
THE DESIGN AND EVALUATION OF NETWORK SERVICES IN AN ACTIVE

NETWORK ARCHITECTURAL FRAMEWORK

by

 NIRAJ PRABHAVALKAR

A thesis submitted to the

Graduate School-New Brunswick

Rutgers, The State University of New Jersey

in partial fulfillment of the requirements

for the degree of

Master of Science

Graduate Program in Electrical and Computer Engineering

Written under the direction of

And approved by

Professor Manish Parashar

New Brunswick, New Jersey

October, 200

ii

ABSTRACT OF THE THESIS

The design and evaluation of network services in an active network architectural

framework

by NIRAJ PRABHAVALKAR

Thesis Director:

Professor Manish Parashar

There are an increasing number of applications that require more support from the network nodes

besides the storage and forwarding of bits that the nodes presently provide. These applications

include group communication strategies, scalable network management, provisioning for quality

of service, efficient routing protocols and congestion control mechanisms. Active networks

provide a new networking platform that is flexible and extensible at runtime and supports the

rapid evolution and deployment of networking technologies to suit current needs. They allow the

network nodes to perform application specific computation on the data flowing through them.

Although, with active networking the possibilities for refining current applications and

introducing new ones are tremendous, it is important to demonstrate the performance benefits

accrued from an active networking platform.

Despite research efforts in industry and academia to eliminate network congestion, the problem

continues to persist. Furthermore, a number of applications require a constant bit rate of

transmission while some others tend to ‘grab’ as much network bandwidth as available ignoring

congestion related feedback from the network. We utilize the processing capabilities of active

networks in order to effectively control bandwidth greedy connections at a congested node.

iii

Traceroute is a popular network utility that discovers the route followed by an IP datagram to

another host. Refinements in accuracy of operation and savings in network resources are achieved

by using an active networking platform to implement traceroute.

This thesis investigates the design of an experimental active network testbed and develops active

services that utilize the underlying network fabric. It makes the following contributions.

� The design and implementation of an active network testbed comprising of interconnected

active nodes using object-oriented techniques. In our network model datagrams may select

specific processing at the active nodes from an available set of options thus conforming to a

menu-driven approach.

� We have designed and evaluated a congestion control mechanism that aims to limit the

degradation in network performance caused by bandwidth greedy applications. The

mechanism operates by monitoring packet queues to detect a greedy connection. A process of

recursive mobile filtering then controls the identified connection. Specifically, we install a

packet filter for the greedy connection and use active messages to dynamically move the filter

towards the source of the connection. By filtering packets closer to the source, the network

resources are protected from the aggressive flow.

� We have implemented an active traceroute utility that achieves considerable savings in time

complexity and link utilization for achieving the same objectives as traditional traceroute.

iv

Table of Contents

ABSTRACT OF THE THESIS... ii

Table of Contents .. iv

List of Illustrations .. viii

Chapter 1.. 1

Introduction.. 1

1.1 Background and motivation... 3

1.1.1 A lengthy process called ‘Standardization’ .. 3

1.1.2 Application Support.. 4

1.1.3 Technological progress ... 5

1.2 The challenges .. 5

1.2.1 Network security...6

1.2.3 Interoperability... 8

1.2.4 Deployment .. 8

1.3 Contributions .. 8

1.4 Thesis Overview ... 9

Chapter 2.. 10

Related Work ... 10

2.1 Related Active Network Architectures... 10

2.1.1 Smart Packets ... 10

2.1.2 Active Node Transfer System (ANTS) .. 11

2.1.3 SwitchWare .. 13

2.1.4 CANES (Composable Active Network Elements) ... 14

2.1.4.1 Architecture Overview.. 15

2.1.5 NetScript: A language and Environment for Programmable Networks....................... 15

v

2.1.5.1 The NetScript Network and its target applications... 16

2.2 Comparison of architectures .. 17

Chapter 3.. 19

RANI Active Network Architecture.. 19

3.1 Design overview of RANI (Rutgers Active Network Initiative) 19

3.1.1 Components of the RANI active node ... 19

3.1.2 Datagram propagation and ‘tunneling’.. 20

3.2 Implementation Details ... 20

3.2.1 The RANI node.. 21

3.2.2 Packet format within the node... 22

3.2.3 Packet movement in the RANI network .. 24

3.2.4 The receive module... 24

3.2.5 The process module .. 25

3.2.6 Transmission module .. 27

3.3 Node operation and configuration.. 27

3.4 Summary of network features.. 29

3.5 Limitations of our architecture... 30

Chapter 4.. 31

RANI Applications... 31

4.1 Host Reachability .. 31

4.1.1 Ping .. 31

4.1.2 APing ... 31

4.2 Route Discovery.. 32

4.2.1 Traceroute .. 32

4.2.2 Atraceroute ... 33

4.2.2.1 Objectives .. 34

vi

4.2.2.2 Operational details.. 34

4.2.2.3 Taking a closer look at Atraceroute... 35

4.2.2.4 Implementation of Atraceroute ... 36

4.2.2.5 Features.. 37

4.3 Network congestion and unresponsive connections.. 37

4.4 Understanding a congested network... 39

4.5 Background... 39

4.5.1 Introduction .. 39

4.5.2 RED (Random Early Detection) gateways... 40

4.5.3 ECN (Explicit Congestion Notification) capable gateways .. 41

4.6 Aims of our congestion control strategy... 41

4.7 High level design of algorithm... 42

4.8 Implementation ... 44

4.8.1 Monitoring the active node’s packet queue to isolate a greedy connection 44

4.8.2 Controlling the greedy connection... 47

4.8.3 Operation of the mobile filter – The active filter service .. 48

4.8.4 The LGC algorithm... 50

4.8.5 Importance of timing parameters in LGC .. 51

Chapter 5.. 53

Experimental Evaluation... 53

5.1 Evaluating the LGC algorithm... 53

5.1.1 Experimental Environment.. 53

5.1.2 Source simulation ... 53

5.1.2 Network Topology and active node parameters... 54

5.1.3 Presenting results .. 55

5.1.4 Experiment 1 – Basic operation... 55

vii

5.1.5 Experiment 2 – Mobility of the active filter ... 58

5.1.6 Experiment 3 - Multiple bandwidth greedy connections .. 61

5.2 Observations of LGC... 63

Chapter 6.. 65

Conclusion and Future Work .. 65

6.1 Summary... 65

6.2 Future Work.. 65

References.. 67

Appendix A.. 69

A.1 Assumptions:.. 69

A.2 Comparison of the time complexity for traceroute and Atraceroute 69

A.3 Comparison of the link utilization for traceroute and Atraceroute.................................... 70

viii

List of Illustrations

FIGURE 1.1 COMPARING TRADITIONAL NETWORKS WITH ACTIVE NETWORKS.............................. 2

FIGURE 1.2 HOURGLASS MODEL OF TCP/IP NETWORKS.. 3

FIGURE 1.3 GENERIC ACTIVE NODE MODEL... 6

FIGURE 3.1 HIGH-LEVEL DESIGN OF THE ACTIVE NODE... 20

FIGURE 3.2 ACTIVE NODE IMPLEMENTATION.. 21

FIGURE 3.3 THE RANI NODE.. 22

FIGURE 3.4 ACTIVE PACKET FORMAT.. 22

FIGURE 3.5 MOVEMENT OF PACKETS IN THE RANI NETWORK... 24

FIGURE 3.6 RECEIVE (RX) MODULE.. 25

FIGURE 3.7 PROCESS MODULE.. 26

FIGURE 3.8 NODE QUEUE... 27

FIGURE 3.9 GRAPHICAL USER INTERFACE... 28

FIGURE 3.10 SAMPLE NETWORK TOPOLOGY.. 29

FIGURE 4.1 OPERATION OF ATRACEROUTE... 34

FIGURE 4.2 FLOWCHART FOR HIGH LEVEL DESIGN OF OUR CONGESTION CONTROL ALGORITHM44

FIGURE 4.3 PERCENTAGE OF PERMISSIBLE QUEUE OCCUPANCY V/S NUMBER OF CONNECTIONS. 47

FIGURE 4.4 MOBILE FILTERING MECHANISM... 49

FIGURE 5.1 THE ACTIVE NODE AT RUNTIME.. 53

FIGURE 5.2 NETWORK TOPOLOGY FOR EXPERIMENT 1 .. 55

FIGURE 5.3 PLOT OF QUEUE SIZE V/S PACKET ARRIVALS FOR NODE 7.. 56

FIGURE 5.4 PLOT OF QUEUE SIZE V/S PACKET ARRIVALS FOR NON-GREEDY CONNECTIONS........ 58

FIGURE 5.5 NETWORKTOPOLOGY FOR EXPERIMENT 2... 59

FIGURE 5.6 PLOT OF QUEUE SIZE V/S PACKET AT NODEI3.. 60

FIGURE 5.7 PACKET FLOW IN EXPERIMENT 2 AFTER LGC HAS BEEN TRIGGERED....................... 60

ix

FIGURE 5.8 NETWORK TOPOLOGY FOR EXPERIMENT 3.. 61

FIGURE 5.9 QUEUE SIZE V/S PACKET ARRIVALS FOR MULTIPLE BANDWIDTH GREEDY SOURCES. 63

FIGURE A.1 COMPARISON OF LINK UTILIZATION... 70

TABLE 2.1 COMPARISON OF ACTIVE NETWORK ARCHITECTURES... 18

TABLE 3.1 SAMPLE ROUTING TABLE... 29

1

Chapter 1

Introduction

An active network may be simplistically viewed as a set of "Active nodes" that perform

customized operations on the data flowing through them. Traditional data networks were

designed with the aim of transferring bits from one end system to another. The transport

mechanism achieved its objectives with minimal computation within the network. In contrast,

active networks allow the network nodes to perform computation on the data passing through

them. In fact, some implementations also allow their users to inject customized programs into the

nodes of the network that may modify, store or redirect the user data flowing through the

network.

An active network is a relatively new concept gaining popularity in 1996. The active networks

program has the goal of producing a new networking platform that is flexible and extensible at

runtime. This platform aims to support the rapid evolution and deployment of networking

technologies to suit current needs and also help in developing services such as group

communication strategies, scalable network management, quality of service, efficient routing

protocols and congestion control mechanisms. The active network architecture supports a finely

tuned degree of control over network services. The packet itself is the basis for describing,

provisioning, or tailoring resources to achieve the delivery and management requirements. One

such architecture makes use of a “Smart Packet” [21] as the basic message unit on the network.

This packet is an agent with its objectives expressed through a portion of the packet called its

"method" -- a set of instructions that can be interpreted consistently by the active nodes through

which it traverses. The network is engineered to allow security, reliability, availability and quality

of service to be tuned at multiple levels of granularity under a wide range of conditions. The

active networks program involves the synthesis of work in programming languages, operating

systems and computer networking. Figure 1.1 shows a comparison of network processing

2

between traditional networks and active networks. It has been taken from the official DARPA

website [20].

The objectives of this thesis are:

� To provide a ‘proof of concept’ for active network technologies. In doing so we wish to

develop an active network testbed, design applications that utilize the added functionality of

the testbed and present relevant results obtained.

� To design and build an active network testbed for interconnecting lightweight active nodes.

The testbed must be extensible, user-friendly and should efficiently accommodate traditional

forwarding services.

� To implement new network utilities or improve upon existing ones by using the processing

capability of intermediate nodes and to demonstrate the effectiveness of the utilities by

experimental evaluation.

Figure 1.1 Comparing traditional networks with active networks

3

1.1 Background and motivation

The fundamentals for introducing a novel computer networking architecture must be sound. In the

following sections we outline the motivation for developing active network architectures.

1.1.1 A lengthy process called ‘Standardization’

Traditional networking architectures evolve at a slow pace governed by the time taken for

standardization and deployment of new protocols. We need to match this evolution speed with the

speed at which new applications are being introduced into networking. The design philosophy of

TCP/IP networks is based on a layered approach with each layer communicating with its peer

using standardized protocols. A wide variety of high level services such as file transfer (FTP), E-

mail (SMTP, POP) and Hyper-text transfer (HTTP), and low level network technologies such as

ATM, FDDI and Ethernet can be made to inter-operate at the network level by funneling their

functionality’s through the static IP protocol. Thus, IP routers are configured using a hardware

approach with the fixed IP protocol format in mind leading to the hour-glass model of TCP/IP

networks as shown below.

As the Internet grows it is increasingly difficult to maintain, let alone accelerate the pace of

innovation [6]. Every time a sophisticated application emerges or a change in link layer network

technology occurs we need to standardize and deploy new protocols in order to conform to the

interoperable IP layer. Standardization and deployment of such protocols is a lengthy and time-

consuming process taking several years as RSVP (Resource Reservation Protocol) and IGMP

(Internet Group Management Protocol) have proved. By having programmable open nodes and

the ability to deploy programs dynamically into the node engines, network services are decoupled

Figure 1.2 Hourglass model of TCP/IP networks

FTP, HTTP, TCP, UDP

FDDI, Ethernet, ATM

 IP (static)

4

from the underlying hardware. This allows new services to be demand loaded into the

infrastructure. Instead of hard-coding the functions of the network nodes, the execution

environments deployed for the application specific programs needs to be agreed upon so that

innovative ideas can be rapidly inducted over the underlying substrate.

1.1.2 Application Support

There are an increasing number of applications that require more support from the network nodes

besides the storage and forwarding of bits that they presently provide. Some of these applications

are listed below.

� The World Wide Web has a client-server design with clients establishing connections with

servers and requesting data from them. Caching "popular" data close to "interested" parties

reduces the latency of the data transfer and also reduces load on the server(s). However,

deploying caches dynamically at strategic locations within the network is a non-trivial task

and cannot be supported without the development of new protocols.

� Multicasting takes place with the help of routers having added functionality to route IP

packets to multiple destinations.

� Mobility of hosts connected to the Internet requires the presence of mobile proxies in the

network that can re-route traffic to the correct location of the host.

� Multimedia applications like video require transcoding mechanisms at strategic locations

within the network to convert high bit-rate streams to lower ones. The transcoder is based on

some data characteristics such as resolution, frame rate, etc.

� Installing firewalls in the network at administrative boundaries provides intranet security. The

firewalls are essentially filters that examine transit traffic and allow only conforming traffic

to pass through while blocking other traffic. The manual process of updating firewalls to

enable the use of new applications is an impediment to the adoption of new technology and

needs to be automated.

5

� A Network utility such as traceroute allows users to discover the route of an IP datagram

from a one node to another. The utility assumes static routes for consecutive datagrams

injected by the source node. We have investigated the impact of active networking

technologies on optimizing the performance of the traceroute utility in terms of reducing

complexity and eliminating the static route assumption.

� Many congestion avoidance mechanisms rely on routers and end-hosts to control connections

responsible for causing congestion so as to prevent further degradation of the network.

However, controlling ‘bandwidth greedy connections1’ continues to remain an open problem

in computer communications. In this thesis we will investigate a congestion control strategy

that is aimed at detecting and isolating such connections using active networks.

All the applications described above require some enhanced capabilities within the network to

achieve successful operation. In the absence of architecture support, the present solution consists

of a collection of ad-hoc approaches like installing Web proxies, multicast routers, mobile

proxies, video gateways and firewalls to provide the above services to end-users. The obvious

questions are "Can we have a more generic solution to support a variety of applications, some of

which may not even exist as of today?" and if so "What is the appropriate approach?"

1.1.3 Technological progress

Computationally powerful machines are readily available as desktop PC’s today. We may safely

assume that in the coming years processors will become smaller and faster. The same applies to

network processors such as routers. Advancement in technology will help in developing a generic

network model capable of performing customized computation within the network and not

restricted to the end points as is done today.

1.2 The challenges

The world of computers and communications distinguishes between nodes used for computing

and nodes used for communications [35]. This distinction evolved naturally since computers were

6

developed as stand alone machines that were subsequently connected by network elements. An

active network tends to narrow the gap between intermediate nodes and end-hosts with the

introduction of programmable open nodes that ‘may’ be injected with code from end-hosts.

Figure 1.3 illustrates a generic active node model and is based on the network model presented in

[14]. It comprises of three principal components; a forwarding engine for storing and forwarding

packets in the network, a transient execution environment for application oriented packet

processing and an accessible storage location for the execution environment. Based on this model

the most notable technical challenges in making the transition from the present Internet to an

active network are network security, evaluating performance benefits, addressing interoperability

and deployment.

1.2.1 Network security

Security issues are critical in active networks especially in implementations that let users load

their own code. The origin of information needs to be authenticated and it must be protected from

modification. Active code may have access to network resources making active networks

particularly susceptible to malicious or defective code that could threaten the operation of the

network. Researchers are finding ways to build networks in a way that will pre-empt defective

programs from harming the network or interfering with other programs and other users. But this

1 Bandwidth greedy connections are defined in chapter 4.

Figure 1.3 Generic active node model

Packet output Packet input

Storage

Transient Execution

Environment

 Forwarding Engine

7

approach also leads to a dilemma since we need to carefully restrict the actions of arbitrary code

while providing that very code with the flexibility of network level primitives.

1.2.2 Performance evaluation

The overhead of processing active packets at intermediate nodes in the network makes them fall

behind traditional data networks in terms of latency and throughput. The computation required

within the network may even tend to clog routers leading to network congestion. However,

processing of packets is not needed at every intermediate node within the network since most

applications require specific processing only at strategic locations within the network. Contrary to

popular belief, despite increasing the amount of processing performed within the network,

applications can improve overall system performance. Although throughput (a common network

performance measure) may suffer due to processing overheads in active networks, the application

may benefit on the whole if fewer active packets are needed to achieve the same application

objectives. For example research presented in [37] analyzes the performance of a real time

auction application that uses caching within the network backbone to reduce the load on the

auction server and backbone routers in terms of server load, round trip processing time and

network bandwidth consumption. During periods of heavy load the auction server activates filters

within the network and periodically updates them with the current price of the popular items. The

filtering active nodes are then authorized to reject bids that are lower than the current price. This

active networking protocol helps in distributing the server load, reducing bandwidth consumption

and cutting down on round-trip response time to customers during busy periods. Thus, some

researchers point out that performance should be evaluated in terms of application specific

metrics, which may not be positively correlated with network metrics. The cost of these

performance improvements in Active Networking is in the increased consumption of

computational and storage resources in the network, which may slow down other network traffic

flowing through the busy active node. However, the competing traffic could also benefit from

8

active processing due to the overall reduction in bandwidth utilization and congestion-related

loss.

1.2.3 Interoperability

Packet networks achieve interoperability by standardizing the syntax and semantics of packets.

Internet routers support the agreed IP specifications and perform the same computation on every

packet. In contrast active nodes can perform different computations on the packets flowing

through them. Interoperability must be achieved at a higher level of abstraction. Rather than

fixing the computation performed on the active packet we need to standardize the computational

model consisting of the instruction set and resources available to the active packets. For example,

to achieve cross-platform compatibility, a standard API could be developed to act as a common

programming model for writing the code that is injected into active networks. This would make it

easier to develop new applications as desired and would also reduce the program content of the

active packet.

1.2.4 Deployment

Deploying a new system needs substantial justification along with backward compatibility. To

succeed in the marketplace, proponents must develop applications, both current and future, that

demonstrate a clear advantage as promised without rendering prior networking equipment

useless. In order to strengthen the justification of the active networks program it is required to

demonstrate the capabilities of middleware services2 by developing suitable applications. In this

work we concentrate our efforts in the development of network services on an experimental

testbed.

1.3 Contributions

� We have built an active network testbed comprising of interconnected active nodes. By using

object-oriented techniques in the design of our active node we provide extensibility, re-

2 Middleware services are those that manage system resources, describe message format and support
data transformation.

9

usability and user-friendliness. Further, by creating a separate processing track for active

datagrams, we have ensured minimal impact on applications requiring plain old forwarding

service.

� The network utilities we have developed include (a) APing for discovering if a node in the

network is operational and (b) Atraceroute for tracing the path of a datagram in the RANI

active network. We have highlighted the advantages of Atraceroute by testing it on our

network and comparing it with the existing implementation on traditional networks.

� We have addressed the problem of limiting the impact of ‘bandwidth greedy connections’ at

congested nodes. We have designed and evaluated an intelligent congestion control

mechanism to detect and counter such connections during periods of severe congestion. In

our implementation we use a packet filter to discard packets belonging to the identified

connection at the congested node and dynamically move the filter towards the source of the

‘greedy’ connection thus protecting network resources from being overwhelmed. We

successfully demonstrated the utility of our mobile filtering mechanism through

experimentation.

1.4 Thesis Overview

Chapter 2 covers related work in which we survey some of the prevalent active network

architectures developed by others. It also includes a comparison of the various active network

architectures. In Chapter 3, we present our active network system architecture highlighting the

goals we have achieved. In Chapter 4 we present the active network services that we have

developed. The chapter begins with a description of our active traceroute and active ping utilities.

Finally, we examine the inadequacies of a popular congestion control strategy with respect to

bandwidth greedy connections and then explain a mobile filtering mechanism for isolating such

connections during periods of high congestion in our active network testbed. Chapter 5 is

dedicated to experimental evaluation of our active filtering mechanism. Chapter 6 draws

conclusions on the effectiveness of our work, suggesting some possible future directions.

10

Chapter 2

 Related Work

With active networking, the network is no longer viewed as a passive mover of bits, but rather as

a more general computation engine: information injected into the network may be modified,

stored or redirected as it is being transported. Obviously such a capability opens up many exciting

possibilities. However, it also raises a number of issues including security, interoperability and

migration strategy. All of these are influenced in large part by the active networking architecture

that defines the interface between the user and the capabilities provided by the network. The

networking architecture adopted has a direct bearing on the utilities and applications that it may

support.

We have developed a simple active network testbed. We utilize the functionality of this testbed

by implementing network utilities and by designing an intelligent congestion control mechanism.

This chapter is devoted to giving a brief overview of the prevailing active network architectural

models. Finally, we compare these architectures and provide the motivation for the design of our

testbed.

2.1 Related Active Network Architectures

2.1.1 Smart Packets

BBN is developing a capability for packets to carry programs that are executed at each node the

packet visits in the network [3]. The programs implement extended diagnostic functionality in

the network. The Smart Packets architecture has the following goals:

� Providing a specification for smart packet formats and their encapsulation into some network

data delivery service.

� Specification of a high level language, its assembly language, and a compressed encoding

mechanism for representing the portion of a smart packet that gets executed.

11

� Developing a virtual machine resident in each networking element to provide context for

executing the program within the smart packet.

� Developing a secure design

The Smart Packets project is designed to demonstrate that network management is a fruitful target

for exploiting active network technology. Making the programmable environment too rich or

flexible would overload the computing power of the managed node and compromise on security.

To balance flexibility with computing power and security two important decisions were made.

Firstly, there would be no persistent state in the network nodes. Consequently, the programs

carried by the smart packets must be completely self-contained. Even fragmentation of the smart

packet is not permitted. So the programming language used must be able to express meaningful

programs in a short (1Kbyte) length. Secondly, the operating environment must be secure. Also,

the programming language used should avoid dangerous or superfluous features like file system

access or memory management. This goal suggests that the code should be executed within a

virtual machine where only controlled operations are permitted.

2.1.2 Active Node Transfer System (ANTS)

ANTS [8] is part of a continuing research effort of the Software Devices and Systems group at

the MIT Laboratory of Computer Science. An ANTS based network consists of an interconnected

group of nodes that may be connected across the local or wide area by point-to-point or shared

medium channels [7, 37]. In addition to providing IP-style routing and forwarding as the default

network-level service, ANTS allows applications to introduce new protocols into the network.

Applications specify the routines to be executed at the active network nodes that forward their

messages. The various components of the ANTS architecture are presented below.

Protocols and Capsules: The packets found in traditional networks are replaced by capsules that

refer to the processing to be performed on their behalf at active nodes. Capsule types that share

information within the network are grouped into protocols; a protocol provides a service and is

the unit of network customization and protection. The most important function of the capsule

12

format is to contain an identifier for a protocol and forwarding routine within that protocol. The

identifier is based on a fingerprint of the protocol code. Some forwarding routines are “well-

known” in that they are guaranteed to be available at every active node. Other routines may be

“application-specific”. Typically, they will not reside at every node, but must be transferred to a

node before the first capsules of that type can be processed. Subsequently, capsules belonging to

a particular protocol contain the same identifier and are processed similarly at the active nodes.

Active Nodes: The active nodes execute the capsules of a protocol and maintain protocol state

replace selected routers within the Internet and at participating end nodes. Unlike ordinary

routers, active nodes provide an API for capsule processing routines, and execute those routines

safely by using operating system and language techniques. A major difficulty in designing

programmable networks is to allow nodes to execute user defined programs while preventing

unwanted interactions. The ANTS approach has been to execute protocols within a restricted

environment that limits their access to shared resources. The primitives of the active nodes are -

� Environment access; to query the node location, state of links, routing tables, local time and

so forth;

� Capsule manipulation; with access to both header fields and payload;

� Control operation; to allow capsules to create other capsules and forward, suspend or discard

themselves;

� Storage; to manipulate a soft-store of application defined objects that are held for a short

interval.

The capsule format includes a resource limit that functions as a generalized TTL (Time-To-Live)

field. This limit is carried with the capsule and is decremented by nodes as resources are

consumed. Only active nodes may alter this field, and nodes discard capsules when their limit

reaches zero.

Code Distribution Scheme: In ANTS an explicit code distribution mechanism ensures that

capsule processing routines are automatically and dynamically transferred to the active nodes

13

where they are needed. This component does not exist in traditional networks and is handled by

the system, not the service programmer. The ANTS implementation couples the transfer of code

with the transfer of data as an in-band function. This approach limits the distribution of code to

where it is needed, while adapting to node and connectivity failures. The code distribution

scheme is suited to flows, i.e., sequences of capsules that follow the same path and require the

same processing.

2.1.3 SwitchWare

SwitchWare [11, 13, 16] is an active networks research effort undertaken at the Penn Department

of Computer and Information Science and Bellcore [18]. Active Networks must balance the

flexibility of a programmable network infrastructure against the safety and security requirements

inherent in sharing that infrastructure. The SwitchWare active network achieves this balance

using three layers, each having a separate language specification. The switchlet language is the

language with which users can access the programmable features of the SwitchWare switch. The

wire language is the form in which the switchlets are moved between switches and the

infrastructure language programs the SwitchWare switch. An analogy of a three level language

might be a Java program written by a user, its byte code form, and the C language programs that

comprise the byte code interpreter.

Components of SwitchWare include active packets, their extensions and the secure active router

infrastructure. These are explained below.

Active Packets: An active packet is one that contains both code and data needed to process the

packet in the network. They replace the traditional network packet with a mobile program. The

code part of an active packet provides the control functions of a traditional packet header, but

does so much more flexibly, since it can interact with the environment of the router in a more

complex and customizable way. Similarly, the data in the active packet program replaces the

payload of a traditional packet, but provides a customizable structure that can be used by the

program. Basic data transport can be implemented with code that takes the destination address

14

part of its data, looks up the next hop in a routing table, and then forwards the entire packet to the

next hop. At the destination the code delivers the payload part of the data to the application.

Active Extensions: An active extension is some code that may be loaded on a running switch to

alter the processing of future packets. Node-resident extensions form the middle layer of the

architecture. They can be dynamically loaded active extensions or they can be part of the base

functionality of the router. They are not mobile – to communicate with other routers they use

active packets. Thus extensions are base functionality or are dynamic additions rather than

“mobile code”. If the code can only be loaded from a local persistent store, then the extension is

referred to as a local extension. Extensions may make use of other extensions already loaded on

the node; they need not be independent. Extensions reside on the node, e.g., in memory or on

local disk, until they are loaded. Because they are invoked only when needed, there is no inherent

need for the extensions to be lightweight. The key difference between active packets and

extensions is that although extensions may be dynamically loaded across the network, they

execute entirely on a particular node where as active packets are executed at some or all of the

active nodes it passes through.

Secure Active Router Infrastructure: This is the lowest layer of the architecture. While the top

two layers emphasize support for several forms of dynamic flexibility, the lowest layer is

primarily static. The goal of this layer is to provide a secure foundation upon which the other two

layers build. The importance of this is clear, since no matter how much security is assured by the

upper layers, security will be compromised if this layer creates an insecure environment.

2.1.4 CANES (Composable Active Network Elements)

CANES [17] is a research project at Georgia Institute of Technology. In this design, users can

select from an available set of functions to be computed on their data, and can supply parameters

as input to those computations. The available functions are chosen and implemented by the

network service provider, and support specific services; thus users are able to influence the

computation of a selected function, but cannot define arbitrary functions to be computed [31].

15

This approach has some benefits with respect to incremental deployment as well as security and

efficiency: Active Network functions can be individually implemented and thoroughly tested by

the service provider before deployment, and new functions can be added as they are developed.

2.1.4.1 Architecture Overview

The CANES architectural model for active networks takes a menu-based approach in which the

active node supports a fixed set of active functions and the active packets indicate the function(s)

to be invoked and supply parameters to those functions. The basic idea behind this architecture is

the incremental addition of user-controllable functions, where each function is precisely defined

and supports a specific service. The function specifications include:

� The identifier associated with the function.

� The parameters associated with the function and the method of encoding them in the packet.

� The semantics of the function. Ideally, the function semantics would be given in a standard

notation or another notation developed specifically for the purpose. A standard environment,

comprising support services such as private state storage and retrieval, access to shared state

information (e.g. routing tables), message forwarding primitives, etc., would provide a

foundation on which new services could be built.

CANES delegates the addition of a new function to a network node to the network service

provider. As with current networks, once a function is specified, each provider or vendor would

be free to implement the functionality in a manner consistent with the specification. This

approach corresponds roughly to the way new features are deployed in the public switched

telephone network today; users have the option of selecting from a variety of features

implemented by the service provider.

2.1.5 NetScript: A language and Environment for Programmable Networks

NetScript [19] is a programming language and environment for building networked systems. Its

programs are organized as mobile agents that are dispatched to remote systems and executed

under local or remote control. The goal of NetScript is to simplify the development of networked

16

systems and to enable their remote programming. NetScript could be used to build packet stream

filters, routers, packet analyzers and multimedia stream processors.

2.1.5.1 The NetScript Network and its target applications

A NetScript network consists of a collection of network nodes (e.g. PCs, switches, routers) each

of which runs one or more NetScript engines. The engine is a software abstraction of a

programmable packet-processing device. Each NetScript engine consists of dataflow components,

called boxes, that process packet-streams that flow through them. Packets flowing through a

NetScript node are processed by successive boxes to perform protocol functions. The system

consists of two components: NetScript, a textual dataflow language for composing packet-

processing protocols and the NetScript Toolkit, a set of Java classes to which the textual language

compiles. The boxes form a reactive system in which data (in the form of packets) flows from one

box to another. Arrival of data at one or more input ports of a box triggers computation within

that box; otherwise the box sleeps until data arrives to trigger it. The box is the central construct

in NetScript and the unit of program composition. A box declaration consists of four parts: the

box name, input port and output port declarations, a declaration of internal boxes and a connect

statement that defines the connections between internal boxes. When a box is loaded at a

NetScript engine, NetScript will instantiate its internal contents and make connections between

these boxes. Typical NetScript boxes do packet header analysis, packet demultipexing, or other

protocol functions. The boxes can be dispatched to remote network engines and dynamically

connected to other boxes that reside there to extend the network with new communication

functions. For example, an IP router implemented in NetScript could be dynamically extended

with firewall functions. Such a router might also be extended to monitor traffic, support content

filtering on the edge of a network domain, or perform load balancing and traffic shaping.

NetScript is useful in applications that process packet-streams.

A key application of NetScript includes the support for distribution of management functions. In

order to manage a network, applications must monitor, analyze and control elements by

17

processing their instrumentation data. Other management technologies such as SNMP [23] have

focused on moving data from elements to a management platform where applications processed

this data. NetScript aims to complement these technologies with one that allows a management

platform to dispatch programs (agents) to remote elements. Rather than bringing element data in

real time to applications, applications could be dispatched to process the data right at the

elements. This permits localization of management control loops in managed elements; in

contrast SNMP stretches control loops across the network.

2.2 Comparison of architectures

Principally, there are two ways in which the active network can support processing at

intermediate nodes in the network. In the language-based approach the active datagrams carry

programs that are executed in a suitable environment. Users are allowed to inject code into the

network making the system highly dynamic and flexible. However, special care must be taken to

safeguard the system against malicious users and buggy code. In the menu-based approach the

active node supports a fixed set of services. Designated operators may add new services into the

node. Active datagrams carry a reference to the type of servicing they require. The

implementation details of services are hidden from end user applications. We believe that the

menu-based approach gives a strict administrative control over the services that the network can

offer and provides a secure infrastructure at the cost of reduced dynamism. Thus, we adopt the

menu-driven approach in designing our active network.

The current architectures are in the developmental phase and a consensus on a standard

architecture has still not been reached. Our aim is to develop network services in an active

networking environment and subsequently evaluate them. Hence, we have designed and

implemented a testbed network (RANI) that is explained in Chapter 3. Table 2.1 shows a

comparison of the active network architectures described in section 2.1. The list of contributions

and applications is not exhaustive.

18

Architecture Approach Key Contributions Applications

Smart

Packets

Language-based Mobile agents Network management

and diagnostics

ANTS Language-based Application specific protocol

development

Distributed applications

and web caching

SwitchWare Language-based Programming language

development, network security

Active bridges,

bootstrap architectures

CANES Menu-based Active components WAN caches, selective

packet treatment

NetScript Language-based Designing scripts, mobile

agents

Management by

delegation

RANI Menu-based Design and implementation of

an active network testbed

Controlling bandwidth

greedy connections,

Active Traceroute

Table 2.1 Comparison of active network architectures

19

Chapter 3

RANI Active Network Architecture

The Internet Protocol (IP) does not support application oriented processing of datagrams at

intermediate nodes. For an active datagram however the node must process the contents of the

datagram (if it supports active networking) before forwarding it. This chapter describes the design

and implementation of the network architecture. The network testbed is used for experimental

evaluation of our network services.

3.1 Design overview of RANI (Rutgers Active Network Initiative)

The RANI network consists of a number of active nodes connected to each other via virtual links.

For the sake of simplicity, we assume that the virtual links are reliable in delivering datagrams.

Any node can communicate with other nodes in the network by sending datagrams across the

virtual links. Datagrams that do not need active processing are referred to as passive datagrams.

Passive datagrams are simply stored and forwarded similar to traditional network forwarding.

Datagrams that request additional processing at the intermediate nodes in the network are called

active datagrams. Active servicing is requested through a field in the header of the active packet.

Each datagram is considered an atomic element and is processed individually by the active nodes.

3.1.1 Components of the RANI active node

The purpose of the active node is to service the active datagrams and to forward the passive

datagrams towards their destination. Servicing active datagrams may include forwarding them.

Active datagrams are serviced on a best effort basis and may result in a change in the packet’s

contents. We have divided the various functions of the active node into individiual modules that

interoperate with each other. The Receive (Rx) and Transmit (Tx) modules handle datagram

propagation issues in the network. Active datagrams are serviced in a suitable environment called

the Processing (Px) module. The node resident services and programs are located in the Storage

area. End users may inject active datagrams into the network and request a particular type of

20

service. They may also inject passive datagrams that require the traditional forwarding service. In

order ensure speedy delivery of passive datagrams, we have created separate paths for active and

passive datagrams as shown.

3.1.2 Datagram propagation and ‘tunneling’

We do not expect all nodes in the network to be active nodes. The virtual links that interconnect

active nodes need not consist of a physical connection between the nodes. Virtual links provide a

path between the two nodes that it connects. The physical path corresponding to a virtual link

could traverse across legacy intermediate routers. In effect the virtual link provides a tunnel for

transferring datagrams between active nodes.

To illustrate the use of our active network, let us consider the path of a datagram requesting

service X, from source node S to destination node D. For this example, lets assume that the

network nodes have been configured correctly and a virtual link between node S and node D

exists. At node S, the datagram is sent to the processing module and X is executed on it. S

compares its own address with the destination address of the datagram. On determining that the

datagram has not reached its destination, S sends the datagram across the virtual link towards D.

This action takes place at every active node along the way until it reaches D. At D the datagram is

again serviced and finally delivered to the application.

3.2 Implementation Details

Figure 3.1 High-level design of the active node

Rx

M
O
D
U
L
E

Tx

M
O
D
U
L
E

STORAGE

Px MODULE

Passive packet path

Active packet path

21

Our active node is implemented in Java (v1.1) as a user space process on the Windows NT

operating system. The node runs at the application layer in the TCP/IP protocol stack. Application

oriented processing of active packets may be required at the end nodes as well as intermediate

nodes in the network. Thus we do not distinguish between intermediate nodes and end nodes.

Virtual links are implemented as a UDP (User Datagram Protocol) socket pair – one socket is

used for receiving datagrams and the other for sending them. Active or passive packets are

created and subsequently injected into the active network via the user interface at the node. These

packets are propagated as UDP segments.

3.2.1 The RANI node

The receive module comprises of UDP receive sockets for incoming datagrams and a packet filter

for separating active and passive packet paths. Each receive socket contains a blocking receive

thread running in an infinite loop to pick up datagrams and deliver them to the packet filter. The

process module comprises of an execution engine (EE) where active packets are serviced. Active

packets are serviced on a first come first served basis by ordering the packets in a FIFO execution

engine queue. An independent EE thread extracts the first packet from the EE queue and

dispatches it to the EE for processing. The EE thread runs in an infinite loop extracting each

packet till the queue empties. The Storage (Sx) module comprises of node resident services and

tables such as the routing table. The Transmission (Tx) module consists of UDP send sockets, a

node queue and a single transmit thread. The node queue is common to all packets (active or

Figure 3.2 Active Node implementation

Application

Tranport

Network

Data Link &
Physical

Communication
Layers

Active Node

UDP

IP

Ethernet 10BaseT

Our Implementation

Active/Passive Packet

UDP Segment

IP Datagram

Frame/Bits

Transmission Format

22

passive) that need to be forwarded. The transmit thread extracts packets from the node queue and

delivers them to the next hop active node via the virtual links.

3.2.2 Packet format within the node

Before getting into the details of the different components as shown in the above diagram let us

take a look at the packet format within the active node. Datagrams are propagated as UDP

segments in byte array format across virtual links. However once inside the node, the datagram is

converted into either a passive packet or an active packet.

The fields of the active packet are shown below. All the packet fields are in string format and are

initially set at the source node. In comparison to the traditional datagram format, the active packet

has an additional Ack, Act, PrevNode, TL and TOS fields. The packets carry state information in

the TTL and PrevNode fields since these fields must be modified in transit by the active nodes.

The Payload field may be modified in transit depending upon the service requested by the end-

user. We have not provisioned for sequence numbering of packets since at this stage we have

assumed that the network is reliable and have developed network services that deal with

individual active packets.

Figure 3.3 The RANI node

Figure 3.4 Active packet format

SA SP DA DP Ack Act TTL TOS TL Payload PrevNode

 Node Queue

 EE

Services and Tables Drawing conventions used

1. Threads – curved arrows
2. Queues – cylinders
3. Sockets – capsules
4. Components – blocks
5. Input / Output - Arrows

1

2

5

4

3

EE Queue

 Packet Filter

23

SA (Source Address): It is the IPv4 address of the node that injects the packet into the network.

SP (Source Port): This field identifies the port number of the virtual link at the source node

through which the packet is injected into the network.

DA (Destination Address): It is the IPv4 address of the destination node for the packet.

DP (Destination Port): This field identifies the port number of the link at the destination node on

which the packet is to be received.

Ack (Acknowledgement): This field is true for acknowledgement packets and is false otherwise.

Act (Active): This field is set to true if the packet is active and is false otherwise. It distinguishes

between active and passive packets.

TTL (Time To Live) : This field represents an upper bound on the resources that the packet can

consume within the active network. We have kept this resource bound in terms of time. The TTL

field is decremented by active nodes along the way upto the destination node by the amount of

time that the packet exists at the node. If a packet requires excessive processing at a node, it will

reside for a longer duration at the node and correspondingly a larger value will be subtracted from

its TTL resource. An intermediate node discards a packet whose TTL has dropped to zero. The

TTL field is used to discard stale packets by keeping an upper bound on the time that a packet

resides in the network and for calculation of packet round trip time.

PrevNode (Previous Node Visited): This field contains the IPv4 address of the node last visited

by the packet and the port number of the last virtual link on which it traversed. The field is set

just before an active node transmits the packet. Any node in the network can determine the

previous node through which it received a packet by looking up this field. In our present

implementation since we have assumed bi-directional reliable virtual links, this field is unused for

applications developed so far. However, once this assumption is no longer necessarily true in

future implementations, this field will be useful in developing network applications that rely on

the path traversed by an active packet.

24

TL (TOS Length): This field carries the length in bytes of the TOS field. Keeping in mind the

flexibility of introducing new services, we keep the TOS field to be of variable length.

TOS (Type of Service): The active packet requests a particular service through this field. The

active node provides the service requested on a best-effort basis. For example, if a packet requests

the AtraceRoute service its TOS field is set to AtraceRoute and its TL field is set to 11.

Payload: This field carries the payload of the active or passive packet.

The passive packet has the same format as the active packet with the Active field set to false and

the TL and TOS fields omitted since they do not request any service from the intermediate

network nodes.

3.2.3 Packet movement in the RANI network

Figure 3.5 illustrates the mechanism of injecting packets into the active network from an active

node. The dark line shows the physical path that a packet traverses in our active network. From

the end user application perspective the dotted arrow shows the virtual path that the packet

traverses. The diagram also brings out the concept of ‘tunneling’ packets through legacy

intermediate routers.

3.2.4 The receive module

Arriving datagrams at the active node are cast into active or passive packets in the packet filter.

An active packet resides at the node till it is completely serviced. Every packet in the node is

subject to a destination check to ascertain if it has reached the destination node. Basically, in the

Figure 3.5 Movement of packets in the RANI network

Virtual link
Active Node

UDP

IP

Ethernet
10BaseT

Active Node

UDP

IP IP

Source
Node

 Destination
Node

 Legacy intermediate router

 Physical path
 Virtual path

Ethernet
10BaseT

Ethernet
10BaseT

25

destination check, the IP address of the node is compared to the destination address field of the

packet. If the fields match, the test is successful and the packet is delivered to the application. If

the test is unsuccessful the packet is added to the node queue (Node Q) for forwarding. Passive

packets are subjected to a destination check in the packet filter itself. Active packets are directly

dispatched to the execution engine queue (EE Q) by the packet filter. The destination check for

active packets is performed in the process module. By maintaining two separate queues for

servicing (EE Q) and forwarding (Node Q) we create slow and fast tracks for the active and

passive datagrams respectively. If we were to maintain a single queue, the passive packets would

suffer from larger delays due to the longer processing time taken for active packets at the head of

the queue.

Note that when an active packet reaches the destination node it is serviced before being sent to

the application. Passive packets are delivered directly to the application when they reach the

destination node. Figure 3.6 shows the receive module in the RANI node. Here, the spotted

packets are the ones that have reached their destination.

3.2.5 The process module

Active services are stored as loadable classes in the node. They implement the LoadableClass

interface and contain a process method. Active packets are serviced by invoking the process

method of the loaded service class. We maintain a list of all services loaded at the node during its

run time. This list is implemented as a hash table containing the service name as the key and the

Figure 3.6 Receive (Rx) Module

 Rx Thread

Rx Sockets

Delivery to application

Fast Track – to Node Q

Slow Track - to EE Q

Packet Filter

 Passive Packets
 Active Packets

 Destination packets

26

class descriptor as the value. Packet servicing occurs in the execution engine. The engine extracts

active packets from the FIFO execution engine queue. The TOS field of the active packet is in the

form of the service name. At the active node, the service name of the active packet is looked up in

the hash table and one of the following cases could occur.

Case 1: The requested service is not found in the hash table. This implies that the service has not

been loaded. The EE attempts to load the service into the node.

Case 1a. If service loading is successful, the hash table is updated and the process routine of the

service class is invoked on the active packet. Henceforth, all successive active packets requesting

this service are directly processed.

Case 1b. In the current implementation, if the service loading is unsuccessful, the packet is

discarded. In future implementations, we could make the node perform traditional forwarding on

active packets that it cannot service. This implies building services that need not require

processing at all intermediate active nodes.

Case 2: The requested service is found in the hash table. This implies that the service has been

previously loaded and so the execution engine directly invokes the process routine of the service

class returned by the hash table, on the active packet.

New services are uploaded to the active node through ‘trusted operators’. A discussion of the

security implications on designating these operators and implementing such a scheme is beyond

the scope of this thesis. Figure 3.7 illustrates the functioning of the process module.

Figure 3.7 Process module

 Packet requesting
unavailable service
EE – Execution Engine

Class
Loader

Stored services

Loaded
services

Process(or) 2

 1
 To application

To Node Q

Dropped packets

 1a

 1b

EE

27

3.2.6 Transmission module

The node queue may receive packets from three sources. The first source is the front-end user

interface (described in section 3.3) through which users may inject packets in the network. The

second source is the receive module which may add passive packets that require forwarding.

Lastly, the execution engine adds active packets that require forwarding to the node queue. The

transmit module extracts packets from the FIFO node queue. It then looks up the routing table

with the destination address and port number of the packet as the key to the table. The table

returns3 the virtual link on which the datagram must be sent. The node then converts the packet

into a UDP datagram in byte array format and sends out the datagram on the returned link. To

handle the special case of looping back (source and destination node fields are the same) of

passive packets in the RANI node, a destination check on the passive packets is performed in the

transmission module.

3.3 Node operation and configuration

We have provided a user-friendly GUI for configuring and operating the active node. Node

operation includes injecting active or passive packets into the network, monitoring the node

queues and testing virtual links for operation. Multiple packets can be injected with the help of a

packet generator that simulates UDP or TCP-like sources. The user can select the number of

packets, the average rate of injection of packets and burst size of the packets4. Node configuration

involves creating (and destroying if necessary) virtual links, managing the routing table and

3 If the routing table returns null, the destination is unreachable and the packet is discarded
4 These parameters are described in Chapter 5

Figure 3.8 Node Queue

To Tx
module

 4 3 2 1 0

Passive packet from
fast track

Active packet from
execution engine

Packet from
user
interface

28

setting the queue parameters. All nodes in the active network are identified by unique IPv4

addresses. At run time of the active node, virtual links to other nodes are created through the user

interface. Each link successfully created is automatically added to the routing table. The routing

table is implemented as a hashtable containing the destination address and port number as the key

and the virtual link object as the value. The table is automatically updated when new links are

created or existing links are destroyed. We also provide access to manually configure the routing

table for dynamically changing routes in the network. Shown below is an illustration of the user

interface to our active node.

Figure 3.9 Graphical User Interface

Routing table
displayed here

This box displays the contents

of the node queue

Active node interface

Routing manager interface Queue manager interface

29

To explain the construction of routing tables at our active node, consider the following network

topology. Virtual links are labeled VLINK.

In this example, the routing table constructed for node1 and node4 are shown below. We have

assigned arbitrary IP addresses to the active nodes and used arbitrary port numbers for the virtual

links.

NODE 1 NODE 4

Key Value Key Value

Node2 128.6.43.52:2000 VLINK1-2 Node1 128.6.43.20:6000 VLINK1-4

Node3 128.6.30.3:4000 VLINK1-3 Node2 128.6.43.52:2000 VLINK1-4

Node4 128.6.21.18:3000 VLINK1-4 Node3 128.6.30.3:4000 VLINK1-4

Node5 128.6.21.19:3000 VLINK1-4 Node5 128.6.21.19:3000 VLINK4-5

3.4 Summary of network features

� The active node provides an environment for communicating with applications, packet

processing and network communications.

� The active node does not maintain state or flows unless programmed to do so for a specific

purpose.

Figure 3.10 Sample network topology

Table 3.1 Sample routing table

 VLINK4-5

VLINK1-4

VLINK1-3

VLINK1-2

Node5 Node4

Node1

Node2

Node3

30

� The programming model of the network is based on a menu-based approach. End-users may

request network processing through a service-ID field in the active packet. Trusted operators

are allowed to load new services or enhance existing ones, thus minimizing security risks.

� At run time, the active node has a user-friendly graphical user interface through which it can

be configured and operated. Also, the active nodes may be restarted and links may be

dynamically changed to reflect a new network topology.

� In order to allow multiple packets to be processed simultaneously at the node, entities

interacting with the packet such as queues, tables, threads, links and routines are

synchronized.

� Separate tracks are maintained for active and passive packets to speed up traditional

forwarding.

� The TTL field in the packet ensures an upper resource limit on the time that a packet may

spend in the network.

3.5 Limitations of our architecture

Firstly, by processing packets within the active network the speed of packet transfer from end to

end is reduced. Although end-applications may benefit from this additional network support even

at reduced packet rates, it is important to maintain a high rate of packet transfer to prevent large

packet queues from building up at the active nodes. Our active node is built at the application

layer in the TCP/IP protocol stack. This makes its operation relatively slow. Secondly since the

aim of this work was to examine active network technologies with respect to network utilities and

congestion control we made simplifying assumptions such as reliable, bi-directional virtual links

and static routing tables. These assumptions prevent real world scenarios from being simulated

for other applications. Lastly, by allowing only trusted operators to load new services into the

active we compromise on the dynamism in enabling new active services. However, these

limitations do not undermine the contributions made in this thesis with respect to our objectives.

31

Chapter 4

RANI Applications

This chapter is divided into two parts. The first part describes the implementation and operation

of RANI network utilities. The second part of this chapter addresses bandwidth greedy

connections in the RANI network.

4.1 Host Reachability

In this section we first describe the implementation of the Ping network utility on traditional IP

networks and then describe its implementation (APing) on the RANI testbed. Aping was the first

active service that we developed as a sanity check for the RANI testbed.

4.1.1 Ping

The word “ping” stands for Packet InterNet Groper. The ping program is often used to test the

reachability of another host on the Internet by sending it echo requests that it must respond to, if

the host is operational [39]. The traditional ping program is one that sends an ICMP (Internet

Control Message Protocol) echo request message to a host and waits for a reply. ICMP messages

are encapsulated in IP datagrams and hence the operation of ICMP does not depend on the

higher-level protocols such as TCP and UDP. Most TCP/IP implementations provide a ping

program and it has proved to be a useful tool.

4.1.2 APing

The operation of APing along with its service routine is provided in this section. The APing

active packet originates from a source node (S) that wishes to discover whether some other target

node (T) in the network is alive. Intermediate nodes forward this active packet towards the target

node. On receiving the active packet, the target node sends back an acknowledgement to the

source. The source node (S) on receiving the acknowledgement displays a message saying that

the queried host is alive. Assuming that the APing service is loaded at an active node, when an

active packet requesting this service enters the execution engine of the node, the process method

32

of the APing class is invoked with the active packet as the formal parameter. A line by line

description of the APing.process() method is given below.

process (ActivePacket)

{

 if (! ActivePacket.destinationReached()); // intermediate node reached

{

 forward (ActivePacket); // packet forwarded to destination

 }

 else // Destination or Source node reached

{

 if (! ActivePacket.getAck(); // packet at Destination node

 {

 ActivePacket.sendAck(); // Create and return an acknowledgement

 }

 else // packet back at Source node

 {

 printSuccess() ; // displays reachability message

 }

}

}

4.2 Route Discovery

In this section we first describe the operation of the traceroute utility on traditional

networks. Then we describe its design and implementation on the RANI testbed concluding with

a comparison of the two implementations.

4.2.1 Traceroute

Traceroute allows users to discover the route of an IP datagram from a source node to another

node. Traceroute uses the ICMP ‘time exceeded’ message and the TTL (Time To Live) field of

the IP header. The utility requires end nodes to have a programming interface to the TTL field of

an outgoing datagram. Availability of this programming interface to many networked nodes and

simplicity of its operation make this utility popular in TCP/IP networks. Traceroute operates by

33

sending UDP datagrams to the destination node with the destination port number selected to be of

a large value (>30000) making it highly improbable that an application at the destination is using

that port [38]. The utility begins operation by sending a UDP datagram towards the destination

with a TTL set to 1. The first router to receive the datagram, decrements the TTL to 0,

subsequently discards it and then sends back an ICMP ‘time exceeded’ message to the source.

The source node thus identifies the first router in the path to the destination. Now, traceroute

sends a UDP datagram with a TTL of 2, thus discovering the second router in the path to the

destination node. This process continues till all routers upto the destination node is identified.

When the destination receives a datagram with the TTL of 1, it does not discard it since no further

forwarding is required. Instead, the node attempts to deliver the datagram to the ‘unusually high’

port number which is almost certain to be unused by any application. This results in an ICMP

‘port unreachable’ message being sent back by the destination to the source node. The utility

running at the source node distinguishes between the ICMP ‘time exceeded’ and ‘port

unreachable’ messages to terminate route tracing.

A technical point overlooked above is that for each value of TTL, the utility sends three

datagrams and prints the roundtrip times of the received ICMP messages. If no response is

received within 5 seconds, the utility prints an asterisk and continues operation.

Note:

� The traceroute utility assumes that consecutive datagrams from the same source to the same

destination follow the same route.

� Time complexity of operation of traceroute is O (n2) where n is the number of hops between

source and destination nodes.

� Resource complexity in terms of links traversed is O (n2).

� The source node transmits successive IP datagrams towards the destination with incremental

TTL field values till the destination node is reached.

4.2.2 Atraceroute

34

4.2.2.1 Objectives

� To accurately determine the forward path of an active packet from a source node to any other

node in our active network.

� To discover the node-resident time of the active packet at each active node in transit. The

processing delay and queuing delay constitute the node-resident time of the active packet and

enable us to determine the overheads involved in active processing.

4.2.2.2 Operational details

Atraceroute operates by injecting a single active packet requesting the Atraceroute service. This is

expressed in the packet’s Type of Service field. When the first active node in transit receives the

packet, it forwards the active packet it received and sends back a description of its IP address and

the packet processing time in the form of an active packet to the source node. The source node on

receiving the descriptive packet discovers the first node in transit. When the second node receives

the ‘originating’ active packet, it similarly executes the Atraceroute service by forwarding the

received packet to the destination and sending back a descriptive packet to the source node.

Figure 4.1 Operation of Atraceroute

1

3

3

3

T
I
M
E

DISTANCE

Source (S) Node1 Node2 Destination (D)

‘originating’ active packet requesting Atraceroute service

‘Descriptive’ active packet returned by visited active nodes

1

2

3

2

2

35

This process continues till the destination node is reached. The destination node sends back a

descriptive packet to the source and discards the originating active packet. Thus the source node

discovers all active nodes in the path of the original active packet.

4.2.2.3 Taking a closer look at Atraceroute

� Figure 4.4 shows the forward and reverse paths of the active packet to be identical since our

implementation assumes bi-directional virtual links. However this assumption is not

necessary for successful operation of Atraceroute.

� The destination for the originating packet is the D node where as the destination for

descriptive packets is the S node.

� The originating and descriptive packets both request Atraceroute servicing. But, the

originating packet has its ack field set to false where as the descriptive packet has its ack field

set to true. Active nodes in transit use the ack field to distinguish between originating and

descriptive packets. A node receiving an originating packet creates a descriptive packet and

sends it back to the source of the originating packet. A node receiving a descriptive packet

simply forwards it to the destination.

� An interesting scenario would be to tackle re-ordering of packets at the source node in the

eventuality that descriptive packets overtake each other on the return path. A possible

solution could be to force the originating packet to carry state information regarding the node

that it visits in the forward path. So when the originating packet is injected into the network it

starts off with its state set to one. When Node1 receives this packet it echoes a descriptive

packet carrying this state (one) and forwards the originating packet with the state modified to

two. Now Node2 receives the originating packet with state two. Hence it echoes back a

descriptive packet with this state, increments the state in the originating packet and forwards

it. This process ensures that returning descriptive packets carry the corresponding number of

the node visited by the originating packet making it possible to re-order the descriptive

36

packets at the source node. In Figure 4.4, the numbers mentioned on the packets represent the

state information they could carry. However, in our implementation the bi-directional virtual

link assumption prevents packets from being re-ordered in the network.

4.2.2.4 Implementation of Atraceroute

The process routine of the Atraceroute service is shown with appropriate comments below.

process (ActivePacket)

{

 if (! ActivePacket.destinationReached()); // intermediate node reached

 {

 if (! ActivePacket.getAck()) // implies ‘originating’ packet received

 {

 forward (ActivePacket); // ‘originating’ packet forwarded

sendDescriptivePkt(); // ‘descriptive’ packet created and returned

 }

 else // descriptive packet received from some node upstream

 {

 forward (ActivePacket); // the packet is simply forwarded

 }

 }

 else // Destination (Source or Destination) node reached

 {

 if (! ActivePacket.getAck()) // ‘originating’ packet at Destination node D

 {

 sendDescriptivePkt();

 }

 else // ‘descriptive’ packet at Source node S

 {

 printPacketPayload(); // Prints out contents of descriptive packet

 }

 }

}

37

4.2.2.5 Features

� The Atraceroute utility injects only one active packet into the network. Hence, we do not

assume static routes from the source to the destination.

� Time complexity of operation of Atraceroute is O(n) and the link utilization is O(n2), where n

is the number of hops between the source and destination nodes. Details are presented in

Appendix A.

� The node resident time of the originating packet at each active node in transit is

determined.

4.3 Network congestion and unresponsive connections

The past few decades have seen the merging of computers and communications leading to the

development of computer networks. Rapid progress in technology coupled with the immense

popularity of the Internet has seen an exponential growth in networked systems over the past few

years. Formally, a computer network means an interconnected collection of autonomous

computers [1]. The principle aim of a networked system has been information gathering,

processing and distribution. Ideally, we would like to design and organize the network such that

all information should be delivered reliably to any networked location within an acceptable time

frame. Users of this ideal network would then derive maximum utility. However, the real world is

far from ideal, leading to the development of networks that fail to satisfy one or more of the

above criteria. A prominent cause that widens the gap between the ideal and real world scenarios

is network congestion. Despite research efforts in industry and academia to eliminate network

congestion, the problem continues to persist.

In [5] Yang and Reddy have broadly classified a range of congestion control algorithms into open

loop and closed loop control mechanisms based on control theory. In the open loop algorithms,

the transmitting sources carefully regulate the effective rate of transmission to prevent congestion

from developing in the network. Such mechanisms cannot be relied upon completely due to the

38

dynamic nature of network traffic and network parameters. In the closed loop control

mechanisms, it is the network that provides feedback to the transmitting sources either when it is

congested or when congestion is building up. The transmitting sources then reduce their effective

transmission rates in order to prevent clogging up the network. Both these mechanisms rely on

the transmitting sources to exercise control. A growing number of applications require a constant

rate of transmission (they cannot function without a minimum application-specific bandwidth

requirement) while some others tend to ‘grab’ as much network bandwidth as available ignoring

congestion notification. These applications fail to implement a transport mechanism that is

responsive to the congestion status fed back to them from the network. Going by the nature of

such applications we refer to them as ‘unresponsive connections’. Formally, an unresponsive

connection is one that ignores or underplays feedback information regarding congestion status of

the network. Examples of such applications include streaming multi-media services, Voice

transmissions and web radio broadcasts.

Internet traffic measurements taken in mid-April 1998 on OC-3 links within nodes on the iMCI

backbone data have revealed “Web traffic constitutes 75% of the bytes, 70% of the packets and

70% of the flows when client and server traffic are considered together” [24]. Let us consider one

constituent of Web traffic - streaming media applications. A recent article in the New York Times

[34] claims, “In 10 years, movies and commercial television might very well be carried over

Internet channels. This increasing demand will add vast amounts of streaming traffic to the

Internet and could lead to what Van Jacobson (chief scientist for Cisco Systems Inc.) calls

"congestion collapse" – the Internet equivalent of gridlock”. The article continues to describe the

bandwidth greedy nature of such applications. “By its very nature, streaming media has to flow

continuously to the user's computer, so it cannot follow the same traffic rules as conventional

data. But even so, it is possible for packets of streaming data to interact civilly with other traffic

on the Internet. The reason they do not, Jacobson said, is that streaming media providers have no

incentive to comply with traffic rules.”

39

4.4 Understanding a congested network

Although a large number of definitions for network congestion exist in computer literature, we

consider the following to be precise.

� A network is said to be congested from the perspective of user i if the utility of i

decreases due to an increase in network load (where utility refers to a users preference for

a set of resources) [36]. In this definition congestion is classified as an end-user perception of

the state of the network. If a specific user’s demands on the network are not affected, even

under highly loaded conditions, for him the network is still uncongested though other users

whose utility may have been adversely affected will perceive the network to be congested.

� If, for any interval of time, the total sum of demands on a resource is more than its

available capacity, the resource is said to be congested for that interval [26]. This

definition uses a demand-supply relation to identify congested periods in the network. The

demand consists of delivering information from end-to-end and satisfying user constraints

such as allowable delays and reliability. The supply includes (but is not limited by) network

resources such as buffer space, link bandwidth and processor speed. Only if all demands are

met, the network is uncongested. Jain also explains with examples how congestion is in fact

worsened by an ad-hoc increase in these network resources. Rather than considering

congestion to be a supply related issue, we need to control it by a sound design strategy.

4.5 Background

4.5.1 Introduction

In this section we discuss two relevant schemes for congestion avoidance; Random Early

Detection [27] and Explicit Congestion Notification [28]. RED gateways signal congestion by

marking or dropping packets. ECN is a specific implementation of RED in which packets are

marked to minimize packet loss during congestion at the gateway. RED has been proven to be

ineffective in controlling bandwidth greedy connections as explained in Section 4.5.2. We aim to

extend RED in order to control greedy connections using the RANI active network testbed.

40

4.5.2 RED (Random Early Detection) gateways

RED gateways have a packet queue that is closely monitored to detect the build up of congestion.

Based on queue occupancy, the average queue length (avg) is computed using a low pass filter

with an exponentially weighted moving average. The gateway notifies connections of congestion

either by dropping or marking packets arriving at the gateway. If a packet arrives to a full queue it

is discarded. The gateway has two pre-set thresholds called minth (minimum threshold) and maxth

(maximum threshold). With every arriving packet, the avg is computed and compared to these

two thresholds. If avg is less than minth, arriving packets are not dropped or marked. If the

computed avg exceeds maxth, all arriving packets are marked or dropped. If the computed avg lies

between minth and maxth, the gateway notifies a connection of congestion with a probability that

is roughly proportional to that connections share of the bandwidth through the gateway. The

average packet queue size (avg) is computed as follows:

avg = (1-w)*avg + w*q

where

w < 1 is a queue weight that determines the degree of burstiness permissible by the

gateway

q is the number of packets in the queue

The value of avg is computed with every packet arrival at the gateway. However, when a packet

arrives to an empty queue (q = 0), avg is calculated differently. The gateway first calculates the

idle time for the packet queue as the difference between the time at which the packet arrived and

the time at which the queue length became zero. The average packet queue (avg) is then

computed as if the gateway had transmitted m packets during the idle time. The factor m is

linearly dependent on the time for which the queue was idle. Thus for an empty queue,

m = f (time - q (time))

avg = ((1-w)**m)*avg

where

41

q (time) is the time at which q became zero

time is the time at which a packet arrives to the empty queue

 time – q(time) is the idle time of the packet queue

f () is a linear function representing the rate at which the packet queue is drained

A detailed explanation of the RED algorithm can be found in [27].

The advantage of RED gateways is that they help in keeping the average queue size low, allow

occasional packet bursts and prevent global synchronization of packet sources due to the

randomness of the RED algorithm in marking or dropping packets at a congested node. However,

it has been proven through simulations that an unresponsive bandwidth greedy connection gets a

larger than fair share of the bandwidth at a RED gateway when competing with responsive

connections [2]. But the congestion avoidance schemes suggested in [2] require multiple queues

to be maintained at the intermediate nodes of the network. We propose a mechanism using the

RANI network to maintain a single FIFO queue at the intermediate active nodes.

4.5.3 ECN (Explicit Congestion Notification) capable gateways

Explicit congestion notification [28] is a mechanism that notifies transmitting sources of incipient

congestion by setting a bit in the IP header of the packet (called packet marking). When the

marked’ packet reaches the destination, congestion notification is echoed back to the sender via

the acknowledgement packet. The sender is then expected to cut back the packet transmission

rate. However, the connections need to be ECN capable; the end hosts must be capable of

responding to marked packets for the scheme to work.

4.6 Aims of our congestion control strategy

� The algorithm must be simple and easily deployable in the RANI active network testbed.

Congestion leads to performance degradation of a network. Deploying a complex algorithm

would amount to consuming network resources at a time when resources are scarce.

42

� The designed algorithm must be efficient and effective. An efficient algorithm would have

minimal overheads. The effectiveness of the algorithm must be justified through

experimentation.

� The algorithm must accurately detect bandwidth greedy connections at a congested node. In

section 4.3 we highlighted the growing popularity of unresponsive connections. However, it

is important to note that unresponsive connections are not necessarily bandwidth greedy. If

that were the case our algorithm would restrict all UDP connections in the active network.

Our aim is to limit the degradation in network performance caused by transport mechanisms

that tend to increase or maintain their effect rate of transmission of packets, despite being

asked to cut back during periods of congestion.

� The algorithm should provide a negative incentive to greedy connections in order to limit

their popularity.

� The algorithm must scale well. It should be capable of handling multiple greedy connections

through a congested node.

4.7 High level design of algorithm

Our congestion control strategy is optimized for the reservationless packet switched RANI active

network described in Chapter 3 and could be implemented in other active network architectures

as described in Chapter 2. The high level design is illustrated as a flow chart in Figure 4.1. We

have used the words flow and connection interchangeably and have described the characterization

of a flow in the implementation details.

� Monitoring the system to detect congestion: When the demand on the network exhausts its

resources, the network nodes are the first to be affected. Specifically, when a node gets

congested the packet queue gets heavily occupied eventually forcing the node to drop packets

that overflow the queue. Hence, packet queues at the intermediate nodes in a network are the

ideal location for detecting the build up of congestion.

43

� Distributing the congestion-related information to places that can control deterioration

of system performance: We divide the set of connections through a congested node into two

distinct categories viz. non-greedy and greedy connections. Non-greedy sources either

respond to congestion notification or do not make a heavy demand on network bandwidth

during congested periods. In the case of non-greedy sources the control loop is stretched from

the congested node to the packet source. We rely on RED mechanisms and the packet source

to reduce the rate at which packets enter the congested node. Bandwidth greedy sources

underplay or ignore the fed back congestion related information in the form of dropped or

marked packets. Controlling such sources is the focus of our algorithm. Stretching the control

loop to the packet source is ineffective and hence congestion caused by greedy sources is

controlled at the congested node itself and not by relying on the greedy sources to cut back

their effective rate of packet transmission.

� Correcting system operation: Demand on a network node is gauged by the effective rate of

arrival of packets at the node. In order to eliminate congestion at a node, the effective rate of

packet flow through the node needs to be reduced. During severe congestion, the packet

arrival rate from greedy connections is controlled by a mobile filtering mechanism. In this

mechanism a packet filter is installed at the congested node for the identified greedy

connection. The filter is then progressively migrated towards the source of the greedy

connection using active messages. In doing so, the packet drops are made early and causes

lesser wastage of network resources. Filtering packets belonging to a flow is a relatively

harsh mechanism of controlling congestion but is deemed necessary, taking into account the

damage that can be done to network resources by the greedy connection. Keeping in mind

that multiple flows could be identified as bandwidth greedy, we pick out the greediest flow

and dynamically filter packets belonging to it. However, if congestion is not controlled

despite filtering the greediest flow, the algorithm continues to successively pick out flows in

order of their greediness.

44

In summary, our algorithm must first detect when a node’s packet queue is about to overflow due

to increased demand. It must then correctly identify greedy connections (if any) that may be

responsible for this extreme condition. Subsequently, by using the processing capabilities of the

active network nodes in the path of the greedy connection(s), the algorithm must effectively

control the rate at which packets from the greedy connection(s) enter the congested node.

4.8 Implementation

We have labeled our implementation of the algorithm described in section 4.5 as the LGC

(limiting greedy connections) algorithm.

 4.8.1 Monitoring the active node’s packet queue to isolate a greedy connection

In [9], Dong et. al have demonstrated through simulations that in RED gateways the bandwidth

consumed by greedy connections is greater than its fair share. In fact, bandwidth consumption is

directly related to the queue occupancy of the connection. A connection with a large share of

Figure 4.2 Flowchart for high level design of our congestion control algorithm

Start

Pick out the greedy
flow (if any)

Monitor the nodes
packet queue

Control by RED
mechanism

Control by mobile
filtering mechanism

Congestion triggered

Congestion not triggered

All other flows Greedy flow

A

45

bandwidth consumption on a link has a correspondingly larger share of packet queue occupancy

at the node. Thus, we use queue occupancy metrics to detect a greedy connection.

In RED gateways when avg exceeds maxth, all packets arriving at the node are marked or

dropped. In this state, the nodes packet queue is close to overflow and we label the node to be in a

‘severely congested’ state. We have observed that maximum disparity between queue occupancy

for non-greedy and greedy connections occurs at this time. To ensure accuracy in identification of

greedy connections, our algorithm is triggered in the severely congested state of the node. For

simplicity we identify a connection by a source IP address, source port tuple although it would be

more accurate to identify connections by a source IP address, source port number, destination IP

address, destination port number, IP protocol tuple.

To identify the greedy connection at a severely congested node, first we need to determine the

fair share (f) of a packet queue. Consider an active node having a total packet queue occupancy of

75 packets with 5 connections competing for a share of the bandwidth. The fair share in terms of

packet queue occupancy would be given by

f = Total queue occupancy(p) / number of connections represented in the queue(n) [a]

 i.e. f = 75/5 = 15 packets

Ideally, to ensure a fair distribution of bandwidth, each connection should not have more than 15

packets buffered at the node. But a responsive connection may have more than its fair share of

packets buffered at the node due to several reasons. Some of the prominent reasons cited in [29]

are the bursty nature of Internet traffic, a possibility of high delay-bandwidth links on the receive

port of the node and connections being in different phases of operation. We provision for these

discrepancies by a factor ‘k’ > 1. The value for k is selected to be loge(3n). The factor k decides

the degree of permissible disparity between greedy and non-greedy sources. Selecting a small

value of k may cause the algorithm to wrongly classify a responsive source as greedy, where as

selecting k to be too large will make it nearly impossible for the algorithm to detect a greedy

connection. A similar value is chosen in [29] for identifying flows using disproportionate

46

bandwidth. However that scheme also relies on the characterization of a conformant TCP source

based on an assumed value of round trip time for the connection. Our approach to detect an

unresponsive connection is purely based on the queue occupancy of the connections when a node

is severely congested.

Assuming that the separation between minth and maxth is large, avg is unlikely to increase from

minth to maxth before providing ample time for the responsive connections to back off. In this

scenario, when average queue size exceeds the maximum threshold, and a large disparity occurs

between queue occupancies of competing connections it is safe to assume that the connection

with an exceptionally large number of packets buffered at the severely congested node is

bandwidth greedy. Continuing with our example, k = loge (15) or k = 2.708

We calculate the responsive share (r) of the packet queue occupancy as

 r = k*f  [b]

 or r = 2.708 *15 = 40.62

So in this example, a connection that has at most 41 packets in the queue (i.e.54.66% of queue

occupancy) during its severely congested state is assumed to be responsive. All connections

having more than a responsive share of the packet queue are assumed to be unresponsive.

Amongst the unresponsive connections identified, the one having the maximum number of

packets buffered at the severely congested node is singled out as the ‘greedy’ connection.

Combining (a) and (b) we have,

r =  (loge(3n)*p)/n

 i.e. r = p*(loge(3n))/n

The permissible queue occupancy expressed as a percentage is then given as:

qo= 100*r/p = 100* loge(3n)/n [c]

Figure 4.2 shows the permissible queue occupancy expressed as a percentage (qo) plotted against

the number of connections (n) represented in the queue. The slope of the graph is steep for

47

smaller values of n and becomes a gradual decline as n increases. This implies that a larger

variation in queue occupancy is permitted when fewer connections cause severe congestion at a

node. One anomaly that appears is that for the special case of n=1, a connection will not be

classified as greedy even if it exhausts the entire packet buffer at the node. This is in fact

necessary, so that a single connection will never be filtered, since there is no competing

connection.

0

20

40

60

80

100

120

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97

Number of connections (n)

P
er

ce
nt

ag
e

qu
eu

e
oc

cu
pa

nc
y

100*log(3*n)/n

4.8.2 Controlling the greedy connection

When the node is severely congested, reducing buffer occupancy is of utmost importance or the

buffer will overflow causing all arriving packets to be dropped and the RED gateway will reduce

to a drop-tail gateway. The disadvantages of drop-tail gateways are explained in [4, 27]. To

prevent the node to degrade into a drop-tail node, it becomes imperative to prevent the buffer

from overflowing. We feel that the only effective way to control the inflow of packets from a

greedy connection is by actively filtering packets belonging to the connection. The packet

filtering must continue until such a time that the queue occupancy of the packet buffer at the

severely congested node is reduced to acceptable levels. Once this happens the responsive

connections may compete for a fair share of the bandwidth that they were previously denied.

Figure 4.3 Percentage of permissible queue occupancy v/s number of connections

48

Also, the packet filtering can take place anywhere along the path of the connection from the

source to the congested node.

We control greedy connections by a process of mobile filtering. A packet filter for the greedy

connection is installed at the congested node. This filter migrates towards the source of the greedy

connection and stops at the first hop node of the connection. At the first hop node, the packet

filter is installed for a pre-programmed interval of time. In our implementation migration of the

filter is possible due to the assumption of bi-directional virtual links. In future implementations,

the PrevHop field of the packet may be used to move the packet filter towards the source of the

greedy connection.

4.8.3 Operation of the mobile filter – The active filter service

The process of mobile filtering begins with the congested node extracting a packet belonging to

the greedy connection from its packet buffer. This packet reveals the source of the greedy

connection. A greedy connection identifier (GCI) consisting of the source IP address and port

number is formed. Next, the virtual link object connecting the congested node to the greedy

source is obtained from the routing table using the GCI. The node uses the GCI to create a packet

filter on the receive thread of the virtual link. The packet filter drops packets originating from the

identified greedy connection. The virtual link object reveals the active node to which it connects.

The IP address and port number of this active node is called the previous hop identifier (PHI).

The node then creates an active packet destined for the previous hop requesting the ActiveFilter

service.

Figure 4.3 shows a network topology to illustrate the operation of LGC. Consider a greedy

connection G identified (by the procedure described in section 4.8.1) at the severely congested

node N4. This connection G competes with four other responsive sources (R) for link V9. N4

extracts a packet belonging to G from its packet queue and forms the GCI. Using the GCI and by

looking up its routing table, node N4 learns that the packet was received over link V6. N4 creates

a packet filter on the receive thread of link V6 to drop packets belonging to G. Link V6 reveals

49

that it is connected to node N3. In effect, N3 is the previous hop node for the identified greedy

connection G. Now N4 sends an active packet to N3 with its payload carrying the GCI, requesting

the active filter service. N3 on receiving the active filter message similarly installs a packet filter

for the mentioned GCI and propagates the active filter message to the next hop closer to G’s

source that is to node N2.

This process continues till the first hop node N1 for the greedy connection is reached. A minor

technicality overlooked in the example above was the assumption that a node can automatically

learn if it is the first hop node and stop propagating the mobile filter. This is because prior to

creating the active filter message each active node performs a previous hop check. The check

consists of a comparison of the GCI and the PHI fields. If they match it means that the filter has

reached the first hop node for the connection G. The packet filter is then installed for a longer

duration of time and the node does not propagate the active filter message any further. Sending

the active filter message to the source of a greedy connection would be futile for reasons

explained in section 4.3. Continuing with the above example when the active filter message

reaches node N1, the Previous Hop Identifier and the Greedy Connection Identifier are both G.

Thus no further active filter messages are sent in the network.

Figure 4.4 Mobile filtering mechanism

N5

R

R

G

R

N1 N3
N4

R

V1

V2

V7

V6

V3

V8

V9

N2

V4
V5

50

Once a greedy connection is identified and filtered at the congested node the packet queue

occupancy is expected to drop. However, due to the low pass filtering mechanism used in the

calculation of avg, its value might continue to be greater than maxth even after the queue

occupancy has decreased. This will again trigger the LGC algorithm. To ensure that LGC is not

triggered multiple times in a short interval of time, a minimum idle period is chosen between two

consecutive triggers of LGC.

4.8.4 The LGC algorithm

Variables used

� avg – Calculated average queue size

� maxth – Upper threshold for node queue

� Suspend_LGC – A Boolean variable used to ensure a minimum idle time between

consecutive triggers of LGC

� ITime – The time for which the packet filter for the greedy connection is installed at an

intermediate node

� FHTime – The time for which the packet filter for the greedy connection is installed at the

First Hop Node.

� Tx – The minimum idle time between successive triggers of the LGC algorithm

Initialization

avg = 0, Suspend_LGC = false

maxth, lTime, FHTime and Tx are pre-set and configurable.

The average (avg) is calculated when a packet is added to the packet queue. The LGC algorithm

is shown below:

If (avg ≥ maxth && (!Suspend_ESC)) {

 Set Suspend_ESC to true for Tx

 Find out responsive share of packets for a connection (r)

 Determine the greedy connection and corresponding GCI

 Determine virtual link on which its packets arrive and PHI

51

 If (GCI != PHI){

Install filter for GCI for ITime on virtual link

Send filter message to previous hop node

 }

 Else

 Install filter for FHTime for GCI

 }

The process routine of the active filter message is shown below:

 Process (active_filter message) {

Extract GCI from payload of active packet received

Determine the virtual link on which its packets arrive and PHI

If (GCI != PHI){

Install packet filter for GCI for ITime on virtual link

Send filter message to previous hop node

 }

 Else

 Install filter for FHTime for GCI

4.8.5 Importance of timing parameters in LGC

ITime : Referring to Figure 4.3 lets examine the sequence of events during the migration of the

filter from node N4 to its previous hop node N3.

a) Packet filter installed at N4 at time t0.

b) Packet filtering begins at N4 at time t1

c) Active message sent to N3 at time t2.

d) Active message reaches N3 at time t3.

e) Filter installed at N3 at time t4.

f) Filtering begins at N3 at time t5.

Once the filter is installed at N3 for the greedy connection it may be discarded at N4. The time it

takes for the filtering operation to migrate from N4 to N3 is T = t5 – t0. So, after time T the filter

may be discarded at N4. However, the time it takes for the message to be propagated from a node

52

to the previous hop node (t3 –t2) is dependent on physical characteristics of the network. Thus we

set ITime to about 5 seconds for our implementation assuming that t5-t0 < 5 seconds. Further, by

selecting a slightly large value for ITime we can be sure that the packet filter for the greedy

connection will be installed at node N4 until such a time that all packets belonging to that

connection are drained from node N3.

FHTime: When the filter reaches the first hop node, it stops migrating and is then installed for

FHTime seconds. If we keep FHTime too small the unresponsive connection will not be filtered

long enough and could congest the network again. If we keep it too large the connection may

close but the packet filter will continue to exist adding unnecessary overheads at the gateway at

which it is installed. We set FHTime to about 100 seconds in the RANI testbed.

53

Chapter 5

Experimental Evaluation

5.1 Evaluating the LGC algorithm

In this chapter we evaluate the utility of the mobile filtering mechanism and the LGC algorithm

by experimentation on the RANI testbed in a configurable environment, followed by an analysis

of the results obtained. Since the LGC algorithm is triggered only during severe congestion, this

state of the node becomes the starting point for our experimental evaluation. In all our

experiments we force a node into severe congestion and observe the relevant values of the node

parameters to deduce the events occurring at the node. The aim of the LGC algorithm is to control

greedy connections. Also, in order to reduce complexity in the implementation we do not

implement the RED algorithm in its entirety.

5.1.1 Experimental Environment

The machines used in the experiment had an Intel Pentium II 300 MHz processor. These

machines were interconnected via a 10BaseT Ethernet LAN at the data link layer. The RANI

network was built on the Windows NT operating system substrate.

5.1.2 Source simulation

To bring out the effectiveness of the LGC algorithm we simulate responsive and unresponsive

connections. The sources are simulated with the help of a packet generator that can be selected to

behave as a responsive or a greedy source.

Figure 5.1 The active node at runtime

Windows NT Platform

Java runtime

Active Node

Packet generator

54

The transport mechanism for a responsive connection is simulated as a rough approximation of a

TCP source. A detailed explanation of the implementation of TCP can be found in [22]. In this

section we briefly describe our implementation of the relevant parameters of the TCP window.

Our TCP-like source contains common parameters as implemented in TCP such as the slow start

threshold (ssth) and congestion window (cwnd). The slow start threshold parameter for the

responsive source is set through the user interface. The packet generator begins in a slow start

phase in which the congestion window (initially set to one) is doubled every round trip time

(similar to TCP’s exponential increase in cwnd) until it equals the threshold. Now the generator

enters the congestion avoidance phase in which the congestion window is incremented by one

packet every round trip time (similar to TCP’s linear increase in cwnd). The transport mechanism

for an unresponsive connection is simulated by a constant packet-rate source. The end user can

configure the total number of packets, the number of bursts and the inter-burst spacing in

milliseconds through the user-interface. For example the end user may select the total number of

packets as 200, the number of bursts as 8 and the inter-burst spacing as 300msec.

Correspondingly, the packet generator will inject 25 back to back packets, pause for 300

milliseconds, inject the next 25 packets back to back, then pause again for 300 milliseconds, and

so on until all 200 packets are sent.

5.1.2 Network Topology and active node parameters

The active network topology comprises of the number of source nodes, interconnecting nodes,

sink nodes and the virtual links interconnecting these nodes. The active node parameters consist

of the time-to-live field set in the packets and the node queue parameters defined by the size of

the buffer, the weight (w) used for calculating the average queue size and the maximum threshold

(maxth) of the nodes packet queue (Node Q).

For each experiment we select a topology that tests a particular aim of the LGC algorithm and

select node parameters such that at least one of the intermediate nodes gets severely congested in

55

order to trigger the LGC algorithm. To prevent packet loss we select a large buffer size at the

intermediate node targeted for severe congestion.

5.1.3 Presenting results

Results are presented in the form of graphs, tables and statements for the following:

� The throughput observed for each of the sources is expressed as a percentage of packets

successfully reaching the destination node

� Installation and mobility of active filters (if any) for the identified greedy connections

� Actual queue size measurements and average queue size measurements for a given set of

active node parameters.

5.1.4 Experiment 1 – Basic operation

In this experiment we test the ability of the LGC algorithm to correctly identify and filter a

greedy connection. The test network consisting of six responsive sources, one greedy source, one

interconnecting node and a sink node is shown in Figure 5.2.

Node 1 is the greedy source and nodes 2,3,4,5,6 and 7 are responsive sources. Node 7 behaves as

a responsive source and is targeted for severe congestion. Node 8 is the common sink for all the

sources. Virtual links are shown as double-ended arrows. Node 7 is forced into a severely

Figure 5.2 Network topology for Experiment 1

2

1

3

5

4

7 8

6

56

congested state by having all the sources transmit packets at approximately the same time. To

prevent packet drops due to expiration of the TTL field, all packets injected into the network have

an initial TTL of 10 seconds. The queue parameters for node 7 are set with queue weight = 0.02,

maxth (Upper threshold) = 25 and buffer size = 50. The responsive sources inject 50 packets each

with an initial TCP slow-start threshold set to 16. The greedy source injects 200 packets in 5

bursts with an inter-burst duration of 1 second.

In Figure 5.3, the x-axis shows the packets arriving at node 7 and the y-axis shows the queue size

measured in packets. The solid line (y = 25) represents the configured value of maxth at the node.

Notice that the low pass filtering mechanism of RED causes the average queue size to change

slowly in comparison to the actual queue size. For brevity, the first few packet arrivals have been

omitted in Figure 5.3. Initially as the responsive sources open up their windows, the actual queue

size remains low (<10). Once the competing sources have sufficiently large windows, the actual

queue size increases rapidly. When the average queue size crosses maxth viz. 25 in this case, the

LGC algorithm is triggered.

Figure 5.3 Plot of queue size v/s packet arrivals for Node 7

Basic operation

0

10

20

30

40

50

65 77 89 10
1

11
3

12
5

13
7

14
9

16
1

17
3

18
5

19
7

20
9

22
1

23
3

24
5

25
7

26
9

28
1

29
3

30
5

Packet Arrivals from 65th packet to 313th packet

Q
ue

ue
 s

iz
e

Inst. Q size
Avg. Q size
Upper Threshold

A: LGC algorithm is
triggered here

B: Average queue size
restored below threshold

T

57

From the nodes packet queue we observe that the total queue occupancy is 39 packets. Of these

21 packets belong to connection 1, 4 packets belong to connection 2, 5 packets belong to

connection 3, 3 packets belong to connection 4 and 2 packets each to belong connections 5,6 and

7. Totally there are seven active connections at node 7. Fair queue occupancy is 39/7 = 5.57. With

a permissible factor k of loge(21), the permissible queue occupancy is 5.57 *3.0445  = 17

packets. Connection 1 had 21 packets in the node queue and was correctly identified as an

unresponsive connection. Since Node 7 is the first-hop node for this connection, the migration of

the packet filter was not necessary and a packet filter for connection 1 was installed at Node 7 for

a duration T_FirstHop(100) seconds. Subsequently all packets arriving from connection 1 were

filtered out at node 7. The throughput for responsive connections was observed to be 100% after

the LGC algorithm came into effect, but the greedy connection had a throughput of 53.5% due to

active filtering at node 7. If the RED algorithm were implemented in its entirety, the throughput

observed for the responsive sources would be lesser than 100% since the algorithm would drop

all packets arriving at the node when it is severely congested. However, this technicality is

overlooked in the evaluation of LGC since RED is not implemented in its entirety i.e. arriving

packets at the node under severe congestion are not dropped or marked. We only wish to isolate

the greedy connections and dynamically filter them to prove that the algorithm is successful.

Due to the bandwidth greedy nature of connection 1, we observe a sudden drop in the queue

occupancy once this connection is filtered. This can be observed in the region of the graph just

after the LGC algorithm is triggered. Eventually the queue size is controlled at point B. The time

lapse (marked as T in Figure 5.3) between the LGC algorithm coming into effect (point A) and

the reduction in average queue occupancy (point B) occurs due to the low pass filtering

mechanism in the calculation of the average queue size. It confirms the requirement for the

presence of an idle time (Tx > T) between two successive triggers of the LGC algorithm. If the

LGC algorithm were not suspended for time Tx, it would be triggered multiple times since avg

exceeds maxth for duration T, despite active filtering of the greedy connection.

58

The LGC algorithm must also ensure that non-greedy unresponsive connections must not be

filtered. To verify this requirement we repeated the above experiment with source node 1

injecting 200 packets in 15 bursts with an inter-burst duration of 3 seconds. Node 1 now

simulates a constant packet-rate source making a moderate demand on network bandwidth at the

congested node 7. Figure 5.4 shows the actual and average queue sizes plotted against packet

arrivals at node 7. The bursty nature of the connections causes the spikes in the value of

instantaneous queue size at the intermediate node 7.

Here, we observe that the average queue size at node 7 remains below 10 at all times implying

that demand on resources does not exceed supply. Thus node 7 does not get congested and LGC

is not triggered. Since queue occupancy remains low (<25), there is no packet loss and throughput

is 100% for all the seven connections.

5.1.5 Experiment 2 – Mobility of the active filter

After the LGC algorithm identifies and filters a greedy connection at the congested node, it uses

active messages to move the filter dynamically towards the source of the identified connection. In

doing so, packets belonging to the greedy connection are filtered ‘closer’ to their source, thereby

reducing the wastage in network resources. In this experiment we study the movement of the

Figure 5.4 Plot of queue size v/s packet arrivals for non-greedy connections

Effect of non greedy unresponsive connection

0

5

10

15

20

25

30

120 131 142 153 164 175 186 197 208 219 230 241 252 263 274 285 296 307 318 329 340 351 362

Packet Arrivals

Qu
eue
siz
e

Inst. Q size
Avg. Q size
Upper Threshold

59

mobile filter towards the source of the greedy connection and the effect of installing the mobile

filter at a node. The network topology for the experiment is shown in Figure 5.5.

Node 1 is an unresponsive packet source. Nodes I1, I2 and I3 are interconnecting nodes that

forward packets. Node S is the sink for all the packet sources. Nodes 2,3,4 and 5 are responsive

packet sources that provide cross traffic to congest I3. Node I3 has a buffer size of 100, maxth set

to 35 and w set to 0.02. All sources inject 250 packets with the responsive sources having an

initial TCP slow-start threshold set to 32.

In order to monitor the packet flow in the network we label the packets from the various sources

as follows. Packets from source 1 are labeled a1 through a250. Packets from source 2 are labeled

b1 through b250. Packets belonging to sources 3,4 and 5 are labeled similarly.

First, we consider the activities at node I3. In Figure 5.6, the x-axis shows the packets arriving at

node I3 and the y-axis shows the queue size measured in packets. For brevity, the first few packet

arrivals have been omitted in the chart. When the average queue size crosses 35, the LGC

algorithm is triggered. At this time, I3 had received and forwarded 122 packets belonging to

source 1, 84 packets belonging to source 2, 91 packets belonging to source 3, 85 packets

belonging to source 4 and 66 packets belonging to source 5, making a total of 448 packets. This is

shown by the dotted line in Figure 5.6.

Figure 5.5 NetworkTopology for Experiment 2

2

I1 I2 I3 Sink (S)

3

5

4

1

60

Based on queue occupancy at the node, source 1 is identified as ‘bandwidth greedy’.

Consequently a packet filter for source 1 is installed for T_Intermediate seconds. I3 also sends an

active filter message to the previous hop node I2. Now, packets belonging to source 1 are dropped

at I3 as long as the packet filter remains in operation. Soon, node I2 installs a similar packet filter

and the responsibility of controlling the greedy source 1 shifts one hop closer to the source. This

process continued till the filter migrates to the first hop node. These actions are deduced from the

packet drops for source 1 which occur successively at nodes I3 followed by I2 and finally at I1.

Figure 5.6 Plot of queue size v/s packet at NodeI3

Figure 5.7 Packet flow in Experiment 2 after LGC has been triggered

0

5

10

15

20

25

30

35

40

45

Packet Arrivals from 324th to 573rd packet

Q
U
E
U
E

S
I
Z
E

Inst. Q Size
Avg. Q Size
Upper Threshold

0

50

100

150

200

250

300

I1 I2 I3 Sink

Nodes

Entered
Forwarded
Dropped

61

In Figure 5.7, the y-axis represents the number of packets and the x-axis marks the nodes I1, I2,

I3 and the sink. The bars represent the arrival and departure of packets belonging to source 1 at

the nodes I1, I2 and I3. Lets start with node I3 where packet filtering begins. When the LGC

algorithm was triggered, I3 had received and forwarded packets a1 through a122. It then installs

the packet filter for source 1 and sends an active filter message to I2. I3 then drops packets a123

through a135 due to active filtering. Now, I2 installs a packet filter for source 1 and propagates

the filter message to node I1. Subsequently I2 drops packets a136 through a173 and packets a174

through a250 were filtered at I1. Totally packets a123 through a250 are dropped after LGC is

triggered.

5.1.6 Experiment 3 - Multiple bandwidth greedy connections

In this experiment we test the ability of the LGC algorithm to handle multiple bandwidth greedy

connections. The network topology for this experiment is shown in Figure 5.3. Nodes 1 and 3 are

greedy sources where as nodes 2, 4 and 5, 6 and 7 are unresponsive connections making a

moderate demand on the network. Node 8 is the common sink for all the sources. Node 1 injects

300 packets in a single burst and node 3 injects 300 packets in 3 bursts with an inter-burst spacing

of 3 seconds. The other nodes (2,4,5,6 and 7) inject 120 packets each in 30 bursts with a 2

seconds inter-burst period.

Figure 5.8 Network Topology for Experiment 3

2

1

3

5

4

7 8

6

62

The queue parameters for node 7 are set with queue weight = 0.04, maxth = 35 and buffer size =

250. A large buffer size is deliberately chosen to observe the queue occupancy at node 7 and

prevent tail dropping of packets.

In Figure 5.9, the x-axis shows the packets arriving at node 7 and the y-axis shows the

instantaneous and average queue sizes measured in packets. The line (y = 35) represents maxth.

For brevity, the first 110 packet arrivals at node 7 have been omitted in the chart. Initially the

average queue size remains low (<10). Once the greedy source begins injecting packets, the

average queue size increases till maxth is crossed (point A). Now, the LGC algorithm is triggered

and active filtering of greedy source 1 begins.

At this point the queue size drops but the available bandwidth is soon taken up by the second

greedy source. This is observed within the Tx portion of the graph at point D. The difference here

is that although the average queue size crosses the upper threshold (35 in this case), the LGC

algorithm is not triggered. The reason being that a minimum time lapse of Tx is maintained

between successive triggering of the LGC algorithm. After the Tx timer expires (point B), the

LGC algorithm successfully identifies and filters the second greedy source. Queue occupancy is

now controlled and the node emerges from its congested state (point C).

Packets arriving at the common sink node 8 reveal that throughput for the moderate connections

were 100% each (mainly due to the large buffer size at node 7). Greedy connection 1 had a

throughput of 57.33% and greedy connection 2 had a throughput of 46% due to active filtering at

node 7.

63

5.2 Observations of LGC

� At the congested node, if there are a large number of connections represented in the node

queue, it is observed that the greedy connection tends to shut out the responsive connections

and grab a large share of the bandwidth making it easier to identify greedy connections.

� There may be some cases in which multiple greedy connections compete for a limited share

of the bandwidth in such a way that they restrict other responsive connections, but all of the

greedy connections have individual queue occupancies within permissible limits. In this

scenario the active node gets congested but the LGC algorithm fails to detect the greedy

connections. For example, lets assume that there are ten connections through a node of which

five are non-greedy and five are greedy sources. It is possible that when avg ≥ maxth each of

the greedy sources have taken up 15% of the queue leaving the remaining 25% of the queue

to be shared amongst the five responsive sources. The permissible value of queue occupancy

is obtained from eq. [c] in section 4.8.1. Thus,

Figure 5.9 Queue size v/s packet arrivals for multiple bandwidth greedy sources

A – Active filtering of greedy source 1 begins
B – Active filtering of greedy source 2 begins
C – Node relieved from congested state
D – Second greedy source congests the node

Upper Threshold

0

10

20

30

40

50

60

11
0

12
1

13
2

14
3

15
4

16
5

17
6

18
7

19
8

20
9

22
0

23
1

24
2

25
3

26
4

27
5

28
6

29
7

30
8

31
9

33
0

34
1

35
2

Packet arrivals

Q
Siz
e

Inst. Q Size
Avg. Q Size

A B

Tx

C

D

64

 qo = 100* loge(3*n)/n = 100*loge(30)/10 = 34.01%

 Since all the connections including the greedy connections have queue occupancy well below

this limit, the LGC algorithm does not detect them and the five responsive connections

continue to receive a disproportionate share of the bandwidth. Although this example

demonstrates a shortcoming of the LGC algorithm we note that such scenarios are the

exception rather than the rule. It is a rare occurrence for multiple greedy connections to

congest a particular node at the same time and get synchronized in such a way that they make

identical demands on network bandwidth.

� The overheads of the LGC algorithm include maintaining timers and connection identifiers

when the node is severely congested. However, these overheads are minimal in comparison to

the benefits accrued in limiting greedy connections and relieving the node from its congested

state. If extreme measures such as actively filtering out the greedy connections are not taken

there is a high possibility of the node buffer being reduced to a drop-tail queue.

� If the packet filter were to be statically positioned at the congested node, the node would

suffer the overhead of filtering packets at a time when its resources were scarce. Secondly,

network resources such as processing time and bandwidth would be wasted between the

source and the congested node at which the packets are being filtered. For the above reasons

we considered it beneficial to use active network technologies to migrate the packet filter

towards the source of the greedy connection and protect network resources.

65

Chapter 6

Conclusion and Future Work

6.1 Summary

This thesis has presented the design, implementation and evaluation of an active network

architectural framework along with two popular network utilities and a mobile filtering

mechanism targeted at limiting the impact of bandwidth greedy connections on congested nodes

in the network. The active nodes in the network support a menu-based processing model in which

end-users may select a packet processing service from an available set of possible services. The

node does not maintain state as regards a particular flow but could be programmed to do so under

exceptional circumstances as in the case of the LGC algorithm actively filtering packets

belonging to an identified greedy connection. The active datagrams injected into the network

contain a reference to the type of servicing they require and the network nodes provide this

service on a best effort basis. The active nodes are implemented in Java as a user space process

and execute at the application layer in the TCP/IP protocol stack. In our implementation we do

not distinguish between end-nodes and intermediate nodes of the network. We have provided a

user friendly GUI for configuring, operating and managing the active node.

6.2 Future Work

Our current work was focused on implementing utilities and control mechanisms on an

experimental active network testbed. In this work we have borrowed many concepts from existing

implementations on traditional IP networks such as Ping, Traceroute, RED and ECN. It will be

interesting to pursue applications that simply cannot be supported by traditional store and forward

networks; applications that must rely on intelligence within the network for their successful

operation. If it can be proved that such applications significantly improve end-user satisfaction

and at the same time consume network resources modestly, the active networks project is certain

66

to gain a wider acceptance. The future directions of this work will be in pursuing the development

of such ‘killer’ applications. We summarize some of the future directions below:

� Designing the node to operate at the network layer will ensure that the end-to-end latency

addition due to application specific packet processing within the active network will be

minimized. The performance of our active network will then become comparable to

traditional networks.

� Our present active network implementation assumes that the virtual links interconnecting the

active nodes are bi-directional in order to reduce the complexity of the active services built on

the underlying network fabric. In future implementations we wish to eliminate such

simplifying assumptions so that an empirical analysis of our system will yield results that

closely emulate real-world scenarios.

� A wide range of work in the development of end-user application services for active networks

is currently being done. This includes Active Reliable Multicast [25], improvements in

network caching [15, 32], Network Security [10], Active Bridging [12], data fission and

fusion techniques within the network [37] and application oriented congestion control

mechanisms [30, 33, 35]. In future implementations we wish to take a closer look at user-

level application services that can directly benefit from the underlying intelligence provided

by an active network.

67

References

1. Andrew S. Tanenbaum, Computer Networks, Third Edition, Prentice Hall, 1996.
2. Bernard Suter, T. V. Laxman, Dimitrios Stiliadis and Abhijit Choudhury, Efficient Active

Queue Management for Internet Routers. IEEE/ACM Transactions on Networking, April
1988.

3. Beverly Schwartz, Alden W. Jackson, W. Timothy Strayer, Wenyi Zhou, R. Dennis
Rockwell and Craig Partridge, Smart Packets for Active Networks, BBN Technologies,
10 Moulton St, Cambridge, MA 02138.

4. B. Braden, D. Clark, J. Crowcroft, B. Davie, S. Deering, D. Estrin, S. Floyd, V. Jacobson,
G. Minshall, C. Partridge, L. Peterson, K. Ramakrishnan, S. Shenker, J. Wroclawski, L.
Zhang, Recommendations on Queue Management and Congestion Avoidance in the
Internet, Request for Comments: 2309, April 1998.

5. Cui-Qing Yang and Alapati V. S. Reddy, A Taxonomy for Congestion Control
Algorithms in Packet Switched Networks. IEEE Network Magazine July/August 1995,
Volume 9, Number 5.

6. David L. Tennenhouse, Jonathan M. Smith, W. David Sincoskie, David J. Wetherall and
Gary J. Minden, A Survey of Active Network Research. IEEE Communications Magazine,
January 1997, pp. 80-86.

7. David Wetherall, Ulana Legedza and John Guttag, Introducing New Internet Services:
Why and How. IEEE Networks Magazine, May/June 1998.

8. David Wetherall, John Guttag and David L. Tennenhouse, ANTS: A Toolkit for Building
and Dynamically Deploying Network Protocols. IEE OPENARCH ’98, San Francisco,
CA, Apfil 1998.

9. Dong Lin and Robert Morris, Dynamics of Early Detection. Proceedings of ACM
SIGCOMM 97 Conference, Cannes, France, September 1997.

10. D. Scott Alexander, William A. Arbaugh, Angelos D. Keromytis and Jonathan M. Smith,
A Secure Active Network Architecture: Realization in SwitchWare. IEEE Network
Magazine, May/June 1998, Vol. 12 no. 3, pp. 37-45, Special Issue on Active and
Controllable Networks.

11. D. Scott Alexander, William A. Arbaugh, Michael W. Hicks, Pankaj Kakkar, Angelos D.
Keromytis, Jonathan T. Moore, Carl A. Gunter, Scott M. Nettles and Jonathan M. Smith,
The SwitchWare Active Network Architecture. IEEE Network Magazine, May/June 1998,
Vol. 12 no. 3, pp. 29-36, 1998. Special issue on Active and Controllable Networks.

12. D. Scott Alexander, Marianne Shaw, Scott M. Nettles, and Jonathan M. Smith, Active
Bridging. Proceedings of ACM SIGCOMM ‘97 Conference, Cannes, France, September
1997.

13. D. Scott Alexander, Michael W. Hicks, Angelos D. Keromytis, Jonathan T. Moore, Scott
M. Nettles and Jonathan M. Smith, A Taxonomy of Active Code. IWAN 1999.

14. D. Tennenhouse and D. Wetherall, Towards an Active Network Architecture. Computer
Communication Review, Vol. 26, No. 2, April 1996.

15. Edwin N. Johnson, Using Network Level Support to Improve Cache Routing. Master of
Engineering Thesis, M.I.T., May 1998.

16. Jonathan M. Smith, D. J. Farbert, Carl A. Gunter, Scott M. Nettles, Mark E. Segal, W. D.
Sincoskie, D. C. Feldmeier and D. Scott Alexander, SwitchWare: Towards a 21st Century
Network Infrastructure. White Paper.

17. http://www.cc.gatech.edu/projects/canes/
18. http://www.cis.upenn.edu/~switchware/
19. http://www.cs.columbia.edu/dcc/netscript/
20. http://www.darpa.mil/ito/research/anets/

68

21. http://www.ir.bbn.com/projects/spkts/smtpkts-index.html
22. Information Sciences Institute, University of Southern California, Transmission Control

Protocol, Request for Comments: 793. September 1981.
23. J. Case, M. Fedor, M. Schoffstall, J. Davin, Simple Network Management Protocol,

Request for Comments: 1157. May 1990.
24. K. Claffy, Greg Miller and Kevin Thompson, The Nature Of The Beast: Recent Traffic

Measurements From An Internet Traffic Backbone. From Cooperative Association for
Internet Data Analysys: http://www.cetp.ipsl.fr/~porteneu/inet98/6g/6g_3.htm

25. Li-wei Lehman, Stephen J. Garland, and David L. Tennenhouse, Active Reliable
Multicast. IEEE INFOCOM ‘98, San Fransisco, CA, April 1998.

26. Raj Jain, Congestion Control in Computer Networks: Issues and Trends. IEEE Network
Magazine, May 1990, pp. 24-30.

27. Sally Floyd and Van Jacobson, Random Early Detection Gateways for Congestion
Avoidance. IEEE/ACM Transactions on Networking, Volume 1, No. 4, pp 397-413,
August 1993.

28. Sally Floyd, TCP and Explicit Congestion Notification. ACM Computer Communication
Review, V. 24 N. 5, pp. 10-23, October 1994.

29. Sally Floyd and Kevin Fall, Promoting the Use of End-to-End Congestion Control in the
Internet. IEEE/ACM Transactions on Networking, Volume 7, Issue 4, pp. 458-472,
August 1999.

30. Samrat Bhattacharjee, Kenneth L. Calvert and Ellen W. Zegura, On Active Networking
and Congestion. Technical Report, GIT-CC-96-02, College of Computing, Georgia
Tech., Atlanta, GA, 1996.

31. Samrat Bhatacharjee, Kenneth L. Calvert and Ellen W. Zegura, An Architecture for active
Networking. High Performance Networking (HPN ’97), White Plains, NY, April 1997.

32. Samrat Bhattacharjee, Kenneth L. Calvert and Ellen W. Zegura, Self-Organizing Wide-
Area Network Caches. Proceedings of IEEE INFOCOM ‘98, San Francisco, CA, March
1998.

33. Samrat Bhattacharjee, Kenneth L. Calvert and Ellen W. Zegura, Congestion Control and
Caching in CANES. Proceedings of ICC '98, Atlanta, GA, 1998.

34. Sarah Robinson, Multimedia Transmissions Drive Net Towards Gridlock. The New York
Times, August 23, 1999,
http://www.nytimes.com/library/tech/99/08/biztech/articles/23tcp.html

35. Suresh Gopalakrishnan, Daniel Reininger and Maximilian Ott, Framework for Packet-
Based Processing of Media Flows in Networks. Submitted to IWAN ’99.

36. S. Keshav, Congestion Control in Computer Networks. PhD Thesis published at UC
Berkeley, TR-654, September 1991.

37. Ulana Legedza, David J. Wetherall and John Guttag, Improving the Performance of
Distributed Applications Using Active Networks. Proceedings of IEEE INFOCOM ’98,
San Fransisco, CA, April 1998.

38. W. Richard Stevens, TCP/IP Illustrated, Volume 1: The Protocols. Addison-Wesley,
1994.

39. W. Richard Stevens, UNIX Network Programming, Volume 1, Second Edition:
Networking APIs, Sockets and XTI. Prentice Hall, 1998.

69

Appendix A

In order to compare the theoretical performance of traceroute and Atraceroute we make some

basic assumptions as regards the network topology.

A.1 Assumptions:

i. Symmetrical routes between the source and destination node since it is a requirement for

the successful operation of traceroute.

ii. All links that interconnect the network nodes have identical network metrics such as

bandwidth, delay, etc. to aid in calculations.

iii. All nodes in the network have a constant processing time Tx, for an incoming packet.

This means that the time interval between a packet entering and leaving a node is Tx and

remains the same for active or passive packets.

iv. Traceroute and Atraceroute packets have the same size.

A.2 Comparison of the time complexity for traceroute and Atraceroute

Based on the above assumptions, the time taken for a packet to travel from one node to the next is

a constant. Let this time be d. From assumption iii, the node resident time of the traceroute and

Atraceroute packets is the same and is ignored in future calculations.

Traceroute: The first packet sent out by the source node has its TTL set to 1. The time lapse

between sending out this packet and receiving a ‘time exceeded’ response is 2d. In general, the

time lapse between sending out the nth packet and receiving the nth ‘time-exceeded’ response is

2(n)d. Since traceroute operates by sequentially probing and discovering nodes in the network

upto the destination node, the total time (D) in discovering a node that is n hops away is

D = 2(d) + 2(2)d + 2(3)d + ……. + 2(n-1)d + 2(n)d

D = (d)(n)(n+1) …………………………………[I]

70

Atraceroute: In this case only one ‘originating’ packet is inserted into the network and it

successively probes the nodes in the network till the destination node is reached. Referring to

Figure 4.3, the time taken to discover a node that is n hops away is

 D = 2(n)d ………………………………………[II]

From [I] and [II] it is evident that based on identical network metrics and conditions, the time

complexity for traditional traceroute is O(n2) and for Atraceroute it is O(n).

A.3 Comparison of the link utilization for traceroute and Atraceroute

In the case of traceroute, the total number of links traversed by packets belonging to the

traceroute utility is obtained from [I] as

N = n(n+1) ………………………………..……[III]

Referring to Figure 4.4, in the case of Atraceroute the total number of links traversed by the

‘originating’ packet is n. The ‘descriptive packet’ from the nth node traverses n links. Thus the

total number of links traversed by the original and descriptive packets are :

 N = n + 1 + 2 +…… + n

 N = ½(n)(n+3) ………………………..…….….[IV]

0

200

400

600

800

1000

1200

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Number of hops (n)

Li
nk

 u
til

iz
at

io
n

(N
)

Traceroute

Atraceroute

Figure A.1 Comparison of link utilization

71

Figure A.1 shows a plot for equations [III] and [IV]. We observe that as n increases the link

utilization of Atraceroute is modest in comparison with traceroute, although both have

complexity of O(n2).

