianDespite research efforts in industry and academia to eliminate network
congestion, the problem continues to persist.
In [5] Yang and Reddy have broadly classified a range of congestion control algorithmseinto
loop andclosed loopcontrol mechanisms based on control theory. In the open loop algorithms,
the transmitting sources carefully regulate the effective rate of transmission to prevent congestion

from developing in the network. Such mechanisms cannot be relied upon completely due to the

37



dynamic nature of network traffic and network parameters. In the closed loop control
mechanisms, it is the network that provides feedback to the transmitting sources either when it is
congested or when congestion is building up. The transmitting sources then reduce their effective
transmission rates in order to prevent clogging up the network. Both these mechanisms rely on
the transmitting sources to exercise control. A growing number of applications require a constant
rate of transmission (they cannot function without a minimum application-specific bandwidth
requirement) while some others tend to ‘grab’ as much network bandwidth as available ignoring
congestion notification. These applications fail to implement a transport mechanism that is
responsive to the congestion status fed back to them from the network. Going by the nature of
such applications we refer to them as ‘unresponsive connections’. Forarallynresponsive
connection is one that ignores or underplays feedback information regarding congestion status of
the network.Examples of such applications include streaming multi-media services, Voice
transmissions and web radio broadcasts.

Internet traffic measurements taken in mid-April 1998 on OC-3 links within nodes on the IMCI
backbone data have revealed “Web traffic constitutes 75% of the bytes, 70% of the packets and
70% of the flows when client and server traffic are considered together” [24]. Let us consider one
constituent of Web traffic - streaming media applications. A recent article in the New York Times
[34] claims, ‘In 10 years, movies and commercial television might very well be carried over
Internet channels. This increasing demand will add vast amounts of streaming traffic to the
Internet and could lead to what Van Jacobgchief scientist for Cisco Systems Incalls
"congestion collapse" — the Internet equivalent of gridlodke article continues to describe the
bandwidth greedy nature of such applicatiomy fts very nature, streaming media has to flow
continuously to the user's computer, so it cannot follow the same traffic rules as conventional
data. But even so, it is possible for packets of streaming data to interidlgtwith other traffic

on the Internet. The reason they do not, Jacobson said, is that streaming media providers have no

incentive to comply with traffic rulé's
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4.4 Understanding a congested network

Although a large number of definitions for network congestion exist in computer literature, we

consider the following to be precise.

o A network is said to be congested from the perspective of userif the utility of i
decreases due to an increase in network logwhere utility refers to a users preference for
a set of resources) [36]. In this definition congestion is classified as an end-user perception of
the state of the network. If a specific user's demands on the network are not affected, even
under highly loaded conditions, for him the network i shcongested though other users
whose utility may have been adversely affected will perceive the network to be congested.

a If, for any interval of time, the total sum of demands on a resource is more than its
available capacity, the resource is said to be congested for that intervf6]. This
definition uses a demand-supply relation to identify congested periods in the network. The
demand consists of delivering information from end-to-end and satisfying user constraints
such as allowable delays and reliability. The supply includes (but is not limited by) network
resources such as buffer space, link bandwidth and processor speed. Only if all demands are
met, the network is uncongested. Jain also explains with examples how congestion is in fact
worsenedby an ad-hoc increase in these network resources. Rather than considering
congestion to be a supply related issue, we need to control it by a sound design strategy.

4.5 Background

4.5.1 Introduction

In this section we discuss two relevant schemes for congestion avoidance; Random Early

Detection [27] and Explicit Congestion Notification [28]. RED gateways signal congestion by

marking or dropping packets. ECN is a specific implementation of RED in which packets are

marked to minimize packet loss during congestion at the gateway. RED has been proven to be
ineffective in controlling bandwidth greedy connections as explained in Section 4.5.2. We aim to

extend RED in order to control greedy connections using the RANI active network testbed.
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4.5.2 RED (Random Early Detection) gateways
RED gateways have a packet queue that is closely monitored to detect the build up of congestion.
Based on queue occupancy, the average queue length (avg) is computed using a low pass filter
with an exponentially weighted moving average. The gateway notifies connections of congestion
either by dropping or marking packets arriving at the gateway. If a packet arrives to a full queue it
is discarded. The gateway has two pre-set thresholds callgdmimmum threshold) and mgax
(maximum threshold). With every arriving packet, the avg is computed and compared to these
two thresholds. If avg is less than girarriving packets are not dropped or marked. If the
computed avg exceeds maall arriving packets are marked or dropped. If the computed avg lies
between mig and may, the gateway notifies a connection of congestion with a probability that
is roughly proportional to that connections share of the bandwidth through the gateway. The
average packet queue size (avg) is computed as follows:
avg = (1-w)*avg + w*q

where

w < 1 is a queue weight that determines the degree of burstiness permissible by the

gateway

g is the number of packets in the queue
The value of avg is computed with every packet arrival at the gateway. However, when a packet
arrives to an empty queue (q = 0), avg is calculated differently. The gateway first calculates the
idle time for the packet queue as the difference between the time at which the packet arrived and
the time at which the queue length became zero. The average packet queue (avg) is then
computed as if the gateway had transmitted m packets during the idle time. The factor m is
linearly dependent on the time for which the queue was idle. Thus for an empty queue,

m = f(time - q (timg)
avg = ((1-w)**m)*avg

where
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g (timg is the time at which g became zero

timeis the time at which a packet arrives to the empty queue

time—q(timé is the idle time of the packet queue

f () is a linear function representing the rate at which the packet queue is drained
A detailed explanation of the RED algorithm can be found in [27].
The advantage of RED gateways is that they help in keeping the average queue size low, allow
occasional packet bursts and prevent global synchronization of packet sources due to the
randomness of the RED algorithm in marking or dropping packets at a congested node. However,
it has been proven through simulations that an unresponsive bandwidth greedy connection gets a
larger than fair share of the bandwidth at a RED gateway when competing with responsive
connections [2]. But the congestion avoidance schemes suggested in [2] require multiple queues
to be maintained at the intermediate nodes of the network. We propose a mechanism using the
RANI network to maintain a single FIFO queue at the intermediate active nodes.
4.5.3 ECN (Explicit Congestion Notification) capable gateways
Explicit congestion notification [28] is a mechanism that notifies transmitting sources of incipient
congestion by setting a bit in the IP header of the packet (called packet marking). When the
marked’ packet reaches the destination, congestion notification is echoed back to the sender via
the acknowledgement packet. The sender is then expected to cut back the packet transmission
rate. However, the connections need to be ECN capable; the end hosts must be capable of
responding to marked packets for the scheme to work.
4.6 Aims of our congestion control strategy
o The algorithm must be simple and easily deployable in the RANI active network testbed.

Congestion leads to performance degradation of a network. Deploying a complex algorithm

would amount to consuming network resources at a time when resources are scarce.
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o The designed algorithm must be efficient and effective. An efficient algorithm would have
minimal overheads. The effectiveness of the algorithm must be justified through
experimentation.

o The algorithm must accurately detect bandwidth greedy connections at a congested node. In
section 4.3 we highlighted the growing popularity of unresponsive connections. However, it
is important to note that unresponsive connections are not necessarily bandwidth greedy. If
that were the case our algorithm would restrict all UDP connections in the active network.
Our aim is to limit the degradation in network performance caused by transport mechanisms
that tend to increase or maintain their effect rate of transmission of packets, despite being
asked to cut back during periods of congestion.

o The algorithm should provide a negative incentive to greedy connections in order to limit
their popularity.

o The algorithm must scale well. It should be capable of handling multiple greedy connections
through a congested node.

4.7 High level design of algorithm

Our congestion control strategy is optimized for the reservationless packet switched RANI active

network described in Chapter 3 and could be implemented in other active network architectures

as described in Chapter 2. The high level design is illustrated as a flow chart in Figure 4.1. We
have used the words flow and connection interchangeably and have described the characterization
of a flow in the implementation details.

o Monitoring the system to detect congestianVhen the demand on the network exhausts its
resources, the network nodes are the first to be affected. Specifically, when a node gets
congested the packet queue gets heavily occupied eventually forcing the node to drop packets
that overflow the queue. Hence, packet queues at the intermediate nodes in a network are the

ideal location for detecting the build up of congestion.
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o Distributing the congestion-related information to places that can control deterioration
of system performance We divide the set of connections through a congested node into two
distinct categories viz. non-greedy and greedy connections. Non-greedy sources either
respond to congestion notification or do not make a heavy demand on network bandwidth
during congested periods. In the case of non-greedy sources the control loop is stretched from
the congested node to the packet source. We rely on RED mechanisms and the packet source
to reduce the rate at which packets enter the congested node. Bandwidth greedy sources
underplay or ignore the fed back congestion related information in the form of dropped or
marked packets. Controlling such sources is the focus of our algorithm. Stretching the control
loop to the packet source is ineffective and hence congestion caused by greedy sources is
controlled at the congested node itself and not by relying on the greedy sources to cut back
their effective rate of packet transmission.

o Correcting system operation Demand on a network node is gauged by the effective rate of
arrival of packets at the node. In order to eliminate congestion at a node, the effective rate of
packet flow through the node needs to be reduced. During severe congestion, the packet
arrival rate from greedy connections is controlled by a mobile filtering mechanism. In this
mechanism a packet filter is installed at the congested node for the identified greedy
connection. The filter is then progressively migrated towards the source of the greedy
connection using active messages. In doing so, the packet drops are made early and causes
lesser wastage of network resources. Filtering packets belonging to a flow is a relatively
harsh mechanism of controlling congestion but is deemed necessary, taking into account the
damage that can be done to network resources by the greedy connection. Keeping in mind
that multiple flows could be identified as bandwidth greedy, we pick out the greediest flow
and dynamically filter packets belonging to it. However, if congestion is not controlled
despite filtering the greediest flow, the algorithm continues to successively pick out flows in

order of their greediness.
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In summary, our algorithm must first detect when a node’s packet queue is about to overflow due
to increased demand. It must then correctly identify greedy connections (if any) that may be
responsible for this extreme condition. Subsequently, by using the processinijtiespabthe

active network nodes in the path of the greedy connection(s), the algorithm must effectively

control the rate at which packets from the greedy connection(s) enter the congested node.

Congestion not triggered

|

Monitor the nodes
packet queue

Congestion triggered

Pick out the greedy
flow (if any)

Greedy flow All other flows
Control by mobile Control by RED
filtering mechanism mechanism

h h

Figure 4.2 Flowchart for high level design of our congestion control algorithm

4.8 Implementation

We have labeled our implementation of the algorithm described in section 4.5 as the LGC

(limiting greedy connections) algorithm.

4.8.1 Monitoring the active node’s packet queue to isolate a greedy connection

In [9], Dong et. al have demonstrated through simulations that in RED gateways the bandwidth

consumed by greedy connections is greater than its fair share. In fact, bandwidth consumption is

directly related to the queue occupancy of the connection. A connection with a large share of

44



bandwidth consumption on a link has a correspondingly larger share of packet queue occupancy
at the node. Thus, we use queue occupancy metrics to detect a greedy connection.
In RED gateways when avg exceeds aall packets arriving at the node are marked or
dropped. In this state, the nodes packet queue is close to overflow and we label the node to be in a
‘severely congested’ state. We have observed that maximum disparity between queue occupancy
for non-greedy and greedy connections occurs at this time. To ensure accuracy in identification of
greedy connections, our algorithm is triggered in the severely congested state of the node. For
simplicity we identify a connection by a source IP address, source port tuple although it would be
more accurate to identify connections by a source IP address, source port number, destination IP
address, destination port number, IP protocol tuple.
To identify the greedy connection at a severely congested node, first we need to determine the
fair share (f) of a packet queue. Consider an active node having a total packet queue occupancy of
75 packets with 5 connections competing for a share of the bandwidth. The fair share in terms of
packet queue occupancy would be given by
f = Total queue occupancy(p) / number of connections represented in the queda]n)

i.e. f=75/5=15 packets
Ideally, to ensure a fair distribution of bandwidth, each connection should not have more than 15
packets buffered at the node. But a responsive connection may have more than its fair share of
packets buffered at the node due to several reasons. Some of the prominent reasons cited in [29]
are the bursty nature of Internet traffic, a possibility of high delay-bandwidth links on the receive
port of the node and connections being in different phases of operation. We provision for these
discrepancies by a factor ‘k’ > 1. The value for k is selected to h@R)gThe factor k decides
the degree of permissible disparity between greedy and non-greedy sources. Selecting a small
value of k may cause the algorithm to wrongly classify a responsive source as greedy, where as
selecting k to be too large will make it nearly impossible for the algorithm to detect a greedy

connection. A similar value is chosen in [29] for identifying flows using disproportionate
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bandwidth. However that scheme also relies on the characterization of a conformant TCP source
based on an assumed value of round trip time for the connection. Our approach to detect an
unresponsive connection is purely based on the queue occupancy of the connections when a node
is severely congested.
Assuming that the separation betweenyand may is large, avg is unlikely to increase from
miny, to max, before providing ample time for the responsive connections to back off. In this
scenario, when average queue size exceeds the maximum threshold, and a large disparity occurs
between queue occupancies of competing connections it is safe to assume that the connection
with an exceptionally large number of packets buffered at the severely congested node is
bandwidth greedy. Continuing with our example, k = (@§) or k = 2.708
We calculate the responsive share (r) of the packet queue occupancy as
r =Ck*f [J [b]
orr=2.708 *15 5740.627J
So in this example, a connection that has at most 41 packets in the queue (i.e.54.66% of queue
occupancy) during its severely congested state is assumed to be responsive. All connections
having more than a responsive share of the packet queue are assumed to be unresponsive.
Amongst the unresponsive connections identified, the one having the maximum number of
packets buffered at the severely congested node is singled out as the ‘greedy’ connection.
Combining (a) and (b) we have,
r =[{ log(3n)*p)/nJ
i.e. r Zp*(loge(3n))/nJ
The permissible queue occupancy expressed as a percentage is then given as:
go= 100*r/p = 100* log(3n)/n [c]
Figure 4.2 shows the permissible queue occupancy expressed as a percentage (qo) plotted against

the number of connections (n) represented in the queue. The slope of the graph is steep for
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smaller values of n and becomes a gradual decline as n increases. This implies that a larger
variation in queue occupancy is permitted when fewer connections cause severe congestion at a
node. One anomaly that appears is that for the special case of n=1, a connection will not be
classified as greedy even if it exhausts the entire packet buffer at the node. This is in fact
necessary, so that a single connection will never be filtered, since there is no competing

connection.
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Figure 4.3 Percentage of permissible queue occupancy v/s number of connections

4.8.2 Controlling the greedy connection

When the node is severely congested, reducing buffer occupancy is of utmost importance or the
buffer will overflow causing all arriving packets to be dropped and the RED gateway will reduce

to a drop-tail gateway. The disadvantages of drop-tail gateways are explained in [4, 27]. To
prevent the node to degrade into a drop-tail node, it becomes imperative to prevent the buffer
from overflowing. We feel that the only effective way to control the inflow of packets from a
greedy connection is by actively filtering packets belonging to the connection. The packet
filtering must continue until such a time that the queue occupancy of the packet buffer at the
severely congested node is reduced to acceptable levels. Once this happens the responsive

connections may compete for a fair share of the bandwidth that they were previously denied.
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Also, the packet filtering can take place anywhere along the path of the connection from the
source to the congested node.

We control greedy connections by a process of mobile filtering. A packet filter for the greedy
connection is installed at the congested node. This filter migrates towards the source of the greedy
connection and stops at the first hop node of the connection. At the first hop node, the packet
filter is installed for a pre-programmed interval of time. In our implementation migration of the
filter is possible due to the assumption of bi-directional virtual links. In future implementations,
the PrevHop field of the packet may be used to move the packet filter towards the source of the
greedy connection.

4.8.3 Operation of the mobile filter — The active filter service

The process of mobile filtering begins with the congested node extracting a packet belonging to
the greedy connection from its packet buffer. This packet reveals the source of the greedy
connection. Agreedy connection identifigfGCI) consisting of the source IP address and port
number is formed. Next, the virtual link object connecting the congested node to the greedy
source is obtained from the routing table using the GCI. The node uses the GCI to create a packet
filter on the receive thread of the virtual link. The packet filter drops packets originating from the
identified greedy connection. The virtual link object reveals the active node to which it connects.
The IP address and port number of this active node is callgoreélimus hop identifie(PHI).

The node then creates an active packet destined for the previous hop requesting the ActiveFilter
service.

Figure 4.3 shows a network topology to illustrate the operation of LGC. Consider a greedy
connection G identified (by the procedure described in section 4.8.1) at the severely congested
node N4. This connection G competes with four other responsive sources (R) for link V9. N4
extracts a packet belonging to G from its packet queue and forms the GCI. Using the GCI and by
looking up its routing table, node N4 learns that the packet was received over link V6. N4 creates

a packet filter on the receive thread of link V6 to drop packets belonging to G. Link V6 reveals
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that it is connected to node N3. In effect, N3 is the previous hop node for the identified greedy
connection G. Now N4 sends an active packet to N3 with its payload carrying the GCI, requesting
the active filter service. N3 on receiving the active filter message similarly installs a packet filter

for the mentioned GCI and propagates the active filter message to the next hop closer to G’s

source that is to node N2.

o &

V1 V5

< V6 « V9
V8
V3 f
@ Figure 4.4 Mobile filtering mechanism

This process continues till the first hop node N1 for the greedy connection is reached. A minor

technicality overlooked in the example above was the assumption that a node can automatically
learn if it is the first hop node and stop propagating the mobile filter. This is because prior to
creating the active filter message each active node performs a previous hop check. The check
consists of a comparison of the GCI and the PHI fields. If they match it means that the filter has
reached the first hop node for the connection G. The packet filter is then installed for a longer
duration of time and the node does not propagate the active filter message any further. Sending
the active filter message to the source of a greedy connection would be futile for reasons
explained in section 4.3. Continuing with the above example when the active filter message
reaches node N1, the Previous Hop Identifier and the Greedy Connection Identifier are both G.

Thus no further active filter messages are sent in the network.
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Once a greedy connection is identified and filtered at the congested node the packet queue

occupancy is expected to drop. However, due to the low pass filtering mechanism used in the

calculation of avg, its value might continue to be greater than, eaen after the queue

occupancy has decreased. This will again trigger the LGC algorithm. To ensure that LGC is not

triggered multiple times in a short interval of time, a minimum idle period is chosen between two

consecutive triggers of LGC.

4.8.4 The LGC algorithm

Variables used

o avg - Calculated average queue size

o maxth — Upper threshold for node queue

o Suspend_LGC — A Boolean variable used to ensure a minimum idle time between
consecutive triggers of LGC

o ITime — The time for which the packet filter for the greedy connection is installed at an
intermediate node

o FHTime — The time for which the packet filter for the greedy connection is installed at the
First Hop Node.

o Tx - The minimum idle time between successive triggers of the LGC algorithm

Initialization

avg = 0, Suspend_LGC = false

maxth, ITime, FHTime and Tx are pre-set and configurable.

The average (avg) is calculated when a packet is added to the packet queue. The LGC algorithm

is shown below:

If (avg= maxth && (!Suspend_ESC X)
Set Suspend_ESC to true for Tx
Find out responsive share of packets for a connection (r)
Determine the greedy connection and corresponding GCI

Determine virtual link on which its packets arrive and PHI
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If (GCI 1= PHI){
Install filter for GCI for ITime on virtual link

Send filter message to previous hop node

Else
Install filter for FHTime for GCI

}

The process routine of the active filter message is shown below:

Process (active_filter message) {
Extract GCI from payload of active packet received
Determine the virtual link on which its packets arrive and PHI
If (GCI 1= PHI){
Install packefilter for GCI for ITime on virtual link

Send filter message to previous hop node

Else
Install filter for FHTime for GCI

4.8.5 Importance of timing parameters in LGC
ITime: Referring to Figure 4.3 lets examine the sequence of events during the migration of the
filter from node N4 to its previous hop node N3.

a) Packet filter installed at N4 at time tO.

b) Packet filtering begins at N4 at time t1

c) Active message sent to N3 at time t2.

d) Active message reaches N3 at time t3.

e) Filter installed at N3 at time t4.

f) Filtering begins at N3 at time t5.
Once the filter is installed at N3 for the greedy connection it may be discarded at N4. The time it
takes for the filtering operation to migrate from N4 to N3 is T = t5 —t0. So, after time T the filter

may be discarded at N4. However, the time it takes for the message to be propagated from a node
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to the previous hop node (t3 —t2) is dependent on physical characteristics of the network. Thus we
set ITime to about 5 seconds for our implementation assuming that t5-t0 < 5 seconds. Further, by
selecting a slightly large value for ITime we can be sure that the packet filter for the greedy
connection will be installed at node N4 until such a time that all packets belonging to that
connection are drained from node N3.

FHTime: When the filter reaches the first hop node, it stops migrating and is then installed for
FHTime seconds. If we keep FHTime too small the unresponsive connection will not be filtered
long enough and could congest the network again. If we keep it too large the connection may
close but the packet filter will continue to exist adding unnecessary overheads at the gateway at

which it is installed. We set FHTime to about 100 seconds in the RANI testbed.
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Chapter 5

Experimental Evaluation

5.1 Evaluating the LGC algorithm

In this chapter we evaluate the utility of the mobile filtering mechanism and the LGC algorithm

by experimentation on the RANI testbed in a configurable environment, followed by an analysis

of the results obtained. Since the LGC algorithm is triggered only during severe congestion, this
state of the node becomes the starting point for our experimental evaluation. In all our
experiments we force a node into severe congestion and observe the relevant values of the node
parameters to deduce the events occurring at the node. The aim of the LGC algorithm is to control
greedy connections. Also, in order to reduce complexity in the implementation we do not
implement the RED algorithm in its entirety.

5.1.1 Experimental Environment

The machines used in the experiment had an Intel Pentium Il 300 MHz processor. These
machines were interconnected via a 10BaseT Ethernet LAN at the data link layer. The RANI
network was built on the Windows NT operating system substrate.

5.1.2 Source simulation

To bring out the effectiveness of the LGC algorithm we simulate responsive and unresponsive
connections. The sources are simulated with the help of a packet generator that can be selected to

behave as a responsive or a greedy source.

[ Packet generator]

s N

Active Node

. J

\l/
Java runtime

Windows NT Platform

Figure 5.1 The active node at runtime
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The transport mechanism for a responsive connection is simulated as a rough approximation of a
TCP source. A detailed explanation of the implementation of TCP can be found in [22]. In this
section we briefly describe our implementation of the relevant parameters of the TCP window.
Our TCP-like source contains common parameters as implemented in TCP such as the slow start
threshold (ssth) and congestion window (cwnd). The slow start threshold parameter for the
responsive source is set through the user interface. The packet generator begins in a slow start
phase in which the congestion window (initially set to one) is doubled every round trip time
(similar to TCP’s exponential increase in cwnd) until it equals the threshold. Now the generator
enters the congestion avoidance phase in which the congestion window is incremented by one
packet every round trip time (similar to TCP’s linear increase in cwnd). The transport mechanism
for an unresponsive connection is simulated by a constant packet-rate source. The end user can
configure the total number of packets, the number of bursts and the inter-burst spacing in
milliseconds through the user-interface. For example the end user may select the total number of
packets as 200, the number of bursts as 8 and the inter-burst spacing as 300msec.
Correspondingly, the packet generator will inject 25 back to back packets, pause for 300
milliseconds, inject the next 25 packets back to back, then pause again for 300 milliseconds, and
so on until all 200 packets are sent.

5.1.2 Network Topology and active node parameters

The active network topology comprises of the number of source nodes, interconnecting nodes,
sink nodes and the virtual links interconnecting these nodes. The active node parameters consist
of the time-to-live field set in the packets and the node queue parameters defined by the size of
the buffer, the weight (w) used for calculating the average queue size and the maximum threshold
(max,) of the nodes packet queue (Node Q).

For each experiment we select a topology that tests a particular aim of the LGC algorithm and

select node parameters such that at least one of the intermediate nodes gets severely congested in
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order to trigger the LGC algorithm. To prevent packet loss we select a large buffer size at the

intermediate node targeted for severe congestion.

5.1.3 Presenting results

Results are presented in the form of graphs, tables and statements for the following:

o The throughput observed for each of the sources is expressed as a percentage of packets
successfully reaching the destination node

o Installation and mobility of active filters (if any) for the identified greedy connections

o Actual queue size measurements and average queue size measurements for a given set of
active node parameters.

5.1.4 Experiment 1 — Basic operation

In this experiment we test the ability of the LGC algorithm to correctly identify and filter a

greedy connection. The test network consisting of six responsive sources, one greedy source, one

interconnecting node and a sink node is shown in Figure 5.2.

(5
)
o) L)

Figure 5.2 Network topology for Experiment 1

Node 1 is the greedy source and nodes 2,3,4,5,6 and 7 are responsive sources. Node 7 behaves as
a responsive source and is targeted for severe congestion. Node 8 is the common sink for all the

sources. Virtual links are shown as double-ended arrows. Node 7 is forced into a severely
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congested state by having all the sources transmit packets at approximately the same time. To
prevent packet drops due to expiration of the TTL field, all packets injected into the network have
an initial TTL of 10 seconds. The queue parameters for node 7 are set with queue weight = 0.02,
max;, (Upper threshold) = 25 and buffer size = 50. The responsive sources inject 50 packets each
with an initial TCP slow-start threshold set to 16. The greedy source injects 200 packets in 5
bursts with an inter-burst duration of 1 second.

In Figure 5.3, the x-axis shows the packets arriving at node 7 and the y-axis shows the queue size
measured in packets. The solid line (y = 25) represents the configured valugnaitrtaex node.

Notice that the low pass filtering mechanism of RED causes the average queue size to change
slowly in comparison to the actual queue size. For brevity, the first few packet arrivals have been
omitted in Figure 5.3. Initially as the responsive sources open up their windows, the actual queue
size remains low (<10). Once the competing sources have sufficiently large windows, the actual
gueue size increases rapidly. When the average queue size crosgaszm2i in this case, the

LGC algorithm is triggered.
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Figure 5.3 Plot of queue size v/s packet arrivals for Node 7
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From the nodes packet queue we observe that the total queue occupancy is 39 packets. Of these
21 packets belong to connection 1, 4 packets belong to connection 2, 5 packets belong to
connection 3, 3 packets belong to connection 4 and 2 packets each to belong connections 5,6 and
7. Totally there are seven active connections at node 7. Fair queue occupancy is 39/7 = 5.57. With
a permissible factor k of lg@1), the permissible queue occupancyBs57 *3.044500= 17

packets. Connection 1 had 21 packets in the node queue and was correctly identified as an
unresponsive connection. Since Node 7 is the first-hop node for this connection, the migration of
the packet filter was not necessary and a packet filter for connection 1 was installed at Node 7 for
a duration T_FirstHop(100) seconds. Subsequently all packets arriving from connection 1 were
filtered out at node 7. The throughput for responsive connections was observed to be 100% after
the LGC algorithm came into effect, but the greedy connection had a throughput of 53.5% due to
active filtering at node 7. If the RED algorithm were implemented in its entirety, the throughput
observed for the responsive sources would be lesser than 100% since the algorithm would drop
all packets arriving at the node when it is severely congested. However, this technicality is
overlooked in the evaluation of LGC since RED is not implemented in its entirety i.e. arriving
packets at the node under severe congestion are not dropped or marked. We only wish to isolate
the greedy connections and dynamically filter them to prove that the algorithm is successful.

Due to the bandwidth greedy nature of connection 1, we observe a sudden drop in the queue
occupancy once this connection is filtered. This can be observed in the region of the graph just
after the LGC algorithm is triggered. Eventually the queue size is controlled at point B. The time
lapse (marked as T in Figure 5.3) between the LGC algorithm coming into effect (point A) and
the reduction in average queue occupancy (point B) occurs due to the low pass filtering
mechanism in the calculation of the average queue size. It confirms the requirement for the
presence of an idle time (Tx > T) between two successive triggers of the LGC algorithm. If the
LGC algorithm were not suspended for time Tx, it would be triggered multiple times since avg

exceeds maxfor duration T, despite active filtering of the greedy connection.
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The LGC algorithm must also ensure that non-greedy unresponsive connections must not be
filtered. To verify this requirement we repeated the above experiment with source node 1
injecting 200 packets in 15 bursts with an inter-burst duration of 3 seconds. Node 1 now
simulates a constant packet-rate source making a moderate demand on network bandwidth at the
congested node 7. Figure 5.4 shows the actual and average queue sizes plotted against packet
arrivals at node 7. The bursty nature of the connections causes the spikes in the value of

instantaneous queue size at the intermediate node 7.

Inst. Q size
Effect of non greedy unresponsive connection Ave. Qe
— Upper Threshold
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Packet Arrivals

Figure 5.4 Plot of queue size v/s packet arrivals for non-greedy connections
Here, we observe that the average queue size at node 7 remains below 10 at all times implying
that demand on resources does not exceed supply. Thus node 7 does not get congested and LGC
is not triggered. Since queue occupancy remains low (<25), there is no packet loss and throughput
is 100% for all the seven connections.
5.1.5 Experiment 2 — Mobility of the active filter
Atfter the LGC algorithm identifies and filters a greedy connection at the congested node, it uses
active messages to move the filter dynamically towards the source of the identified connection. In
doing so, packets belonging to the greedy connection are filtered ‘closer’ to their source, thereby

reducing the wastage in network resources. In this experiment we study the movement of the
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mobile filter towards the source of the greedy connection and the effect of installing the mobile
filter at a node. The network topology for the experiment is shown in Figure 5.5.

Node 1 is an unresponsive packet source. Nodes 11, 12 and I3 are interconnecting nodes that
forward packets. Node S is the sink for all the packet sources. Nodes 2,3,4 and 5 are responsive
packet sources that provide cross traffic to congest 13. Node 13 has a buffer size of 108etmax

to 35 and w set to 0.02. All sources inject 250 packets with the responsive sources having an

initial TCP slow-start threshold set to 32.

(D
(G

(D o

Figure 5.5 NetworkTopology for Experiment 2
In order to monitor the packet flow in the network we label the packets from the various sources
as follows. Packets from source 1 are labeled al through a250. Packets from source 2 are labeled
b1 through b250. Packets belonging to sources 3,4 and 5 are labeled similarly.
First, we consider the activities at node 13. In Figure 5.6, the x-axis shows the packets arriving at
node I3 and the y-axis shows the queue size measured in packets. For brevity, the first few packet
arrivals have been omitted in the chart. When the average queue size crosses 35, the LGC
algorithm is triggered. At this time, 13 had received and forwarded 122 packets belonging to
source 1, 84 packets belonging to source 2, 91 packets belonging to source 3, 85 packets

belonging to source 4 and 66 packets belonging to source 5, making a total of 448 packets. This is

shown by the dotted line in Figure 5.6.
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Figure 5.6 Plot of queue size v/s packet at Nodel3

Based on queue occupancy at the node, source 1 is identified as ‘bandwidth greedy’.

Consequently a packet filter for source 1 is installed for T_Intermediate seconds. I3 also sends an

active filter message to the previous hop node 12. Now, packets belonging to source 1 are dropped

at I3 as long as the packet filter remains in operation. Soon, node 12 installs a similar packet filter

and the responsibility of controlling the greedy source 1 shifts one hop closer to the source. This

process continued till the filter migrates to the first hop node. These actions are deduced from the

packet drops for source 1 which occur successively at nodes I3 followed by 12 and finally at 11.
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Figure 5.7 Packet flow in Experiment 2 after LGC has been triggered
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In Figure 5.7, the y-axis represents the number of packets and the x-axis marks the nodes I1, 12,
I3 and the sink. The bars represent the arrival and departure of packets belonging to source 1 at
the nodes I1, 12 and I3. Lets start with node I3 where packet filtering begins. When the LGC
algorithm was triggered, 13 had received and forwarded packets al through al22. It then installs
the packet filter for source 1 and sends an active filter message to 12. 13 then drops packets al123
through al35 due to active filtering. Now, 12 installs a packet filter for source 1 and propagates
the filter message to node I1. Subsequently 12 drops packets a136 through a173 and packets al74
through a250 were filtered at 11. Totally packets al23 through a250 are dropped after LGC is
triggered.

5.1.6 Experiment 3 - Multiple bandwidth greedy connections

In this experiment we test the ability of the LGC algorithm to handle multiple bandwidth greedy
connections. The network topology for this experiment is shown in Figure 5.3. Nodes 1 and 3 are
greedy sources where as nodes 2, 4 and 5, 6 and 7 are unresponsive connections making a
moderate demand on the network. Node 8 is the common sink for all the sources. Node 1 injects
300 packets in a single burst and node 3 injects 300 packets in 3 bursts with an inter-burst spacing
of 3 seconds. The other nodes (2,4,5,6 and 7) inject 120 packets each in 30 bursts with a 2

seconds inter-burst period.

(2}
(2
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Figure 5.8 Network Topology for Experiment 3
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The queue parameters for node 7 are set with queue weight = 0.Q4>=r@&xand buffer size =

250. A large buffer size is deliberately chosen to observe the queue occupancy at node 7 and
prevent tail dropping of packets.

In Figure 5.9, the x-axis shows the packets arriving at node 7 and the y-axis shows the
instantaneous and average queue sizes measured in packets. The line (y = 35) represents max
For brevity, the first 110 packet arrivals at node 7 have been omitted in the chart. Initially the
average queue size remains low (<10). Once the greedy source begins injecting packets, the
average queue size increases till ynaxcrossed (point A). Now, the LGC algorithm is triggered

and active filtering of greedy source 1 begins.

At this point the queue size drops but the available bandwidth is soon taken up by the second
greedy source. This is observed within the Tx portion of the graph at point D. The difference here
is that although the average queue size crosses the upper threshold (35 in this case), the LGC
algorithm is not triggered. The reason being that a minimum time lapse of Tx is maintained
between successive triggering of the LGC algorithm. After the Tx timer expires (point B), the
LGC algorithm successfully identifies and filters the second greedy source. Queue occupancy is
now controlled and the node emerges from its congested state (point C).

Packets arriving at the common sink node 8 reveal that throughput for the moderate connections
were 100% each (mainly due to the large buffer size at node 7). Greedy connection 1 had a
throughput of 57.33% and greedy connection 2 had a throughput of 46% due to active filtering at

node 7.
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A — Active filtering of greedy source 1 begins
B — Active filtering of greedy source 2 begins
C — Node relieved from congested state

D — Second greedy source congests the node
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Figure 5.9 Queue size v/s packet arrivals for multiple bandwidth greedy sources

5.2 Observations of LGC

o At the congested node, if there are a large number of connections represented in the node
gueue, it is observed that the greedy connection tends to shut out the responsive connections
and grab a large share of the bandwidth making it easier to identify greedy connections.

o There may be some cases in which multiple greedy connections compete for a limited share
of the bandwidth in such a way that they restrict other responsive connections, but all of the
greedy connections have individual queue occupancies within permissible limits. In this
scenario the active node gets congested but the LGC algorithm fails to detect the greedy
connections. For example, lets assume that there are ten connections through a node of which
five are non-greedy and five are greedy sources. It is possible that whemaug each of
the greedy sources have taken up 15% of the queue leaving the remaining 25% of the queue
to be shared amongst the five responsive sources. The permissible value of queue occupancy

is obtained from eq. [c] in section 4.8.1. Thus,
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go = 100* log(3*n)/n = 100*0g(30)/10 = 34.01%
Since all the connections including the greedy connections have queue occupancy well below
this limit, the LGC algorithm does not detect them and the five responsive connections
continue to receive a disproportionate share of the bandwidth. Although this example
demonstrates a shortcoming of the LGC algorithm we note that such scenarios are the
exception rather than the rule. It is a rare occurrence for multiple greedy connections to
congest a particular node at the same time and get synchronized in such a way that they make
identical demands on network bandwidth.
The overheads of the LGC algorithm include maintaining timers and connection identifiers
when the node is severely congested. However, these overheads are minimal in comparison to
the benefits accrued in limiting greedy connections and relieving the node from its congested
state. If extreme measures such as actively filtering out the greedy connections are not taken
there is a high possibility of the node buffer being reduced to a drop-tail queue.
If the packet filter were to be statically positioned at the congested node, the node would
suffer the overhead of filtering packets at a time when its resources were scarce. Secondly,
network resources such as processing time and bandwidth would be wasted between the
source and the congested node at which the packets are being filtered. For the above reasons
we considered it beneficial to use active network technologies to migrate the packet filter

towards the source of the greedy connection and protect network resources.
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Chapter 6

Conclusion and Future Work

6.1 Summary

This thesis has presented the design, implementation and evaluation of an active network
architectural framework along with two popular network utilities and a mobile filtering
mechanism targeted at limiting the impact of bandwidth greedy connections on congested nodes
in the network. The active nodes in the network support a menu-based processing model in which
end-users may select a packet processing service from an available set of possible services. The
node does not maintain state as regards a particular flow but could be programmed to do so under
exceptional circumstances as in the case of the LGC algorithm actively filtering packets
belonging to an identified greedy connection. The active datagrams injected into the network
contain a reference to the type of servicing they require and the network nodes provide this
service on a best effort basis. The active nodes are implemented in Java as a user space process
and execute at the application layer in the TCP/IP protocol stack. In our implementation we do
not distinguish between end-nodes and intermediate nodes of the network. We have provided a
user friendly GUI for configuring, operating and managing the active node.

6.2 Future Work

Our current work was focused on implementing utilities and control mechanisms on an
experimental active network testbed. In this work we have borrowed many concepts from existing
implementations on traditional IP networks such as Ping, Traceroute, RED and ECN. It will be
interesting to pursue applications that simply cannot be supported by traditional store and forward
networks; applications that must rely on intelligence within the network for their successful
operation. If it can be proved that such applications significantly improve end-user satisfaction

and at the same time consume network resources modestly, the active networks project is certain
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to gain a wider acceptance. The future directions of this work will be in pursuing the development

of such ‘killer’ applications. We summarize some of the future directions below:

o Designing the node to operate at the network layer will ensure that the end-to-end latency
addition due to application specific packet processing within the active network will be
minimized. The performance of our active network will then become comparable to
traditional networks.

o Our present active network implementation assumes that the virtual links interconnecting the
active nodes are bi-directional in order to reduce the complexity of the active services built on
the underlying network fabric. In future implementations we wish to eliminate such
simplifying assumptions so that an empirical analysis of our system will yield results that
closely emulate real-world scenarios.

o A wide range of work in the development of end-user application services for active networks
is currently being done. This includes Active Reliable Multicast [25], improvements in
network caching [15, 32], Network Security [10], Active Bridging [12], data fission and
fusion techniques within the network [37] and application oriented congestion control
mechanisms [30, 33, 35]. In future implementations we wish to take a closer look at user-
level application services that can directly benefit from the underlying intelligence provided

by an active network.
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Appendix A

In order to compare the theoretical performance of traceroute and Atraceroute we make some
basic assumptions as regards the network topology.
A.1 Assumptions:
i.  Symmetrical routes between the source and destination node since it is a requirement for
the successful operation of traceroute.

ii.  All links that interconnect the network nodes have identical network metrics such as
bandwidth, delay, etc. to aid in calculations.

iii.  All nodes in the network have a constant processing time Tx, for an incoming packet.
This means that the time interval between a packet entering and leaving a node is Tx and
remains the same for active or passive packets.

iv.  Traceroute and Atraceroute packets have the same size.

A.2 Comparison of the time complexity for traceroute and Atraceroute

Based on the above assumptions, the time taken for a packet to travel from one node to the next is

a constant. Let this time be d. From assumption iii, the node resident time of the traceroute and

Atraceroute packets is the same and is ignored in future calculations.

Traceroute: The first packet sent out by the source node has its TTL set to 1. The time lapse

between sending out this packet and receiving a ‘time exceeded’ response is 2d. In general, the

time lapse between sending out the nth packet and receiving the nth ‘time-exceeded’ response is

2(n)d. Since traceroute operates by sequentially probing and discovering nodes in the network

upto the destination node, the total time (D) in discovering a node that is n hops away is
D=2(d)+22)d+23)d+....... + 2(n-1)d + 2(n)d

D = (A)(N)(N+1) cveveeve e eeeeeeeee e 1]
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Atraceroute: In this case only one ‘originating’ packet is inserted into the network and it
successively probes the nodes in the network till the destination node is reached. Referring to
Figure 4.3, the time taken to discover a node that is n hops away is

D=2(N) e e [
From [I] and [ll] it is evident that based on identical network metrics and conditions, the time
complexity for traditional traceroute is G{rand for Atraceroute it is O(n).
A.3 Comparison of the link utilization for traceroute and Atraceroute
In the case of traceroute, the total number of links traversed by packets belonging to the
traceroute utility is obtained from [I] as

N=NNF+L) oo (1
Referring to Figure 4.4, in the case of Atraceroute the total number of links traversed by the
‘originating’ packet is n. The ‘descriptive packet’ from the nth node traverses n links. Thus the

total number of links traversed by the original and descriptive packets are :

N=n+1+2+...... +n
N =2(N)(N+3) ceeree e e [IV]
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Figure A.1 Comparison of link utilization
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Figure A.1 shows a plot for equations [lll] and [IV]. We observe that as n increases the link
utilization of Atraceroute is modest in comparison with traceroute, although both have

complexity of O(A).
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