
ACCORD: A PROGRAMMING SYSTEM FOR AUTONOMIC
SELF-MANAGING APPLICATIONS

BY HUA LIU

A Dissertation submitted to the

Graduate School—New Brunswick

Rutgers, The State University of New Jersey

in partial fulfillment of the requirements

for the degree of

Doctor of Philosophy

Graduate Program in Electrical and Computer Engineering

Written under the direction of

Professor Manish Parashar

and approved by

New Brunswick, New Jersey

October, 2005

ABSTRACT OF THE DISSERTATION

Accord: A Programming System for Autonomic Self-managing

Applications

by Hua Liu

Dissertation Director: Professor Manish Parashar

The increasing complexity, heterogeneity, and dynamism of emerging pervasive Grid environ-

ments and applications result in significant development and management challenges. This is

primarily because application requirements and runtime behaviors depend on the runtime state

and execution context and are typically not known a priori. Recently, autonomic computing

has proposed solutions to address these challenges that draw inspiration from biological sys-

tem. The goal of autonomic computing is to develop applications and systems that can manage

themselves based on high level guidance from humans.

In this thesis, we develop the Accord programming system for autonomic self-managing

applications. Accord builds on existing programming systems and extends them to (1) enable

the definition of autonomic elements that encapsulates functional and non-functional specifica-

tions, rules, and mechanisms for self-management, (2) enable the formulation of self-managing

applications as dynamic compositions of autonomic elements, and (3) provide a runtime in-

frastructure for the correct and efficient runtime execution of rules to enforce self-managing

behaviors in response to changing requirements and execution context.

Three prototypes of the Accord programming system have been implemented and cus-

tomized to support different classes of applications. The first prototype enables the rule-based

self-management of objects and object-based parallel/distributed applications. The second

prototype extends the Common Component Architecture Ccaffeine framework to enable self-

managing component-based high-performance parallel/distributed scientific applications. This

ii

prototype supports both function and performance driven intra- and inter-component adapta-

tions, and enables dynamic composition and runtime component replacement. The third pro-

totype supports self-managing service-based applications and enables runtime adaptation of

service and service interactions, and decentralized and dynamic service composition. The op-

eration of these prototypes is illustrated using a suite of scientific applications. Experimental

evaluations of the prototypes are presented.

iii

Acknowledgements

I would like to gratefully and sincerely acknowledge the supervision of Dr. Manish Parashar

during my years as a graduate student. I would also like to thank Dr. Jaideep Ray for his

guidance and help during my summer intern in Sandia National Labs in 2004.

I am very grateful to all my friends from Rutgers, Beijing University of Posts & Telecoms,

Nortel networks (China), Bell-labs (China) for the warm smiles and encouragement.

Finally, I am forever indebted to my parents Shouxian Liu and Xiurong Feng, and my

husband Xiaoxuan Li for their understanding, support, endless patience, and encouragement.

Thanks for always being there for me.

iv

Table of Contents

Abstract . ii

Acknowledgements . iv

List of Tables . ix

List of Figures . x

1. Introduction . 1

1.1. Motivation . 1

1.2. Problem Description . 2

1.3. Overview of Accord Programming System . 3

1.4. Outline . 6

2. Background and Related Work . 8

2.1. Programming Systems for Parallel and Distributed Computing 8

2.2. Adaptation Technologies and Related Work 12

2.2.1. Specifying Adaptation Behaviors . 12

2.2.2. Enforcing Adaptation Behaviors . 13

Enforcing Adaptation Without Source Code Modification 13

Enforcing Adaptation Through Source Code Modification 14

2.2.3. Conflict Detection and Resolution During Adaptation Behavior Execution 15

2.3. Accord Programming System . 15

3. Accord: Supporting the Development and Execution of Autonomic Self-managing

Applications . 17

3.1. Defining Application Context . 18

3.2. Autonomic Element . 18

3.2.1. Port Definition . 19

v

3.2.2. Element Manager . 20

3.3. The Accord Runtime Infrastructure . 21

3.3.1. Composition Manager . 22

3.3.2. Element Manager . 22

3.3.3. The Rule Enforcement Engine . 23

Key Concepts and Notation . 23

Rule Execution Model . 24

3.4. Autonomic Adaptation Behaviors in Accord 26

3.4.1. Adapting Element Behaviors . 26

3.4.2. Adapting Element Composition . 27

Element Composition . 27

Dynamic Composition . 28

3.5. Autonomic Forest Fire Application: An Illustrative Example 30

3.5.1. Defining Autonomic Element . 31

3.5.2. Enabling Adaptation Behaviors . 32

AdaptingDSMBehaviors . 32

Adding A New Element . 32

Changing Interaction Relationships 32

3.6. Summary . 33

4. DIOS++: Autonomic Object-based Accord . 34

4.1. Autonomic Monitoring and Control with DIOS++ 35

4.2. DISCOVER Collaboratory . 36

4.3. DIOS++ Architecture . 38

4.3.1. Autonomic Object . 38

Control Interface . 39

Access Interface . 39

Rule Interface . 40

Rule Agent . 40

vi

4.3.2. Control Network . 41

Initialization . 42

Interaction and Rule Operation . 42

4.4. The Autonomic Oil Reservoir Application: An Illustrative Example 45

4.5. Experimental Evaluation . 47

4.6. Summary and Conclusion . 48

5. Accord-CCA: Autonomic Component-based Accord 50

5.1. Component-Based Distributed/Parallel Scientific Applications 50

5.1.1. The Common Component Architecture (CCA) 50

5.1.2. Behavior and Performance of Component-based Scientific Applications 51

5.2. Self-management of Component-based Scientific Applications 52

5.2.1. Defining Managed Components . 53

5.2.2. Enabling Runtime Self-management 54

Component Manager . 56

Composition Manager . 57

Rule Execution Model . 57

5.2.3. Supporting Performance-driven Self-management 58

5.3. Case Studies . 59

5.3.1. A Self-Managing Hydrodynamics Shock Simulation 59

Scenario 1: Self-optimization via component replacement 61

Scenario 2: Self-optimization via component adaptation 63

Scenario 3: Self-healing via component replacement 64

5.3.2. A Self-ManagingCH4 Ignition Simulation 65

5.3.3. Experimental Evaluation . 65

5.4. Summary and Conclusion . 67

6. Accord-WS: Autonomic Service-based Accord 68

6.1. Autonomic Services . 68

6.2. The Runtime Infrastructure . 70

vii

6.2.1. Workflow Execution . 70

6.2.2. Dynamic Composition . 72

6.3. An Illustrative Application: The Autonomic Data Streaming Application 73

6.3.1. Service Adaptation . 74

6.3.2. Application Adaptation . 76

6.4. Summary . 77

7. Summary, Conclusion, and Future Work . 82

7.1. Summary . 82

7.2. Conclusion . 83

7.3. Directions For Future Work . 84

References. 86

Curriculum Vitae . 91

viii

List of Tables

2.1. Capabilities and limitations of current programming systems with respect to

the programming requirements of Grid environments. 11

ix

List of Figures

3.1. An autonomic element. 18

3.2. Accord runtime infrastructure for a sample application composed of three ele-

ments. 22

3.3. The three-phase rule execution model. 24

3.4. Examples of the port definition. 31

3.5. A behavior rule forDSM. 32

3.6. Add a new elementFFM. 32

3.7. Change the interaction relationship betweenCRMandDSM. 33

4.1. DISCOVER collaboratory architecture. 37

4.2. An autonomic object. 38

4.3. A sample rule forRandomList. 40

4.4. The DIOS++ control network. 41

4.5. Rule1: an object rule involving only one objectRandomList. Rule2: an appli-

cation rule involving two objectsRandomListandSortSelector. 43

4.6. (a): Deployment of an object rule. (b): Deployment of an application rule. . . . 44

4.7. Rules with conflicts. 45

4.8. The constraint in VFSA that maintains the probability value between 0 and 1. . 46

4.9. A sample application rule involving VFSA and IPARS. 46

4.10. DIOS++ experimental evaluations. 47

5.1. TheRulePortspecification. 53

5.2. A self-managing application composed of 5 components. The solid lines denote

computational port connections between components, and the dotted lines are

port connections constructing the management framework. 55

x

5.3. Distributed self-managing application shown in Figure 5.2 executed on three

nodes. The solid lines across nodes denote the interactions among manager

instances. The dotted lines are port connections constructing the management

framework within one node. 55

5.4. “Wiring” diagram of the shock-hydrodynamics simulation. A second-order

Runge-Kutta (RK2) integrator drivesInviscidFlux component – transforma-

tion into left and right (primitive) states is done byStatesand the Riemann

problem solved byGodunovFlux. Sundry other components for determining

characteristics’ speeds (u + a, u - a, u), cell-centered interpolations etc. com-

plete the code. 61

5.5. The average execution times forEFMFlux andGodunovFlux as functions of

the array size (machine effects have be averaged out). 62

5.6. Replacement ofGodunovFlux with EFMFlux to decrease cache misses. . . . 63

5.7. Dynamically switch algorithms inAMRMesh. 64

5.8. Comparison of rule based and non rule based execution ofCH4 ignition. 65

5.9. Experimental evaluation of Ccaffeine-based Accord prototype. 66

6.1. An autonomic service. 69

6.2. Message processing in a coordination agent. 69

6.3. The runtime framework. The dashed lines represent the interactions among

managers. The solid lines represent the interactions among WS-Resources. . . 70

6.4. The itinerary workflow specified using (a) BPEL4WS and (b) Accord interac-

tion rules. 72

6.5. A new serviceParkService is added to the itinerary workflow. The dashed

lines denote the new interaction relationships created due to the addition of the

new service. 73

6.6. The autonomic data streaming application based on Accord-WS. 73

6.7. The control port ofBMS. 78

6.8. The behavior rule forBMS. 79

xi

6.9. (a) Self-optimization behaviors of the Buffer Management Service - BTS switches

between uniform blocking and aggregate blocking algorithms based on appli-

cation data generation rates and network transfer rates and the nature of data

generated. (b) Percentage overhead on simulation execution simulation with

and without autonomic management. 79

6.10. The interaction rule for ADSS. 80

6.11. Effect of switching from the DSS at PPPL to the DSS ORNL in response to

network congestion and/or failure. 81

xii

1

Chapter 1

Introduction

1.1 Motivation

The emergence of pervasive wide-area distributed computing environments, such as pervasive

information systems and computational Grids, has enabled a new generation of applications

that are based on seamless access, aggregation and interaction. For example, it is possible

to conceive a new generation of scientific and engineering simulations of complex physical

phenomena that symbiotically and opportunistically combine computations, experiments, ob-

servations, and real-time data, and can provide important insights into complex systems such

as interacting black holes and neutron stars, formations of galaxies, and subsurface flows in oil

reservoirs and aquifers etc. Other examples include pervasive applications that leverage the per-

vasive information Grid to continuously manage, adapt, and optimize our living context (e.g.,

your clock estimates drive time to your next appointment based on current traffice/weather and

warns you appropriately), crisis management applications that use pervasive conventional and

unconventional information for crisis prevention and response, medical applications that use

in-vivo and in-vitro sensors and actuators for patient management, and business applications

that use anytime-anywhere information access to optimize profits.

However, the underlying pervasive distributed computing environment is inherently large,

complex, heterogeneous and dynamic, globally aggregating large numbers of independent com-

puting and communication resources, data stores and sensor networks. Furthermore, these

emerging applications are similarly complex and highly dynamic in their behaviors and inter-

actions. Together, these challenges result in application development, configuration and man-

agement complexities that break current paradigms based on passive components and static

compositions. Clearly, there is a need for a fundamental change in how these applications are

developed, executed and managed.

2

1.2 Problem Description

The nature and scale of pervasive information and computational Grid environments and appli-

cations introduce new levels of development and management challenges. These include:

• Heterogeneity: The environments aggregate large numbers of independent and geograph-

ically distributed computational and information resources, including supercomputers,

workstation-clusters, network elements, data-storages, sensors, services, and networks.

Similarly, applications typically combine multiple independent and distributed software

elements such as components, services, real-time data, experiments and data sources.

• Dynamism: The computation, communication and information environment is continu-

ously changing during the lifetime of an application. This includes the availability and

state of resources, services and data. Applications similarly exhibit dynamism where

the runtime behaviors, organizations and interactions of software elements may change

during execution.

• Uncertainty: Uncertainty in these environments is caused by multiple factors, including:

(1) dynamism, which introduces unpredictable and changing behaviors that can only be

detected and resolved at runtime, (2) failures, which have an increasing probability and

frequency of occurrence as the scale and complexity of systems/applications increase,

and (3) incomplete knowledge, which is typical in large decentralized and asynchronous

distributed environments.

The characteristics listed above impose requirements on the programming systems for Grid

applications. The programming systems must be able to specify applications that can detect

and dynamically respond during execution to changes in both, the state of execution environ-

ment and the state and requirements of the application. This requirement suggests that: (1)

Grid applications should be composed from discrete, self-managing elements which incorpo-

rate separate specifications for all of functional, non-functional and interaction behaviors. (2)

The specifications of computational (functional) behaviors, interaction and coordination behav-

iors and non-functional behaviors (e.g. performance, fault detection and recovery, etc.) should

be separated so that their combinations are compose-able. (3) The interface definitions of these

3

elements should be separated from their implementations to enable the interactions between

heterogeneous elements and the dynamic selection of elements. Given these features of a pro-

gramming system, a Grid application requiring a given set of computational behaviors may be

integrated with different interaction models or languages (and vice versa) and different specifi-

cations for non-functional behaviors such as fault recovery and QoS to address the dynamism

and heterogeneity of application requirements and the environments.

However, current existing programming systems do not meet the requirements outlined

above. Many current communication frameworks for parallel and distributed computing typ-

ically make very strong assumptions about the behavior of the entities, their interactions, and

the underlying system. Distributed object systems provide support for parallel/distributed ap-

plications. However, the interacting objects and interaction are tightly coupled. Further, they

assumes a priori (compile-time) knowledge of the syntax and semantics of interfaces as well

as the interactions required by the applications. The dominant component-based and service-

based programming systems have similar limitations. The orchestration and choreography of

components/services must be defined a priori and the support for runtime adaptation is limited.

However, they provide core mechanisms that can be extended to address the requirements of

Grid applications and environments.

1.3 Overview of Accord Programming System

The challenges and requirements outlined above and the limitations of current programming

systems have led researchers to investigate alternate approaches that enable the development

of applications that are capable of managing themselves using high-level rules with minimal

human intervention.

This research addresses the Accord programming system that extends existing program-

ming systems to support the development of self-managing applications in distributed envi-

ronments. The system builds on the separation of the composition aspects (e.g., organization,

interaction and coordination) of elements (object, components, and services) from their com-

putational behaviors that underlies the object, component, and service based paradigms, and

extends it to enable the computational behaviors of elements as well as their organizations,

4

interactions and coordination to be managed at runtime using high-level rules.

The Accord programming system (1) defines autonomic elements that encapsulates func-

tional and non-functional specifications, rules, and mechanisms for self-management, (2) en-

ables the formulation of self-managing applications as dynamic compositions of autonomic

elements, and (3) provides a runtime infrastructure for correct and efficient rule execution to

enforce self-management behaviors in response to changing requirements and execution con-

text. As a result, Accord supports two levels of adaptations: (1) adaptation at the element level

to monitor and control behaviors of individual elements according to their internal state and

execution context, (2) adaptation at the application level to change application topologies, com-

munication paradigms and coordination models used among elements to respond to changes in

the environments and user requirements.

Three prototypes of Accord that separately extend a distributed object programming system,

a component based system, and a service based system are discussed in this thesis. The design,

implementation, operation, and evaluation of these prototypes are presented.

• An object based prototype of Accord, named DIOS++, has been implemented and eval-

uated in the context of distributed scientific/engineering simulations as part of the DIS-

COVER project. This prototype implements autonomic elements as autonomic objects

by associating objects with sensors, actuators and rule agents, and providing a runtime

hierarchical infrastructure consisting of rule agents and rule engines for the rule-based

autonomic monitoring and control of distributed and parallel applications.

DIOS++ is used to support the autonomic IPARS reservoir simulation that optimizes

the placement and operation of oil wells for maximal overall revenue. DIOS++ enables

direct modification of object parameters and collaborative control of multiple objects to,

for example, dynamically select objects’ internal algorithms based on their internal state

or execution context.

• A component based prototype of Accord, named Accord-CCA, has been developed based

on the DoE Common Component Architecture (CCA) and the Ccaffeine framework in

the context of component-based high-performance scientific applications. This prototype

extends CCA components to autonomic components by associating them with control

5

and operation ports and component managers, and provides a runtime infrastructure of

component managers and composition managers for rule-based component adaptation

and dynamic replacement of components.

Accord-CCA is used to enable (1) the self-managing shock hydrodynamics simulation

that simulates the interaction of a hydrodynamic shock with a density-stratified interface,

and (2) theCH4 ignition simulation that simulates a set of chemical reactions appearing

and disappearing when the fuel and oxidizer react and give rise to the various interme-

diate chemical species. Accord-CCA enables self-optimization and self-healing of the

shock simulation, for example, by dynamically replacing components to decrease the

cache misses or maintain stability for stronger shocks and larger density ratios. It also

enables self-optimization of theCH4 ignition simulation by dynamically selecting ap-

propriate algorithms at different reaction temperatures.

• A service based prototype of Accord, named Accord-WS, is designed based on the WS-

Resource specifications, the Web service specifications, and the Axis framework. Au-

tonomic elements are implemented as autonomic service by extending traditional WS-

Resources with service managers for rule-based management of runtime behaviors and

interactions with other autonomic services, and coordination agents for programmable

communications. A distributed runtime infrastructure is investigated to enable decentral-

ized and dynamic compositions of autonomic services.

An autonomic data streaming transferring application is enabled by Accord-WS to stream

realtime data from a live simulation support remote runtime analysis and visualization

while minimizing overheads on the simulation, adapting to network conditions, and

eliminating loss of data. An example of service adaptation supported by Accord-WS

is dynamically selecting algorithms within the buffer management service based on the

current state of the simulation and network condition. An example of application adap-

tation supported by Accord-WS is dynamically switching to a local storage from remote

data streaming in the cases of extreme network congestion or network failures.

Key contributions of the research include:

• Analysis of the programming requirements for autonomic self-managing applications in

6

heterogeneous and dynamic environments.

• Design of a programming system that addresses these requirements and enables the de-

velopment of autonomic self-managing applications.

• Design, implementation, operation, and evaluation of three prototypes that extend domi-

nant programming systems and address different classes of applications.

• Autonomic self-managing scientific applications that are capable of managing and op-

timizing their execution based on application and system state, user requirements, and

execution context.

1.4 Outline

The rest of this thesis is organized as follows. Chapter 2 provides an overview of existing pro-

gramming systems and discusses their capabilities and limitations with respect to the program-

ming requirements. The chapter also discusses existing adaptation technologies and related

efforts.

Chapter 3 describes the Accord programming system, including the definition of autonomic

elements and rules, and the runtime infrastructure that executes rules to enable adaptation be-

haviors. An autonomic forest fire simulation is used to illustrate the operations of Accord

programming system.

Chapter 4 presents an object based prototype that enables distributed scientific/engineering

simulations. An experimental evaluation of the system is also presented. This prototype enables

interactive and rule-based management of individual objects and applications at runtime. The

autonomic IPARS reservoir simulation is used to illustrate the design, implementation, and

operations of the object based Accord system.

Chapter 5 presents a component based prototype built on the DoE Common Component Ar-

chitecture (CCA) Ccaffeine framework. This implementation supports autonomic component-

based scientific applications. It supports both function and performance based self-management,

enables dynamic composition through runtime component replacement, and provides consis-

tent and efficient rule execution for intra- and inter-component management behaviors. The

7

design, implementation, and evaluation of the prototype is presented. Self-managing shock

hydrodynamics simulation andCH4 ignition simulation are presented as case studies.

Chapter 6 presents a service based prototype based on Web Services and WS-Resource

specifications and the Axis framework. It supports self-managing service-based applications by

enabling dynamic service composition. An autonomic data streaming transferring application

is used to illustrate the adaptation operations enabled by the service based Accord.

Chapter 7 concludes the thesis with a summary of the research and lessons learned, and

outlines the directions for future work.

8

Chapter 2

Background and Related Work

The overall goal of this research is to investigate a programming system to enable autonomic

self-managing applications that address the challenges of pervasive and Grid environments.

This chapter first investigates the limitations of current existing programming systems for par-

allel and distributed computing with respect to the programming requirements outlined in the

previous chapter. It further investigates adaptation technologies that can be integrated with

these programming systems. Finally, it describes the Accord programming system that extends

the existing programming systems with adaptation technologies to support the development

and execution of autonomic self-managing applications.

2.1 Programming Systems for Parallel and Distributed Computing

There has been a significant body of research on programming systems for parallel and dis-

tributed computing over the last few decades. Many currentcommunication frameworks for

distributed and parallel computing, for example message passing models and shared mem-

ory models, support interactions between distributed entities developed using conventional pro-

gramming models. These systems typically make very strong assumptions about the element

behaviors, element interactions, and the underlying system, especially about their static na-

ture and reliability, which limit their applicabilities in highly dynamic and uncertain computing

environments.

Researchers have also investigated the enhancement and application of traditional commu-

nication paradigms to pervasive Grid environments. For example, GridRPC [49] extends stan-

dard RPC with asynchronous coarse-grained parallel tasking, hiding the dynamics, insecurity,

and instability of the Grid from the programmers. MPICH-G2 [34], a Grid-enabled implemen-

tation of the MPI [6], allows a user to run MPI programs across multiple computers, possibly

across different sites, using the same abstractions that can be used on a parallel computer.

Distributed object systems: Unlike the systems described above that essentially address

9

only communication aspects, distributed object systems provide more support for parallel and

distributed applications, including lifecycle management, location and discovery, interaction

and synchronization, security, failure and reliability [17]. CORBA [1], one of the dominant

distributed object systems, enables secure interactions between distributed and heterogeneous

objects using interfaces described by a language-neutral interface definition language, and

through a middleware consisting of object resource brokers and interoperability protocols (e.g.,

GIOP, IIOP). The interactions are based on remote procedure calls, method invocations and

event notification. CORBA primarily addresses distribution and heterogeneity, and also pro-

vides limited support for dynamism via dynamic invocation (DSI/DII) and late binding, which

enables customization at deployment time. However, interacting objects and interaction are

tightly coupled. Further, the model assumes a priori (compile-time) knowledge of the syntax

and semantics of interfaces and the interactions required by the applications.

Although CORBA does not directly enable dynamic adaptation of object behaviors or their

interactions, it does have the potential to support adaptive runtime behaviors by providing

portable request interceptors that “intercept the flow of a request/reply sequence through the

ORB at specific points so that services can query the request information and manipulate the

service contexts that are propagated between clients and servers” [1]. Note that these adapta-

tion behaviors are performed by manipulating and redirecting messages using interceptors, but

the direct adaptation of individual objects is not supported.

Component-based programming systems: Component models address increasing soft-

ware complexity and changing requirements by enabling the construction of systems as as-

semblies of components. Components are reusable units of composition, deployment, execu-

tion, and lifecycle management [67], and are completely specified by their interfaces. Current

component frameworks include CORBA Component Model (CCM) [1], JavaBeans [67] and

Common Component Architecture(CCA) [14].

CCM [1] extends the CORBA distributed object model and similarly supports distribution,

heterogeneity and security. It also supports dynamic instantiation and runtime customization

of components. However, CCM inherits some of the limitations of CORBA including the re-

quirement for prior knowledge about interfaces and interactions. JavaBeans [67] is a Java only

component model that addresses similar issues. It also supports runtime bean customization.

10

The Common Component Architecture (CCA) [14] defines a component model especially

for scientific applications. The model primarily addresses the heterogeneity through separating

interface from implementation. One of the CCA implementation, the Ccaffeine framework,

targets high-performance parallel applications and uses functional calls for inter-component in-

teractions within a Single Component Multiple Data (SCMD) model. While it does not support

runtime customization of components, it does allow components to be dynamically replaced at

runtime. It does not address failures or security issues and assumes all components are trusted.

Note that component-based systems also provide some core mechanisms, such as intercep-

tors in CORBA, the BuilderService in CCA, and the container mechanism in JavaBeans, which

can be extended to support dynamic runtime adaptation. However the communication pattern

between components and their coordination are statically defined.

Service-based systems: Service based models, such as the Web service and Grid ser-

vice [25, 46, 50] models, have been proposed in recent years to address the requirements of

loosely coupled wide-area distributed environments. These models require very little or no

prior knowledge of the services before invocation. The decoupling between application en-

tities provided by these models allows applications to be constructed in a more flexible and

extensible way. However, the runtime behaviors of services and applications themselves are

still rigid and they implicitly assume that context does not change during the lifetime of ap-

plications, i.e., services can only be customized during their instantiation. Further, services

in the Web services model are assumed to be stateless. While the Grid service model allows

stateful services, it makes strong assumptions about the underlying system, for example, that it

must support reliable invocation, which is not possible in the presence of failures and the lack

of global knowledge. Current orchestration and choreography mechanism for Web and Grid

services are static and must be defined a priori.

A huge body of research is underway to facilitate the development and management of

service oriented applications. These research projects can be categorized into two types of ap-

proaches. The first approach looks at composite services mainly from the runtime perspective

as functions, data and control flows [66] described in, for example BPEL4WS [15]. Workflows

can be composed at runtime based on the syntactic, semantic and operational matches and end-

to-end QoS analysis [12, 24], or based on the precondition and post-condition specification for

11

available services, as well as the pre-condition and post-condition specification for the compos-

ite service to be constructed [55]. Workflow execution involves integrating services together

and executing them as specified in the workflow. This involves, for example, dynamically

configuring the method calls and invoking the Web services [43], or selecting the appropriate

runtime representation for each service specification in the application [32]. However, most of

these workflow execution environments do not emphasize runtime adaptation and optimization

of the workflow, which is essential to address changing application and system requirements,

state and context. The second approach, ontology based semantic composition using OWL [9],

is taken by the semantic web community. OWL supports service reasoning to facilitate service

discovery and usage. However, this approach has an imprecise underlying conceptual model

leading to multiple modeling possibilities and parametric polymorphism [38], which signifi-

cantly increases the complexity of service composition.

The programming systems discussed above are summarized in Table 2.1.

Programming Sys-
tems

Issues addressed Limitations

Communication
frameworks (e.g.,
RPC, RMI, MPI,
PVM)

Heterogeneity, distribution, lim-
ited dynamism

No context-awareness, assume
deterministic, static, secure, and
reliable environment

Distributed object
systems (e.g.,
CORBA)

Heterogeneity (platform and
languageindependence), distri-
bution, limited dynamism

No context-awareness, assume
deterministic, static, secure, and
reliable environment

Component based
systems (e.g.,
CCA, CCM,
JavaBeans)

Heterogeneity, distribution, lim-
ited dynamism

No context-awareness, assume
deterministic, static, secure, and
reliable environment

Service oriented
systems (e.g., Web
service architec-
ture, WSRF)

Heterogeneity, distribution
(maybe across internet), limited
dynamism

No context-awareness, assume
static and reliable environment

Table 2.1: Capabilities and limitations of current programming systems with respect to the
programming requirements of Grid environments.

12

2.2 Adaptation Technologies and Related Work

Adaptation technologies can be integrated with existing programming systems to enable auto-

nomic self-managed applications. To enable self-managed/adaptive applications, the following

issues must be addressed: (1) how to specify adaptation behaviors, (2) how to efficiently en-

force adaptation behaviors, and (3) how to guarantee the correctness of adaptation behaviors.

Adaptation behaviors are typically application-specific. For example, the selection of in-

ternal variables or functions within individual components and the usage of communication

paradigms across multiple components, are determined by the application logic and its execu-

tion context. However, the approaches and mechanisms that support runtime self-management

and adaptation are general and independent of specific applications. These approaches and

mechanisms are discussed in the following sections.

2.2.1 Specifying Adaptation Behaviors

Adaptation behaviors can be either statically or dynamically specified. Traditional program-

ming paradigms that use conditional branches to enable different runtime workflows can be

viewed as an example ofstatically specified adaptations. Some systems extend existing pro-

gramming languages to provide templates that enable adaptive scheduling for different applica-

tion types [19]. Others provide adaptation classes to enrich Java classes with adaptive behaviors

and a dedicated compiler that automatically generates Java code and implements these adaptive

features [21]. Systems can also use scripts or languages to describe adaptation behaviors. For

example, Beazley and Lomdahl [18] used a Simplified Wrapper Interface Generator (SWIG)

that wraps existing source code with scripting language interfaces to enable external monitor-

ing and steering. Systems such as VASE [47] also use this approach. The script is executed

when the application encounters pre-defined breakpoints and results in adaptation behaviors.

Quo [29] specifies domain-specific adaptation behaviors using a separate language and inte-

grates them with applications as an aspect [37]. A key drawback of the above approaches is

that all the possible adaptation must be known a priori and coded into the applications. If new

adaptation behaviors are required or if application requirements change, the application code

has to be modified and the application possibly re-compiled.

13

Some systems enabledynamically specified adaptationby allowing adaptation, in the

form of code, scripts or rules, to be added, removed and modified at runtime. Many existing

projects in this category directly utilize and extend the capabilities of existing programming

frameworks to enable dynamic adaptation. For example, ACT [62] extends CORBA by using

a rule-based interceptor to dynamically weave new adaptive code into the ORB as applications

execute. Other projects investigate specific coordination languages to describe and adapt the

interactions between elements. For example, ALua [70] uses the Lua language to perform

interaction and adaptations in an interpretive manner, and supports the execution of dynamically

defined adaptation specifications in an even-driven manner.

2.2.2 Enforcing Adaptation Behaviors

An adaptation specification needs to be integrated with applications so that can monitor and

steer the application execution according to changing requirements and execution contexts.

This section first introduces adaptation enforcement mechanisms for legacy applications where

application source code is unaccessible. Adaptability using this approach is limited. The sec-

tion then discusses adaptation enforcement requiring modification of application source code.

Enforcing Adaptation Without Source Code Modification

Systems such as KX (Kinesthetics eXtreme) [71] and Pathfinder [39] usemobile agentsto

integrate adaptation code with applications. Mobile agents provide power and flexibility in

the specification and deployment of monitoring and steering commands [39]. For example,

they are capable of executing orthogonally to the main computation of the target applications.

Besides, mobile agents can be deployed to the same memory space where application modules

reside, which reduces the latency when reacting to local conditions and provides corresponding

actions. Further, mobile agents can be customized to exploit application-specific information

and can efficiently perform adaptation behaviors.

However, supporting the execution of mobile agents, virtual machines or milieus are re-

quired at all ‘stops’. The virtual machine/mulieu serves as the hosting environment for mobile

agents, providing a library of operations to enable agents to perform monitoring and steering

actions and support agent communication, migration and scheduling. The requirement for such

14

a hosting environment increases implementation complexity. Besides, the behaviors of mobile

agents are restricted due to security concerns. Possible security problems include masquerad-

ing, denial of service, unauthorized access, eavesdropping, alteration, and repudiation [30].

Enforcing Adaptation Through Source Code Modification

Systems such as CUMULVS [33] and VIPER [57] use program instrumentation to enable mon-

itoring and steering. CUMULVS allows developers to declare the variables or parameters that

can be modified or steered during the computation. VIPER similarly allows developers to anno-

tate application programs to identify the data and parameters for monitoring and steering and to

associate them with synchronization points. When the application encounters a synchronization

point, the server is notified and extracts the current state of the data and parameters for adap-

tation purpose. However, CUMULVS and VIPER provide limited steering capabilities, e.g.,

they do not support coordinated steering across modules. As an improvement, problem solving

environments such as SCIRun [53], provide mechanisms such as feedback loops, cancellation,

direct lightweight parameter changes, and retained state across module firings, to enable mod-

ular and dataflow-oriented systems and create a richer set of steerable parameters. However, a

key limitation of CUMULVS, VIPER and SCIRun is that these systems cannot directly support

functional or algorithmic steering.

The component-based programming paradigm [67, 14] views applications as a composition

of individual components. Therefore, adaptation behaviors can be systematically enforced at

two separate levels - (1) intra-component: components can expose internal variables or param-

eters as sensors and actuators for external monitoring and steering, and (2) inter-component:

the interactions among components can be adapted.

If component source code is inaccessible, sensors and actuators can be obtained from com-

ponent interfaces using techniques such as (1) superimposition [22] that enables the software

engineer to impose predefined but configurable functionalities on a component, and (2) wrap-

ping [69] that enables components to be refined at runtime using wrappers to introduce new

behaviors. Alternately, components can directly expose their internal variables, data, param-

eters, functions, etc., as sensors and actuators for external monitoring and steering. To adapt

15

component interactions, filters [55, 13] or proxies [62, 59] can be interposed between interact-

ing components to manipulate messages or re-direct the messages to different components, and

consequently introduce new behaviors to the application.

2.2.3 Conflict Detection and Resolution During Adaptation Behavior Execution

The correctness of adaptation behaviors that are described using templates [19] and adapta-

tion classes [21], and compiled together with application code, can be checked by compilers.

This section focuses on adaptation behaviors described separately using description languages,

scripts, and rules, and weaved with application execution at runtime.

Conflicts can occur between multiple adaptation behaviors, and between adaptation behav-

iors and application execution. Some conflicts can be detected and resolvedstatically. For ex-

ample, the conflicts among typed authorization policies can be statically detected as part of the

policy specification process [42], and resolved by having users revise the conflicting policies.

Specification time conflict detection is analogous to compile time type checking for program-

ming languages. A limitation of static analysis is that it may not detect conflicts that depend on

runtime state. As a result, it can be used to detect potential rather than actual conflicts.

Some conflicts can only be detected and resolvedat runtime . For example, applications

may require services to be delivered in different ways when requested in different execution

contexts [23]. In this case, conflicts occur and can be detected at runtime when a conflicting

service is invoked, and then resolved synchronously using auctions based on microeconomic

techniques. As an another example, the execution of business policies depends on runtime

business logic and information. Therefore the conflicts can only be detected at runtime when

overlapping queries and inconsistent provisions are found, and resolved asynchronously by

using legal reasoning based on the status of individual obligations in a database [11].

2.3 Accord Programming System

Accord extends object, component, and service based programming systems to support dynam-

ically defined adaptation behaviors using high-level rules. These rules can be directly defined

16

and injected by users through Accord portals, or they can be automatically generated from ap-

plication requirements and workflows specified by users. Users can add new rules, delete rules,

and modify existing rules.

Accord enforces adaptation behaviors using a runtime distributed rule execution infrastruc-

ture. It senses the internal state of elements and applications as well as execution context,

evaluates rule conditions, and performs the corresponding actions.

Accord provides different mechanisms to detect and resolve conflicts for scientific and busi-

ness applications. In the scientific computing domain, the most interesting use of rules is to di-

rectly control the behaviors and performance of applications. Therefore, simple reaction rules

and efficient and scalable parallel rule execution with minimal performance impact is criti-

cal. Rules in business applications are more complex and typically used to create business

obligations, provide recommendations and decision support, or describe entity privileges. The

component-based and service-based prototype implementations of Accord supports these two

classes of applications.

17

Chapter 3

Accord: Supporting the Development and Execution of Autonomic

Self-managing Applications

Accord extends existing programming systems to support the development and execution of

autonomic self-managing applications. Specifically, Accord builds on the separation of the

composition aspects (e.g., organization, communication, and coordination) of elements (e.g.,

objects, components, and services) and applications from their computational behaviors that

underlies the distributed object, component, and service based paradigms. Further, Accord

extends it to enable element behaviors and element composition to be managed at runtime

using high-level rules.

To support runtime self-management, Accord relaxes static (defined at the compilation or

instantiation time) application requirements and system/application behaviors, and allows them

to be dynamically specified using high-level rules. Further, it enables the behaviors of ele-

ments and applications to be sensitive to changing system state and application requirements,

and adapt to these changes at runtime. This is achieved by extending computational elements

into autonomic elements with the specifications of high-level rules and mechanisms for self-

management, and providing a distributed runtime infrastructure that consistently and efficiently

enforces these rules to enable autonomic self-managing behaviors to respond to current require-

ments, state and execution context.

The Accord programming system consists of four concepts. The first is an application

context that defines a common semantic basis for applications, discussed in Section 3.1. The

second is the definition of autonomic elements as the building blocks of autonomic applications,

and the next is the definition of rules and mechanisms to enable autonomic elements, presented

in Section 3.2. The final is a runtime infrastructure that enforces rules to realize adaptation

behaviors, described in Section 3.3.

18

3.1 Defining Application Context

Autonomic elements should agree on a common syntax and semantics for defining and de-

scribing ontologies, namespaces, sensors, actuators, function interfaces and events that enable

elements to understand and interact with each other. Using such a common context allows

definition of rules for autonomic management of elements and dynamic composition and in-

teractions between elements. As Accord builds on and extends existing programming systems

with adaptation capabilities, it uses the mechanisms provided by these systems to define ap-

plication context. Current implementations of Accord extend a distributed object system [48],

a component based system [14], and a service based system [31], and use SIDL and WSDL

respectively to define functional interfaces, sensors and actuators. Further, these functional in-

terfaces, sensors and actuators are used to define if-then-else rules that adapt element behaviors

and interactions at runtime.

3.2 Autonomic Element

An autonomic element is the fundamental building block for self-managing applications in the

Accord system. It extends a computational element, including object, component, and ser-

vices, to define a self-contained modular software unit of composition with specified interfaces

and explicit context dependencies. Additionally, an autonomic element encapsulates rules and

mechanisms for self-management, and dynamically interacts with other autonomic elements.

Computational

element

Functional port

Element

manager

Autonomic

element

Event

generation

Internal state

(sensors

invocation)

Contextual state

(sensors

invocation and

events)

Actuator

invocation

High-level

rules

Other interface

invocation

Control port

Operational port

Element manager

Figure 3.1: An autonomic element.

19

3.2.1 Port Definition

The structure of an autonomic element is shown in Figure 3.1. It is defined by three classes of

ports:

1. Thefunctional port (Γ) defines a set of functionalitiesγ provided and used by the auto-

nomic element.γ ∈ Ω×Λ, whereΩ is the set of inputs andΛ is the set of outputs of the

elements, andγ defines a valid input-output set.

2. Thecontrol port (Σ) is the set of tuples (σ, ξ), whereσ is a set of sensors and actua-

tors exported by the element, andξ is the constraint set that controls access to the sen-

sors/actuators. Sensors are interfaces that provide information about the element while

actuator are interfaces for modifying the state of the element. Constraints are based on

state, context and/or high-level access polices, and can control who invokes the interface,

when and how they are invoked.

3. Theoperational port (Θ) defines the interfaces to formulate, inject and manage rules,

and encapsulates a set of rules that are used to manage the runtime behaviors of the

autonomic element. Rules incorporate high-level guidance and practical human knowl-

edge, describing theactionsto be taken when a certaincondition is met oreventsare

received. Eventsare messages generated by elements and/or systems.Condition is a

logical combination of element (and environment) sensors.Actionsconsist of a sequence

of invocations of elements and/or system actuators, and other interfaces. Two types of

rules are defined.

• Behavior rulescontrol the runtime functional and non-functional behaviors of ele-

ments. For example, behavior rules can control the algorithms, data representations

or input/output formats used by elements. Behavior rules can be directly defined

by users or automatically generated from application requirements or objectives.

• Interaction rulescontrol the interactions between elements, between elements and

their environments, and the coordination within an application. For example, an

interaction rule may define where an element will get inputs and forward outputs,

20

define the communication mechanisms used, and specify when the element inter-

acts with other elements. Interaction rules can be either directly specified by users

or automatically generated from the primary workflow.

Computational elements have to implement and export appropriate sensors and actuators so that

their behaviors and interactions can be monitored and controlled. Adding sensors and actuators

requires modification/instrumentation of the element source code. Sensors and actuators can

be implemented either as new methods that monitor or modify internal parameters and behav-

iors of an element, or defined in terms of existing methods. Accord provides corresponding

programming abstractions that can be used to specify sensors and actuators and register them

in element managers. The instrumented computational elements have to be re-compiled.

In case of third-party and legacy elements where such a modification may not be possible or

feasible, proxies [62, 59] can be used to collect relevant element information from interacting

messages. A proxy is interposed between the caller and callee elements to monitor and control,

for example, all the method invocations for the callee element. It may also collect performance

information (e.g., response time, memory usage, cache misses) and input parameter values

for each interfaces in the functional port and control the invocations by modifying the input

parameters for these interfaces. In this case, elements may not have to be re-compiled, but the

adaptability of the elements is limited.

3.2.2 Element Manager

As shown in Figure 3.1, each computational element is associated with an element manager that

implements the operation port. The element manager performs one or more of the following

management functions.

• Functional management: The manager controls the functional behaviors of the managed

element based on changing requirements, state and execution context. For example, the

manager may generate customized functional ports that activate or deactivate operations

provided by the element based on the security of the execution environment and the

access privileges of the user. As another example, the manager may dynamically select

internal algorithms or data representations for current inputs.

21

• Performance management: The manager monitors the performance of the element, selec-

tively collects relevant performance data (e.g., response time and throughput), and adapts

it behaviors to meet performance requirements at runtime. For example, the managers

may dynamically decrease message frequency during network congestion.

• Interaction management: Managers may negotiate with each other to dynamically es-

tablish or change interaction relationships. For example, the manager may modify com-

munication patterns and coordination sequence between managed elements and respond

to changing application requirements and execution context. For example, the managers

may automatically establish interaction relationships between newly introduced elements

with the rest of an application.

As shown in Figure 3.1, an element manager monitors the internal state of its associated

element using element sensors, and senses the execution context using system sensors and

events. It further controls the firing of rules and performs rule actions by generating events,

invoking actuators or other interfaces exposed by the element and the system. To support the

management behaviors outlined above, elements and the system should expose appropriate

sensors and events. For example, runtime element performance data should be exposed as

sensors or events to support performance based management. Further, elements should support

different interaction relationships and enable the element managers to select among these at

runtime for interaction management. Wrappers [69], filters [55, 13], or proxies [62, 59] can be

used to introduce these capabilities in managed elements that do not directly provide them.

3.3 The Accord Runtime Infrastructure

The Accord runtime infrastructure, shown in Figure 3.2, consists of a portal, composition man-

agers, and peer element managers.

The infrastructure is constructed at runtime using services provided by the underlying pro-

gramming system. For example, the MPI runtime architecture [6] is used to construct the in-

frastructure in the object based prototype of Accord presented in Chapter 4. In the component

based prototype presented in Chapter 5, the Ccaffeine framework [14] provides the required ser-

vices. The service based prototype presented in Chapter 6 builds on the Axis framework [16].

22

Interaction rules

Composition Manager

Behavior rules

Middleware

services

Application workflow

Adaptation strategies

Application requirements

Portals

Figure 3.2: Accord runtime infrastructure for a sample application composed of three elements.

The infrastructure can also be built on AutoMate middleware services including content-based

discovery service, associative messaging service, and decentralized reactive tuple space.

3.3.1 Composition Manager

Application workflows are defined by users or generated by a workflow engine, for exam-

ple [12], and expressed in XML. The workflows are then decomposed by the composition

manager into interaction rules and injected into corresponding element managers during ini-

tialization period. At runtime, the composition manager analyzes and decomposes adaptation

strategies, dynamically defined by users or generated from application requirements, into be-

havior rules and interaction rules, and injects them into corresponding element managers.

3.3.2 Element Manager

Element managers can be statically associated with elements at compilation time, or created

by the composition manager at runtime. During initialization, element managers register the

sensors and actuators exposed by associated elements, and register element and system events

required by the rules. Managers communicate with each other using XML on top of the un-

derlying communication system such as MPI messaging in the object and component based

23

prototypes, and sockets and SOAP in the service based prototype. Element managers coordi-

nate with each other and construct a distributed rule enforcement engine to enable consistent

and efficient rule execution. This is discussed below.

3.3.3 The Rule Enforcement Engine

Key Concepts and Notation

All specified rules for an application define arule space, denoted asR = {Ri}, whereRi =

“IF Si THEN Ai”. Si represents the set of sensors and/or events in the rule condition,

denoted asSi = {si}. Ai is a list of actuators in the rule action, denoted asAi = {ai}.
An active rule space, denoted as̄R, is the set of rules in the rule space whose conditions are

currently satisfied.

Thepre-condition of the rule spaceR consists of the sensors used byR and their current

values, and is represented as{S, V S}, whereS =
⋃

Si andV S = V alue(S). The pre-

condition is defined by the state of the computation and the execution environment, and changes

during the lifetime of the application. As a result, the pre-conditions is known only at runtime.

Thepost-condition of the rule spaceR consists of the set of actuators and the values that

they should take, and is represented as{A, V A}, whereA =
⋃

Ai, V A = V alue(A).

In traditional rule-based systems, firing of rules consists of sequentially executing the action

part of all the rules triggered by pre-condition and producing consequence. This makes it

difficult to detect and resolve rule execution conflicts and guarantee consistent rule execution

(as described in more detail below). To address this, we define post-condition, which combines

the action part of all the rules triggered by pre-condition and can be used to detect and resolve

conflicts and inconsistencies before producing the consequences.

Consequenceis the change in application state and behaviors caused by invoking the ac-

tuators defined by the post-condition. Changes can affect both component behaviors and the

application process, and are applied in the next computation phase.

Two kinds of rule conflicts are defined: (1) Asensor-actuator (S − A) conflict occurs

when SA = S
⋂

A 6= φ, i.e., a parameter/variable is exposed both as a sensor and as an

24

actuator in a set of rules. (2) Anactuator-actuator (A − A) conflict occurs when the post-

condition for a rule set contains multiple instances of an actuator with different values. Note

that these conflicts have to be detected at runtime as rules can be dynamically defined. They

need to be resolved only if the conflicting rules are simultaneously triggered.

Reconciliation is required in SCMD parallel applications, as different processing nodes

may generate different post-conditions based on their local states and contexts. The goal of

reconciliation is to produce a unique post-condition across all nodes.

Rule Execution Model

As mentioned above, traditional rule-based systems directly invoke actions when rules fire [11].

However, this approach aggravates rule conflicts when multiple rules are simultaneously trig-

gered. IfS−A conflicts exist, directly invoking actions when the condition of a rule is met will

change the values of the sensors in the setSA, which in turn will change the pre-condition. This

can have two consequences. First, the modified pre-condition may invalidate already executed

rules. Second, it may trigger rules whose conditions previously evaluated as false. IfA − A

conflicts exist, actions invoked later will ‘overwrite’ the results of perviously invoked actions.

Together, these conflicts can produce both uncertainty and inconsistency in rule execution. To

address this, we employ a three-phase rule execution model, consisting of (1) batch condition

inquiry, (2) condition evaluation and conflict resolution and reconciliation, and (3) batch action

invocation. This is illustrated in Figure 3.3.

Pre-condition
 Post-condition

Condition evaluation,

conflict resolution,

and reconciliation

Batch

condition

inquiry

Batch action

invocation

Consequence

Figure 3.3: The three-phase rule execution model.

The batch condition inquiry phase queries all the sensors inS in parallel, gets their values

V S, and then generates the pre-condition. Based on this pre-condition, rules whose conditions

are satisfied form the active rule spaceR̄. In next phase, condition evaluation for all the rules

25

in R̄ is performed in parallel. The overall evaluation time in this case will be determined by the

longest evaluation time for an individual rule. Conflict resolution and reconciliation then takes

place and the post-condition is generated.

In the final phase, the actuators in the post-condition are invoked to produce the conse-

quence. This may also be done in parallel, since the actuators in the post-condition are inde-

pendent and free of conflicts. Note that as the rule base becomes larger, the conflict resolution

time will increase. However the time required for sensor queries, condition evaluations and

actuator invocations will not change too much. Therefore, efficient conflict resolution is espe-

cially important for high-performance parallel scientific applications using this model.

Conflict Resolution

Typical conflict resolution approaches are based on rule priorities defined through implicit

textual ordering of rules or explicit precedence relationships. However, this approach can intro-

duce additional logic complexities and overheads, making it difficult to determine rule priorities

and to make general inferences about the behaviors of conflicting rules under various circum-

stances [11]. The Accord programming system enables users to explicitly set rule priorities,

and further provides mechanisms to assist in resolving conflicts among rules with the same

priority.

Detecting and resolvingS −A conflicts:

if SA 6= φ then

• for each ruleRi ∈ R̄

– if SA
⋂

Ai 6= φ, and∃si ∈ SA
⋂

Si andai ∈ SA
⋂

Ai andai = si, V alue(si) 6=
V alue(ai), then deleteRi from R̄.

In Accord, one variable or parameter can be exposed both as a sensor and an actuator.S−A

conflicts happen when at least one variable or parameter belongs to both thepre-conditionand

post-conditionbut with different values. Rules that contain this variable or parameter in the

action part will be disabled to avoid changing thepre-condition.

Detecting and resolvingA−A conflicts:

A− A conflicts happen when an actuator will be invoked with different values. Resolving

A−A conflicts requires users to define a sequence of sensors (i.e.,CS = {csi}). The resolution

26

algorithm relaxes thepre-conditionby incrementally ‘deleting’ sensors inCS from thepre-

condition, until each actuator in thepost-conditionhas one value or all the sensors inCS are

exhausted.

if
⋂

Ai 6= φ, ∀Ri ∈ R̄′, ∃a ∈ ⋂
Ai,

⋂
V aluei(a) = φ then

• repeat

– read the nextcs fromCS

– relax cs in the pre-condition

– re-evaluate rules

• until ∀a ∈ ⋂
Ai, V alue(a) has at least one value, orCS is exhausted.

• if CS is exhausted, an error is reported to users for further instructions; otherwise, the

post-condition{A, V A} is constructed by randomly selecting a value for those actuators

having multiple values.

Reconciliation

Reconciliation is required to generate a consistent post-condition in parallel SCMD appli-

cations as each processing node may independently generate a different post-condition based

on its local computation, data and execution context. Different reconciliation strategies are

defined for behavior rules and interaction rules. Reconciliation will be discussed in Chapter 5.

3.4 Autonomic Adaptation Behaviors in Accord

Accord enables two levels of adaptation behaviors, behavior adaptation and composition adap-

tation, discussed in the following sections. They can be used separately or in combination to

enable the autonomic self-configuring, self-optimizing and self-healing behaviors of elements

and applications.

3.4.1 Adapting Element Behaviors

At the element level, Accord treats functions, variables, and parameters as adaptation units.

Element managers monitor behaviors of individual elements by invoking sensors and listen-

ing to events, evaluate rule conditions, and perform actions through actuator invocation and

27

event generation. The behavior adaptation of one element is functionally transparent to other

elements, since the changes do not effect its functional syntax and semantics. However, the

changes will effect its non functional behaviors such as execution time, memory usage, and

bandwidth consumption.

3.4.2 Adapting Element Composition

At the application level, Accord treats elements as adaptation units. It enables dynamic com-

position of autonomic elements, which consists of (a) node (element) dynamism - elements

are replaced, added to or deleted from the workflow, and (b) edge (interaction) dynamism -

interaction relationships are changed, added to or deleted from the workflow.

Element Composition

The composition of autonomic elements consists ofselection of elementsanddefinition of in-

teractions among these elements.

• Selection of elementsdescribes who is interacting, based on the composition of functional

ports (Γ), and can be defined as:

E0 ∝Γ
⋃

Ei, ∃ΓE0,u ⊆
⋃

ΓEi,p

where,E0 is an autonomic element,
⋃

Ei is a set of autonomic elements,∝Γ denotes

the relation “be functionally compose-able with”,ΓE0,u is the functions used by ele-

mentE0, and
⋃

ΓEi,p represents the functions provided by the element set
⋃

Ei. This

definition says that elementE0 is functionally compose-able with elements
⋃

Ei, when
⋃

Ei can provide all the functions required byE0. Function composition can be based

on semantics, which is currently being investigated in semantic web community using

OWL [9], or based on syntax description, which is used by component frameworks such

as Ccaffeine [14] and service frameworks such as the Web service architecture.

• Interactions among elementsdefine how and when elements interact such as the interac-

tion mechanism (messaging, shared-memory, tuple-space) and coordination model (data-

driven or control-driven). For example, CCAFFEINE [14] defines interactions as func-

tion calls, CORBA [1] uses remote method invocations, and Web and Grid services [31]

28

communicate using XML messages. Interactions may be triggered by an event or actively

initiated by an element.

Dynamic Composition

Once a workflow has been generated (e.g., using the mechanism in [12]) and the elements

have been discovered using middleware services, the composition manager decomposes the

workflow into interaction rules. This decomposition process consists of mapping workflow

patterns [72] in the workflow into corresponding rule templates, and defining the required

parameters for the templates. The composition manager injects these interaction rules into

corresponding element managers, which then execute the rules to appropriately configure the

elements and establish interaction relationships. Note that there is no centrally controlled or-

chestration. While the interaction rules are defined by the composition manager, the actual

interactions are managed by element managers in a decentralized manner.

The decentralized composition enables autonomic elements to fully exploit explicit and

implicit parallelism in the application workflow. The execution sequence among autonomic

elements is caused by data dependency when elements have to wait for the data inputs from

their interacting elements, and/or control dependency when there is no data exchange and the

waiting is required by control flow, e.g., synchronization. Elements without these dependencies

can be executed in parallel. Workflow decomposition and decentralized execution is especially

useful for large scale applications whose parallelism cannot be completely discovered a priori

and/or manually, and therefore enables the efficient execution of their workflow.

The Accord framework supports dynamic composition as described below.

• Dynamically replacing elements: An existing element can be replaced by another ele-

ment as long as the functional ports of the two elements are compatible. The replace-

ment may be triggered either by the composition manager or by the element manager. In

both cases, the replacement is achieved as follows. First, the new element is registered

(using the registration service provided by AutoMate or the underlying framework) in

the element manager, and the old element is notified by the element manager to transi-

tion to a quiescent state. In this state, the old element does not respond to invocations or

29

requests and does not produce any responses. While, it transfers its rule set to the new

element and notifies related elements to update their interaction rules. The execution of

these updated interaction rules will establish the interactions between the new element

and related elements. The old element is then deleted, as described below. If the old

element crashes, the replacement process is handled entirely by the element manager.

Two tasks are required to enable the transfer of state information. First, the element

should expose sensors and actuators to enable its state to be externally queried and modi-

fied. Second, rules should be defined to direct the element manager to periodically query

and store the state of the element.

• Dynamically adding and deleting elements: To add a new element, the composition man-

ager creates a new element manager, initializes it with the interaction rules defined by

users, and injects corresponding rules into managers of related elements. The execution

of these rules will establish interactions between the new element and the existing ele-

ments. To delete an element, the composition manager notifies related element managers

to delete corresponding interaction rules. Once the element is no longer active in this

application, it will be terminated by the lifecycle service provided by AutoMate or the

underlying framework.

• Establishing, deleting, and changing interaction relationships: Interaction rules will in-

struct the autonomic elements to establish or delete interaction relationships at runtime.

The composition manager may inject new rules and modify existing rules, which will

be executed by corresponding element managers to dynamically change the interaction

relationships to cope with the dynamism and uncertainty of applications and systems.

The decomposition of the primary application workflow into interaction rules enables users

to adjust the workflow at runtime without recompiling and restarting the applications. The

interaction relationships are managed and automatically adapted to the dynamic context by

element managers according to interaction rules. As a result, applications can be automatically

re-configured and optimized to manage the dynamism and uncertainty of the applications and

environments.

30

3.5 Autonomic Forest Fire Application: An Illustrative Example

In this section, we use the autonomic forest fire application [36] to illustrate the Accord pro-

gramming system. The application predicts the speed, direction and intensity of the fire front

as the fire propagates using static and dynamic environment and vegetation conditions. The

application is composed of 5 elements listed below.

• DSM (Data Space Manager): The forest is represented as a 2D space composed of cells.

The function ofDSM is to divide the data space into sub spaces based on current system

resources using load-balancing algorithms, and to notifyRothermelof the divided 2D

space.

• CRM (Computational Resource Manager): CRM providesDSM with system resource

information, including the number of current available computation resources and their

usages.

• Rothermel: Rothermelgenerates processes to simulate the fire spread on each subspace

in parallel. Each subspace consists of a group of adjacent cells. A cell is programmed

to undergo state changes fromunburnedto burningand finally toburnedwhen the fire

line propagates through it. The direction and value of maximum fire spread is computed

using Rothermel’s fire spread model.

• WindModel: WindModelsimulates the wind direction and intensity.

• GUI: Experts interact with the above elements using theGUI element.

DSM partitions the 2D space based on the currently available computational resources de-

tected byCRM. Rothermelthen simulates the fire propagation in this 2D space according to the

current wind information obtained fromWindModel. When the load on computational nodes is

unbalanced,DSM will re-partition the 2D space. The process continues until noburningcells

remain.

31

3.5.1 Defining Autonomic Element

We use theRothermelandCRM as examples to illustrate the definition of functional, control

and operational ports, shown in Figure 3.4.

<functionPort element=``Rothermel``>

 <function name=``getSpaceState``>

 <out name=``space`` type=``SpaceDes``/>

 </function>

</functionPort>

<controlPort element=``Rothermel``>

 <sensor name=``getDirection``>

 <out name=``direction`` type=``string``/>

 </sensor>

 <actuator name=``setCellState``>

 <in name=``cellID`` type=``int``/>

 <in name=``cellState`` type=``string``/>

 </actuator>

</controlPort>

IF isMaxUsageDiff() > 0.5 THEN setLoadBalanced(false)

(a) Functional port of Rothermel
 (b) Control port of Rothermel

(c) A rule in the operational port of CRM

Figure 3.4: Examples of the port definition.

Functional Port: Rothermelsimulates the propagation of the fire in the subspace. An ex-

ample of its functional port definition is shown in Figure 3.4 (a). The functiongetSpaceState

generates information about the space. The data structureSpaceDesdescribes the space in-

formation for this application, including the direction and value of maximum fire spread, the

vegetation type and the terrain type.

Control Port : In Rothermel, the sensorgetDirectionis used to get the spread direction of

the fire line that has the maximal intensity, and the actuatorsetCellStateis used to modify the

state of a specified cell. The value of the input parametercellStateof the actuatorsetCellState

can be one ofburning, unburnedor burned. This constraint is handled by the implementation

of setCellState, by either providing no response to an invalid input value or returning an error.

If an error is returned, it will be captured by theRothermelrule agent to generate an exception,

which is forwarded to the user. An example of control port is shown in Figure 3.4 (b).

Operational Port: The operational port contains the rules that are used to manage the

runtime behavior of a element. The rules may be defined at runtime and injected into the

element, and will be executed by the rule agent embedded in the autonomic element. An

examplebehavior rulein CRMmay be shown in Figure 3.4 (c). When this rule fires,CRMwill

deduce that the load is unbalanced. Note that the threshold (0.5 in this example) that triggers

the rules can be modified at run time.

32

3.5.2 Enabling Adaptation Behaviors

The adaptation behaviors for the autonomic forest fire application enabled by Accord are illus-

trated bellow.

Adapting DSM Behaviors

DSM has two partitioning algorithms: agreedyBlockAlgorithm, which is fast but consumes

more resources, and agraphAlgorithm, which is slow but needs less resources.DSM needs to

dynamically select an appropriate algorithm based on current system state. The behavior rule

is shown in Figure 3.5.

IF isSystemOverLoaded() == true THEN invoke graphAlgorithm

 ELSE invoke greedyBlockAlgorithm

Figure 3.5: A behavior rule forDSM.

Adding A New Element

A new element,FFM (Fire Fighter Model)that models the behaviors of the fire fighters, may

be added into the primary workflow. This element dynamically changes the cell state and

informsRothermel. This addition of a new element at runtime is achieved by the composition

manager inserting interaction rules into bothFFM andRothermel, shown in Figure 3.6. The

two elements will automatically establish the interaction based on the rules.

Rothermel

FFM

IF isStateChange() == true

THEN send cellChangeMsg to Rothermel

IF cellChangeMsg is received

THEN invoke updateCell

Figure 3.6: Add a new elementFFM.

Changing Interaction Relationships

CRMcan dynamically decrease the frequency of notifications toDSMwhen the communication

network is congested. This adaptation behavior can be enabled by the rules shown in Figure 3.7.

33

Rule1 increases the threshold value to 0.5 when the network is congested. When the maximal

difference in resource usages among the nodes is larger than the threshold,isResourceBalanced

returns false. When the load is imbalanced, Rule2 will be triggered and will send theloadMsg

to DSM. Note that, once the rules, Rule1 and Rule2 in this example, have been defined, the

changes of interactions occur in an automatical manner without human intervention. Further,

this change is local to the components involved,CRMandDSM in the example above, and does

not affect other components.

DSM

CRM

Rule1: IF isSystemCongested() == true

 THEN setThreshold(0.5)

Rule2: IF isResourceBalanced() == false

 THEN send loadMsg to DSM

Figure 3.7: Change the interaction relationship betweenCRMandDSM.

3.6 Summary

In this chapter we presented the Accord programming system that extends existing program-

ming systems with adaptation mechanisms to support the development and execution of auto-

nomic self-managing applications. Accord includes the common semantic basis, the definition

of autonomic elements as the building blocks of autonomic applications, the definition of rules

and mechanisms to enable autonomic elements, and the runtime infrastructure that enforces

rules to realize adaptation behaviors. Further, the adaptation behaviors enabled by Accord are

presented and illustrated using an autonomic forest fire application.

34

Chapter 4

DIOS++: Autonomic Object-based Accord

An object based prototype of Accord, named DIOS++, has been implemented and evaluated in

the context of distributed scientific/engineering simulations as part of the DIOS++/DISCOVER

project 1. DISCOVER enables geographically distributed clients to collaboratively access,

monitor, and control Grid applications using pervasive portals. It is currently being used to

enable interactive monitoring, steering and control of a wide range of scientific applications,

including oil reservoir, compressible turbulence and numerical relativity simulations.

DIOS++ supports the rule-based autonomic monitoring and control of distributed and par-

allel applications. It enables high-level rules to be dynamically composed and securely injected

into applications at runtime, allowing applications to manage and autonomically optimize their

execution. Rules specify conditions to be monitored and operations that should be executed

when certain conditions are detected. Rather than continuously monitoring and steering the

simulations, experts can define and deploy appropriate rules that are automatically evaluated

and executed at runtime to manage the computation, apply runtime corrections based on the

observed state, and optimize application execution.

Following the Accord conceptual architecture, DIOS++ provides: (1) abstractions to en-

hance existing application objects with sensors and actuators for runtime interrogation and

control, access policies to control access to sensors, actuators, and rule interfaces, and rule

agents to enable rule-based autonomic monitoring and steering, (2) a hierarchical control net-

work that connects and manages the distributed sensors and actuators, enables external dis-

covery, interrogation, monitoring and manipulation of these objects at runtime, and facilitates

dynamic and secure definition, modification, deletion, and execution of rules for autonomic

application management and control. Rules can be dynamically composed using sensors and

actuators exported by application objects. These rules are automatically decomposed, deployed

into the appropriate rule agents using the control network, evaluated and executed by the rule

1http://www.discoverportal.org

35

agents in a distributed and parallel manner.

DIOS++ builds on the DIOS [48], a distributed object substrate for interactively monitor-

ing and steering parallel scientific simulations. DIOS++ extends DIOS with an agent-based

framework that enables rule-based autonomic management. This alleviates time- and effort-

consuming interactive monitoring and control and enables richer self-management behaviors.

DIOS++ also provides an object-level access control mechanisms.

Note that in this prototype, autonomic elements are implemented as autonomic objects, the

operational port is implemented as the access interface and rule interface, the role of composi-

tion manager is taken by the Gateway and the rule engine, and the Accord portal is implemented

by the DISCOVER server and portals. Only behavior rules are defined and used. Interaction

rules are not supported.

4.1 Autonomic Monitoring and Control with DIOS++

Rule-based autonomic monitoring and control enhances traditional computational steering and

enables long-term, complex, computation- and resource-intensive applications to monitor and

steer themselves based on user-defined high-level rules. This may include requesting or mod-

ifying program state, pausing program execution, calibrating the runtime behaviors of the ap-

plication, exploring new computational solutions for problems that are not yet well understood,

adapting programs to the current execution environments, etc.

DIOS++ enables autonomic monitoring and control by enhancing the agent based approach

with high-level rules that incorporate human knowledge. Key research issues addressed by

DIOS++ include:

• Integrating monitoring and steering functionalities with applications: To realize external

monitoring and steering capabilities, a small amount of modification to the application

source code is required. The objects to be monitored and steered must explicitly expose

sensors and actuators. In case of object oriented applications, this consists of invoking the

APIs provided by DIOS++ to expose their internal variables, parameters, and functions.

Applications written in procedural languages need to transform their data structures to

36

objects using, for example, C++ wrappers. Although this requires some application mod-

ification, the wrappers are only required for those data-structures that need to be managed

and the effort required is far less than rewriting the entire application.

• Rich monitoring and steering capabilities: Synchronous and asynchronous monitoring

and steering are enabled. In the case of synchronous control, DIOS++ performs real-

time management behaviors responding to users’ runtime requests. In the case of asyn-

chronous control, users define and submit rules to DIOS++, and DIOS++ performs man-

agement behaviors when rule condition is met.

• Consistency: Consistency of steering behaviors depends on the actuator constraints spec-

ified in the rules that are embedded inside the objects. These constraints automatically

restrict steering behaviors within a valid range. Further, the lifetime of an application is

divided into iterations of computation and interaction. During interaction phases, com-

putation is paused. Adaptation completed in one iteration will automatically become

effective from the next iteration. Further, a simple locking mechanism is used to ensure

that applications remain in a consistent state during collaborative interactions.

• Collaboration: Using the DISCOVER server, users can form or join collaboration groups

and interact with one or more applications based on their capabilities. Users in one

collaboration group can selectively receive or broadcast application information.

4.2 DISCOVER Collaboratory

The DISCOVER collaboratory (shown in Figure 4.1) provides a virtual, interactive, and collab-

orative Problem Solving Environment (PSE) that enables geographically distributed scientists

and engineers to collaboratively monitor and control high-performance parallel/distributed ap-

plications. It consists of the DISCOVER server as the front-end and DIOS++ architecture as

the back-end.

The DISCOVER server builds on a traditional web server and extends its functionality to

37

Desktop PC

Mobile client

Collaboration

Group

Viz Plot

Application1

Desktop PC

Desktop PC

Mobile client

Collaboration

Group

Chat,

Whiteboard,

Collaborative,

Visualization...

Application2

I
n

t
e

r

a

c

t
i

o

n

a

n

d

C

o

l
l

a

b

o

r

a

t

i
o

n

P

o

r

t
a

l
s

H

T

T

P

/

S

e

c

u

r

e

H

T

T

P

/

S

e

c

u

r

e

S

o

c

k

e

t
s

Master Servlet

(RMI/sockets/HTTP)

Policy Rule-Base

A

u

t
h

e

n

t
i

c

a

t

i
o

n

/

S

e

c

u

r

i
t

y

V

i
s

u

a

l
i

z

a

t
i

o

n

I
n

t

e

r

a

c

t
i

o

n

&

S

t
e

e

r
i

n

g

S

e

s

s

i
o

n

A

r
c

h

i
v

a

l

D

a

t

a

b

a

s

e

H

a

n

d

l
e

r

Interaction server

Local & Remote

Database

A

p

p

l
i

c

a

t
i

o

n

I
n

t
e

r

a

c

t
i

o

n

S

e

r

v

l
e

t

Distributed Discover Server

C

O

R

B

A

/

R

M

I

/

I
I

O

P

Private Key,

MD5, SSL

Application1

Application2

Gateway and

Rule engine

Autonomic

objects

Figure 4.1: DISCOVER collaboratory architecture.

handle realtime application information and client requests using “handler” servlets that pro-

vide interaction, collaboration, and rule services. The DISCOVER server provides each regis-

tered client with a unique client-id, and each registered application with a unique application-id.

The client-id along with an application-id is used to identify each session. To start interaction

behaviors, users must be authenticated by the authentication handler, which builds a customized

interaction interface for each valid client to match his/her access capabilities. This ensures that

the client can only access, interact with, and steer applications in an authorized way. In DIS-

COVER, clients must explicitly request and release locks before and after steering behaviors.

In the back-end DIOS++ architecture, a similar locking mechanism is used to protect multiple

rule agents from invoking the same actuators simultaneously. Rules with high priority will lock

these actuators when the conditions specified in the rules are satisfied. The locks are released

when rules with higher priority disable these rules, or the conditions are no longer satisfied.

DISCOVER enables multiple users to collaboratively interact with and steer applications.

All clients connected to a particular application form a collaboration group by default. Global

updates (e.g. current application status) are automatically broadcast to this group. Clients can

selectively broadcast application information to the group. Further, they can select the type of

information that they are interested in. In addition, each application portal is provided with chat

and whiteboard tools to further assist collaboration.

38

4.3 DIOS++ Architecture

DIOS++ is composed of two key components: (1) autonomic objects that extend computa-

tional objects with sensors to monitor the state of the objects, actuators to modify the state,

access policies to control accesses to sensors, actuators, and rule interfaces, and rule agents to

enable rule-based autonomic monitoring and steering, (2) a hierarchical control network that is

dynamically configured to enable runtime access to and management of the autonomic objects

including their sensors, actuators, access policies and rules, and to enable dynamic and secure

definition, modification, deletion and execution of rules.

4.3.1 Autonomic Object

In addition to its functional interface, an autonomic object (shown in Figure 4.2) exports three

interfaces: (1) acontrol interface, which defines sensors and actuators to allow the object’s

state to be externally monitored and controled, (2) anaccess interface, which controls access to

the sensors/actuators and rule interfaces, and describes users’ access privileges based on their

roles and the object’s state, and (3) arule interface, which contains rules used to autonomically

monitor and control the object, and provides methods for adding, modifying and deleting rules.

Rule operations are handled by the rule agent embedded within the autonomic object. These

interfaces and the rule agent are described in the following sections. A sample object that

generates a list of random integers (RandomList) is used as a running example. The number of

integers and their range can be set at runtime.

Sensor

invocation

Rule agent

Internal

state

Contextual

events

Rules
Autonomic object

Computational

object

Rule agent

Control interface

Actuator

invocation

Access

policies

Access interface

Rule interface

Figure 4.2: An autonomic object.

39

Control Interface

Thecontrol interfacespecifies the sensors and actuators exported by an object. Sensors provide

methods for viewing the current state of an object, and actuators provide methods for processing

commands to modify the object’s state. For example, aRandomListobject provides sensors

to query the current length of the list or the maximum value in the list, and an actuator for

deleting the current list. Note that sensors and actuators must be co-located in memory with

the computational objects and must have access to their internal state.

DIOS++ provides programming abstractions to enable application developers to define and

deploy sensors and actuators. This is achieved by deriving computational objects from a virtual

base object provided by DIOS++. The derived objects can then selectively overload the base

object methods to specify their sensors and actuators. This process requires minimal modifica-

tion to the original computational objects and has been successfully used by DIOS++ to support

interactive steering.

Access Interface

Theaccess interfaceaddresses security and application integrity. It controls access to an ob-

ject’s sensors/actuators and rule interfaces, and limit access to authorized users. The role-based

access control model is used, where users are mapped to roles and each role is granted specific

access privileges defined by access policies.

The DIOS++ defines three roles: owner, member, and guest. Each user is assigned a role

based on her/his credentials. The owner can define/modify access policies, and enable or dis-

able external access to sensors/actuators and rule interfaces. The polices define which roles can

access a sensor, actuator and rule interface, and in what way. Access polices can be defined

statically during object creation using the DIOS++ APIs, or can be injected dynamically by the

owner at runtime using the secure DISCOVER portal. Objects can dynamically change their

access policies based on their current state without affecting other objects. Therefore, a user

may be denied of access in one object, while maintaining access privileges for another object.

40

Rule Interface

The DIOS++ architecture uses user-defined rules to enable autonomic management of appli-

cations. Therule interfacecontains rules that define actions to be executed when specified

conditions are satisfied, and provides methods for dynamically defining, modifying, and delet-

ing rules. The conditions and actions are defined in terms of thecontrol interface, i.e., sensors

and actuators provided by the object. A rule in DIOS++ consists of 3 parts: (1) the condition

part, defined by the keyword “IF” and composed of conditions that are conjoined by logical

relationships (AND, OR, NOT, etc.), (2) the action part, defined by the keyword “THEN” and

composed of operations that are executed when the corresponding condition is true, and (3) the

optional after action part, defined by the keyword “ELSE” and composed of operations to be

executed when the condition is not fulfilled.

For example, as shown in Figure 4.3, consider theRandomListobject with 2 sensors: (1)

getLength()to get the current length of the list, and (2)getMaxValue()to get the maximal

value in the list, and an actuatorappend(length, max, min)that creates a list of sizelengthwith

random integers betweenmaxandmin, and appends it to the current list.

IF RandomList.getLength()<10 AND RandomList.getMaxValue()<=50

THEN RandomList.append(10, 50, 0)

Figure 4.3: A sample rule forRandomList.

Note that rules are separated from the application logic and can be created, deleted and

modified at runtime orthogonal to the application execution. This provides flexibility, allowing

users to monitor and control the application execution, without stopping and restarting the

application. Rules are handled by rule agents and the rule engine, which are part of the control

network described in the following section.

Rule Agent

A rule agent is embedded within each autonomic object. The rule agent receives rules from

the rule engine through rule interfaces, authenticates the user defining the rules, evaluates and

executes the rules based on the internal and contextual state to dynamically monitor and steer

41

its host object by invoking appropriate sensors and actuators. Multiple rule agents may coordi-

nate with each other to provide collaborative steering behaviors accessing multiple autonomic

objects.

4.3.2 Control Network

Control network

Computational node

Computational node

RA

RA

RA

RA

RA

Gateway

Rule

engine

DISCOVER

portal

DISCOVER

portal

DISCOVER

portal

DISCOVER

server

Figure 4.4: The DIOS++ control network.

The DIOS++ control network (see Figure 4.4) is a hierarchical structure consisting of the

rule engine and Gateway, and computational nodes. It is automatically configured at runtime

using the underlying messaging environment (e.g. MPI) and the available processors.

The lowest level of the control network hierarchy consists of computational nodes. Each

node maintains a local object registry containing references to all autonomic objects currently

active and registered. At the next level of hierarchy, the Gateway represents a management

proxy for the entire application. It combines the registries exported by the nodes and manages a

registry of the interaction interfaces (sensors and actuators) for all the objects in the application.

It also maintains a list of access policies related to each exported interface and coordinates the

dynamic injection of rules. The Gateway interacts with external interaction servers or brokers

such as those provided by DISCOVER.

Co-located with Gateway, the rule engine accepts and maintains the rules for the applica-

tion. It decomposes these rules and distributes them to the corresponding rule agents, collects

rule execution results from rule agents and reports them to the users. Each rule agent executes

its rules based on an execution script, and reports the rule execution results to the rule engine.

42

The execution script is defined by the rule engine to specify the rule execution sequence and the

rule agent’s runtime behaviors. The specification and execution of scripts and the coordination

between the rule engine and rule agents are illustrated in the following sections.

In DIOS++, rules are evaluated and executed by rule agents in a parallel and distributed

fashion. The decomposition of rules, collection of rule execution results, and management of

rule execution are performed by the rule engine. This central-control and distributed-execution

mechanism has the following advantages: (1) Rule execution, which can be compute-intensive

is done in parallel by rule agents. This reduces the rule execution time as compared to a se-

quential rule execution. (2) A rule agent’s behavior is specified by a script that is defined and

modified at runtime by the rule engine, allowing it to adapt to the current execution environ-

ment.

The operation of the control network is explained below using a list sorting application.

The application generates a list of integers and then sorts them. It contains two objects: (1)

RandomListthat provides a list of random integers, and (2)SortSelectorthat provides several

sorting algorithms (bubble sort, quick sort, etc.) to sort integers.

Initialization

During initialization, the application uses the DIOS++ APIs to create and register its objects,

and export its interfaces and access policies to the local computational node. Each node exports

these specifications of all its objects to the Gateway. The Gateway then updates its registry.

Since the rule engine is co-located with Gateway, it has access to the Gateway’s registry. The

Gateway interacts with the external environment (DISCOVER servers in our prototype) and

coordinates access to the application’s sensor/actuators, policies and rules.

Interaction and Rule Operation

The lifetime of an application is divided into iterations of computation and interaction phases.

Users’ requests (realtime interaction requests or rule operation requests) received during a com-

putation phase will be queued for execution during the next interaction phase. Steering actions

completed in one iteration will automatically become effective from the next iteration.

43

At runtime, the Gateway may receive incoming interaction or rule requests from users. The

Gateway first checks the user’s privileges based on her/his role, and refuses any invalid access.

It then transfers valid interaction requests to corresponding objects and transfers valid rule

requests to the rule engine. Finally, the responses to the user’s requests or the rule execution

results are combined, collated and forwarded to the user. Once again we use the example to

describe this process.

Rule definition: SupposeRandomListexports two sensors:getLength()andgetList(). SortS-

electorexports no sensors, and two actuators:sequentialSort()andquickSort(). The owner can

access all these interfaces. Members can only accessgetLength()andgetList()in RandomList,

andsequentialSort()in SortSelector. Guests can only accessgetLength()in RandomList.

Using DIOS++, users can view, add, delete, modify and temporarily disable rules at runtime

using a graphical rule interface integrated with the DISCOVER portal. An application’s sen-

sors, actuators and rules are exported to the DISCOVER server and can be securely accessed by

authorized users (based on access control polices) via the portal. Authorized users can compose

rules using the sensors and actuators. Note that rules may be defined for individual objects or

for the entire application, and can span multiple objects. Users specify a priority for each rule,

which is then used to resolve rule conflicts.

Rule deployment: Consider the rules in Figure 4.5. Let Rule1 have a higher priority than

Rule2:

Rule1: IF RandomList.getLength()<100 THEN RandomList.getList()

 ELSE RandomList.getLength()

Rule2: IF RandomList.getLength()<50 THEN SortSelector.sequentialSort()

 ELSE SortSelector.quickSort()

Figure 4.5: Rule1: an object rule involving only one objectRandomList. Rule2: an application
rule involving two objectsRandomListandSortSelector.

Rule1 is an object rule, which means that the rule only applies to one object. Rule2 is

an application rule, which means that the rule can affect several objects. When the Gateway

receives the two rules, it will first check the user’s privileges. If the rules are defined by member

users, Rule2 will be rejected since member users do not have the privilege to accessquickSort()

interface inSortSelector.

44

The Gateway transfers valid rules to the rule engine. The rule engine dynamically decom-

poses the rules and injects them into corresponding rule agents. It then composes a script for

each rule agent, which defines its lifetime and rule execution sequence based on rule priori-

ties. For example, the script for the rule agent inRandomListmay specify that this agent will

terminate itself when it has no rules, and that Rule1 is executed first. Note that this script is

extensible.

In the case of an object rule, the rule engine just injects the object rule into its corre-

sponding rule agent, as shown in Figure 4.6 (a). In the case of an application rule, the rule

engine will first decompose the rule into triggers and then inject triggers into corresponding

agents. For example, the application rule ‘Rule2’ is decomposed into 3 triggers: (1)SortSelec-

tor.sequentialSort(), (2) SortSelector.quickSort(), and (3)RandomList.getLength()< 50. These

triggers are injected into corresponding agents as shown in Figure 4.6 (b).

Rule engine

IF Trigger3

THEN Trigger1

ELSE Trigger2

‘
Sorter’
 ‘
List’

Rule interface

‘
List’

Rule engine

Rule interface

IF
getLength
()<100

THEN
getList
()

ELSE
getLength
()

Trigger1:
sequentialSort
()

Trigger2:
quickSort
()
 Trigger3:
getLength
()<50

Rule interface

Rule engine

IF Trigger3

THEN Trigger1

ELSE Trigger2

‘
Sorter’
 ‘
List’

Rule interface

‘
List’

Rule engine

Rule interface

IF
getLength
()<100

THEN
getList
()

ELSE
getLength
()

Trigger1:
sequentialSort
()

Trigger2:
quickSort
()
 Trigger3:
getLength
()<50

Rule interface

(a)
 (b)

Figure 4.6: (a): Deployment of an object rule. (b): Deployment of an application rule.

Rule execution and conflicts resolution: During the interaction phase, the rule engine fires

all the rule agents at the same time, and these rule agents work in parallel. Rule agents execute

object rules and return the results to the rule engine. The rule engine then reports them to

the user. Rule agents also execute triggers, which are part of application rules, and report

corresponding results to the rule engine. The rule engine collects the trigger results, evaluates

conditions, and then issues corresponding actions to be executed in parallel by rule agents if

the conditions are satisfied. Application rule results are also reported to the user.

While typical rule execution is straightforward (actions are issued when their required con-

ditions are fulfilled), the application dynamics and user interactions make things unpredictable.

As a result, rule conflicts must be detected at runtime. In DIOS++, rule conflicts are detected

45

at runtime and are handled by grouping rules based on their priority and disabling conflicting

rules with lower priorities. This is done by locking the required sensors and actuators. For

example, suppose that a user defines two rules for the object instanceRandomListshown in

Figure 4.7. Rule3 requires setting the minimal integer value to 5 when the list length is less

than 100 and larger than 50, and Rule4 requires the minimal value to be 6 when the list length

is larger than 30 and less than 70. Rule3 has higher priority than Rule4. The two rules conflict

with each other, for example, when the list length is 60.

Rule3: IF RandomList.getLength()>50 AND RandomList.getLength()<100

 THEN RandomList.setMinInt() = 5

Rule4: IF RandomList.getLength()>30 AND RandomList.getLength()<70

 THEN RandomList.setMinInt() = 6

Figure 4.7: Rules with conflicts.

The rule agent script asks the rule agent to fire Rule3 first. After Rule3 is executed, the

interface ofsetMinInt()is locked during the period when the length is less than 100 and larger

than 50. When Rule4 is issued, it cannot be executed as the required interface is locked. The

interface will be unlocked when the length value is not within the range 50 to 100.

4.4 The Autonomic Oil Reservoir Application: An Illustrative Example

In this section, we use the oil reservoir simulation application [45] to illustrate the ideas de-

scribed in this chapter. The application optimizes the placement and operation of oil wells

to maximize overall revenue. The application consists of the instances of distributed multi-

model, multi-block reservoir simulation components provided by the IPARS, simulated anneal-

ing based optimization services provided by the VFSA, economic modelling services, real-time

services providing current economic data (e.g. oil prices), historical data archives, and experts

(scientists, engineers) connected via collaborative portals. During initialization, experts con-

figure and launch the IPARS factory and the VFSA optimization service. In the iterative op-

timization phase, the IPARS factory gets initial guess from the VFSA and launches an IPARS

instance, which uses the Economic Model along with current market parameters to estimate

the current revenue. This revenue is normalized and then communicated to the VFSA service,

46

which in turn uses this value to generate an updated guess of the well parameters and sends this

to the IPARS Factory. The IPARS Factory now configures a new instance of IPARS with the

updated well parameters and deploys it. This process continues until the required terminating

condition is reached (e.g. revenue stabilizes).

The IPARS instance exposes its input parameters (well parameters) and physical models as

actuators. Similarly, the VFSA exposes its input parameters (the revenue) and probability value

as actuators.

DIOS++ enables directly modifying parameters exported by objects. For instance, modifi-

cation of the probability value of the VFSA will increase or decrease the process time required

to find a global minimum. Consistency of these steering behaviors is guaranteed through the ac-

tuator constraints specified in the rules that are embedded inside the objects. These constraints

will automatically restrict the values to be within a valid range. For instance, a constraint is de-

fined to maintain the probability value between 0 and 1. When a user tries to set the probability

to an invalid value, the constraint will reject the request and send an error message to the user,

shown in Figure 4.8.

IF probability <0 OR probability>1

THEN exception(VFSA, probability, error_message)

Figure 4.8: The constraint in VFSA that maintains the probability value between 0 and 1.

Let us examine a more complex case that involves multiple objects. Suppose IPARS pro-

vides two algorithms, algorithms1 that generates a result with higher precision but is resource-

consuming, and algorithm2 that generates a result with lower precision but consumes less re-

sources. IPARS begins with algorithm2 and then use algorithm1 when the revenue approaches

some pre-defined threshold to achieve the best performance in terms of precision under condi-

tions of limited computational resources. The rule is specified in Figure 4.9:

IF VFSA.revenue < threshold THEN IPARS.algorithm2()

 ELSE IPARS.algorithm1()

Figure 4.9: A sample application rule involving VFSA and IPARS.

47

This rule is decomposed into one sensor and two actuators:sensor1“VFSA.revenue<

threshold”,actuator1“IPARS.algorithm2()” andactuator2“IPARS.algorithm1()”. sensor1is

injected into the VFSA rule agent;actuator1and actuator2 are injected into the IPARS rule

agent. Whensensor1is triggered, IPARS rule agent will be notified andactuator1or actuator2

will be executed. The rule will be automatically evaluated and executed to configure IPARS.

In DIOS++, monitoring and steering behaviors may be synchronous or asynchronous. Syn-

chronous monitoring and steering is a one-time behavior (an example could be the modification

of probability value in VFSA) responding to users’ realtime requests, while in asynchronous

monitoring, steering behaviors are performed whenever condition is satisfied during the life

time of an application (an example could be the complex case discussed above).

4.5 Experimental Evaluation

This section summarizes the experimental evaluation of the DIOS++ library using the IPARS

reservoir simulator framework on the beowulf cluster. The cluster contains 64 Linux-based

computers connected by 100 Mbps full-duplex switches. Each node has an Intel(R) Pentium-

4 1.70GHz CPU with 512MB RAM and is running Linux 2.4.20-8 (kernel version). IPARS

is a Fortran-based framework for developing parallel/distributed reservoir simulators. Using

DIOS++/DISCOVER, engineers can interactively feed in parameters such as water/gas injec-

tion rates and well bottom hole pressure, and observe the water/oil ratio or the oil production

rate. The evaluation consists of 3 experiments:

0

200

400

600

800

1000

1200

1400

1600

1
 2
 4
 8
 16
 32

number of

processors

e
x
e

c
u

ti
o

n
 t

im
e

 (
s
e

c
)
 without

DIOS++

with

DIOS++

0

20000

40000

60000

80000

100000

120000

1
 2
 3
 4

number of

iterations

t
i

m

e

(

m

i
c

r
o

s

e

c

)

computation

time

rule

deployment

time

number of

iterations

t
i

m

e

(

m

i

c

r
o

s

e

c

)

computation

time

obj rule exec

time

app rule

exec time

0

20000

40000

60000

80000

100000

120000

1
 2
 3

(a) Minimal overhead
 (b) Rule deployment overhead
 (c) Rule execution overhead

Figure 4.10: DIOS++ experimental evaluations.

Experiment 1 (shown in Figure 4.10 (a)): This experiment measures the runtime overhead

introduced by DIOS++ in minimal rule execution mode. In this experiment, the application

automatically updates the DISCOVER server and its connected clients with the current state

48

of autonomic objects and rules. Explicit interaction and rule execution are disabled during the

experiment. The application’s runtime with and without DIOS++ are plotted in Figure 4.10 (a).

It can be seen that the runtime overhead due to DIOS++ is very small and within the error of

measurement.

Experiment 2 (shown in Figure 4.10 (b)): This experiment compares computation time and

the average rule deployment time for successive iterations. In this experiment, we deployed

object rules in the first and third iterations, and application rules in the second and fourth

iterations. The experiment shows that object rules need less time than application rules. This is

true since the rule engine only has to inject object rules to corresponding rule agents, while it

has to decompose application rules to triggers, and inject triggers to corresponding rule agents.

Experiment 3 (shown in Figure 4.10 (c)): This experiment compares computation time,

average object rule execution time and average application rule execution time for successive

iterations. The experiment shows that application rules require longer execution time than

object rules, since the rule engine has to collect results from all the triggers, check whether the

conditions are fulfilled and invoke corresponding actions. The execution of both application

rules and object rules involves querying sensors, evaluating conditions, resolving conflicts, and

invoking actuators. Sensor queries, condition evaluation and actuator invocation can be done in

parallel. As a result, these overheads are not significantly impacted by the size of the rule base.

However, conflict resolution overhead does increase with the size of the rule base.

4.6 Summary and Conclusion

This chapter presented the design, prototype and experimental evaluation of DIOS++, an archi-

tecture for supporting the rule-based steering and control of distributed scientific applications.

DIOS++ is based on the Accord conceptual architecture and extends computational objects with

control, access and rule interfaces, and embedded rule agents to allow secure external monitor-

ing and steering behaviors with rich semantics. DIOS++ enables asynchronous management

via direct interactions between users and application sensors/actuators, as well as asynchronous

and automatic management based on user-defined rules.

Rules can be defined, modified and deleted at runtime. They are evaluated and executed

49

in a distributed and parallel manner by rule agents embedded within autonomic objects, to au-

tomatically adjust the runtime behaviors of applications. Besides, these rules are defined in a

simple “IF-THEN-ELSE” format and can be used with many different applications. The exper-

imental evaluation presented in the chapter demonstrates that DIOS++ overheads are small and

the architecture is scalable.

DIOS++ is currently being used, along with DISCOVER, to enable autonomic monitoring

and control of a wide range of scientific applications, including oil reservoir, compressible

turbulence and numerical relativity simulations.

50

Chapter 5

Accord-CCA: Autonomic Component-based Accord

This chapter presents the component-based prototype of Accord based on the DoE Common

Component Architecture (CCA) and the Ccaffeine framework [14] in the context of component-

based high-performance scientific applications. Specific contributions include: (1) extension

of CCA to enable the definition of self-managing components and applications; (2) design

and implementation of a runtime framework to support self-management behaviors using dy-

namically defined rules; (3) implementation of the three-phase rule execution model to enable

consistent and efficient rule execution for distributed/parallel scientific applications; and (4)

support for performance driven self-management using the TAU framework [5]. Compared to

DIOS++, which enables function oriented adaptation at object and application levels, this pro-

totype supports both function and performance (using TAU utilities [5]) oriented adaptation,

enables dynamic composition by replacing components at runtime, and provides consistent and

efficient rule execution for intra- and inter-component adaptation behaviors. The self-managing

shock hydrodynamics simulation andCH4 ignition simulation are presented as case studies.

Note that in this prototype, autonomic elements are implemented as autonomic compo-

nents, the control port is constructed by exposing sensors and actuators via the CCA RulePort,

the operational port is implemented by component managers. The behavior rules are named

component rules, and the interaction rules are named composition rules.

5.1 Component-Based Distributed/Parallel Scientific Applications

5.1.1 The Common Component Architecture (CCA)

Component-based software architectures address some of the key requirements of emerging

high-performance parallel/distributed scientific applications. Specifically, the DoE Common

Component Architecture (CCA) and its implementation, the Ccaffeine framework [14], have

been successfully used by a number of applications [35, 41, 40]. CCA supports the provides-

uses design pattern. Componentsprovide functions anduseother components’ functions via

51

ports. Components are peers and independently developed. Further, CCA employs theSin-

gle Component Multiple Data (SCMD)model, where all processing nodes execute the same

program structure.

Ccaffeine [14], developed at Sandia National Laboratories, implements the CCA core spec-

ification and provides the fast and lightweight glue to integrate external and portable peer com-

ponents into a SCMD style parallel application. Components are created and exist within the

Ccaffeine framework. They register themselves and their ports with the framework and are

dynamically loaded and connected. As a result, the Ccaffeine framework maintains complete

knowledge about an application. Further, all the components on the same processor reside

in the same address space and these components interact with each other using method calls.

Component interaction across processors use MPI [6].

5.1.2 Behavior and Performance of Component-based Scientific Applications

The component-based programming approach not only reduces the burden of developing scien-

tific applications, but also benefits their runtime management. With componentization [14], the

behavior and performance of an application can be interpreted as a composition of individual

components. For example, the composite performance of a component assembly is determined

by the performance of the individual components and the efficiency of their interaction [59].

Therefore, management behaviors can be systematically enforced at two separate levels - intra-

component and inter-component.

The execution of scientific applications typically consists of a series of computational

phases. Between two successive phases, computations within components and communica-

tions between components are paused, and the components are reconfigured for the next phase.

This pause between phases has been called aquiet interval. Runtime management is usually

performed during thesequiet intervalsto ensure the integrity of the numerical computations.

Changes made to components/applications duringa quiet intervalare automatically applied in

the next computational phase.

Finally, in case of the Ccaffeine framework, due to the underlying SCMD model, con-

nections between components can be made by directly passing ports (i.e., pointers to pure

virtual interfaces), which incur negligible overheads [14]. As a result, the overall performance

52

of an application can be simply viewed as a function of the performance of its constituent

components. Further, in case of scientific applications, the performance of a component is

dominated by the cache performance of its implementation and the cost of inter-processor

communications [59]. Cache performance is defined by the degree of data locality in com-

putation algorithms and is affected by the cache size and cache management strategies used

by the execution environment. Inter-processor communication costs are defined by software

and algorithmic strategies used by the implementation (e.g., combining communication steps,

minimizing/combining global reductions and barriers, overlapping communications with com-

putations, etc.), and are affected by factors such as load-balance and communication channel

congestion (due to competing application or possibly malicious attacks).

5.2 Self-management of Component-based Scientific Applications

As mentioned in Chapter 1, addressing the challenges of emerging high-performance scien-

tific applications requires a programming system that enables the specification of applications,

which can detect and dynamically respond, during their execution to changes in both the execu-

tion environment and application state. This requirement suggests that: (1) applications should

be composed from discrete self-managing components, which incorporate separate specifica-

tions for all of functional, non-functional and interaction-coordination behaviors; (2) the spec-

ifications of computational (functional) behaviors, interaction and coordination behaviors and

non-functional behaviors (e.g. performance, fault detection and recovery, etc.) should be sepa-

rated so that their combinations are compose-able; (3) the interface definitions of these compo-

nents should be separated from their implementations to enable heterogeneous components to

interact and to enable dynamic selection of components.

Component-based scientific simulations and the CCA architecture address some of these re-

quirements and support application maintainability and extensibility. The capability of dynami-

cally swapping components has been incorporated into the CCA specification and implemented

by the Ccaffeine framework. However, enabling self-managing components/applications re-

quires extending CCA to enable components that can adapt their behaviors and interactions

based on their current state and execution context in an autonomic manner. In this section we

53

describe an extension of the CCA architecture, and specifically the Ccaffeine framework [14]

using Accord, to support self-management. This consists of extending CCA components (in-

cluding legacy components) to support monitoring and control, and extending the Ccaffeine

framework to support consistent and efficient rule-based intra-component and inter-component

self-management behaviors.

5.2.1 Defining Managed Components

In order to monitor and control the behaviors and performance of CCA components, the com-

ponents must implement and export appropriate “sensor” and “actuator” interfaces. Note

that the sensor and actuator interfaces are similar to those used in monitoring/steering sys-

tems [33, 60, 61]. However, these systems focus on interactive management where users man-

ually invoke sensors and actuators, while this research focuses on automatic management based

on user-defined rules. Adding sensors requires modification/instrumentation of the component

source code. In case of third-party and legacy components, where such a modification may not

be possible or feasible, proxy components [59] are used to collect relevant component informa-

tion. A proxy provides the same interfaces as the actual component and is interposed between

the caller and callee components to monitor, for example, all the method invocations for the

callee component. Actuators can similarly be implemented either as new methods that modify

internal parameters and behaviors of a component, or defined in terms of existing methods if

the component cannot be modified. The adaptability of the components may be limited in the

latter case. In the CCA based implementation, both sensors and actuators are exposed by in-

voking the ‘addSensor’ or ‘addActuator’ methods defined by a specializedRulePort, which is

shown in Figure 5.1.

class RulePort: public virtual Port {

public:

 RulePort(): Port() { }

 virtual ~RulePort() { }

 virtual void loadRules(const char* fileName) throw(Exception) = 0;

 virtual void addSensor(Sensor *snr) throw(Exception) = 0;

 virtual void addActuator(Actuator *atr) throw(Exception) = 0;

 virtual void setFrequency() throw(Exception) = 0;

 virtual void fire() throw(Exception) = 0;

};

Figure 5.1: TheRulePortspecification.

54

Management and adaptation behaviors can be dynamically specified by developers in the

form of rules. Two classes of rules are defined:

• Component rulesaddress intra-component management. These rules manage the runtime

behaviors of individual components, including dynamic selection of algorithms, imple-

mentations, data representation, input/output format used by the components, etc., based

on the current state and execution context of the component.

• Composition rulesaddress inter-component management. These rules manage the struc-

ture of the application and the interaction relationships among components based on the

current application/system state, changing requirements, and changing execution context.

Intra-component management behaviors include dynamic composition of components,

definition of coordination relationships and selection of communication mechanisms.

For example, composition rules can be used to add, delete or replace a component.

Management rules in this prototype incorporate high-level guidance and practical human knowl-

edge in the form of conditional if-then expressions, i.e., IFconditionTHEN action. This simple

construction of rules is deliberately used to enable efficient execution and minimize impact on

the performance of the application. Theconditionis a logical combination of sensors (exposed

by components) and performance data, and theaction consists of a sequence of invocations

of actuators exposed by components. The rules are interpreted and executed by the runtime

framework, as discussed in the next section.

5.2.2 Enabling Runtime Self-management

To enable runtime self-management in this prototype, two specialized component types are

defined (see Figures 5.2 and 5.3): (1) Component manager that monitors and manages the be-

haviors of individual components, e.g., selecting the optimal algorithms or modifying internal

states, and (2) Composition manager that manages, adapts and optimizes the execution of an ap-

plication at runtime. Both, component and composition managers are peers of user components

and other system components, providing and/or using ports that are connected to other ports

by the Ccaffeine framework. The two managers are not part of the Ccaffeine framework, and

55

consequently provide the programmers the flexibility to integrate them into their applications

only as needed.

CCA Ccaffeine framework

Controllable component

Component manager
 Composition manager

Driver

Figure 5.2: A self-managing application composed of 5 components. The solid lines denote
computational port connections between components, and the dotted lines are port connections
constructing the management framework.

Node x

Node z

Node y

C1x

C2x
 C1y

C2y

C2z

C1z

Figure 5.3: Distributed self-managing application shown in Figure 5.2 executed on three nodes.
The solid lines across nodes denote the interactions among manager instances. The dotted lines
are port connections constructing the management framework within one node.

The design of the component manager and composition manager components are based on

the following observations and considerations.

• Scientific applications may contain tens of components, but only a few of them need

to be dynamically monitored and controlled. Therefore, the manager functionalities are

56

encapsulated into two component types and provide programmers with the flexibility of

integrating them with other components in the applications. For example, in Figure 5.3,

only componentC1 andC2 are associated with component managers for dynamic man-

agement.

• The manager functionalities are provided by components instead of being integrated

within the Ccaffeine framework. This prevents the framework from being ‘overweight’

and thus avoids the resulting performance and maintenance implications.

• By encapsulating the manager functionality into these components and providing abstract

interfaces for invoking this functionality, the manager functionality can be modified and

improved without affecting other components and the framework. Additional function-

ality can be added into the manager components, and other components that deal with

specific management functions can be created and integrated with the manager compo-

nents using the ‘uses-provides design pattern’ [14].

Component Manager

Component managers provide theRulePortshown in Figure 5.1. They are instantiated only

after the other application components are composed together. Their instantiation consists

of two steps: first, instances of managed components expose their sensors and actuators to

their respective component manager instances by invoking the ‘addSensor’ and ‘addActuator’

methods, and second, component rules are then loaded into component manager instances,

possibly from disk files, by invoking the ‘loadRules’ method. This initialization of component

manager instances is a one-time operation.

Management operations are performed during applicationquiet intervals. The managed

components (or their proxies) invoke the ‘fire’ method of theRulePortto inform the compo-

nent managers that they have entered into a quiet interval. This behavior must be explicitly

programmed, possibly at the beginning/end of a computation phase or once every few phases,

to establish the self-management frequency. Adaptations made during a quiet interval will be

applied during the next computation phase.

57

Composition Manager

The composition manager also provides theRulePort (shown in Figure 5.1). Composition

manager instances are initialized by the CCA driver component to load in composition rules

(possibly from a disk file) using the ‘loadRules’ method. These rules are then decomposed into

sub rules, and delegated to corresponding component managers. The driver component noti-

fies composition manager instances of quiet intervals by invoking the ‘fire’ method. During

execution of the composition rules, composition manager instances collect results of sub rule

execution from component manager instances, evaluate the combined rule, and notify com-

ponent managers of actions to be performed. Possible actions include adding, deleting, or

replacing components. When replacing a managed component, the new component does not

have to provide and use the exact same ports as the old one. However, the new component must

at least provide all the active ports (those used by other components in the application) that are

provided by the old component.

Rule Execution Model

The three-phase rule execution model discussed in Chapter 3 is used by the component man-

agers to ensure consistent and efficient parallel rule execution.

During the batch condition inquiry phase, each component manager queries all the sensors

used by the rules in parallel, gets their current values, and then generates thepre-condition.

During the next phase, condition evaluation for all the rules is performed in parallel. Rule

conflicts are detected at runtime when rule execution changes thepre-condition(defined as

sensor-actuator conflicts), or the same actuator will be invoked with different values (defined

as actuator-actuator conflicts). Sensor-actuator conflicts are resolved by disabling those rules

that will change thepre-condition. Actuator-actuator conflicts are resolved by relaxing the pre-

condition according to user-defined strategies until no actuator will be invoked with different

values.

For example, consider componentC1 with 3 algorithms: algorithm 1 has better cache per-

formance but consumes a large communication bandwidth, algorithm 2 has comparatively more

58

cache misses but only consumes a small bandwidth, and algorithm 3 demonstrates an accept-

able cache miss and communication delay but has lower precision. It is possible that under

certain conditions, rule evaluation may results in the selection of algorithm 1 and 2 at the same

time to simultaneously decrease cache misses and communication delay, and maintain high-

precision computation. This conflict is detected and resolved by relaxing the high-precision

requirement, and therefore algorithm 3 can be selected.

Further, the framework also provides mechanisms for reconciliation among manager in-

stances, which is required to ensure consistent adaptations in parallel SCMD applications, since

each processing node may independently proposes different adaptation behaviors based on its

local state and execution context. The reconciliation for component rules consists of identify-

ing and propagating the actions proposed by a majority of the nodes. If a majority is not found,

an error is reported to the user. Composition rules are statically assigned one of two priori-

ties. A high priority means that the re-composition is necessary, while a low priority means the

re-composition is optional. Actions associated with composition rules with high priority are

propagated to all the nodes. If there are multiple high priority rules with collisions, a runtime

error is generated and reported to the user. In case of actions associated with composition rules

with low priority, a cost model is used to approximate the performance gain of each action set

and the action set with the best overall gain is selected and applied by all the nodes.

After conflict resolution and reconciliation, thepost-condition, consisting of a set of ac-

tuators and their new values, is generated. Thepost-conditionis enforced by appropriately

invoking the actuators in parallel during the batch action invocation phase.

Note that the rule execution model presented here focuses on correct and efficient execu-

tion of rules and provides mechanisms to detect and resolve conflicts at runtime. However,

correctness of rules and conflict resolution strategies are responsibilities of the users.

5.2.3 Supporting Performance-driven Self-management

The TAU [5] framework provides support for monitoring the performance of components and

applications, and is used to enable performance-driven self-management. TAU can record in-

clusive and exclusive wall-clock time, process virtual time, hardware performance metrics such

59

as data cache misses and floating point instructions executed, as well as a combination of mul-

tiple performance metrics, and help track application and runtime system level atomic events.

Further, TAU is integrated with external libraries such as PAPI [3] or PCL [4] to access low-

level processor-specific hardware performance metrics and low latency timers.

In our framework, TAU APIs are directly instrumented into the computational components,

or into proxies in case of third-party and legacy computational components, and performance

data is exported as sensors to component managers. Optimizations are used to reduce the over-

heads of performance monitoring. For example, as the cache-hit rate will not change unless

a different algorithm is used or the component is migrated to another system with a different

cache size and/or cache policies, monitoring of cache-hit rate can be deactivated after the first

a few iterations and only re-activating when an algorithm is switched or the component is mi-

grated. Similarly, inter-processor communication time is measured per message by default but

this can be modified using the ‘setFrequency’ method in theRulePortto reduce overheads. An-

other possibility is to restrict monitoring to only those components that significantly contribute

to the application performance. Composition managers can identify these components at run-

time using mechanisms similar to those proposed in [68] and enable or disable monitoring as

required. Finally, in case of homogeneous execution environments only a subset of nodes may

be monitored.

5.3 Case Studies

The operation of the component based prototype is illustrated using two applications, (1) a self-

managing hydrodynamics shock simulation and (2) a self-managingCH4 ignition simulation.

5.3.1 A Self-Managing Hydrodynamics Shock Simulation

This application simulates the interaction of a hydrodynamic shock with a density-stratified

interface. The system is modelled using the 2D Euler equation (inviscid Navier-Stokes). Details

of the equations used and the interaction are presented in [58, 63, 64]. The governing equations

(the compressible Euler equations) in conservative form are:

Ut + F(U)x + G(U)y = 0 (5.1)

60

where

U = {ρ, ρu, ρv, ρe, ρζ}T ,

F(U) = {ρu, ρu2 + p, ρuv, (ρe + p)u, ρζu}T ,

G(U) = {ρv, ρuv, ρv2 + p, (ρe + p)v, ρζv}T ,

ρe is the total energy, related to the pressurep by p = (γ − 1)(ρe − 1
2ρ(u2 + v2)) andζ is

an interface tracking function. We have used the conservative level set formulation of Mulder

et. al [51] to track the interface. The basic idea is as follows: Consider a functionζ(x, t),

which is defined everywhere in the domain. Then a particular value defines the interface. In

our case, we initially useζ(x, 0) = +1(0) in the incident (transmitted) gas. We define the

interface asζ(x, t) = 0.5. The functionζ(x, t) is governed by the partial differential equation

Dζ/Dt = 0, resulting in the last equation in the system above. We use the ideal gas law as

the equation of state. The equations are solved on a uniform cell-centered mesh i.e. the mesh

divides the domain into small rectangular cells and fluid variables are defined and indexed at

the cell centers. In 1D, the equation would be solved as

Un+1 = Un +
∆t

∆x

(
Fn+1/2

i+1/2 −Fn+1/2
i−1/2

)
(5.2)

The Godunov method is used to determineFn+1/2
i+1/2 at the cell interfaces in order to evaluate

the RHS. This involves transforming the equation at each cell into Riemann Invariants in the

X andY directions; constructing the states on the left and right of a cell interface using slope-

limiters and upwinding. Since the left and right states are not identical, a Riemann problem

[65] is setup, which is solved (iteratively) to obtain the fluxesFn+1/2
i+1/2 . The construction of left

and right states holds true for most finite volume methods; solving an exact Riemann problem

could be substituted by a gas-kinetics scheme (e.g.Equilibrium Flux Method [56]).

Figure 5.4 shows the assembly of components for the CCA-based implementation of the

simulation. The simulation uses structured adaptive mesh refinement. In this implementation,

the Runge-Kutta time integrator (RK2) with an InviscidFlux component supplies the right-

hand-side of the equation on a patch-by-patch basis. This component uses aConstructLRStates

component to set up a Riemann problem at each cell interface, which is then passed toGo-

dunovFlux for the Riemann solution. AConicalInterfaceIC component sets up the problem

61

Figure 5.4: “Wiring” diagram of the shock-hydrodynamics simulation. A second-order Runge-
Kutta (RK2) integrator drivesInviscidFlux component – transformation into left and right
(primitive) states is done byStatesand the Riemann problem solved byGodunovFlux. Sundry
other components for determining characteristics’ speeds (u + a, u - a, u), cell-centered inter-
polations etc. complete the code.

- a shock tube with Air and Freon (density ratio 3) separated by an oblique interface that is

ruptured by a Mach 10.0 shock. The shock tube has reflecting boundary conditions above

and below and outflow on the right. TheAMRMesh andGodunovFlux are the significant

components in this simulation from the performance point of view, and is used to illustrate

self-managing behaviors in the discussion below.

Scenario 1: Self-optimization via component replacement

An EFM algorithm, which is based on a gas-kinetic scheme [56], may be used instead of

the Godunov method withRK2 in the implementation described above.GodunovFlux and

EFMFlux demonstrate different performance behaviors and mean execution times as the size

of the input array size increases, as shown in Figure 5.5. This difference in performance is

primarily due to the difference in data locality and cache behaviors for the two implementations.

62

GodunovFlux is more expensive thanEFMFlux for large input arrays.

0 5000 10000 15000
0

500

1000

1500

2000

2500

3000

3500

4000

Array Size

M
ea

n
E

xe
cu

tio
n

T
im

e

EFM

Godunov

Figure 5.5: The average execution times forEFMFlux andGodunovFlux as functions of the
array size (machine effects have be averaged out).

The appropriate choice of algorithm (Godunov or EFM) depends on simulation parame-

ters, its runtime behaviors and the cache performance of the execution environment, and is not

known a priori. In this scenario we use information about cache misses forGodunovFlux ob-

tained using TAU/PCL/PAPI, to trigger self-optimization, so that when cache misses increase

above a certain threshold, the corresponding instance ofGodunovFlux is replaced with an

instance ofEFMFlux .

To enable the component replacement, one component manager is connected to the com-

ponentGodunovFlux through theRulePort to collect performance data, evaluate rules, and

perform runtime replacement. The component manager (1) locates and instantiatesEFMFlux

from the component repository, (2) detects all the provides and uses ports ofGodunovFlux,

as well as all the components connected to it, (3) disconnectsGodunovFlux and delete all the

rules related toGodunovFlux, (4) connectsEFMFlux to related components and load in new

rules, and finally (5) destroysGodunovFlux. The replacement is performed at aquiet interval.

From the next calculation step,EFMFlux is used instead ofGodunovFlux. However, other

components in the application do not have to be aware of the replacement, since the abstract

interfaces (ports) remain the same. After replacement, the cache behavior improves as seen in

Figure 5.6.

63

0

0.5

1

1.5

2

0

2

0

0

0

4

0

0

0

6

0

0

0

8

0

0

0

1

0

0

0

0

1

2

0

0

0

1

4

0

0

0

1

6

0

0

0

Array size

C

a

c

h

e

m

i
s

s

with

without

replacement

replacement

EFM
Godunov

Figure 5.6: Replacement ofGodunovFlux with EFMFlux to decrease cache misses.

Scenario 2: Self-optimization via component adaptation

The AMRMesh component supports structured adaptive mesh-refinement and provides two

communication mechanisms. The first exchanges messages on a patch by patch basis and re-

sults in a large number of relatively small messages. The second packs messages from multiple

patches to the same processor and sends them as a single message, resulting in a small num-

ber of much larger messages. Depending on the current latency and available bandwidth, the

component can be dynamically adapted to switch the communication mechanism used.

In this scenario, we use the current system communication performance to adapt the com-

munication mechanism used. As PAPI [3], PCL [4], and TAU [5] do not directly measure

network latency and bandwidth, this is indirectly computed using communication times and

message sizes.AMRMesh exposes communication time and message size as sensors, which

are used by the component manager to get the current bandwidth as follows:

bandwidth =
commTime1 − commTime2

msgSize1 −msgSize2
(5.3)

Here, ‘commTime1’ and ‘commTime2’ represent the communication times for messages

with sizes ‘msgSize1’ and ‘msgSize2’ respectively. When the bandwidth falls below a thresh-

old, the communication mechanism switches to patch by patch messaging (i.e., algorithm 1).

This is illustrated in Figure 5.7. The algorithm switching happens at iteration 9 when chan-

nel congestion is detected, and results in comparatively smaller communication times in the

following iterations.

64

0

1

2

3

4

5

6

7

8

1
 3
 5
 7
 9
 11
 13
 15
 17
 19
 21
 23

computation

iterations

c

o

m

m

u

n

i
c

a

t

i
o

n

t

i
m

e

(

m

s

)

with

algorithm

switching

without

algorithm

switching

Figure 5.7: Dynamically switch algorithms inAMRMesh.

Scenario 3: Self-healing via component replacement

While Godunov methods withRK2 tend to be more accurate, they become unstable for stronger

shocks and larger density ratios. One solution is to replaceGodunovFlux in these cases with

EFMFlux . The appropriate choice of algorithm (Godunov or EFMFlux) depends on the Mach

number and the density ratio, and is once again not known a priori. In the best of cases, an

algorithm will operate for some time before failing to converge and indicating an error; at other

times, it will work “reliably” and produce wrong (even qualitatively wrong) results. In the case

where an error can be identified, we have the option of dynamically replacing one algorithm by

another by simply replacing the component implementing the algorithm. Of course, the same

change has to be performed on all the processors. While dynamically changing components

does raise some fundamental issues (e.g. in this case, the simulation is neither purely EFM-

based nor Godunov-based, and is not mathematically consistent either), it is expected that the

results will be at least qualitatively correct. Since such simulations often require substantial

computational resources, obtaining qualitative answers may be preferable to simply exiting

with an error.

In this scenario we investigate the dynamic replacement ofGodunovFlux with EFMFlux

so that it continues to provide qualitatively correct results. The adaptation is triggered when

GodunovFlux fails to converge, i.e., its iteration count increases above a certain threshold, and

causes the instance of componentGodunovFlux to be replaced by an instance of component

EFMFlux . The replacement process is the same as that described in scenario 1 above.

65

5.3.2 A Self-ManagingCH4 Ignition Simulation

This section focuses on the overall performance improvement of theCH4 ignition simulation.

The ignition process is represented by a set of chemical reactions, which appear and disappear

when the fuel and oxidizer react and give rise to the various intermediate chemical species.

In the simulation application, the chemical reactions are modeled as repeatedly solving the

ChemicalRates equation (G) [2] with different initial conditions and parameters using one of a

set of algorithms called backward difference formula or BDFs. The algorithms are numbered

from 1 to 5, indicating the order of accuracy of the algorithm.BDF5 is the highest order

method, and is most accurate and robust. It may, however, not always be the quickest. As

a result, the algorithm used for solving the equationG has to be selected based on current

condition and parameters. In this application, the bulk of the time is spent in evaluating the

equationG. Therefore, reducing the number ofG evaluations is a sufficient indication of speed

independent of the experimentation environment.

As shown in Figure 5.8, the rule-based execution decreases the number of invocation to

equationG, and the percentage decrease is annotated for each temperature value. It results

in an average11.33% computational saving. As the problem becomes more complex (the

computational cost of G increase), the computational saving will be more significant.

0

200000

400000

600000

800000

1000000

1200000

1400000

1

0

0

0

1

2

0

0

1

4

0

0

1

6

0

0

1

8

0

0

2

0

0

0

2

2

0

0

2

4

0

0

temperature

t
h

e

n

u

m

b

e

r

o

f

i
n

v

o

c

a

t
i

o

n

t

o

G

rule based

execution

non rule

based

execution

3.69%

10.23%

21.33%

9.38%

5.36%

3.60%

27.42%

9.59%

Figure 5.8: Comparison of rule based and non rule based execution ofCH4 ignition.

5.3.3 Experimental Evaluation

The prototype was evaluated on a Beowulf cluster. The cluster contains 64 Linux-based com-

puters connected by 100 Mbps full-duplex switches. Each node has an Intel(R) Pentium-4

66

1.70GHz CPU with 512MB RAM and is running Linux 2.4.20-8 (kernel version). In this pro-

totype, computational components were enhanced with sensors and actuators, and manager

components were introduced into the application. The overheads associated with initializa-

tion of computational components and managers and the runtime execution of component and

composition rules were evaluated.

s

e

c

o

n

d

s

without Accord

with Accord

number of computations

p

e

r

c

e

n

t

a

g

e

3.7441

1.3299

1.2414

0.4238

0

1

2

3

4

10
 100
 1000
 10000

0

.
1

0

5

1

.
0

7

0

1

0

.
8

4

6

1

0

8

.
3

0

4

0

.
1

0

9

1

.
0

8

4

1

0

.
9

8

2

1

0

8

.
7

6

5

0

20

40

60

80

100

120

10
 100
 1000
 10000

number of computations

number of

processors

e

x

e

c

u

t

i
o

n

t
i

m

e

(

m

i

c

r

o

s

e

c

o

n

d

s

)

Average component rule execution

Average composition rule execution

0

10

20

30

40

50

1
 2
 4
 8
 16
 32

(a) Minimal overhead
 (b) Percentage of minimal overhead
 (c) Rule execution overhead

Figure 5.9: Experimental evaluation of Ccaffeine-based Accord prototype.

Experiment 1 (Figure 5.9 (a) and (b)): This experiment measures the runtime overhead

introduced by the Accord runtime management framework in a minimal rule execution mode,

i.e., the manager components load rules and query sensors but rule execution is disabled during

the experiment. The application execution time with and without Accord are plotted in Fig-

ure 5.9 (a) and the percentage overhead is plotted in Figure 5.9 (b). The major overhead in this

case is due to the loading and parsing of rules. It can be seen from the plots that this overhead

is very small compared to the application execution time.

Experiment 2 (Figure 5.9 (c)): This experiment evaluates the average execution time of

component rules and composition rules. The figure shows that, as the number of processors in-

creases, the average execution time of both the component rules and composition rules increase

but only slightly. This slight increase is primarily due to the time for reconciliation among

manager instances, which depends on the number of nodes involved. Once reconciliation is

completed, component manager instances perform the replacement in parallel. As seen from

the figure, the average execution time of a composition rule is much larger than that of a com-

ponent rule. This is because, in order to replace a component, the manager has to instantiate a

new component, connect it to other components, and load new rules. However, the execution

of component rules only involves invoking the component’s actuators.

67

Note that while the framework does introduce overheads, the benefits of self-management

would outweigh these overheads. Further, the overheads are not significant when compared

to the typical execution time of scientific applications, which can be in hours, days, and even

weeks.

5.4 Summary and Conclusion

This chapter presented a component based prototype of Accord programming system that en-

ables self-managing component-based scientific applications capable of detecting and dynam-

ically responding to changing requirements, state and execution context. The programming

system extends the common component architecture (CCA) and the Ccaffeine framework. It

enables the behaviors and interaction of components and applications to be defined using high

level rules and provides a runtime framework for the correct and efficient execution of these

rules. Mechanisms for detecting and resolving rule conflicts are provided. The operation of the

programming system was illustrated using a self-managing hydrodynamics shock simulation

and a self-managingCH4 ignition simulation. A performance evaluation was presented.

68

Chapter 6

Accord-WS: Autonomic Service-based Accord

This chapter discusses the prototype of Accord based on the WS-Resource specifications [31]

and the Web service specifications [10, 7, 8, 26]. Accord utilizes human knowledge to guide

the behaviors and compositions of services in response to changing requirements and execution

context. In the autonomic service-based Accord, this is achieved by adapting the service behav-

iors and their interactions using dynamically defined rules. Key components of the prototype

include: (1) the formulation of autonomic services that extend WS-Resources with specifi-

cations and mechanisms for self-management and (2) a distributed runtime infrastructure to

enable decentralized and dynamic compositions of these services.

6.1 Autonomic Services

An autonomic service (shown in Figure 6.1) consists of (1) a WS-Resource [31] providing func-

tionalities and stateful information, (2) a coordination agent sending and receiving interaction

messages for the associated WS-Resource, and (3) a service manager that manages the runtime

behaviors of the WS-Resource and its interactions with other autonomic services. Applications

can be developed as compositions (possibly dynamic and opportunistic) of these autonomic

services.

Each managed WS-Resource is extended with a control port specified as a WSDL [26]

document consisting of sensors and actuators for external monitoring and control of its internal

state. The control port can be exposed as part of the service port or as a separate document to

the service manager. An example of the control port is shown in Figure 6.7.

The coordination agent acts as a programmable notification broker [8] for the associated

WS-Resource. As shown in Figure 6.2, a coordination agent consists of 4 modules that work in

parallel: (1) alistener module that listens to the incoming messages from other autonomic ser-

vices, (2)message handlersthat process the messages using functions defined in themessage

69

WS-Resource

Service manager

Service

invocation

Coordination agent

Behavior

management

Interaction

management

Behavior

rules

Interaction

rules

Interactions with other

autonomic service

Autonomic service

Control

port

Control

port

Figure 6.1: An autonomic service.

function table, (3) libraries that provides functions for processing messages (e.g., translat-

ing message formats and combining messages), and invoking the associated WS-Resource and

getting response messages, and (4) apublisher that sends the response messages to the sub-

scribers. The coordination agent exposes sensors and actuators to the service manager that

allows the manager to query and modify itsmessage function tableandmessage subscriber

table. The service manager can dynamically reconfigure the coordination agent by changing

themessage function tableto select functions to process messages, and by changing themes-

sage subscriber tableto add and delete subscribers.

Listener
 Message

handler

Libraries

Incoming

messages

1. Query functions

using message names

2. function

invocation

3. service

invocation

WS-Resource

Response

messages

Publisher

Message

function table

Message

subscriber

table

4. Query

subscribers

5. Publish

messages

Autonomic

service

Autonomic

service

Coordination agent

Response

messages

Figure 6.2: Message processing in a coordination agent.

70

The service manager performs (1) functional management using sensors and actuators ex-

posed by the associated WS-Resource based on behavior rules defined by users or derived from

application requirements and objectives, and (2) interaction management using sensors and ac-

tuators exposed by the coordination agent based on interaction rules derived from application

workflows.

6.2 The Runtime Infrastructure

The runtime infrastructure consists of the Accord portal/composition manager, peer service

managers, and other supporting services as shown in Figure 6.3.

Application workflow
 Adaptation strategies

Application requirements

Interaction

rules

WS services (e.g.,

WS-coordination,

WS-transaction,

discovery service)

Behavior

rules

Interaction

rules

Interaction

rules

Behavior

rules

Behavior

rules

Accord portal / composition manager

Figure 6.3: The runtime framework. The dashed lines represent the interactions among man-
agers. The solid lines represent the interactions among WS-Resources.

6.2.1 Workflow Execution

To execute an application workflow that may be defined by a user or generated by an automated

workflow generation engine such as [38], [24], [12], [55], [43], or [32], the composition man-

ager first discovers and locates the relevant WS-Resources, instantiates a coordination agent for

each of the WS-Resources, and further instantiates a service manager for each WS-Resource

71

and coordination agent pair to enable service behavior and interaction adaptations. Coordina-

tion agents interact with their associated WS-Resources using SOAP messages. Service man-

agers are located within the same memory space with their associated coordination agents, and

they interact with each other through pointers. The communications among service managers

are based on sockets.

The composition manager decomposes the application workflow into interactions rules and

injects them into corresponding service managers, which then configure associated coordina-

tion agents to dynamically establish publication/subscription relationships and manipulate in-

teraction messages. Specifically, a service manager configures themessage function tableby

associating the messages that this autonomic service subscribes to with functions for processing

them. Similarly, it also configures themessage subscriber tableby associating the messages

that this autonomic service produces with a list of subscribers. These operations are performed

by the service manager by invoking the actuators provided by the coordination agent. Further,

service managers configures the associated WS-Resource based on the behavior rules defined

by users or generated from application requirements.

The advantages of workflow decomposition are illustrated using an itinerary application.

This application consists of anAirlineService, HotelService, andCarService, and is used by

travellers to reserve airline tickets and hotel rooms, and rent cars for the journey.

• Decreasing communication overhead: The decentralized composition enabled by work-

flow decomposition is shown in Figure 6.4 (b). Compared to the centralized composition

specified using BPEL4WS [15] (shown in Figure 6.4 (a)), decentralized composition

enables direct interactions among involved services, and therefore avoids unnecessary

messages and relieves the bottleneck caused by the centralized unit.

• Exploring parallelism: After the rules are deployed, autonomic services without data and

control dependencies can proceed in parallel, otherwise they are forced to wait until the

required data is received. For example in the itinerary application, the parallel execution

of CarServiceandHotelServicecan be explicitly defined or automatically discovered,

since the two services have no data dependencies and the workflow does not enforce

any execution construct on them. Further, the two elements do not have to wait until

72

AirlineService

CarService
 HotelService

Customer

AirlineService

Customer

CarService

HotelService

p

r

o

c

e

s

s

(a)
 (b)

Figure 6.4: The itinerary workflow specified using (a) BPEL4WS and (b) Accord interaction
rules.

the AirlineService finishes. They can start as soon as the required information (the

destination airport and time) is available. As a result, the implicit parallelism can be

discovered and exploited as the workflow is decomposed and executed in a decentralized

manner.

• Facilitating dynamic composition: Dynamic composition involves addition, deletion and

replacement of services, and changes in their interactions at runtime. These changes can

be achieved by adding, deleting, or modifying related interaction rules accordingly, as

discussed in the next section.

6.2.2 Dynamic Composition

Application workflows need to be changed accordingly when business logic or user require-

ments change. In most cases, these changes only affect a part of the workflow. Workflow

decomposition discussed above can benefit the dynamic composition of autonomic services by

constraining the modification to the associated part of the workflow without affecting the rest

of the application.

In Accord, dynamic composition is enabled by adding, deleting, or modifying interaction

rules in service managers, which automatically reconfigures the associated coordination agents

accordingly. For example, a new serviceParkService is added into the itinerary application,

shown in Figure 6.5. First, theCompositionManagercreates a service manager and a coordi-

nation agent for theParkService, and then inserts interaction rules into theParkServiceand

73

AirlineService. The service managers of the two involved services will configure the message

function tables and message subscriber tables at the associated coordination agents based on

these rules. As a result,ParkServiceregisters as a notification subscriber to theAirlineService

and theCompositionManagercollects reservation information from theParkServicebefore

it generates the final itinerary for the users. Since theParkServiceonly interacts with theAir-

lineServiceandCompositionManager, only these two services need injection or modification

of interaction rules.CarServiceandHotelServiceare not affected.

AirlineService

Consumer

(Composition Manager)

CarService

HotelService

ParkService

Figure 6.5: A new serviceParkService is added to the itinerary workflow. The dashed lines
denote the new interaction relationships created due to the addition of the new service.

6.3 An Illustrative Application: The Autonomic Data Streaming Application

This section illustrates the self-managing behaviors enabled by the autonomic service-based

Accord using an autonomic data streaming application shown in Figure 6.6. The applica-

SS

NERSC

PPPL

ORNL

ADSS

DAS
DSS

DSS

Grid middleware,

Logistical Networking

backbone
BMS
 DTS

Figure 6.6: The autonomic data streaming application based on Accord-WS.

tion consists of the G.T.C. fusion simulation that runs for days on a parallel supercomputer

at NERSC (CA) and generates multi-terabytes of data. The data are analyzed and visualized

live at PPPL (NJ), while the simulation is running at NERSC (CA). The data also have to be

archived either at PPPL (NJ) or ORNL (TN). Data streaming techniques from a large number

74

of processors have been shown to be more beneficial for such a runtime analysis than writ-

ing data to the disk [20]. The goal of the autonomic data steaming is to stream data from the

live simulation to support remote runtime analysis and visualization at PPPL while minimizing

overheads on the simulation, adapting to network conditions, and eliminating loss of data. The

application workflow consists of the following five core services:

• The Simulation Service (SS) executes in parallel on 6K processors of the Seaborg IBM

SP at NERSC and generates data at regular intervals that has to be transferred at runtime

for analysis and visualization at PPPL, and archived in data stores at PPPL or ORNL.

• The Data Analysis Service (DAS) runs on a 32 node cluster located at PPPL. The service

analyzes and visualizes the steaming data.

• The Data Storage Service (DSS) archives the streamed data using the Logistical Net-

working backbone [54], which builds a Data Grid of storage services located at ORNL

and PPPL.

• The Autonomic Data Streaming Service (ADSS) is constructed using the Accord auto-

nomic service architecture and manages the streaming of data from the SS to the DAS (at

PPPL) and DSS (at PPPL/ORNL). It is a composite service composed of two services:

– The Buffer Manager Service (BMS) manages the buffers allocated by the service

based on the rate and volume of data generated by the simulation and determines

the granularity of blocks used for data transfer.

– Data Transfer Service (DTS) manages the transfer of blocks of data from the buffers

to remote services for analysis and visualization at PPPL, and archiving at PPPL or

ORNL.

Two self-managing scenarios forADSSare described below.

6.3.1 Service Adaptation

BMS selects the appropriate blocking technique, orders blocks in the buffer and optimizes

the size of the buffer(s) used to ensure low latency high performance steaming and minimize

75

the impact on the simulation execution. The adaptations are based on the current state of the

simulation, more specifically the following three runtime parameters: (1) The data generation

rate, which is the amount of data generated per iteration divided by the time required for the

iteration, and can vary from 1 to 400 Mbps depending on the domain decomposition and the

type of analysis to be performed. (2) The network connectivity and the network transfer rate.

The latter is limited by the 100 Mbps link between NERC and PPPL. (3) The nature of data

being generated in the simulation, e.g., parameters, 2D surface data or 3D volume data.BMS

provides the following three algorithms:

• Uniform Buffer Management: This algorithm divides the data into blocks of fixed sizes,

which are then transmitted by theDTS. This static algorithm is more suited for the sim-

ulations generating data at a small or medium rate (50Mbps). Using smaller block sizes

have significant advantages at the receiving end as less time is required for decoding the

data and processing blocks for analysis and visualization.

• Aggregate Buffer Management: This algorithm aggregates blocks across iterations and

theDTS transmits these aggregated blocks. This algorithm is suited for high data gener-

ation rates, i.e., between 60-400 Mbps.

• Priority Buffer Management: This algorithms orders data blocks in the buffer based on

the nature of the data. For example, 2D data blocks containing visualization or simulation

parameters are given higher priority as compared to 3D raw volume data.

To enable the adaptation, theBMS exports two sensors, “DataGenerationRate” and “DataType”,

and one actuator, “BlockingAlgorithm” as part of its control port shown in Figure 6.7.

The self-optimization behavior of BMS is governed by the rule shown in Figure 6.8, which

states that if the data generation rate is greater than the peak network transfer rate (i.e., 100

Mps), the aggregate buffer management is used, otherwise the uniform buffer management

algorithm is used. The resulting behavior of this rule is plotted in Figure 6.9. The figure show

that BMS switches to aggregate buffer management at simulation time intervals between 75 sec

to 150 sec and 175 sec and 250 sec as the simulation data generation rate peaks to 100Mbps

and 120 Mbps during these intervals. The aggregation is an average of 7 blocks. Once the data

76

generation rate falls to 50Mbps, BTS switches back to the uniform buffer management scheme,

by constantly sending 3 blocks of data on the network.

Figure 6.9 (b) plots the percentage overhead on simulation execution without and with

autonomic management. Overhead is computed as the absolute difference between the time

required to generate data without data streaming and the time required to stream the data us-

ing ADSS. The plots show that BTS switches from uniform buffer management to aggregate

buffer management at data generation rates of around 80-90 Mbps. This increases the overhead

slightly, however the overheads remains less than 5%. Without autonomic management, the

overheads increase about 10% for higher data rates as BTS continues to use uniform buffer

management.

6.3.2 Application Adaptation

This scenario addresses data loss in the cases of extreme network congestion or network fail-

ures. These cases cannot be addressed using simple buffer management or replication. One

option in these cases to avoid data loss is to write data locally at NERSC rather than stream-

ing. However, the data will not be available for analysis and visualization until the simulation

complete, which could be days. Writing data to the disk also causes significant overheads to

the simulation [20].

ADSS address these cases by temporarily or permanently switching the streaming to the

DSS at ORNL instead of PPPL. NERSC and ORNL are connected by a 400 Mbps link which

has a lower probability of being saturated. The data can be later transmitted from ORNL

to PPPL. Congestion is detected by observing the buffer - when the buffer is filled to a pre-

defined capacity, the ADSS switches subsequent streaming to ORNL, and when the buffer is

no longer saturated, switches the steaming back to PPPL. Note that the data that is already

queued continues to be concurrently steamed to PPPL. If the service observes that buffer is

being saturated continuously, it infers that there is a network failure and permanently switches

the streaming to ORNL. In this case, the blocks already in the PPPL buffer are transferred to

the ORNL queue. The rule specifying this self-management behavior is listed in Figure 6.10.

The resulting self-healing behavior is plotted in Figure 6.11. The figure shows that as the

ADSS buffer(s) get saturated, the data streaming switches to the DSS at ORNL, and when the

77

buffer occupancy falls below 20% it switches back to PPPL. Note, that while the data blocks

are written to ORNL, data blocks already queued for transmission to PPPL continue to be

streamed. The figure also shows that, at simulation time 1500 (X axis), the PPPL buffers once

again get saturated and the streaming switches to ORNL. If this persists, the steaming would

be permanently switched to ORNL.

6.4 Summary

This chapter presented the autonomic service-based Accord for self-managing Grid applica-

tions. It enables the development of autonomic services and the formulation of autonomic

applications as the dynamic composition of autonomic services, where the runtime computa-

tional behavior of the services as well as their compositions and interactions can be managed at

runtime using dynamically injected rules. As a result, applications are capable of adapting their

runtime behaviors to deal with the dynamism and uncertain of Grids and Grid applications. An

autonomic data streaming application is used to illustrate the self-managing behaviors enabled

by Accord.

78

<controlPort name=``BMS_controlPort`` service=``BufferManagerService``>

 <types>

 <sensor name=``DataGenerationRate``>

 <element name=``DataGenerationRateReq`` type=``string``/>

 <element name=``DataGenerationRateResp`` type=``double``/>

 </sensor>

 <sensor name=``DataType``>

 <element name=``DataTypeReq`` type=``string``/>

 <element name=``DataTypeResp`` type=``string``/>

 </sensor>

 <actuator = name=``BlockingAlgorithm``>

 <element name=``BlockingAlgorithmReq`` type=``string``/>

 </actuator>

 </types>

 <message name=``GetDataGenerationRateIn``>

 <part name=``body`` element=``DataGenerationRateReq``/>

 </message>

 <message name=``GetDataGenerationRateOut``>

 <part name=``body`` element=``DataGenerationRateResp``/>

 </message>

 <message name=``GetDataTypeIn``>

 <part name=``body`` element=``DataTypeReq``/>

 </message>

 <message name=``GetDataTypeOut``>

 <part name=``body`` element=``DataTypeResp``/>

 </message>

 <message name=``SetBlockingAlgorithm``>

 <part name=``body`` element=``BlockingAlgorithmReq``/>

 </message>

 <portType name=``BMSControlPortType``>

 <operation name=``SensorDataGenerationRate``>

 <input message=``tns:GetDataGenerationRateIn``/>

 <output message=``tns:GetDataGenerationRateOut``/>

 </operation>

 <operation name=``SensorDataType``>

 <input message=``tns:GetDataTypeIn``/>

 <output message=``tns:GetDataTypeOut``/>

 </operation>

 <operation name=``ActuatorBlockingAlgorithm``>

 <input message=``tns:SetBlockingAlgorithm``/>

 </operation>

 </portType>

</controlPort>

Figure 6.7: The control port ofBMS.

79

<rule name=``BlockingRule`` attribute=``active``>

 <trigger name=``DGR`` sensor=``DataGenerationRate`` op=``GT``

 value=peakRate type=``float``/>

 <when>

 <operand trigger=``DGR``/>

 </when>

 <do>

 <action actuator=``BlockingAlgorithm``>

 <input value=``aggregation`` type=``string``/>

 </action>

 </do>

 <else>

 <action actuator=``BlockingAlgorithm``>

 <input value=``uniform`` type=``string``/>

 </action>

 </else>

</rule>

Figure 6.8: The behavior rule forBMS.

(a)
 (b)

Simulation Time (sec)

0
 50
 100
 150
 200
 250
 300
 350
 400

N

u

m

b

e

r

o

f

B

l
o

c

k

s

S

e

n

t

(
1

0

M

B

/
b

l
o

c

k

)

2

4

6

8

10

12

14

100Mbps

Aggregate Buffer Management

Uniform Buffer Mangement

 50Mbps

120Mbps

 Data Generation Rate (Mbps)

0
 20
 40
 60
 80
 100
 120
 140

%

O

v

e

r

h

e

a

d

o

n

t

h

e

S

i
m

u

l
a

t

i
o

n

0

5

10

15

20

%Overhead vs Mbps using Autonomic Management

%Overhead vs Mbps without Autonomic Management

Figure 6.9: (a) Self-optimization behaviors of the Buffer Management Service - BTS switches
between uniform blocking and aggregate blocking algorithms based on application data gener-
ation rates and network transfer rates and the nature of data generated. (b) Percentage overhead
on simulation execution simulation with and without autonomic management.

80

<rule name=
̀`
TransferRule
̀ `
 attribute=
̀`
active
̀`
>

 <trigger name=
̀`
transferFailed
̀`
 sensor=
̀ `
DataTransfer
̀`

 op=
̀`
EQ
̀`
 value=
̀`
0
̀`
 type=
̀`
integer
̀`
/>

 <trigger name=
̀`
transferSwitch
̀`
 sensor=
̀ `
NumOfSwitches
̀`

 op=
̀`
LT
̀`
 value=switchThreshold type=
̀`
integer
̀ `
/>

<when>

 <and>

 <operand trigger=
̀`
transferFailed
̀̀
/>

 <operand trigger=
̀`
transferSwitch
̀`
/>

 </and>

</when>

<do>

 <action actuator=
̀`
TransferAlgorithm
̀`
>

 <input value=
̀`
local
̀`
 type=
̀ `
string
̀`
/>

 </action>

</do>

<when>

 <not>

 <operand trigger=
̀`
transferSwitch
̀`
/>

 </not>

<do>

 <action actuator=
̀`
TransferAlgorithm
̀`
>

 <input value=
̀`
local
̀`
 type=
̀ `
string
̀`
/>

 </action>

 <action actuator=
̀`
Accord:SetRuleAttribute
̀`
>

 <input value=
̀`
TransferRule?type=``string``/>

 <input value=
̀`
inactive
̀ `
 type=
̀`
string``/>

 </action>

</do>

<else>

 <action actuator=``TransferAlgorithm``>

 <input value=``remote`` type=``string />

 </action>

</else>

</rule>

Figure 6.10: The interaction rule for ADSS.

81

Buffer full

Local Storage Service Triggered

Simulation Time(sec)

0
 500
 1000
 1500
 2000

0

20

40

60

80

100

120

Data Sent to Local DSS (at ORNL) vs Simulation Time(sec)

% Buffer Occupancy vs Simulation Time (sec)

Buffer full second time

Local Storage Service Triggered

%

B

u

f
f

e

r

O

c

c

u

p

a

n

c

y

Figure 6.11: Effect of switching from the DSS at PPPL to the DSS ORNL in response to
network congestion and/or failure.

82

Chapter 7

Summary, Conclusion, and Future Work

The primary objective of the research presented in this thesis is to investigate a programming

system that addresses the programming requirements of pervasive Grid applications and envi-

ronments. Specifically, it enables the development and execution of autonomic self-managing

applications that can dynamically adapt themselves to address changing requirements and exe-

cution context.

7.1 Summary

The thesis presented the Accord programming system for autonomic self-managing applica-

tions. Accord builds on existing programming systems and extends them to (1) enable the

definition of autonomic elements that encapsulates functional and non-functional specifica-

tions, rules, and mechanisms for self-management, (2) enable the formulation of self-managing

applications as dynamic composition of autonomic elements, and (3) provide a runtime in-

frastructure that enables the correct and efficient runtime rule execution to enforce adaptation

behaviors.

An object based prototype of Accord, DIOS++, enables rule-based management and control

of distributed scientific applications. DIOS++ provides: (1) abstractions to enhance existing

application objects with sensors and actuators for runtime interrogation and control, access

policies to control access to sensors/actuators and rule interfaces, and rule agents to enable rule-

based autonomic monitoring and steering, and (2) a hierarchical control network that connects

and manages the distributed sensors and actuators, enables external discovery, interrogation,

monitoring and manipulation of these objects at runtime, and facilitates dynamic and secure

definition, modification, deletion and execution of rules for autonomic application management

and control. The framework is currently being used to enable autonomic monitoring and control

of a wide range of scientific applications including oil reservoir, compressible turbulence and

numerical relativity simulations.

83

A component based prototype of Accord extends the Common Component Architecture to

enable self-management of component-based scientific applications. This prototype supports

both function and performance oriented adaptation, enables dynamic composition by replacing

components at runtime, and provides consistent and efficient rule execution for intra- and inter-

component adaptation behaviors. Two scientific simulations, the self-managing hydrodynamics

shock simulation and the self-managingCH4 ignition simulation, are used to illustrate the

operations of the system and the self-managing behaviors.

A service based prototype of Accord extends the Axis framework to support self-managing

service-based applications and enables runtime adaptation of service and service interactions,

and dynamic service composition. The itinerary reservation application is used to illustrate the

operations of this prototype.

Accord is part of the AutoMate project1. Project AutoMate investigates autonomic so-

lutions to deal with the challenges of complexity, dynamism, heterogeneity and uncertainty

in Grid environments. The overall goal of Project AutoMate is to develop conceptual mod-

els and implementation architectures that can enable the development and execution of such

self-managing Grid applications.

7.2 Conclusion

The characteristics of pervasive and Grid environments impose unique requirements for the

programming systems, that the programming systems must be able to support applications that

can detect and dynamically respond during execution to changes in both, the state of execution

environment and the state and requirements of the application.

Dominant programming systems for parallel and distributed computing are limited in their

ability to address these requirements primarily due to their inherent assumptions about the un-

derlying environment, for example they assume reliable environment and static interactions.

They do however provide some core mechanisms that can be used to enable required adap-

tation behaviors. For example, CORBA [1] supports late-binding and dynamic invocation of

object instances, which can be used to enable dynamic selection of appropriate object instances

1http://automate.rutgers.edu/

84

possibly based on current execution context. CORBA further provides interceptors that can be

used to manipulate the messages in the ORB and to introduce new behaviors at runtime into ap-

plication execution. Component based programming systems also provide similar capabilities.

The specification of CCA [14] embraces the idea of dynamic replacement of components. This

feature can be used to enable dynamic selection of components that implement the same ports

based on current context. The web service architecture and WSRF proposed in recent years

support runtime customization of services, for example, dynamic binding of communication

protocols.

The Accord programming system extends these programming paradigms to meet the re-

quirements. This is done by separating context-sensitive concerns and enabling element be-

haviors and interactions to be defined at runtime. Specifically, this is achieved by extending

computational elements to autonomic elements with the specifications of high-level rules and

mechanisms for self-management, and providing a distributed runtime infrastructure that con-

sistently and efficiently enforces these rules to enable autonomic self-managing functional,

interaction, and composition behaviors.

Further, a new generation of scientific and business applications are enabled by Accord as

demonstrated in this thesis.

7.3 Directions For Future Work

We envision the following key directions for future extension of the research presented in this

thesis:

• Adaptation across layers: The research presented in this thesis mainly focuses on the

application and programming system layer. However, some features may span multiple

layers. To fully exploit the dynamism in environments and requirements, adaptation

should be enabled in multiple layers, from application and programming system layer

to middleware layer and further to the “virtual organization” [52] layer. Corresponding

adaptation capabilities and models should be defined for each layer. Further, interaction

protocols between layers and interfaces should be formalized and standardized.

• Autonomic generation of rules and workflows: Interaction rules can be generated from

85

application workflows. Similarly behavior rules can be generated from application re-

quirements and objectives, instead of being defined by users. This involves investigating

workflow patterns, categorizing requirements and objectives, and designing correspond-

ing rule templates. A runtime rule generator will be investigated to dynamically analyze

workflows and requirements and translate them into corresponding rules.

• Knowledge-based rule execution and conflict resolution: Scientific and business applica-

tion present different requirements for rule execution and conflict resolution. This thesis

focuses on scientific applications. Business models and policies will be investigated to

enable rule execution and conflict resolution for business applications, and integrated

with the Accord programming system.

• Negotiation between managers: Currently element managers collaborate with each other

and resolve conflicts based on rules. Element managers will be provided with negotiation

capability to dynamically achieve consensus during conflicts or disagreements. Negotia-

tion protocols and mechanism used by element managers will be investigated. They can

be built on the negotiation and consensus research projects being actively investigated in

both academia and industry.

86

References
[1] Common Object Broker Resource Architecture (CORBA). http://www.corba.org.

[2] GRI-Mech. http://www.me.berkeley.edu/grimech/.

[3] PAPI: Performance Application Programming Interface.
http://icl.cs.utk.edu/projects/papi.

[4] PCL - The Performance Counter Library. http://www.fz-juelich.de/zam/PCL.

[5] TAU: Tuning and Analysis Utilities. http://www.cs.uoregon.edu/research/paracomp/
tau/tautools/.

[6] The Message Passing Interface (MPI) standard. http://www-unix.mcs.anl.gov/mpi/.

[7] WS-BaseNotification 1.0 specification. ftp://www6.software.ibm.com/software/
developer/library/ws-notification/WS-BaseN.pdf.

[8] WS-BrokeredNotification 1.0 specification. ftp://www6.software.ibm.com/software/
developer/library/ws-notification/WS-BrokeredN.pdf.

[9] OWL Web Ontology Language Overview. http://www.w3.org/TR/owl-features/, 2004.

[10] Publish-Subscribe Notification for Web services. http://www-
106.ibm.com/developerworks/library/ws-pubsub/WS-PubSub.pdf, 2004.

[11] A. Abrahams, D. Eyers, and J. Bacon. An Asynchronous Rule-Based Approach for Busi-
ness Process Automation Using Obligations. InThird ACM SIGPLAN Workshop on Rule-
Based Programming (RULE’02), pages 323–345, Pittsburgh, PA, 2002. ACM.

[12] M. Agarwal and M. Parashar. Enabling autonomic compositions in grid environments. In
the 4th International Workshop on Grid Computing, Phoenix, AZ, 2003.

[13] M. Aksit and Z. Choukair. Dynamic, adaptive and reconfigurable systems overview and
prospective vision. Inthe 23rd international conference on distributed computing systems
workshops, pages 84–89, Providence, Rhode Island, 2003.

[14] B. A. Allan, R. C. Armstrong, A. P. Wolfe, J. Ray, D. E. Bernholdt, and J. A. Kohl.
The CCA core specification in a distributed memory SPMD framework.Concurrency
Computation, 14(5):323–345, 2002.

[15] T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. Klein, F. Ley-
mann, K. Liu, D. Roller, D. Smith, S. Thatte, I. Trickovic, and S. Weer-
awarana. Business Process Execution Language for Web Services version 1.1.
ftp://www6.software.ibm.com/software/developer/library/ws-bpel.pdf, 2003.

[16] Apache. WebServices - Axis. http://ws.apache.org/axis/, 2005.

[17] H. E. Bal, J. G. Steiner, and A. S. Tanenbaum. Programming Languages for Distributed
Computing Systems.ACM Computing Surveys, 21(3):261–322, 1989.

87

[18] D. Beazley and P. Lomdahl. Controlling the data glut in large-scale molecular-dynamics
simulations.Computers in Physics, 11(3), 1997.

[19] F. Berman, R. Wolski, H. Casanova, W. Cirne, H. Dail, M. Faerman, S. Figueira, J. Hayes,
G. Obertelli, J. Schopf, G. Shao, S. Smallen, N. Spring, A. Su, and D. Zagorodnov. Adap-
tive Computing on the Grid Using AppLeS.IEEE transactions on parallel and distributed
systems, 14(4):369–382, 2003.

[20] V. Bhat, S. Klasky, S. Atchley, M. Beck, D. McCune, and M. Parashar. High Performance
Threaded Data Streaming for Large Scale Simulations. InGRID 2004, number 243-250,
2004.

[21] P. Boinot, R. Marlet, J. Noy, G. Muller, and C. Cosell. A declarative approach for design-
ing and developing adaptive components. Inthe 15th IEEE International Conference on
Automated Software Engineering, pages 111–119, 2000.

[22] J. Bosch. Superimposition: A component adaptation technique.Information and Soft-
ware Technology, 1999.

[23] L. Capra, W. Emmerich, and C. Mascolo. A Micro-Economic Approach to Conflict Reso-
lution in Mobile Computing. InWorkshop on Self-healing Systems (SIGSOFT’02), pages
31–40, Charleston, SC, USA., 2002. ACM.

[24] A. J. S. Cardoso.Quality of Service and Semantic Composition of Workflows. PhD thesis,
University of Georgia, 2002.

[25] K. Channabasavaiah, K. Holley, and E. M. Tuggle Jr. Migrating to a service-
oriented architecture. http://www-106.ibm.com/developerworks/webservices/library/ws-
migratesoa/, 2003.

[26] E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana. Web Services Description
Language (WSDL) 1.1. http://www.w3.org/TR/wsdl, 2001.

[27] Y. Diao, J. L. Hellerstein, S. Parekh, and J. P. Bigus. Managing Web server performance
with AutoTune agents. http://www.research.ibm.com/journal/sj/421/diao.html.

[28] F. Bergenti DII and A. R. DEIS. Three Approaches to the Coordination of Multiagent
Systems. Inthe 2002 ACM symposium on Applied computing, Madrid, Spain, 2002.

[29] G. Duzan, J. Loyall, and R. Schantz. Building adaptive distributed applications with
middleware and aspects. Inthe 3rd International Conference on Aspect-oriented Software
Development, pages 66–73, Lancaster, UK, 2004.

[30] S. Fischmeister. Mobile code paradigms. http://www.softwareresearch.net/site/teaching/
WS0203/PDFdocs.DS/mobileagents.pdf, 2002.

[31] I. Foster, J. Frey, S. Graham, S. Tuecke, K. Czajkowski, D. Ferguson, F. Ley-
mann, M. Nally, I. Sedukhin, D. Snelling, T. Storey, W. Vambenepe, and
S. Weerawarana. Modeling Stateful Resources with Web Services. http://www-
128.ibm.com/developerworks/library/ws-resource/ws-modelingresources.pdf, 2004.

[32] N. Furmento, A. Mayer, S. McGough, S. Newhouse, T. Field, and J. Darlington. ICENI:
optimization of component applications within a grid environment.Parallel computing,
2002.

88

[33] G. A. Geist, J. A. Kohl, and P. M. Papadopoulos. CUMULVS: Providing fault-tolerance,
visualization and steering of parallel applications. Inthe Environment and Tools for Par-
allel Scientific Computing Workshop, Lyon, France, 1996.

[34] N. Karonis, B. Toonen, and I. Foster. MPICH-G2: A Grid-Enabled Implementation of
the Message Passing Interface.Journal of Parallel and Distributed Computing, 2003.

[35] J. Kenny, S. Benson, Y. Alexeev, J. Sarich, C. Janssen, L. McInnes, M. Krishnan,
J. Nieplocha, E. Jurrus, C. Fahlstrom, and T. Windus. Component-Based Integra-
tion of Chemistry and Optimization Software.Journal of Computational Chemistry,
25(14):1717–1725, 2004.

[36] B. Khargharia, S. Hariri, M. Parashar, L. Ntaimo, and B. U. Kim. vGrid: A framework
for building autonomic applications. Inthe 1st International Workshop on Heterogeneous
and Adaptive Computing-CLADE 2003, Seattle, WA, USA, 2003.

[37] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Videira Lopes, J. Loingtier, and
J. Irwin. Aspect-Oriented Programming. Inthe European Conference on Object-Oriented
Programming (ECOOP), 1997.

[38] J. Woo Kim and R. Jain. Web Services Composition with Traceability Centered on De-
pendency. Inthe 38th Hawaii International Conference on System Sciences, 2005.

[39] B. Kohn, E. Kraemer, D. Hart, and D. Miller. An agent-based approach to dynamic mon-
itoring and steering of distributed computations. InInternational Association of Science
and Technology for Development (IASTED), Las Vegas, Nevada, 2000.

[40] S. Lefantzi, J. Ray, C.A. Kennedy, and H.N. Najm. A Component-based Toolkit for
Reacting Flows with High Order Spatial Discretizations on Structured Adaptively Refined
Meshes.Progress in Computational Fluid Dynamics, 2004. In press.

[41] S. Lefantzi, J. Ray, and H. N. Najm. Using the Common Component Architecture to
Design High Performance Scientific Simulation Codes. Inthe International Parallel and
Distributed Processing Symposium, Nice, France, 2003.

[42] E. C. Lupu and M. Sloman. Conflicts in policy-based distributed systems management.
IEEE transactions on software engineering, 25(6):852–869, 1999.

[43] S. Majithia, I. Taylor, M. Shields, and I. Wang. Triana as a graphical web services com-
position toolkit. Inthe UK e-Science Programme All Hands Meeting, Nottingham, UK,
2003.

[44] V. Mann, V. Matossian, R. Muralidhar, and M. Parashar. DISCOVER: An environment
for web-based interaction and steering of high-performance scientific applications.Con-
currency and Computation: Practice and Experience, 13(8-9), 2001.

[45] V. Matossian and M. Parashar. Autonomic Optimization of an Oil Reservoir using De-
centralized Services. Inthe 1st International Workshop on Heterogeneous and Adap-
tive Computing– Challenges for Large Applications in Distributed Environments (CLADE
2003), Seattle, WA, USA, 2003.

89

[46] Microsoft. Service Orientation and Its Role in Your Connected Systems Strat-
egy. http://msdn.microsoft.com/architecture/soa/default.aspx?pull=/library/en-
us/dnbda/html/srorientwp.asp, 2004.

[47] J. D. Mulder. Computational steering with parametrized geometric objects. PhD thesis,
Universiteit van Amsterdam, 1998.

[48] R. Muralidhar and M. Parashar. A distributed object infrastructure for interaction and
steering.Concurrency and Computation: Practice and Experience, 2003.

[49] H. Nakada, S. Matsuoka, K. Seymour, J. Dongarra, C. Lee, and
H. Casanova. GridRPC: A Remote Procedure Call API for Grid Computing.
http://www.eece.unm.edu/ apm/docs/APMGridRPC0702.pdf, 2002.

[50] E. Ort. Service-Oriented Architecture and Web Services: Concepts, Technologies, and
Tools. http://java.sun.com/developer/technicalArticles/WebServices/soa2/, 2005.

[51] W. Mulderand S. Osher and J. A. Sethan. Computing Interface Motion in Compressible
Gas Dynamics.Journal of Computational Physics, 100(2):209–228, 1992.

[52] M. Parashar and J.C. Browne. Conceptual and Implementation Models for the Grid. In
IEEE, Special Issue on Grid Computing, volume 93, 2005.

[53] S. Parker and C. Johnson. An integrated problem solving environment: The scirun com-
putational steering environment. InHICCS-31, 1998.

[54] J.S. Plank and M. Beck. The Logistical Computing Stack – A Design For Wide-Area,
Scalable, Uninterruptible Computing. InDNS: 2002 Dependable Systems and Networks,
Workshop on Scalable, Uninterruptible Computing, Bethesda, Maryland, USA, 2002.

[55] S. R. Ponnekanti and A. Fox. Sword: A developer toolkit for building composite web
services. Inthe 11th International World Wide Web Conference, 2002.

[56] D. I. Pullin. Direct Simulation Methods for Compressible Ideal Gas Flow.Journal of
Computational Physics, 34:231–244, 1980.

[57] S. Rathmayer and M. Lenke. A tool for on-line visualization and interactive steering
of parallel hpc applications. Inthe 11th International Parallel Processing Symposium
(IPPS’97), Geneva, Switzerland, 1997.

[58] J. Ray, R. Samtaney, and N.J. Zabusky. Shock Interactions with Heavy Gaseous Elliptic
Cylinders : Two Leeward-Side Shock Competition Models and a Heuristic Model for In-
terfacial Circulation Deposition at Early Times.Physics of Fluids, 12(3):707–716, 2000.

[59] J. Ray, N. Trebon, R. C. Armstrong, S. Shende, and A. Malony. Performance Measure-
ment and Modeling of Component Applications in a High Performance Computing En-
vironment: A Case Study. Inthe 18th International Parallel and Distributed Processing
Symposium (IPDPS04), Santa Fe, NM, USA, 2004.

[60] L. Renambot, H. E. BAL, D. Germans, and H.J.W. Spoelder. CAVEStudy: an Infrastruc-
ture for Computational Steering in Virtual Reality Environments. Inthe 9th IEEE Interna-
tional Symposium on High Performance Distributed Computing, pages 57–61, Pittsburgh,
PA, 2000.

90

[61] R. L. Ribler, J. S. Vetter, H. Simitci, and D. A. Reed. Autopilot: adaptive control of
distributed applications. Inthe High Performance Distributed Compuring Conference,
pages 172–179, 1998.

[62] S. M. Sadjadi and P. K. McKinley. Transparent self-optimization in existing corba appli-
cations. Inthe 1st international conference on autonomic computing, NYC, NY, USA,
2004.

[63] R. Samtaney, J. Ray, and Norman J. Zabusky. Baroclinic Circulation Generation on Shock
Accelerated Slow/Fast Gas Interfaces.Physics Fluids, 10(5):1217–1230, 1998.

[64] R. Samtaney and N.J. Zabusky. Circulation Deposition on Shock-Accelerated Planar and
Curved Density Stratified Interfaces : Models and Scaling laws.Journal of Fluid Mech.,
269:45–85, 1994.

[65] J. Smoller. Shock Waves and Reaction-Diffusion Equations, Series of Comprehensive
Studies in Mathematics. Springer-Verlag, 1982.

[66] B. Srivastava and J. Koehler. Web Service Composition - Current Solutions and Open
Problems. InICAPS 2003 Workshop on Planning for Web Services, pages 28–35, 2003.

[67] C. Szyperski.Component Software Beyond Object-Oriented Programming. Component
Software Series. Addison-Wesley, Great Britain, 2 edition, 2002.

[68] N. Trebon, J. Ray, S. Shende, R. C. Armstrong, and A. Malony. An approximate method
for optimizing HPC component applications in the presence of multiple component im-
plementations. Suffix SAND2003-8760C, Sandia National Laboratories, 2003.

[69] E. Truyen, W. Joosen, P. Verbaeten, and B. N. Jorgensen. On interaction refinement in
middleware. Inthe 5th International Workshop on Component-Oriented Programming,
2000.

[70] C. Ururahy, N. Rodriguez, and R. Ierusalimschy. ALua: Flexibility for parallel program-
ming. Computer Languages, 28(2), 2002.

[71] G. Valetto and G. Kaiser. Using process technology to control and coordinate software
adaptation. Inthe 25th international conference on Software engineering, 2003.

[72] W.M.P. van der Aalst, A.H.M. ter Hofstede, B. Kiepuszewski, and A.P. Barros. Workflow
Patterns.distributed and parallel databases, 14(3), 2003.

91

Curriculum Vitae
Hua Liu

2005 Ph.D. in Computer Engineering; Rutgers University, NJ, USA.

2001 MS in Computer Engineering; Beijing University of Posts & Telecoms, Beijing,
China.

1998 BS in Computer Science; Beijing University of Posts & Telecoms, Beijing, China.

2001-2005Graduate Assistant, Center for Advance Information Processing, Rutgers University,
NJ, USA.

2001 Software Engineering, Bell-labs, Lucent Technologies, Beijing, China.

1998-2001Research Assistant, BNR lab jointly managed by Nortel Networks and Beijing Uni-
versity of Posts & Telecoms, Beijing, China.

Publications

Rule-based Monitoring and Steering of Distributed Scientific Applications. H. Liu
and M. Parashar. International Journal of High Performance Computing and Net-
working (IJHPCN), issue 1, Inderscience, 2005.

Accord: A Programming Framework for Autonomic Applications. H. Liu and M.
Parashar. IEEE transaction on Systems, Man, and Cybernetics, special issue on En-
gineering Autonomic Systems, Editors: R. Sterritt and T. Bapty, IEEE Press, 2005.

Rule-based Visualization in the Discover Computational Steering Collaboratory. H.
Liu, L. Jiang, M. Parashar and D. Silver. Journal of Future Generation Computer
System, Special Issue on Engineering Autonomic Systems, Elsevier Science, volume
21, issue 1, page 53 - 59, Jan 2005.

AutoMate: Enabling Autonomic Grid Applications. M. Parashar, H. Liu, Z. Li, V.
Matossian, C. Schmidt, G. Zhang and S. Hariri. Cluster Computing: The Journal of
Networks, Software Tools, and Applications, Special Issue on Autonomic Comput-
ing, Kluwer Academic Publishers.

Enabling Autonomic Grid Applications: Requirements, Models and Infrastructure.
M. Parashar, Z. Li, H. Liu, C. Schmidt, V. Matossian and N. Jiang, Hot Topics,
Lecture Notes in Computer Science, Springer Verlag, 2005.

Enabling Self-management of Component-based High-Performance Scientific Appli-
cations. H. Liu and M. Parashar, Proceedings of the 14th IEEE International Sympo-
sium on High Performance Distributed Computing (HPDC-14), Research Triangle
Park, NC, July 2005.

92

A Framework for Rule-Based Autonomic Management of Parallel Scientific Applica-
tions. H. Liu, and M. Parashar, Proceedings of the 2nd IEEE International Confer-
ence on Autonomic Computing (ICAC-05), Seattle, Washington, USA, June 2005.

A Component-based Programming Framework for Autonomic Applications. H. Liu,
M. Parashar, and S. Hariri, Proceedings of the 1st IEEE International Conference on
Autonomic Computing (ICAC-04), IEEE Computer Society Press, New York, NY,
USA, pp. 10 - 17, May 2004.

Rule-based Visualization in a Computational Steering Collaboratory. L. Jiang, H.
Liu, M. Parashar and D. Silver, Proceedings of the International Workshop on Pro-
gramming Paradigms for Grid and Metacomputing Systems, International Confer-
ence on Computational Science 2004 (ICCS 2004), Krakow, Poland, June 2004.

Enabling Autonomic, Self-managing Grid Applications. Z. Li, H. Liu and M. Parash-
ar, Proceedings of SELF-STAR: International Workshop on Self-Properties in Com-
plex Information Systems, Springer Verlag, Bertinoro, Italy, May-June, 2004.

DIOS++: A Framework for Rule-Based Autonomic Management of Distributed Sci-
entific Applications. H. Liu and M. Parashar, Proceedings of the 9th International
Euro-Par Conference (Euro-Par 2003), Lecture Notes in Computer Science, Editors:
H. Kosch, L. Boszormenyi, H. Hellwagner, Springer-Verlag, Klagenfurt, Austria,
Vol. 2790, pp 66 73, August 2003.

AutoMate: Enabling Autonomic Applications on the Grid. M. Agarwal, V. Bhat,
H, Liu, V. Matossian, V. Putty, C. Schmidt, G. Zhang, L. Zhen, M. Parashar, B.
Khargharia and S. Hariri, Proceedings of the Autonomic Computing Workshop, 5th
Annual International Active Middleware Services Workshop (AMS2003), Seattle,
WA, USA, IEEE Computer Society Press, pp 48-57, June 2003.

