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Dynamically adaptive techniques for the solution of partial differential equations that employ
locally optimal approximations can yield highly advantageous ratios for cost/accidaptive
Mesh RefinemenAMR) techniques seek to improve the accuracy of the solution by dynamically
refining the computational grid in regions of high local solution eDgtributed implementations
of these methods offer the potential for accurate solutions of physically realistic models of
important physical systems. These distributed implementations however, lead to interesting
challenges in dynamic data-distribution, re-distribution and load balancing. This thesis makes the
following contributions:
¢ An application-centric performance characterization and evaluation of dynamic partitioning
and load-balancing techniques for distributed adaptive grid hierarchies that underlie adaptive
mesh-refinement algorithms (AMR). The goal of the characterization is to enable the selection
of the most appropriate mechanism based on application and system parameters. The
characterization defines the following metridsoad Balance, Distribution Quality (size,
aspect ratio), Grid Interaction Overheads, Data Movement.
% An evaluation of four partitioning techniques viz., Composite (SFC) techriigdependent
Grid Distribution technique (IGD), Composite Grid Distribution(CGDEchnique
Independent Level Distribution technique ().2and the optimization of the SFC and CGD

techniques. The evaluation is based on the following applications: 1) 3D Buckley-Leverette



equation kernel (BL) that was used in oil reservoir simulations. 2) 3D Wave equation kernel
(Wave) that was used in a numerical relativity simulation. Optimization consisted of improving

the partition routine for CGD and optimization of the data structure of the SFC scheme. The
goal of this optimization is to obtain improved performance of the above-mentioned criteria,

and

The design and implementation of a (AMR) Simulator. The goal is to evaluate the above

mentioned distribution techniques and also make it available for run-time/post-operation use
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Chapter 1

Introduction

The accurate numerical simulations of complex physical phenomena pesitigl differential
equations(PDES) require large amounts of computer resources in terms of memory storage and
computation time, because their domains are discretized on high-resolution meshes. A
characteristic of many such phenomena is that they are usually smooth over most of their domains
but contain regions (either boundary or internal) with steep gradients, shocks or discontinuities.
Thus, the computational resources mentioned above are often largely wasted on sub-domains that
do not have such a high resolution. Such scientific, complex physical phenomena that apply partial
differential equations and numerical methods can be easily solved by adaptive mesh refinement
(AMR) methods. AMR is a class of strategies that addresses this problem by performing high-
resolution computation only in areas that require it. AMR methods may be structured or
unstructured, depending on how they represent the numerical solution to the problem. Unstructured
adaptive methods [9,11,32] store the solution using graph or tree representation [19,25]; these
methods are called unstructured because connectivity information must be stored for each
unknown. Structured AMR employ a hierarchy of nested mesh levels in which each level consists
of many simple rectangular grids. Thus AMR is a mesh based strategy that addresses the above
mentioned problem of wasted computer resources by applying grids of a finer resolution only in the
regions that require higher resolution, rather than use a uniform mesh with grid points evenly
spaced on a domain. AMR strategies have been developed for elliptic, parabolic and hyperbolic
systems. The different approaches differ in both philosophy and implementation. Some of the areas

of research that AMR has been applied to are : computational fluid dynamics, computational



astrophysics, structured dynamics, magnetics, thermal dynamics and many other areas of
numerical research.
AMR is especially more efficient than the use of uniform meshes when the solution is changing,

much more rapidly in some areas than in others, that is, the nature of the change is dynamic.

Dynamically adaptive methods for the solution of partial differential equations that employ locally
optimal approximations can yield highly advantageous ratios for cost/accuracy when compared to
methods based upon static uniform approximations. These techniques seek to improve the accuracy
of the solution by dynamically refining the computational grid in regions of high local solution
error. Distributed implementations of these methods offer the potential for accurate solution of
physically realistic models of important physical systems. We believe that the next generation
simulations of complex physical phenomenon will be built using such dynamically adaptive
techniques executing on distributed heterogeneous computational grids, and will provide dramatic
insights into complex systems such as interacting black holes and neutron stars, formations of

galaxies, oil reservoirs and aquifers, and seismic models of the whole earth.

Distributed implementations of adaptive applications lead to interesting challenges in dynamic
resource allocation, data-distribution and load balancing, communications and coordination, and
resource management. The overall efficiency of the adaptive algorithms is limited by the ability to
partition the underlying data-structures at run-time to expose all inherent parallelism, minimize
communication and synchronization overheads, and balance load. A critical requirement while
partitioning adaptive grid hierarchies that underlie these algorithms is the maintenance of logical

locality, both across different levels of the hierarchy under expansion and contraction of the
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Figure 1.1 AMR Grid Structure for Buckley-Leverette Application

adaptive grid structure, and within partitions of grids at all levels when they are decomposed and
mapped across processors. The former enables efficient computational access to the grids while the
latter minimizes the total communication and synchronization overheads. Furthermore application
adaptivity results in application grids being created, moved and deleted on the fly, making it
necessary to efficiently re-partition the hierarchy on the fly so that it continues to meet these goals.
A sequence of grid hierarchies for two applications, Buckley Leverette and a Wave application are

shown in figures 1.1 and 1.2 respectively.




Figure 1.2 AMR Grid Structure for 3D Wave Application

1.2 Overview of the thesis

This thesis presents a brief design and evaluation of a suite of distribution/load-balancing
techniques for distributed adaptive grid hierarchies that underlie parallel adaptive mesh refinement
techniques. It also presents a performance characterization of dynamic partitioning and load
balancing techniques, the optimization of the data-structure for one of the schemes and an
optimization of the partition method that had for CGD. It then presents an AMR simulator that is
employed to perform an evaluation of the schemes before and after the optimization in a simulated
environment. The workflow associated with the partitioning and performance evaluation is as

follows: A trace file consisting of a trace of grid adaptations from a 2D/3D AMR application is fed



to a partitioner module. The partitioner employs the scheme of choice to distribute the load among
the processors and redirects the output into an Output parameters file, which the simulator uses as

its input to do the performance evaluation.

1.3 Contributions of the thesis

1 An application-centric performance characterization and evaluation of dynamic partitioning
and load-balancing techniques for distributed adaptive grid hierarchies that underlie adaptive
mesh-refinement algorithms (AMR). The goal of the characterization is to enable the selection
of the most appropriate mechanism based on application and system parameters. The
characterization defines the following metrics: Load Balance, Distribution Quality (size, aspect
ratio), Grid Interaction Overheads, Data Movement.

2 An evaluation of four partitioning techniques viz., Composite/SFC technique, Independent
Grid Distribution technique (IGD), Composite Distribution technique(CGD), Independent
Level Distribution technique(ILD), and the optimization of the SFC and CGD techniques. The
evaluation is based on the following applications: 1) 3D Buckley-Leverette equation kernel
(BL) that was used in oil reservoir simulations. 2) 3D Wave equation kernel (Wave) that was
used in a numerical relativity simulation. Optimization consisted of improving the partition
routine common to the above mentioned techniques and optimization of the data structure of
the Composite/SFC scheme. The goal of this optimization is to obtain improved performance
of the above-mentioned criteria, and

3 The design and implementation of a (AMR) Simulator. The goal is to evaluate the above

mentioned distribution techniques and also make it available for run-time/post-operation use



1.4 Outline of the thesis

This thesis consists of seven chapters of which this chapter is the first. The next three chapters
provide background on adaptive mesh refinement strategy and partitioning issues of concern, while
the final three chapters discuss the associated research work.

Chapter 2 presents the background of the thesis by providing an overview of Dr. Marsha Berger's
Adaptive mesh refinement strategy, 'Grid Adaptive Computational Engine' (GrACE) which is the
infrastructure developed by Dr. Manish Parashar [10,24], for AMR for the solution of complex
physical phenomenon, and the related work that deal with partitioning techniques by AMR for
solution of PDEs.

Chapter 3 presents a suite of six distribution and load-balancing techniques that have been
designed by us and used by current infrastructures supporting adaptive applications. It also
describes the metrics to characterize the partitioning schemes and the family of adaptive algorithms
itself targeted in this thesis.

Chapter 4 presents the optimization of the partition module for the Combined Grid Distribution
scheme and the optimization that is the design and implementation of the data structure for the
Composite distribution scheme.

Chapter 5 presents the design and implementation of the AMR simulator that does the evaluation
of the suite of the above-mentioned load-balancing and distribution schemes.

Chapter 6 presents an experimental evaluation of the load-balancing and distribution schemes.

Chapter 7 presents our conclusions and directions for future work.



Chapter 2

Background and Related work

2.1 Formulation of structured AMR

Dr. Marsha Berger developed a formulation of the adaptive mesh refinement strategy for structured
meshes based on the notion of multiple, independently solvable grids, all of identical type, but each
of different size and shape. The underlying premise of the strategy is that all grids of any resolution
that cover a problem domain are equivalent in the sense that given proper boundary information,
they can be solved independently by identical means. The multigrid concept is changed, reducing it
from a set of computationally expensive set of grids of increasingly finer resolution covering the
entire domain, to a set of levels, each of which employs a set of grids of finer resolution to cover
only domains of interest.

2.1.1 Layout of the hierarchy:

This section describes the grid hierarchy , each of which contains a set of grids as shown in figure
2.1. The implementation represents the hierarchy as a directed graph that is acyclic on relationships
between levels (e.g, from parent to child and vice versa, figure 2.1). Every grid is completely
covered by some non-empty set of parent grids; both its active computational interior and its ghost
boundaries are covered, except those portions of the ghost boundary that lie on the exterior of the
overall computational domain. In addition, the finer grids abut the coarser cells, so that the number
of non-boundary cells along each axis of each finer grid is an integer multiple of the refinement

factor.



Figure 2.1 AMR Grid Hierarchy

At the root level, each grid consists of a computational interior and a ghost region. At all finer
levels, each grid consists of a region of inerest that has been refined from the immediately coarser
level; a buffer region, which allows the existing grids to cover the region of interest and the ghost

boundary as shown in figure 2.2

complete grid

grid interior

region of interest /T

grid

ghost boundary ghost boundary

Figure 2.2 Components of a Grid



Sometimes, the buffer region may be partially absorbed if the grid abuts another grid at the same
level. In any case, each grid will retain its full boundary region, even if it is overlapped by other
grids at the same level.

2.1.2 The AMR Algorithm

Berger's AMR scheme employs the nested hierarchy of grids to cover the appropriate sub-domain
at each level. The integration algorithm recurses through the levels, advancing each level by the
appropriate time interval, then recursively advancing the next finer level by enough iterations at its
(smaller) time interval to reach the same physical time as that of the newest solution of the current

level.

The AMR algorithm

Integrate (level)

begin
evolve(level)
if "level isn't finest " then begin
for =0 to time_refinement_factor - 1 do
intergrate (level +1)
end
end

The integrations at each level are recursively interleaved between iterations at coarser levels. Thus,
a majority of the time computing is spent on the finest level, as a direct result of the fact that
Berger's AMR refines in time as well in space: if the refinement factor between a finer level (I+1)
and the next coarser level is r, then grids on the finer level (I+1) will be advanced r time steps for
every coarser time step. For a d dimensional domain, the grids at level (I+1) must cover the same
portion of the computational domain as only’ddarser cells at level |, in order to consist of the
same total number of cells for the level, because every coarse cell ddirsells. For example,

using a refinement factor of 2 on a three dimensional domain, 2 iterations at level 1 will take more



10

computation time that an iteration at the root level (which comprises the entire computational

domain) unless the grids at level 1 cover no more than 1/16 of the domain.

Integration requires four operations:

boundary value collection, from parents, siblings and the exterior of the computational domain
evolution, to advance the solution in time

prolongation, to improve the solution values on coarse cells from the overlapping fine cells

refinement, to place grids appropriately for the evolved condition of the solution.

Thus, a more precise expression of the integration algorithm is:

The Refined AMR Algorithm

Integrate (level)
begin
if "time to refine" then Refine(level)
Collect boundary values
evolve(level)
if "level isn't finestexisting " then begin
for r=0 to time_refinement_factor - 1 do
intergrate (level +1)
end
incrementTime(level)
if "level isn't finest existing" then begin
do any corrections
Prolongate(level, level+1)
end

2.2 GrACE

The work presented in this thesis is based on the GrACE [10, 24] infrastructure, which is an
approach to distributing AMR grid hierarchies, developed by Dr. Manish Parashar. GrACE
[10,24] is an object-oriented toolkit for the development of parallel and distributed applications

based on a family of adaptive mesh-refinement and multigrid techniques. GrACE is built on a

10
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“semantically specialized” distributed shared memory substrate that implements a hierarchical
distributed dynamic arrayHDDA). HDDA provides uniform array access to heterogeneous
dynamic objects spanning distributed address spaces and multiple storage types. The array is
hierarchical in that each element of the array can be an array; it is dynamic in that the array can
grow and shrink at run-time. Communication, synchronization and consistency of HDDA objects
are transparently managed for the user. Distribution of the HDDA is achieved by partitioning its
array index space across the processors. The index-space is directly derived from the application
domain using locality preserving space-filling mapping which efficiently map N-dimensional space

to 1-D dimensional space.

2.3 Distributed AMR Infrastructures

There already exists wide spectrum of software systems that support parallel and distributed
implementations of AMR applications. Each system represents a unique combination of design
decisions in terms of algorithms, data-structures, decomposition, mapping and distribution
mechanism, and communication mechanism. In this paper we characterize the distribution
mechanism underlying 5 such systems, viz. BATSRUS, PARAMESH, Parallel Mesh Database,
SAMRAI and GrACE.(please refer section 2.2)

2.3.1 BATSRUS

BATSRUSI1] is implemented in FORTRAN90, using a block-based domain-decomposition
approach. Blocks of cell (stored as 3D F90 arrays) are locally stored on each processor so as to
achieve a reasonable balanced load. The application starts out with a pool of processors, some of
which possibly unused. Every utilized processor has a block of swgrbry sizebut possibly

at a different resolution and/or a different sized partition of physieaespAs the application

adapts and new (adapted) grids are created, these are allocated, in units of the same fixed block

11
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size to the unused processors. No more refinement can occur once all the virtual processors are
used up.

2.3.2 PARAMESH

PARAMESH [20] is another FORTRAN 90 package designed to provide an application developer
with an easy route to extend an existing serial code which uses a logically cartesian structured
mesh into a parallel code with adaptive mesh refinement (AMR). The PARAMESH distribution
strategy is based on partitioning a hierarchical tree representation of the adaptive grid structure.
2.3.3 SCOREC

SCOREC Parallel Mesh Databases [29] provides a generic mesh database for the topological,
geometric and classification information that describes a finite element mesh. The database
supports meshes of non-manifold models and multiple meshes on a single model or multiple
models. Operators are provided to retrieve, store and modify the information stored in the database.
Parallel Mesh Database (PMDB) provides extensions to the SCOREC Mesh Database to create
and manipulate meshes in a distributed memory environment. PMDB provides three static
partitioning procedures for initial mesh distribution, three dynamic load-balancing schemes and
mesh migration operators.

2.3.4 SAMRAI

SAMRAI [26] is an object-oriented framework that provides computational scientists with general
and extensible software support for the prototyping and development of parallel structured
adaptive mesh refinement applications. SAMRAI makes extensive use of object-oriented
techniqgues and various design patterns, such as Abstract Factory, Strategy, and Chain of

Responsibility.

12
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Chapter 3

Run-Time Partitioning Techniques for Structured AMR Grid

Hierarchies

3.1 Run-time Partitioning Dynamic AMR Grid Hierarchies

This chapter presents six dynamic partitioning and load balancing schemes that have been
implemented and evaluated. These schemes encapsulate key ideas underlying the approaches used
by the AMR infrastructures described in Chapter 2. It then presents metrics to measure and
evaluate the load-balancing techniques.

3.1.1 Composite Distribution/Space Filling Curves

Figure 3.1 Space-Filling Curve Representation of an Adaptive Grid Hierarchy
Space-filling curves (SFC) are a class of locality preserving mappings from d-dimensional
space to 1-dimensional space i.¢!, - N, such that each point in’Né mapped to a unique point
or index in N. The self-similar or recursive nature of these mappings can be exploited to represent
a hierarchical structure and to maintain locality across different levels of hierarchy. The SFC
representation of the adaptive grid hierarchy is a 1-D ordered list of composite grid blocks where

each composite block represents a block of the entire grid hierarchy and may contain more than one

13
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grid level; i.e. inter-level locality is maintained within each composite block. Figure3.2 illustrates
the composite representation for a two dimensional grid hierarchy. Using the space-filling curve

representation as shown in figure 3.1,

1 1 1 1 I 1 1 i 1
) } } i Gt + + i G, !

PO F1 Fz F3

Figure 3.2 Space-Filling (Composite) Distribution

the adaptive grid hierarchy can be simply partitioned by partitioning the composite list to balance
the total work assigned to each processor. This decomposition using the Peano-Hilbert space-filling
ordering for a 1-D grid hierarchy is shown in figure 3.2

As inter-level locality is inherently maintained by the composite representation, the
decomposition generated by partitioning this representation eliminates expensive gather/scatter
communication and allows prolongation and restriction operations to be performed locally at each

processor.

14
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3.1.2 Independent Grid Distribution
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Figure 3.3 Independent Grid Distribution

The independent grid distribution (IGD) scheme, shown in Figure 3.3, distributes the grids
independently across the processors. This distribution leads to balanced loads and no redistribution
is required when grids are created or deleted. However the decomposition scheme can be very
inefficient with regard to inter-grid communication. In the adaptive grid hierarchy, a fine grid
typically corresponds to a small region of the underlying coarse grid. If both the fine and coarse
grids are distributed over the entire set of processors, all the processors will communicate with the
small set of processors corresponding to the associated coarse grid region, thereby causing a
serialization bottleneck. For example, a restriction from grid G22 to grid G11 requires all the

processors to communicate with processor P3.

15



3.1.3 Combined Grid Distribution
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Figure 3.4 Combined Grid Distribution

The combined grid distribution (CGD), shown in figure 3.4, distributes the total work load in the

grid hierarchy by first forming a simple linear structure by abutting grids at a level and then

decomposing this structure into partitions of equal load. The combined decomposition scheme also

suffers from the serialization bottleneck described above but to a lesser extent. For example, in

Figure, G21 and G22 update G11 requiring P2 and P3 to communicate with P1 for every

restriction. Regriding operations involving the creation or deletion of a grid are extremely

expensive in this case, as they require an almost complete redistribution of the grid hierarchy. The

combined grid decomposition does not exploit the parallelism available within a level of the

hierarchy. For example, when GO1 is being updated, processors P2 and P3 are idle and P1 has only

a small amount of work. Similarly when updating grids at level 1 (G11, G12 and G13) processors

PO and P3 are idle, and when updating grids at level 2 (G21, G22 and G23) processors PO and P1

are idle.
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3.1.4 Independent Level Distribution
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Figure 3.5 Independent Level Distribution

In the independent level distribution (ILD) scheme (see Figure 3.5), each level of the adaptive
grid hierarchy is individually distributed by partitioning the combined load of all component grids
at the level is distributed among the processors. This scheme overcomes some of the drawbacks of
the independent grid distribution. Parallelism within a level of the hierarchy is exploited. Although
the inter-grid communication bottleneck is reduced in this case, the required gather/scatter
communications can be expensive. Creation or deletion of component grids at any level requires a

re-distribution of the entire level.
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3.1.5 lterative Tree Balancing
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Figure 3.6 lterative Tree Balancing

The iterative tree balancing (ITB) scheme (see Figure 3.6) treats the dynamic partitioning and
load-balancing problem as a graph-partitioning problem. A table is created from the grids at each
timestep, which keeps pointers to neighboring and parent grids. A breadth first search is made on
this graph i.e. for every grid immediate neighbors and children are also considered along with load
distribution. Thus load balancing, inter level communication and intra level communication are
addressed together. This scheme is promising from the point of view that all the constraints are

dealt with, to some extent.

3.1.6 Weighted Distribution

The weighted distribution scheme is a heuristic based hybrid scheme that attempts to combine the
features of the other schemes described in this section. As previously observed, there are three
primary parameters that need to be controlled to minimize the overheads of an adaptive grid
hierarchy distribution, viz. intra-level communication, inter-level communication and data

movement at each regrid. In the weighted distribution we first assign a weight to each of these
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overheads. This weight defines the significance and contribution of the overhead to the overall
application performance and depends on the system architecture and dynamic application behavior.
The next step uses these weights to compute the affinity of each component grid to the different
processors. Initially grids have no affinity for any processor. For each grid, the affinity of the
processor(s) housing its parents is now increased by the inter-level communication weight.
Similarly the affinities of processors housing the neighbors of the grid are increased by the intra-
level communication weight, and affinity of the original location of the grid is increased by the
data-movement overhead weight. The grid is now assigned to the available processors (i.e. total
assigned load is below threshold for load balancing) to which the grid has maximum affinity. If the
grid has equal affinity to more than one processor, the grid is either split among the processor (if its
size is greater than the size threshold) or assigned to the processor with least load. Weights
assigned to the different parameters can change dynamically depending on the current application
and system states. For example if the application has many component grids and uses a large
stencil, then the dominating weight is associated with intra-level communication. Similarly if the

application is very dynamic and needs to regrid very often, the data-movement weight dominates.

3.2 Characterization Criteria
We use four criteria to characterize distribution mechanism for AMR adaptive grid hierarchies,
viz. load balance, distribution quality, grid interaction overheads (inter-processor communication

and memory copy), and data-movement overheads.. These criteria are described below.

3.2.1 Load Balance
The load balance metric measures a combination of the distribution of load across the processors,
the time taken to achieve the distribution. AMR applications require re-distribution and load

balancing at regular intervals; consequently the time spent in this effort is critical. The goal of this
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metric is to define operational points that represent the best balance between the effort spent in
balancing the load and the balance achieved. In this paper we only address the quality of the load-

balance and not the effort required.

3.2.2 Distribution Quality

Distribution quality is quantified by the number of grid components created on each processor and
the quality (size, aspect ratio) of these components. The former captures the overheads due to the
allocation, operation, and management and de-allocation of grid components. Large number of
small grid increases the number of memory copies required for inter-level and intra-level
communications. The size and shape of the grids also affects the communication/memory copy
behavior. Bad aspect ratios result in larger interfaces between sibling grids and increased intra-
level communications. Finally grid size also affects the overall cache behavior. Our goal is to use
this metric to determine an acceptable range for the shape and size of grid components for different
architectures, and use this to drive the distribution. In this paper we evaluate the number of boxes

for each scheme studied.

3.2.3 Grid Interaction Overheads

The grid interaction overhead metric aims at characterizing the ability of the distribution scheme to
capture and maintain application locality. Here we measure the overheads of four kinds of
communications: inter-grid communications between grids at different levels, intra-Grid
communication along ghost boundaries, and inter- and intra grid memory copies for co-located grid
components. Maintaining locality to minimize these overheads can lead to conflicting
optimizations. The objective of this metric is to identify a balance between the two overheads based
on system memory architecture and communication characteristics that can achieve best overall

performance.
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3.2.4 Data Movement

Every refinement step in the AMR algorithms typically causes the adaptive grid hierarchy to
change requiring redistribution. The redistribution should be incremental so as to minimize the data
that has to be relocated. The objective of the data movement metric is to characterize the ability of
the distribution scheme to minimize redistribution costs by reassigning grids to their original
location. Optimizing this metric can lead to conflicts with requirements for optimizing load

balancing and interaction overheads.
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Chapter 4
Design, Implementation and Optimization of Composite (SFC)

and Combined Grid Distribution (CGD) techniques

The design and implementation of each load balance and distribution technique consist of three

steps in order to partition the adaptive grid hierarchy across the processors. They are:

i) definition of the data structure

ii) arrangement of the grids into a list in an order dictated by the distribution technique (for
example: for SFC scheme, arrange as per parent — child relationship), and

iii) the partition routine that actually partitions the grid hierarchy and distributes the grids to
the processors.

This chapter presents the design and optimization of the data structure and the arrangement of the

grids in an order dictated by the SFC technique and the design and optimization of the partition

routine of the CGD technique. The goal of the optimization is to provide improved performance

criteria that we use to characterize the distribution mechanism (section 3.2).

4.1 Optimization of the Composite Grid Distribution (SFC) Technique

The original scheme read in the boxes and stored them in a linked list. It then compared each
bounding bojl0,24] with every other bounding box in the list to identify its parent. It is then
placed it behind its parent. The complexity of time spent was O(n) .We have come up with a tree
general tree data structure to hold the boxes in parent child relationship. We have employed the
strategy of representing a general tree as a binary tree and a preorder traversal [30] leads to the

formation of the bounding boxes in the desired parent-child-grandchild ordering. The complexity of
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doing a search on the binary tree is O(lg n). Hence we see considerable improvement in the time

taken to perform the parent-child-grandchild ordering.

4.1.1 Design of the data structure

At each timestep, the grid hierarchy is such that, after the refinement process, a grid may have
more than two children. In general, we find it desirable to deal with a data structure for which any
data object may have a relationship with an arbitrary (but finite) number of child data objects. In
this scenario, the number of children per node is independent between nodes and varies dynamically
with the growth or decay of the overall tree. We have chosen such a tree structure as our data
structure and it is calledgeneral treeor ahierarchical tree Indicative of its name, a general tree

is applicable to a wide and varied class of problems and is particularly suited to our application. A
general tree is a tree such that (a) it is empty, or (b) it contains a root node along with a finite
number of disjoint general (sub) treékence, the number of children belonging to each node of the

general tree depends upon the grid hierarchy for that timestep.

4.1.2 Representation of the general tree data structure

There are many possible ways of representing a general tree. Among them are those employing

i) variable size nodes, -ary trees, and iii) binary trees.

We implement the general tree as a binary tree because, an implementation based on the variable
sized nodes can be considerable complex that one based on fixed sized nodes. TheMs&yf an

tree is also not considered because, it is for the most part an impractical means of representing a
general tree. Such an implementation requires an upper limit for the degree of the tree to be fixed in
advance, limiting flexibility and ultimately leading to a lot of wasted storage space. Each and every
node must contain the storage requiredMbchild pointers, regardless of the actual nhumber of

children present at any given time. ForMrary tree the ratio of the NULL to non-NULL child
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pointers is about 2/3 for a 3-ary tree (M=3) and approaches unity with incréasipinary tree

on the other hand has a NULL to non-NULL child pointer ratio about 1/2 for large trees. This
favorable use of space is readily exploited given the realizatioratlyatree may be represented

by means of a binary treé¢lence, we have considered a binary tree for our representation of the

general tree.

Figure 4.1 illustrates the general tree concept takingaheree of a set of functions "f1( )", "g1(

)", "h1()". The function "f1( )" calls "f11( )" ; "f12( ); function "g1( )" calls "g11( )", "g912().,
"g13( ); the function "f1( )" calls "f11( )" and "f12( )". The parent child relationship is established
by " who calls whom". Leaf nodes, such as functions "f11( )", "f12( )" and "g11( )" are those that
do not call any functions. Figure 4.2 represents the abstract form of a general tree for the call tree

of functions (in terms of nodes). Figure 4.3 shows its equivalent form using child-sibling

relationship.
main() ......... root
f1() 91() hl()
f11() f12() g11() 9l12() 9g13() h11() h1i2()...leaf

Figure 4.1 Representation of the abstract form of a general tree
This is also called binary tree or linked list implementation of a general tree. Children and siblings
are both structures as a linked list. Like binary tree, each node contains one or more data fields and
two pointers: one pointer pointing to the head of the singly linked list of its children, and a second
pointer pointing to the head of the singly linked list of its siblings. For example, the node containing

"f1( )" as data has one pointer (forward direction) pointing to the list of its siblings, "g1()" and
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"h1( )", and a second pointer (downward direction) pointing to the list of its children functions

"f11()" and "f12( )".

NS
OO0 OO0

Figure 4.2 Abstract form of a general tree depicted as a hierarchy of nodes

main()
root
* | 0
i Sibling relationship
f1() 91() h1()

child relationship

0 F d—»r

Figure 4.3 Binary tree implementation of a general tree with siblings

To avoid complexity in figure 4.2, children of the nodes with "g1( )" and "h1( )" are not shown.
Figure 4.3 shows the implementation of the general tree using linked lists. The siblings "f1( )", "g1(
)'and "h1( )" belong to the same singly linked list; "f1( )" is assumed to be the first child of the
root node "main”. The node containing "f1( )" contains one pointer(it's right pointer) pointing to the
next sibling, and a second pointer (it's left pointer) pointing to the singly linked list of its children

function nodes, "f11( )" and "f12( )".
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4.1.3 Implementation of the general tree data structure

We have used an object-oriented design approach for a general tree, the object is specified by an
Abstract Data Type (ADT) general tree and its methods are actions which are directly derived from
the ADT definition of the general tree. To implement the object-oriented characteristics of data

hiding, encapsulation, and methods for message passing, the General Tree class is defined in a

header file.
s N
General Tree object
N Y
*root_ptr etc.
private members
public base class members { Tree Object
General_Tree
new public sub-class members ~Geenral Tree

N /

Figure 4.4 General Tree Object

The General tree class defines a type for a general tree object, encompassing both data and
operations. Its parent class is the tree classe@object is specified by and ADT tree. An ADT

tree is defined as a data structure that has a set of node objects and a set of the generalized

operations that are used for defining, manipulating such node objects. The data that are contained

in node objects are as abstract as possible, and are abstracted (taken out) by using specified set of
operations. (e.g., construct/destroy a tree object, create/delete a node object in a tree object, sort a

tree object or traverse a tree object). Hence the tree object is treated as an abstract base class. The
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General tree class is hence an implementation specific derived class, gaddis treeobject is

a derived tree object formed by the instantiation of the derived General tree class.

4.1.4 Arrangement of the grids into a list

The grids in the adaptive grid hierarchy are maintained in the form of a bounding box list

(appendix a). Following are the steps to create the bounding box list.

i) Read in the parameters for the bounding box from the input file and create a bounding box.

ii) Arrange them in the form of the binary representation of the general tree

iif) Construct the bounding box list from the above representation:

This is done as follows: a preorder traversal (appendix a)of the binary tree gives us the bounding

boxes in the composite (SFC) order. In order to partition this bounding box list we create units

where each unit consists of a parent, one of its children say A, children of A and so on to the last

level of the hierarchy. It is noted that a bonding box may be divided across several units. For

instance, a node that has two children will belong to each unit that houses its children. In order to

create these units we perform the following steps:

determine the number of nodes: this is done during the preorder traversal of the tree

determine the number of units: this is also done during the preorder traversal where each time we
encounter a node which doesn’t have a left child, we increment the number of units by one.

determine the participation number of each. node. We define participation number of a node as the
number of times each node participates in all the units. This is also the sum of participation numbers
of its children (recursively). The purpose is to find out how many units each node will belong to.
Algorithm 4.1 describes the process to find out the participation number of each node (please refer
appendix a).

Divide each node by its participation# into sub-nodes and place them in their units. Algorithm 4.2
describes the algorithm to place the sub-nodes into their units. (please refer appendix a).

call the partition routine to perform to do the load-balance and distribution of the grids across the
processors. (Sections 4.2.2 and 4.2.4)

4.2 Optimization of the Combined Grid Distribution ‘Partition’ Method

The goal of the optimization of the partition method is to generate better quality partition in terms

of the number of boxes generated and the load balance achieved.
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4.2.1 Analysis of the original partition method
A high level description of the partitioning process of the single list of work elements (bounding

boxes) to be partitioned and assigned to the processors comprises of the following steps below:

X3

o

Calculate the total work and the average work

Add the work of a box to the existing work of current processor
Check if this work is more than or equal to the average work
Allocate to current processor

Recalculate the average work

X3

o

X3

o

X3

o

X3

o

The partition method of the combined grid distribution scheme is a recursive scheme where in the
total load and the average load on each processor is calculated. The load is then evenly distributed
among the processors. At the point of imbalance, the current bounding box is broken into two
smaller blocks depending on the amount of work needed to even out the imbalance. The first block
is assigned to the current processor. We then moved forward and start the redistribution process all

over again.

Figure 4.5 Characterization & Evaluation Process flow

A very good loadbalance is achieved because at the point imbalance, the bounding box that is
under consideration is broken by an amount the serves to satisfy the imbalance and the processors
receive almost equal amounts of load. However, the drawbacks to the method are: a) the quality of
boxes generated is bad (section 4.2.3.2) and b) a single box may be recursively broken over and
over again depending upon the size of the bounding box. These are addressed in the new partition

method.
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4.2.2 Flow diagram for original partition method

There are two traversals made of the list of work elements, one to calculate the average work and
one to partition the load. Hence the complexity of the algorithm is O(n). The detailed algorithm 4.1

can be found in Appendix A. The flow diagr&1 below illustrates the partition process.

A

Check for maximum ‘

block size

Box_work >
Max.block

Move onto

Break current box in half
next box

0:0
% Insert new boxes into list
< Remove broken box

v

Box_work >
Max.block

Calculate average work of all the
boxes

Figure 4.6 Flow Diagram FD1: Original Partition Method
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Partition method:
+ Calculate box_work
% Add to processor work

lv..

Proc_work
< avg_work

7

% Assign box to
current processor
% Process next box

Proc_work
= avg_work

Proc_work

Increment processor
> avg_work

Dump output into file

7
0.0
7
0.0

7

% Assign box to
current processor

7
0.0

Find extra_work
Break current box
Put new boxes in list
Remove broken box
Recalculate average

>

7

%

Yes

X3

%

7
0.0

X3

%

Finished
processing
list ??

o B

Figure 4.7 Flow Diagram FD1 (Continued ...): Original Partition Method
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4.2.3 Analysis of the optimized partition method

We shall refer to the initial partition method methodland the optimized partition method as
method2

4.2.3.1 Complexity Analysis

The amount of time required to partition is of O(n) because we parse the bounding box list once
during the partition process. Although this is the sanmaethod] it performs better by a constant
factor, because the traversal to calculate the average work is eliminated as the total work is
calculated as and when the boxes are read in, recursive breaking of the boxes is avoided and
number of boxes generated is lesser. This however is slightly offset by the fact inettydl2 at

the point of imbalance, we parse the bounding box list and check to see if a bounding box of
suitable size is present. If the imbalance is at the very end of the list or if the box resides at the

beginning of the list, then, we make a very few comparisons else we parse the whole list.

4.2.3.2 Criteria Optimized

Although method 1 offered very good load balance, there were a few disadvantages to this method.
They are: a) the quality of boxes generated is bad (section 4.2.3.2) and b) a single box may be
recursively broken over and over again depending upon the size of the bounding box, ¢) the number
of boxes generated were more affecting the quality of implementation. The optimized technique has
addressed these issues as well as some other critemaetthaid 1has not addressed. Following are

the criteria:

+ Box quality

During the partition process [Algorithm 4.2.2, step 3], when the point of imbalance is reached, the
current bounding box is broken by an amount that is required to satisfy the imbalance. The quality

of boxes formed is thus driven by the amount of imbalance, as there is no evaluation of the size of

the boxes being createtilethod2 addresses this issue by checking to see if the amount of
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imbalance is lesser than a predefined minimum block size (appendix b). If the test is true, the

current processor is hot allocated any more work. Thus we avoid formation of bad quality boxes,

but have to live with a slight imbalance. Another case where quality of boxes is preserved is when

average work is less than predefined minimum block size. In such a situat&hpd2sets the

average work to be equal to the minimum block size. This avoids the situation of producing very

small boxes.

« Aspect ratio

Aspect ratio is defined as the ratio of the longest side to the smallest side. We consider only the

longest axis of the bounding box and break along that direction. For example,

xy plane

y axis

yz plane
Bbox
(Ib:0,0,0)
z axis (ub:8,256,8)
\xz plane
X axis a

Figure 4.8 bounding box and its parameters

consider a box with dimensions: lower bound(0,0,0) and (16,256,16). In figure 4.6 above, we

consider breaking the box along the xz plane, as the length of the bounding box is longest in the y

direction. Breaking the box along any of the other axes would result in bounding boxes of a very

uneven size.

++ Recursive breaking of the boxes
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Methodlbreaks the boxes under consideration recursively. This could have a multi-fold impact: on
the quality of boxes as mentioned above and recursive breaking of boxes ie., if the bounding box
to be broken is of a very large size and the average work is very small, this box is broken
repeatedly in a recursive fashion. In order to avoid the above situatietigyd2parses the list of
bounding boxes from the current bounding box onwards. If it finds a bounding box of size equal to
extra work that balances the workload; it assigns this bounding box to the processor. In the event
that such a box is not found, it current bounding box is broken. This results in savings in the
breaking boxes effort, which results in a considerable savings in time.

% Reducing the number of boxes

Before the partition method, a check is made to see if the all the boxes a less than a maximum
block size because dealing with boxes of extremely large size could be unwieldy. Method 1 breaks
such a box into exactly 2 parts, the first box being equal to Maxblock size. It rechecks the second
block recursively and breaks it into 2 parts, until the Maxblock condition is met. In order to avoid
recursive checking and breaking, method 2, calculates the number of boxes the bountag box

to be broken in a single step and a second step it breaks the box into the required number. This
results in a considerable savings in breaking and checking time.

% Improved performance (time)

This is elaborated in section 4.2.3.1 . Chapter 6 presents the comparison of the two partition
methods in terms of time, communication overheads, and the memory copies. Algorithm 4.2 in
appendix A explains optimized partition method. The text in “bold” font denotes the optimization
that was performed.

4.2.4 Flow diagram for optimized partition routine

The flow diagrantD2 for the optimized partition method is presented below. Appendix A presents

algorithm 4.4

33



34

Check for maximum block size
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Max.block

v

Move onto Break current box in half
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Calculate box_work
Add to processor work
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7
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Figure 4.9 Flow Diagram FD2: Optimized Partition Method
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Figure 4.10 Flow Diagram FD2 continued..: Optimized Partition Method
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Chapter 5

Design of the simulator

This chapter presents the design and implementation of the AMR Simulator. The AMR simulator

is a module that measures the characterization criteria of the distribution techniques.

5.1 The AMR Simulator

We use four criteria to characterize distribution mechanism for AMR adaptive grid hierarchies,
viz. load balance, distribution quality, grid interaction overheads (inter-processor communication
and memory copy), and data-movement overheads as mentioned in section 3.1

The AMR simulator was designed to measure the above-mentioned criteria. In addition, it also
measures the time taken for various partitioning schemes. Section 5.3 discussses th einputs to the
simulator and the outputs generated. Figure 5.2 illustrates the same.

The input to the simulator is obtained by the following 3 steps which are as follows:

1. A trace of the Grid hierarchy is obtained by performing a run of the application for a single
processor. and the resulting parameters are dumped into a trace file.

2. This trace file is fed to a partitioner. The partitioner implements the partitioning scheme of
choice. The partitioning scheme allocates various bounding boxes at different levels and timesteps
to processors. This result is dumped to an output Parameters file.

3. This Output Parameters file is the input file to AMR simulator. The AMR simulator measures

the different parameters that characterize the distribution mechanisms.
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Figure 5.1 below shows a high level view of this process.

Trace Module Partitioner AMR Simulator

Input: application results (Input: partitioning schemes) Input: Output Parameters file
L e o o o
[ TT )
I == o o o o
H |
1

sssssssssssss

S

Figure 5.1 Partitioning process

5.2 Input/Output

timestep
Percent Imbalance.

Processor J A
 \

p. Intralevel comm./proc/timestep

level —»
stencil e |y interlevel comm./proc/timestep
N Simulator q
Partitioning > load per processor.
Scheme —
Datamovement (timestep t-1 = t)

—»
A nhumber of boxes.

bounding box .

Maxlevel &

v
dimension

Figure 5.2 Inputs and Outputs to the Simulator
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The input to the simulator is essentially a list of bounding boxes obtained as a output of the
partitioning schemes, across processors at different levels of the hierarchy. The simulator hence
reads in time step, processor number, level and the corresponding bounding box parameters.
Additionally, the user must specify the rank (2 dimension or 3 dimension), initial time step, time
step (the amount by which a time step changes for instance in steps of 1 , 4 or 8 etc), and the
filenames that can optionally be specified to redirect output values of the parameters that being
measured (communication overheads, data movement, time, percent imbalance etc), variable

number of processors and the stencil size through the command line interface.

5.3 Measurement of Characterization Criteria

5.3.1 Measurement of intra-level communication

At each time step, some amount of communication is present between processors at the same level.
This is measured as follows: Let list 1 be the boundingbox list for processorl at levell, and Let list
2 be the boundingbox list for processor2, also at levell. bounding box (bb) of listl is grown by a
specified stencil size in all directions such that it maintains an overlapping zone at its boundaries
with its neighboring processing elements (bb in this case) for synchronization of data during the
updating process. This overlapping zone is calledghest region’ Figure 2.2 and 5.3 illustrates

such a ghost region for a bounding box. The bounding box can be logically divided into 3 regions
of interaction : face, corner and edge. These interaction boxes of each bounding box is intersected
with each of the interaction boxes on list 2. The intersection of these boxes detects the presence of
intra-level communication.

The inputs to determine intra-level communication are:

Y/

+ stencil size, bblist at a particular timestep,level,processor , rank, maximum number of
levels, number pf processors (num_procs), time
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You can find the implementation of measurement of intra-level communication in algorithm 4.5 in
appendix a.

Ghost communication: Figure 5.3 shows the ghost communication between two processors.

Ghost regions

edge
—P

face .

corner
v N { .
2 dimensional Bounding 2 dimensional Bounding
box 1 with stencil size = 1 box 2 with stencil size = 1

Figure 5.3 Ghost communications betweeen 2 bounding boxes

5.3.2 Measurement of inter-level communication

When a refined grid is created, its boundaries are usually interior to some coarser grid values.

After updating the function values on a fine grid, the underlying coarse grid values are updated

through restriction. Hence we have interlevel communication. This is measured for each of the

timesteps, across the processors at different levels of refinement. The measurement process is as

follows

« At a given timestep, each bb for a bblist for a given processor and level is compared to each bb
of a bblist that is either one level up (child) or one 1 level below( parent)

% If there is an intersection between the two bbs, interlevel communication exists and it is
measured in the same way as described in the section above "measurement of intralevel

communication”.
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The algorithm used for determine the interlevel communication for a given processor at a given

timestep is:

Algorithm for interlevel communication

Find out the total number of levels
If the number of levels > 1 then,
for each level (starting from level=1, ie., bounding boxes of level 0 have children at leval 1,

we are concerned with the children)

for each bounding box

/I interlevel communication is twice the boundary points of itself (because both

/I prolongation and restriction are involved

calculate the upper bound, lower bound, step size
interlevelcomm = 2* ((ub[x]-Ib[x])/step[d]) + 1

5.3.3 Measurement of Data Movement
At the end of each timestep, the partitioning scheme redistributes different bb to different
processors due to the change in the grid hierarchy as a result of refinement. Hence bounding boxes
that belonged to one processor may/may not belong to it at the next step. Therefore, data movement
is the number of points sent from one processor at on etimestep to another afterevery regridding.
Data movement is measured as follows:
At each timestep, compare the list of bbs at different timesteps. If there is an intersection between
the 2 bbs, then there indeed is data movement and it is measured by the size of the intersection bb.
The inputs to determine data movement are:

+ 2 bounding box lists, one holding the boxes of the current timestep and the other

holding the boxes of the previous timestep., number of processors (num_procs),
number of levels
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The algorithm is to determine data movement is as follows:

Algorithm to determine datamovement

At each timestep
for(processor=0 to processor =num_proc-1)
for(each box in bblPrev)
intersect with each box in bblCurrent to obtain the
intersection_bb
if( intersection_bb != NULL)
data movement+= intersecton_bb.gize

5.3.4 Interlevel and intralevel memory copy

This is the amount of grid memory copies for co-located grid components.

It is found out in the same way as intra/interlevel communication except that at each timestep, we
are considering the communication overheads within each processor.

5.3.5 Percentage load imbalance

Algorithm below outline the processof determining the percentage load imbakance:

inputs: Output parameters file, number of timestep, average work, processor number, number of

processors

Algorithm to determine percentage load imbalance

Sum of loads on all the bounding boxes of all the processors.

nproc-1 n
Total load += % % ( size(bb,))
=0 j=Li#]

load on each processor(average work) = Total load / nproc
for each bounding box
difference in work = average work ~ processor work
total difference in work += difference in work
average difference in work = total difference in work/num_procs
percent imbalance = (average difference in waf0)/average work
cumulative percent imbalance += percent imbalance
final percent imbalance = cumulative percent imbalance/number of timesteps
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5.3.6 Number of boxes
This is equal to the number of lines obtained in the OutputParameters file that is obtained from

the partitioner and the input to the AMR simulator.
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Chapter 6

Experimentation and results

The experimental evaluation consisted of two sets of experiments: the first evaluated the
performance of the partitioning and load-balancing schemes without the optimization, while the

second evaluated the same schemes with the optimized partitioning routine.

6.1 Experimental Setup
To evaluate the six distribution/load-balancing schemes outlined in Section 5 we use grid
adaptation traces from 2 different AMR applications:

1. 3D Buckley-Leverette equation kernel (BL) that was used in oil reservoir simulations.

2. 3D Wave equation kernel (Wave) that was used in a numerical relativity simulation.
These applications demonstrate two very different refinement patterns. In BL, the refined grids
track a front, moving diagonally across the grid as shown in figure 1.1. The Wave kernel trace
consisting of refined grids, tracks the crest of the wave as it dissipates at the center of the grid as
shown in figure 1.2. The two traces were generated from a single processor run with 5 levels of

factor 2 refinement.

6.2 Experimental process

After obtaining a trace as above, it was then fed to a partitioning module that partitioned the boxes
across the required number of processor using each of the six schemes. The simulation was run for
16, 32 and 64 processors. An AMR simulator (Chapter 5) then evaluated various costs for the

partition generated. The evaluation was performed using architecture independent measurements.
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6.3 Metrics
Four criteria were used to characterize distribution mechanism for AMR adaptive grid

hierarchies, viz. load balance, distribution quality, grid interaction overheads (inter-processor
communication and memory copy), and data-movement overheads. These criteria are described in
section 3.2. The measurements for the different metrics are summarized in tablel below. In case of
communication and data-movement overheads, this corresponds to the amount of information
communicated. In case of distribution quality metrics this corresponds to the number of grids per
processor and the percentage load imbalance (a perfect load balance corresponds to 0%). The
motivation for keeping the measurement architecture independent was to enable them to be used to

select appropriate schemes for a wide range of architecture using a very simple architectural

description.
Table 6.1: Metrics and measurement

Metric Measurement
Load Balance Percemfa load imbalance
Intra-level/Inter-level communication overhead Megabytes communicated
Intra-level/Inter-level memarcopy Megabytes cqied
Data movement Megabytes moved
Distribution time Seconds
Distribution quality Number of Boxes ( x 1000)

The plots presented in this section represent cumulative costs for each scheme. The vertical
axis in each of these plots is the relevant measurement for each metric, while the horizontal axis is
the number of processors. In this experimentation we used three configurations of 16, 32 and 64

processors.
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6. 4 Results

The plots in Figure 6.1 show the intra and inter level communication overheads, while Figure 6.2
shows the memory copies in each case. In both the sets of plots, the IGD distribution scheme tends
to be particularly bad. The other schemes tend to be comparable with the SFC and CGD being
slightly better than the rest. The plots in Figures 6.3 and 6.4 show the overheads due to dynamic
distribution and load balancing. Once again IGD results in the maximum data-movement while
CGD has the least data movement. The ILD scheme requires the maximum time for dynamic
distribution and load balancing. Once again IGD results in the maximum number of boxes,
however, it results in a near perfect load balance. ITB produces the overall best quality distribution

with SFC and CGD schemes comparable. ILD produces the most load imbalance.

6.4.1 Buckley-Leverette (BL) Application Trace

Inralevel Communication Interlevel Gonmuricatio n
1204 450
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—
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Figure 6.1 BL - Communication Overheads
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6.4.2 Analysis

This application is a simulation moving diagonally across the grid (figure 1.1). Refined levels are
formed across the diagonal of the domain and move forward as the simulation progresses. Hence,
the application is dynamic in nature leading to larger amounts of data movement. Consequently,
intra level and inter level communication are concentrated along the diagonal, and so is the work
associated with the grids. Hence, Partitioning schemes, that inherently produce lesser data
movement and communication overheads would be best suited for such applications. Following is
the analysis of the six schemes with respect to the results plotted above. (Figures 6.1 — 6.4).

a) Space Filling Curves

This technique (section 3.2.1) maintains locality across different levels of hierarchy. Thus
interlevel communication is less compared to other techniques. Even though the wave progresses
along the axis diagonally, boxes are redistributed among the neighboring processors when
partitioned and so data movement is less compared to other schemes. The distribution quality is
better as the number of boxes generated is very less and hence the intra level memory copies and
inter level memory opiesare also minimized.

b) Combined Grid Distribution

This scheme (section 3.2.3) does not focus on reference of locality. Hence, it tends to have more
communication overheads compared to SFC. From the plots above it can be seen that
communication overheads are more than SFC. Inter grid operations are very expensive because if
the grids are distributed across the entire set of processors, then there is more communication.
Data movement is less because , at the levels where there is no refinement, existing grids are
redistributed to the same processors . The distribution quality and time overhead are comparable to

SFC.
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¢) Independent Grid Distribution

This scheme (section 3.2.2) is based on a simple approach of distributing individual grids across
the processors irrespective of locality, level or size of the grid. Inter level and Intra level
communication rises exponentially with the increase in number of processors because every grid on
a processor has to communicate with other grids on other processors. Load Balance is very good
since every box is exactly divided among processors and the effort required to do so is negligible
due to the simplicity of the algorithm.

d) Independent Level Distribution

This technique (section 3.2.4) exploits parallelism within a level and provides control over inter
level communication. This can be seen from the plots above. Inter level communication is
minimum compared to all the other schemes, but the intra level communication scales up. This is
because grids at every level are distributed among processors and pose the same problem as seen in
the case of Independent Grid Distribution.. In ILD, the points at different levels under a domain
are distributed among the same processors and so the inter level communication is much less. This
should increase inter level memory copy significantly which is seen from the plot above.
Distribution Quality is better since Load Imbalance; number of boxes and the effort taken are
comparable.

e) Iterative Tree Balancing

The technique (section 3.2.5) views this problem as a graph-partitioning problem with underlying
constraints. Partitioning starts from the highest level of grids and progresses making a breadth
first search on the neighbors and then on the parents, resulting in immediate neighbors and parents
in the same processor. This maintains inter level communication and intra level communication to a
minimum as seen in the plots above. Data movement is a drawback of this scheme because of the
following reason. When a new grid is formed at any level the graph changes and so does the

representation of the nodes, their neighbours and their parents. Since partitioning is based on this
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graph the boxes usually end up in neighboring processors as compared to the previous iteration of
the simulation.

f) Weighted Distribution

The approach of this scheme (section 3.2.6) is to prioritize the focus on constraints according to
the characteristic distribution of refinement and dynamic behavior of the application. The
constraints are inter level communication, intra level communication and data movement. In this
experiment equal priority i.e. weight is assigned to all the constraints so all the overheads are kept
under control. Plots show that all these three constraints are well in bound as compared to the
other implementations.. The number of boxes formed is less which keeps inter level memory copy
and intra level memory copy less. The main disadvantage of this scheme is the overhead of its
implementation i.e. the effort required in terms of time taken for its execution. This is because
every box to be partitioned calculates the total weight for all the processors to know its affinity
towards a particular processor. In order to calculate this, a traversal is made on all the boxes of the
previous iteration, which makes it an €(ralgorithm.

Tables 4.2, 4.3 and 4.4 present some results for the various characterization criteria for the

Buckley Leverette Application for all the techniques. All the results are in terms°afnit§.

Table 6.2: Intralevel & Interlevel communication and Data Movement for Buckley Leverette

application
Scheme Intralevel Interlevel Data Movement
communication communication
16 32 64 16 32 64 16 32 64

SFC 1244 1526 197 3058 32156 33.37 3.15 4.46 7.17
CGD 131 159 238 30.83 3238 3345 1.01 1.53 7.24
IGD 11.208 29.32 100.5 100.5 181.3 407.42 49.498 140.275 424.9
ILD 1.71 227 3369 3111 37.66 5045 5.55 10.28 22.26
ITB 1302 1.28 2009 29.15 26.447 32.86 3.18 3.474 7.209
Weight  1.47 2.08 3.369 31.18 34.26 50.45 4.69 8.39 16.62
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Table 6.3: Intralevel & Interlevel Memory Copies and Time for Buckley Leverette

application
Schem Intralevel Memory Interlevel Time
e Copies Memory Copies
16 32 64 16 32 64 16 32 64
SFC 3.15 4.46 7.17 101 136 2284 497 9.166 17.536
CGD 1.01 1.53 724 319 1542 2283 5.06 8.92 17.286
IGD 49.498 140.275 4249 17.27 4256 131.27 23.448 37.983 70.448
ILD 5.55 10.28 2226 298 6.19 1547 583 127.8  259.05
ITB 3.18 3.474 7.209 114 1189 2.24 5416 7.126 10.82
Weight  4.69 8.39 16.62 1.83 3.068 6.27 27.24 72.71  155.56

Table 6.4: Number of boxes and Load Balance for Buckley Leverette application

oL

6

4

Lo

Scheme Number of Boxes Load Balance
16 32 64 16 32 64
SFC 6090 7162 9306 1.275 2.653 3.71
CGD 6090 7162 9306 1.285 2.643 3.649
IGD 38672 77344 154688 O 0 0
ILD 9870 14974 24974 2.41 5.04 6.39
ITB 6086 6087 9306 1.367 2.71 3.596
Weight 8248 11784 18052 1.624 3.34 4,78
6.4.3 3D Wave Application Trace
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Figure 6.5 Wave — Communication Overheads
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6.4.4 Analysis

This application is a 3 dimensional wave simulation moving vertically across levels of the grid and
so the refinement is focused vertically across levels throughout the simulation. Refined levels are
formed across levels of the domain and shift up and down as the simulation progresses. Hence, the
application is dynamic and has significant amount of inter level communication and data
movement. The intra level and inter level communication is more throughout the center of the
domain. Partitioning schemes, that control more of inter level communication and also focus on
data movement overhead would be best suited for such applications. Following is the analysis of alll
the six schemes with respect to the results plotted in figures 6.5 - 6.8 for the 3 dimensional wave

application trace.

a) Space Filling Curves

The only significant overhead is the data movement overhead compared to the Buckley-Leverette
application. The reason for this is: in Buckley-Leverette, the wave front moves slowly along the
diagonal and so the major movement of grids would be around the diagonal and between few
levels. But in wave application trace the refinement is heavily done across levels and so when the
grids are redistributed, due to load balancing criteria the grids from the previous time step end up

in different processors.

b) Composite Grid Distribution

This technique performs quite similar to space filling curves for reasons explained above.

¢) Independent Grid Distribution
This scheme behaves as expected in both Wave application and Buckley leverrete application,

except for inter level communication for wave application. This is because at every level the number
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of grids are less. So when partitioned, a certain domain resides in one processor from the coarsest to
the finest level which makes the interlevel communication less. This is a special case and if the
domain of computation is larger or the refinement is more sparse within the domain, then interlevel

communication would be higher as seen in Buckley-Leveagipécation.

d) Independent Level Distribution

Interlevel Communication is the prime focus of the scheme and is low, as seen from the plots
above. Data Movement is less since refinement adds grids at the finest levels, and only grids at
these levels add to the data movement overhead. Number of Boxes, time taken and Load imbalance
are slightly higher than all the other schemes except independent grid distribution. Intra level

communication is not addresses in this scheme which is a big drawback.

e) Iterative Tree Balancing

The application characteristic does not have a significant impact on the results of this scheme.
Inter level and intra level communication is controlled and rest of the parameters from

communication overhead within a processor, distribution quality to time overhead are well below
other schemes. The only drawback is data movement, which is inherent characteristic of this

scheme.

f) Weighted Distribution

Equal priority is assigned to all the constraints for evaluating the wave trace application. The
results of this scheme show significant changes compared to other schemes when evaluated from
Buckley Leverette to Wave trace application. Compared to Buckley Leverette application, intra
level communication, memory copies are higher and data movement is lower than most other

schemes. This shows that giving equal priority to all the constraints benefits inter level and data
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movement but not intra level communication. Since the refinement in this application is more
across levels, the existing grids have the neighboring grids and parent grids in the same processor
as the previous iteration. Thus data movement is less. The increase in intra level communication
comes from the newly formed grids at the finer levels, which have more work. These grids do not
have neighbors till the next iteration as they are newly formed also add to imbalance in load. In
order to alleviate this, they are assigned randomly to any processor who has work assigned below

average and thus the intra level communication is increased.

Tables 4.5, 4.6 and 4.7 present some results for the various characterization criteria for the

Buckley Leverette Application for all the techniques. All the results are in terms°afnit$)

Table 6.5: Intralevel & Interlevel communication and Data Movement for Wave application

Scheme Intralevel Interlevel Data Movement
communication communication
16 32 64 16 32 64 16 32 64

SFC 1244 1526 197 3058 32156 33.37 3.15 4.46 7.17
CGD 131 159 238 3083 3238 3345 1.01 1.53 7.24
IGD 11.208 29.32 100.5 100.5 181.3 407.42 49.498 140.275 424.9
ILD 1.71 227 3369 3111 37.66 5045 5.55 10.28 22.26
ITB 1.302 1.28 2009 29.15 26.447 32.86 3.18 3.474 7.209
Weight  1.47 2.08 3.369 31.18 34.26 50.45 4.69 8.39 16.62

Table 6.6: Intralevel & Interlevel Memory Copies and Time for Wave application

Schem Intralevel Memory Interlevel Time
e Copies Memory Copies
16 32 64 16 32 64 16 32 64

SFC 3.15 4.46 717 101 136 2284 4.97 9.166 17.536
CGD 1.01 1.53 7.24 319 1542 2283 5.06 8.92 17.286
IGD 49.498 140.275 424.9 17.27 42,56 131.27 23.448 37.983 70.448
ILD 5.55 10.28 2226 298 6.19 1547 583 127.8  259.05
ITB 3.18 3.474 7.209 114 1.189 224 5416 7.126  10.82
Weight  4.69 8.39 16.62 1.83 3.068 6.27 27.24 72.71  155.56

Table 6.7: Number of boxes and Load Balance for Wave application
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Scheme Number of Boxes

Load Balance

16 32
SFC 6090 7162
CGD 6090 7162
IGD 38672 77344
ILD 9870 14974
ITB 6086 6087
Weight 8248 11784

64

9306
9306
154688

24974

9306

18052

16 32 64
1.275 2.653 3.71
1.285 2.643 3.649
0 0 0
241 504 6.39
1.367 2.71  3.596
1.624 3.34 4.78

6.5.5 Optimized results:
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Figures 6.9 -6.12 show graphs ahethodsl and2 (called as m1 & m2) for the SFC and CGD

techniques. It is seen from figure 6.12 that the criteria optimized like distribution quality for

implementation is indeed lesser thaethod2 while methodlhas better loadbalance. Figures 6.9

shows the intralevel and interlevel communication while figures 6.10 show memory copies in each

case. For the first set of plotsiethod2has better results, while in the second set of plots, the

results are comparable.. Figures 6.11 shows the datamovement anddihmd2again has better

performance in time,but datamovement is comparable for the two.
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Chapter 7

Conclusions and Future Work

7.1 Summary and Conclusions

This thesis presented the evaluation and optimization of a suite of six dynamic partitioning and
load-balancing techniques for distributed adaptive grid hierarchies that underlie parallel adaptive
mesh-refinement (AMR) techniques for the solution of partial-differential equations. It was based
upon a performance characterization of these six techniques. The evaluation consisted of the design
of the AMR simulator that was used to evaluate the six distribution and load-balancing schemes.
The simulator took in as its input, the Output parameters file that was created by the partitioning
module as a result of the partitioning scheme. The partitioner accepted as its input the trace of grid
adaptations from two 3D AMR applications.

This is part of an ongoing project for developing policy driven “smart” tools for automated
distribution/load balancing of the problems in heterogeneous distributed environments. The
characterization consisted of 3 metrics: Interaction overheads (inter- and intra- level
communications and copies), Distribution Quality (load-balance, number of grids) and Data
Movement.

The presented results show that space-filling curve, iterative tree balancing, and weighted
distribution are clearly superior for all metrics. The reason is that these techniques use application
information to determine the partitioning rather than pure heuristic. The weighted scheme in
particular is tuned to these classes of applications and tends to do better than the other schemes.

We also see that the optimization of the partition routine resulted in a much greater
performance with respect to time, intralevel interaction overheads, interlevel memory copies, better
distribution quality and data movement. The reason for this is that, the new partition routine checks

for the availability of a bounding box, given a size criteria based on the imbalance produced. This
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built in logic avoids the recursive partitioning of bounding boxes over and over again. Hence we
see a better distribution quality in terms of number of boxes, and lesser data movement.

The optimization of the data-structure for composite grid distribution technique (also called
SFC technigue) also resulted in a greater performance with respect to time, intralevel interaction
overheads, interlevel memory copies, better distribution quality and data movement. The reason for
this is that the representation of the grid hierarchy in the form of a parent-child relationship used a
general tree data structure as opposed to a linked list. Hence it had lesser cost involve with respect
to time and since it used the optimized partitioning scheme, it had greater performance with respect
to intralevel interaction overheads, interlevel memory copies, better distribution quality and data
movement
7.2 Future Work

Current work looks at completing this characterization and encoding the results into a policy
rule base that can drive an automated partitioning and load-balancing tool. This introduces
challenges in extracting the application information to determine the partitioning, design of data
structures as well as partition routines that allow for as much improvement in performance as
possible. The thrust of the future work would be in two directions: a). design and implementation
of techniques that are based more on garnering information from the application rather than being
more heuristic based This would be based towards the completion of the automated partitioning
and load-balancing tool.

b) an optimized partition routine for the composite grid distribution technique in particular. .
What this means is that the partition routine could be implemented in a way such that it could
preserve locality as much as possible in order to further minimize communication overheads. This
would be based on the optimization of this specific scheme within the automated partitioning and

load-balancing tool.
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Appendix A

Algorithm 4.1 : To determine the participation number of each node

int participation_number(TREE_PTR)

{
if(TREE_PTR!= NULL)
{
if(leftchild of TREE_PTR ==NLL)
{
increment participation number
}
else
{
participation number = participation number of children( leftchild)
}
}
return TREE_PTR
}
int participation_number_of_children(TREE_PTR)
{

pno= participation_number(ptr2)
while(right_child of TREE_PTR !=BLL)

{

pno += participation_number(TREE_PTR (rightchild))
}
return pno

Algorithm 4.2 : To place the sub-nodes into their relevant units
BboxList& path_left(TREE_PTR , node_no)

{
if(TREE_PTR != NULL)
{
if(leftchild of ==NULL)
{
pnum of leftchild = 1
add(celList[path_no], TREE_PTR ->bb)
increment node_no
}
else left_child of TREE_PTR !=NLL)
{
add(celList[path_no], TREE_PTR ->bb)
increment node_no
path_right(TREE_PTR ->leftchild, node_no)
}
}

return *celList
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Il
void path_right (TREE_PTR, node_no)
{
left_path(TREE_PTR,node_no);
while(right_child of TREE_PTR !=BLL)
{
increment path_no
pno += path_left(rightchild of TREE_PTR, cellist)
for(x=1,bb2=celList[path_no-1].first, x<node_no;x++,bb2=celList[path_no-
1].next())
{
add(celList[path_no],*bb2);
}
left_path(rightchild of TREE_PTR,node_no)
ptr2= rightchild of TREE_PTR
}

Algorithms: 4.3 The detailed algorithm for the interface to the actual partitioning method is given
below:

initial partition_scheme (bounding box list, processor, timestep, level, minblock, maxblock )

Note: the Bounding box list is the list at each level of the hierarchy for each timestep
/I1. Check for Maxblock size
If box_work > Maxblock {

7

+ use the method partition_exact to break the box into half

7

+ insert the new boxes in the Bounding Box List (BBL) at that place

+ Remove the bounding box that was partitioned

/12. Calculate the average work of the BBL

for(each box in the BBL)

{
calculate work
total work += work

}

average work = total work/num of processors

//3.Partition the work among the processors

for(each box in theBBL do)

{

+« find the box_work , and add it to processor work

« if (processor work < average work)
assign this bounding box to the current processor
process the next box

else if(processor work = average work)
we are done with this processor, increment the processor count
set the processor work to zero
else if ( processor work > average work )
{

find out the extra work and partition that current box under consideration by using
partition_exact method to break thebox into 2 smaller boxes. We get 2 boxes

7

% one the size of extra work
% one the size of (original size - extra work)
put them in the BBL, and remove the partitioned box

add first new box (original size - extra work) to processor work.
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This is the amount of work for the first processor
} !/ end if
recalculate the average
+ Repeat the process for the next processor, continue till all processors and all the boxes in
the BBL are processed.

} //lend for

Algorithm 4.4: The detailed algorithm for the interface to the optimized partitioning method is

given below: Please note that the optimization done is in bold text.

optimized partition_scheme (bounding box list, processor, timestep, level, minblock, maxblock )

Notel: the Bounding box list is the list at each level of the hierarchy for each timestep
Note2:The total work is already calculated at the time of reading in the boxes.
1. Average work = total work/number of processors
/12. Check for Maxblock size
« If box_work > Maxblock {
6 divide the box by Maxblock size to obtain number of boxes to break it into
7 use the method partition_all to break the box into the calculated number of boxes (from
above)
8 insert the new boxes in the Bounding Box List (BBL) at that place
9 remove the box that was partitioned
/13. Now patrtition the work among the processors
for(each box in theBBL do)
{
10 find the box_work , and add it to processor work until it exceeds the average work.
11 if (processor work < average work)
assign this bounding box to the current processor
process the next box
else if(processor work = average work)
assign this box to the current processor
we are done with this processor, increment the processor count
set the processor work to zero
else if ( processor work > average work )
{
delete the work of this bbox from processor work
extra work = average work — processor work
if (average work is less than Minblock and extra work is < MinBlock)

{
}

find out the extra work and partition that current box under consideration by using
partition_exact method to break the box into 2 smaller boxes. We get 2 boxes
11.5.20ne the size of extra work
11.5.30ne the size of (original size - extra work)
11.6put them in the BBL, and remove the partitioned box
11.7add first new box (original size - extra work) to processor work.
11.8This is the amount of work for the first processor
Else if( only extra work is < MinBlock)

{

make average work = Minblock size

recalculate average
move on to the next processor
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}

else //lextra work is > MinBlock

{

parse the bblist starting for the current bbox and find a box either equal to or
within a 10% tolerance of extra work.

If (found)

assign to current processor
recalculate average
go back to the original bbox and start the process over again

}
else
{
go back to the original bbox and start the process over again
break the bbox
}
}
} !/ end if

/IRepeat the process for the next processor, continue till all processors and all the boxes in the
BBL are processed.
} //lend for

Algorith 4.5 : Measurement of Intra-level communication
At each timestep
for(level =0 to level=max_levels)
for (proc=0 to proc=num_proc-1)
/ffind out the intersection of each bounding box (bb) at this timestep, for this
processor and level, with all the bbs that belong to all other processors at the same
level. If there is an intersection between two such bbs, then there indeed is intralevel
communication else there is not intersection for this bb.
(for each bb in the bblist[timestep][processor][level]] and each number of
interactions in all the directions)
find the interaction bb, which is given by the Ibbox routine of
DAGHGhostinteraction
Intersect this with all the bbs for all the processors at the same level as above
to obtain the intersection bb.
if (intersection bb is = null)

{
} )

intraclevel comunication += intersection_bb.size()
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