ACCORD: A PROGRAMMING SYSTEM FOR AUTONOMIC
SELF-MANAGING APPLICATIONS

BY HUA LIU

A Dissertation submitted to the
Graduate School—New Brunswick
Rutgers, The State University of New Jersey
in partial fulfillment of the requirements
for the degree of
Doctor of Philosophy

Graduate Program in Electrical and Computer Engineering

Written under the direction of
Professor Manish Parashar

and approved by

New Brunswick, New Jersey

October, 2005

ABSTRACT OF THE DISSERTATION

Accord: A Programming System for Autonomic Self-managing
Applications

by Hua Liu

Dissertation Director: Professor Manish Parashar

The increasing complexity, heterogeneity, and dynamism of emerging pervasive Grid environ-
ments and applications result in significant development and management challenges. This is
primarily because application requirements and runtime behaviors depend on the runtime state
and execution context and are typically not known a priori. Recently, autonomic computing
has proposed solutions to address these challenges that draw inspiration from biological sys-
tem. The goal of autonomic computing is to develop applications and systems that can manage

themselves based on high level guidance from humans.

In this thesis, we develop the Accord programming system for autonomic self-managing
applications. Accord builds on existing programming systems and extends them to (1) enable
the definition of autonomic elements that encapsulates functional and non-functional specifica-
tions, rules, and mechanisms for self-management, (2) enable the formulation of self-managing
applications as dynamic compositions of autonomic elements, and (3) provide a runtime in-
frastructure for the correct and efficient runtime execution of rules to enforce self-managing
behaviors in response to changing requirements and execution context.

Three prototypes of the Accord programming system have been implemented and cus-
tomized to support different classes of applications. The first prototype enables the rule-based
self-management of objects and object-based parallel/distributed applications. The second
prototype extends the Common Component Architecture Ccaffeine framework to enable self-

managing component-based high-performance parallel/distributed scientific applications. This

prototype supports both function and performance driven intra- and inter-component adapta-
tions, and enables dynamic composition and runtime component replacement. The third pro-
totype supports self-managing service-based applications and enables runtime adaptation of
service and service interactions, and decentralized and dynamic service composition. The op-
eration of these prototypes is illustrated using a suite of scientific applications. Experimental

evaluations of the prototypes are presented.

Acknowledgements

I would like to gratefully and sincerely acknowledge the supervision of Dr. Manish Parashar
during my years as a graduate student. | would also like to thank Dr. Jaideep Ray for his
guidance and help during my summer intern in Sandia National Labs in 2004.

| am very grateful to all my friends from Rutgers, Beijing University of Posts & Telecoms,
Nortel networks (China), Bell-labs (China) for the warm smiles and encouragement.

Finally, | am forever indebted to my parents Shouxian Liu and Xiurong Feng, and my
husband Xiaoxuan Li for their understanding, support, endless patience, and encouragement.

Thanks for always being there for me.

Table of Contents

Abstract ii
Acknowledgements. iv
Listof Tables iX
Listof Figures.. e X
1. Introduction 1
1.1. Motivation. e 1
1.2. Problem Description e 2
1.3. Overview of Accord Programming System 3
1.4. Outline 6
2. Background and RelatedWork oL oo 8
2.1. Programming Systems for Parallel and Distributed Computing 8
2.2. Adaptation Technologies and Related Work 12
2.2.1. Specifying Adaptation Behaviors 12
2.2.2. Enforcing Adaptation Behaviors 13
Enforcing Adaptation Without Source Code Modification. 13
Enforcing Adaptation Through Source Code Modification 14

2.3.

2.2.3. Conflict Detection and Resolution During Adaptation Behavior Execution 15

Accord Programming System 15

3. Accord: Supporting the Development and Execution of Autonomic Self-managing

Applications 17
3.1. Defining ApplicationContext 18
3.2. AutonomicElement 18

3.2.1. PortDefinition 19

3.2.2. ElementManager e 20

3.3. The Accord Runtime Infrastructure 21
3.3.1. Composition Manager 22
3.3.2. ElementManager 22
3.3.3. The Rule EnforcementEngine 23

Key Concepts and Notation 23
Rule ExecutionModel 24

3.4. Autonomic Adaptation BehaviorsinAccord 26
3.4.1. Adapting ElementBehaviors oL 26
3.4.2. Adapting Element Composition 27

Element Composition 27
Dynamic Composition 28

3.5. Autonomic Forest Fire Application: An lllustrative Example 30
3.5.1. Defining Autonomic Element 31
3.5.2. Enabling Adaptation Behaviors 32

AdaptingDSMBehaviors o 32
AddingANewElement, 32
Changing Interaction Relationships 32

3.6. Summary e e 33

DIOS++: Autonomic Object-based Accord 34

4.1. Autonomic Monitoring and Control with DIOS++ 35

4.2. DISCOVER Collaboratory 36

4.3. DIOS++ Architecture 38
4.3.1. AutonomicObject 38

Control Interface 39
AccessInterface 39
RulelInterface 40
Rule Agent e 40

Vi

4.3.2. Control Network 41

Initialization 42
Interaction and Rule Operation 42
4.4. The Autonomic Oil Reservoir Application: An lllustrative Example 45
4.5. Experimental Evaluation a7
4.6. Summaryand Conclusion. 48
5. Accord-CCA: Autonomic Component-based Accord. 50
5.1. Component-Based Distributed/Parallel Scientific Applications 50
5.1.1. The Common Component Architecture (CCA) 50

5.1.2. Behavior and Performance of Component-based Scientific Applications 51

5.2. Self-management of Component-based Scientific Applications 52
5.2.1. Defining Managed Components 53
5.2.2. Enabling Runtime Self-management 54

ComponentManager 56

Composition Manager 57

Rule ExecutionModel L. 57
5.2.3. Supporting Performance-driven Self-management. 58

53. CaseStudies. 59

5.3.1. A Self-Managing Hydrodynamics Shock Simulation 59
Scenario 1: Self-optimization via component replacement 61
Scenario 2: Self-optimization via component adaptation 63
Scenario 3: Self-healing via component replacement 64
5.3.2. A Self-Managing’'H, Ignition Simulation 65
5.3.3. Experimental Evaluation 65
54. SummaryandConclusion. e 67
6. Accord-WS: Autonomic Service-based Accord. 68
6.1. AUIONOMIC SEIVICES o o ot e e e e e e 68
6.2. The Runtime Infrastructure 70

Vii

6.2.1. Workflow Execution
6.2.2. Dynamic Composition

6.3. An lllustrative Application: The Autonomic Data Streaming Application 73

6.3.1. Service Adaptation 74

6.3.2. Application Adaptation 76

6.4. SUMMAIY e e e e 77
7. Summary, Conclusion, and Future Work 82

7.1, SUMMANY . . . e e e e e e e e 82

7.2. Conclusion 83

7.3. Directions For Future Work oo 84
References e 86
CurriculumVitae 91

viii

List of Tables

2.1. Capabilities and limitations of current programming systems with respect to

the programming requirements of Grid environments.

3.1.

3.2.

3.3.

3.4.

3.5.

3.6.

3.7.

4.1.

4.2.

4.3.

4.4.

4.5,

4.6.

4.7.

4.8.

4.9.

4.10.

5.1.

5.2.

List of Figures

Anautonomicelement. e 18

Accord runtime infrastructure for a sample application composed of three ele-

MENTS. 22
The three-phase rule executionmodel. 24
Examples of the port definition. 31
Abehaviorrule foDSM L 32
Add anewelememFM. 32
Change the interaction relationship betw€&MandDSM. 33
DISCOVER collaboratory architecture. 37
Anautonomic object. 38
Asamplerule foRandomList 40
The DIOS++ control network. 41

Rulel: an object rule involving only one obj&andomList Rule2: an appli-

cation rule involving two objectRandomLisandSortSelectar. 43

(a): Deployment of an object rule. (b): Deployment of an applicationrule. . . . 44
Ruleswithconflicts. 45
The constraint in VFSA that maintains the probability value betweenOand 1. . 46
A sample application rule involving VFSAand IPARS. 46
DIOS++ experimental evaluations. 47
TheRulePortspecification. 53

A self-managing application composed of 5 components. The solid lines denote
computational port connections between components, and the dotted lines are

port connections constructing the management framework. 55

5.3. Distributed self-managing application shown in Figure 5.2 executed on three
nodes. The solid lines across nodes denote the interactions among manager
instances. The dotted lines are port connections constructing the management

framework withinonenode. 55

5.4. “Wiring” diagram of the shock-hydrodynamics simulation. A second-order
Runge-Kutta RK 2) integrator drivegnviscidFlux component — transforma-
tion into left and right (primitive) states is done I8tatesand the Riemann
problem solved bycodunovFlux. Sundry other components for determining
characteristics’ speeds (u + a, u - a, u), cell-centered interpolations etc. com-

pletethecode. 61

5.5. The average execution times EFfMFlux andGodunovFlux as functions of

the array size (machine effects have be averagedout). 62
5.6. Replacement dbodunovFlux with EFMFlux to decrease cache misses. . .. 63
5.7. Dynamically switch algorithms iAMRMesh. 64
5.8. Comparison of rule based and non rule based executiOifafignition. 65
5.9. Experimental evaluation of Ccaffeine-based Accord prototype. 66
6.1. AnautonomiC SErVviCe. i i it e 69
6.2. Message processing in a coordinationagent. 69

6.3. The runtime framework. The dashed lines represent the interactions among

managers. The solid lines represent the interactions among WS-Resources. . . 70

6.4. The itinerary workflow specified using (a) BPEL4WS and (b) Accord interac-

tionrules. e 72

6.5. A new serviceParkService is added to the itinerary workflow. The dashed

lines denote the new interaction relationships created due to the addition of the

NEW SEIVICE. o i it e e e e e e e e e 73
6.6. The autonomic data streaming application based on Accord-WS. 73
6.7. ThecontrolportoBMS. 78
6.8. ThebehaviorrulefdMS. 79

Xi

6.9. (a) Self-optimization behaviors of the Buffer Management Service - BTS switches
between uniform blocking and aggregate blocking algorithms based on appli-
cation data generation rates and network transfer rates and the nature of data

generated. (b) Percentage overhead on simulation execution simulation with

and without autonomic management. 79
6.10. The interaction rule for ADSS. 80
6.11. Effect of switching from the DSS at PPPL to the DSS ORNL in response to

81

network congestion and/or failure.

Xii

Chapter 1
Introduction

1.1 Motivation

The emergence of pervasive wide-area distributed computing environments, such as pervasive
information systems and computational Grids, has enabled a new generation of applications
that are based on seamless access, aggregation and interaction. For example, it is possible
to conceive a new generation of scientific and engineering simulations of complex physical
phenomena that symbiotically and opportunistically combine computations, experiments, ob-
servations, and real-time data, and can provide important insights into complex systems such
as interacting black holes and neutron stars, formations of galaxies, and subsurface flows in oil
reservoirs and aquifers etc. Other examples include pervasive applications that leverage the per-
vasive information Grid to continuously manage, adapt, and optimize our living context (e.g.,
your clock estimates drive time to your next appointment based on current traffice/weather and
warns you appropriately), crisis management applications that use pervasive conventional and
unconventional information for crisis prevention and response, medical applications that use
in-vivo and in-vitro sensors and actuators for patient management, and business applications

that use anytime-anywhere information access to optimize profits.

However, the underlying pervasive distributed computing environment is inherently large,
complex, heterogeneous and dynamic, globally aggregating large numbers of independent com-
puting and communication resources, data stores and sensor networks. Furthermore, these
emerging applications are similarly complex and highly dynamic in their behaviors and inter-
actions. Together, these challenges result in application development, configuration and man-
agement complexities that break current paradigms based on passive components and static
compositions. Clearly, there is a need for a fundamental change in how these applications are

developed, executed and managed.

1.2 Problem Description

The nature and scale of pervasive information and computational Grid environments and appli-

cations introduce new levels of development and management challenges. These include:

e Heterogeneity: The environments aggregate large numbers of independent and geograph-
ically distributed computational and information resources, including supercomputers,
workstation-clusters, network elements, data-storages, sensors, services, and networks.
Similarly, applications typically combine multiple independent and distributed software

elements such as components, services, real-time data, experiments and data sources.

e Dynamism: The computation, communication and information environment is continu-
ously changing during the lifetime of an application. This includes the availability and
state of resources, services and data. Applications similarly exhibit dynamism where
the runtime behaviors, organizations and interactions of software elements may change

during execution.

e Uncertainty: Uncertainty in these environments is caused by multiple factors, including:
(1) dynamism, which introduces unpredictable and changing behaviors that can only be
detected and resolved at runtime, (2) failures, which have an increasing probability and
frequency of occurrence as the scale and complexity of systems/applications increase,
and (3) incomplete knowledge, which is typical in large decentralized and asynchronous

distributed environments.

The characteristics listed above impose requirements on the programming systems for Grid
applications. The programming systems must be able to specify applications that can detect
and dynamically respond during execution to changes in both, the state of execution environ-
ment and the state and requirements of the application. This requirement suggests that: (1)
Grid applications should be composed from discrete, self-managing elements which incorpo-
rate separate specifications for all of functional, non-functional and interaction behaviors. (2)
The specifications of computational (functional) behaviors, interaction and coordination behav-
iors and non-functional behaviors (e.g. performance, fault detection and recovery, etc.) should

be separated so that their combinations are compose-able. (3) The interface definitions of these

elements should be separated from their implementations to enable the interactions between
heterogeneous elements and the dynamic selection of elements. Given these features of a pro-
gramming system, a Grid application requiring a given set of computational behaviors may be
integrated with different interaction models or languages (and vice versa) and different specifi-
cations for non-functional behaviors such as fault recovery and QoS to address the dynamism

and heterogeneity of application requirements and the environments.

However, current existing programming systems do not meet the requirements outlined
above. Many current communication frameworks for parallel and distributed computing typ-
ically make very strong assumptions about the behavior of the entities, their interactions, and
the underlying system. Distributed object systems provide support for parallel/distributed ap-
plications. However, the interacting objects and interaction are tightly coupled. Further, they
assumes a priori (compile-time) knowledge of the syntax and semantics of interfaces as well
as the interactions required by the applications. The dominant component-based and service-
based programming systems have similar limitations. The orchestration and choreography of
components/services must be defined a priori and the support for runtime adaptation is limited.
However, they provide core mechanisms that can be extended to address the requirements of

Grid applications and environments.

1.3 Overview of Accord Programming System

The challenges and requirements outlined above and the limitations of current programming
systems have led researchers to investigate alternate approaches that enable the development
of applications that are capable of managing themselves using high-level rules with minimal

human intervention.

This research addresses the Accord programming system that extends existing program-
ming systems to support the development of self-managing applications in distributed envi-
ronments. The system builds on the separation of the composition aspects (e.g., organization,
interaction and coordination) of elements (object, components, and services) from their com-
putational behaviors that underlies the object, component, and service based paradigms, and

extends it to enable the computational behaviors of elements as well as their organizations,

interactions and coordination to be managed at runtime using high-level rules.

The Accord programming system (1) defines autonomic elements that encapsulates func-
tional and non-functional specifications, rules, and mechanisms for self-management, (2) en-
ables the formulation of self-managing applications as dynamic compositions of autonomic
elements, and (3) provides a runtime infrastructure for correct and efficient rule execution to
enforce self-management behaviors in response to changing requirements and execution con-
text. As a result, Accord supports two levels of adaptations: (1) adaptation at the element level
to monitor and control behaviors of individual elements according to their internal state and
execution context, (2) adaptation at the application level to change application topologies, com-
munication paradigms and coordination models used among elements to respond to changes in
the environments and user requirements.

Three prototypes of Accord that separately extend a distributed object programming system,
a component based system, and a service based system are discussed in this thesis. The design,

implementation, operation, and evaluation of these prototypes are presented.

e An object based prototype of Accord, named DIOS++, has been implemented and eval-
uated in the context of distributed scientific/engineering simulations as part of the DIS-
COVER project. This prototype implements autonomic elements as autonomic objects
by associating objects with sensors, actuators and rule agents, and providing a runtime
hierarchical infrastructure consisting of rule agents and rule engines for the rule-based

autonomic monitoring and control of distributed and parallel applications.

DIOS++ is used to support the autonomic IPARS reservoir simulation that optimizes
the placement and operation of oil wells for maximal overall revenue. DIOS++ enables
direct modification of object parameters and collaborative control of multiple objects to,

for example, dynamically select objects’ internal algorithms based on their internal state

or execution context.

e A component based prototype of Accord, named Accord-CCA, has been developed based
on the DoE Common Component Architecture (CCA) and the Ccaffeine framework in
the context of component-based high-performance scientific applications. This prototype

extends CCA components to autonomic components by associating them with control

and operation ports and component managers, and provides a runtime infrastructure of
component managers and composition managers for rule-based component adaptation

and dynamic replacement of components.

Accord-CCA is used to enable (1) the self-managing shock hydrodynamics simulation
that simulates the interaction of a hydrodynamic shock with a density-stratified interface,
and (2) theC' H, ignition simulation that simulates a set of chemical reactions appearing
and disappearing when the fuel and oxidizer react and give rise to the various interme-
diate chemical species. Accord-CCA enables self-optimization and self-healing of the
shock simulation, for example, by dynamically replacing components to decrease the
cache misses or maintain stability for stronger shocks and larger density ratios. It also
enables self-optimization of th& H, ignition simulation by dynamically selecting ap-

propriate algorithms at different reaction temperatures.

e A service based prototype of Accord, named Accord-WS, is designed based on the WS-
Resource specifications, the Web service specifications, and the Axis framework. Au-
tonomic elements are implemented as autonomic service by extending traditional WS-
Resources with service managers for rule-based management of runtime behaviors and
interactions with other autonomic services, and coordination agents for programmable
communications. A distributed runtime infrastructure is investigated to enable decentral-

ized and dynamic compositions of autonomic services.

An autonomic data streaming transferring application is enabled by Accord-WS to stream
realtime data from a live simulation support remote runtime analysis and visualization
while minimizing overheads on the simulation, adapting to network conditions, and

eliminating loss of data. An example of service adaptation supported by Accord-WS
is dynamically selecting algorithms within the buffer management service based on the
current state of the simulation and network condition. An example of application adap-
tation supported by Accord-WS is dynamically switching to a local storage from remote

data streaming in the cases of extreme network congestion or network failures.
Key contributions of the research include:

¢ Analysis of the programming requirements for autonomic self-managing applications in

heterogeneous and dynamic environments.

¢ Design of a programming system that addresses these requirements and enables the de-

velopment of autonomic self-managing applications.

e Design, implementation, operation, and evaluation of three prototypes that extend domi-

nant programming systems and address different classes of applications.

e Autonomic self-managing scientific applications that are capable of managing and op-
timizing their execution based on application and system state, user requirements, and

execution context.

1.4 Outline

The rest of this thesis is organized as follows. Chapter 2 provides an overview of existing pro-
gramming systems and discusses their capabilities and limitations with respect to the program-
ming requirements. The chapter also discusses existing adaptation technologies and related
efforts.

Chapter 3 describes the Accord programming system, including the definition of autonomic
elements and rules, and the runtime infrastructure that executes rules to enable adaptation be-
haviors. An autonomic forest fire simulation is used to illustrate the operations of Accord
programming system.

Chapter 4 presents an object based prototype that enables distributed scientific/engineering
simulations. An experimental evaluation of the system is also presented. This prototype enables
interactive and rule-based management of individual objects and applications at runtime. The
autonomic IPARS reservoir simulation is used to illustrate the design, implementation, and
operations of the object based Accord system.

Chapter 5 presents a component based prototype built on the DoE Common Component Ar-
chitecture (CCA) Ccaffeine framework. This implementation supports autonomic component-
based scientific applications. It supports both function and performance based self-management,
enables dynamic composition through runtime component replacement, and provides consis-

tent and efficient rule execution for intra- and inter-component management behaviors. The

design, implementation, and evaluation of the prototype is presented. Self-managing shock
hydrodynamics simulation andH ignition simulation are presented as case studies.

Chapter 6 presents a service based prototype based on Web Services and WS-Resource
specifications and the Axis framework. It supports self-managing service-based applications by
enabling dynamic service composition. An autonomic data streaming transferring application
is used to illustrate the adaptation operations enabled by the service based Accord.

Chapter 7 concludes the thesis with a summary of the research and lessons learned, and

outlines the directions for future work.

Chapter 2

Background and Related Work

The overall goal of this research is to investigate a programming system to enable autonomic
self-managing applications that address the challenges of pervasive and Grid environments.
This chapter first investigates the limitations of current existing programming systems for par-

allel and distributed computing with respect to the programming requirements outlined in the

previous chapter. It further investigates adaptation technologies that can be integrated with
these programming systems. Finally, it describes the Accord programming system that extends
the existing programming systems with adaptation technologies to support the development

and execution of autonomic self-managing applications.

2.1 Programming Systems for Parallel and Distributed Computing

There has been a significant body of research on programming systems for parallel and dis-
tributed computing over the last few decades. Many curmrentmunication frameworks for
distributed and parallel computing, for example message passing models and shared mem-
ory models, support interactions between distributed entities developed using conventional pro-
gramming models. These systems typically make very strong assumptions about the element
behaviors, element interactions, and the underlying system, especially about their static na-
ture and reliability, which limit their applicabilities in highly dynamic and uncertain computing

environments.

Researchers have also investigated the enhancement and application of traditional commu-
nication paradigms to pervasive Grid environments. For example, GridRPC [49] extends stan-
dard RPC with asynchronous coarse-grained parallel tasking, hiding the dynamics, insecurity,
and instability of the Grid from the programmers. MPICH-G2 [34], a Grid-enabled implemen-
tation of the MPI [6], allows a user to run MPI programs across multiple computers, possibly

across different sites, using the same abstractions that can be used on a parallel computer.

Distributed object systems Unlike the systems described above that essentially address

only communication aspects, distributed object systems provide more support for parallel and
distributed applications, including lifecycle management, location and discovery, interaction
and synchronization, security, failure and reliability [17]. CORBA [1], one of the dominant
distributed object systems, enables secure interactions between distributed and heterogeneous
objects using interfaces described by a language-neutral interface definition language, and
through a middleware consisting of object resource brokers and interoperability protocols (e.g.,
GIOP, 1IOP). The interactions are based on remote procedure calls, method invocations and
event notification. CORBA primarily addresses distribution and heterogeneity, and also pro-
vides limited support for dynamism via dynamic invocation (DSI/DII) and late binding, which
enables customization at deployment time. However, interacting objects and interaction are
tightly coupled. Further, the model assumes a priori (compile-time) knowledge of the syntax

and semantics of interfaces and the interactions required by the applications.

Although CORBA does not directly enable dynamic adaptation of object behaviors or their
interactions, it does have the potential to support adaptive runtime behaviors by providing
portable request interceptors that “intercept the flow of a request/reply sequence through the
ORB at specific points so that services can query the request information and manipulate the
service contexts that are propagated between clients and servers” [1]. Note that these adapta-
tion behaviors are performed by manipulating and redirecting messages using interceptors, but

the direct adaptation of individual objects is not supported.

Component-based programming systemsComponent models address increasing soft-
ware complexity and changing requirements by enabling the construction of systems as as-
semblies of components. Components are reusable units of composition, deployment, execu-
tion, and lifecycle management [67], and are completely specified by their interfaces. Current
component frameworks include CORBA Component Model (CCM) [1], JavaBeans [67] and
Common Component Architecture(CCA) [14].

CCM [1] extends the CORBA distributed object model and similarly supports distribution,
heterogeneity and security. It also supports dynamic instantiation and runtime customization
of components. However, CCM inherits some of the limitations of CORBA including the re-
quirement for prior knowledge about interfaces and interactions. JavaBeans [67] is a Java only

component model that addresses similar issues. It also supports runtime bean customization.

10

The Common Component Architecture (CCA) [14] defines a component model especially
for scientific applications. The model primarily addresses the heterogeneity through separating
interface from implementation. One of the CCA implementation, the Ccaffeine framework,
targets high-performance parallel applications and uses functional calls for inter-component in-
teractions within a Single Component Multiple Data (SCMD) model. While it does not support
runtime customization of components, it does allow components to be dynamically replaced at

runtime. It does not address failures or security issues and assumes all components are trusted.

Note that component-based systems also provide some core mechanisms, such as intercep-
tors in CORBA, the BuilderService in CCA, and the container mechanism in JavaBeans, which
can be extended to support dynamic runtime adaptation. However the communication pattern

between components and their coordination are statically defined.

Service-based systemsService based models, such as the Web service and Grid ser-
vice [25, 46, 50] models, have been proposed in recent years to address the requirements of
loosely coupled wide-area distributed environments. These models require very little or no
prior knowledge of the services before invocation. The decoupling between application en-
tities provided by these models allows applications to be constructed in a more flexible and
extensible way. However, the runtime behaviors of services and applications themselves are
still rigid and they implicitly assume that context does not change during the lifetime of ap-
plications, i.e., services can only be customized during their instantiation. Further, services
in the Web services model are assumed to be stateless. While the Grid service model allows
stateful services, it makes strong assumptions about the underlying system, for example, that it
must support reliable invocation, which is not possible in the presence of failures and the lack
of global knowledge. Current orchestration and choreography mechanism for Web and Grid

services are static and must be defined a priori.

A huge body of research is underway to facilitate the development and management of
service oriented applications. These research projects can be categorized into two types of ap-
proaches. The first approach looks at composite services mainly from the runtime perspective
as functions, data and control flows [66] described in, for example BPEL4WS [15]. Workflows
can be composed at runtime based on the syntactic, semantic and operational matches and end-

to-end QoS analysis [12, 24], or based on the precondition and post-condition specification for

11

available services, as well as the pre-condition and post-condition specification for the compos-
ite service to be constructed [55]. Workflow execution involves integrating services together
and executing them as specified in the workflow. This involves, for example, dynamically
configuring the method calls and invoking the Web services [43], or selecting the appropriate
runtime representation for each service specification in the application [32]. However, most of
these workflow execution environments do not emphasize runtime adaptation and optimization
of the workflow, which is essential to address changing application and system requirements,
state and context. The second approach, ontology based semantic composition using OWL [9],
is taken by the semantic web community. OWL supports service reasoning to facilitate service
discovery and usage. However, this approach has an imprecise underlying conceptual model
leading to multiple modeling possibilities and parametric polymorphism [38], which signifi-

cantly increases the complexity of service composition.

The programming systems discussed above are summarized in Table 2.1.

Programming Sys: Issues addressed Limitations

tems

Communication
frameworks (e.g.
RPC, RMI, MPI,
PVM)

Heterogeneity, distribution, limt

ited dynamism

No context-awareness, assume
deterministic, static, secure, and
reliable environment

Distributed object

Heterogeneity (platform an

dNo context-awareness, assume

systems (e.g.} languageindependence), distrideterministic, static, secure, and
CORBA) bution, limited dynamism reliable environment

Component based Heterogeneity, distribution, lim+t No context-awareness, assume
systems (e.g.} ited dynamism deterministic, static, secure, and
CCA, CCM, reliable environment

JavaBeans)

Service oriented Heterogeneity, distribution No context-awareness, assume
systems (e.g., Web (maybe across internet), limitedstatic and reliable environment
service architect dynamism

ture, WSRF)

Table 2.1: Capabilities and limitations of current programming systems with respect to the

programming requirements of Grid environments.

12

2.2 Adaptation Technologies and Related Work

Adaptation technologies can be integrated with existing programming systems to enable auto-
nomic self-managed applications. To enable self-managed/adaptive applications, the following
issues must be addressed: (1) how to specify adaptation behaviors, (2) how to efficiently en-

force adaptation behaviors, and (3) how to guarantee the correctness of adaptation behaviors.

Adaptation behaviors are typically application-specific. For example, the selection of in-
ternal variables or functions within individual components and the usage of communication
paradigms across multiple components, are determined by the application logic and its execu-
tion context. However, the approaches and mechanisms that support runtime self-management
and adaptation are general and independent of specific applications. These approaches and

mechanisms are discussed in the following sections.

2.2.1 Specifying Adaptation Behaviors

Adaptation behaviors can be either statically or dynamically specified. Traditional program-
ming paradigms that use conditional branches to enable different runtime workflows can be
viewed as an example statically specified adaptations Some systems extend existing pro-
gramming languages to provide templates that enable adaptive scheduling for different applica-
tion types [19]. Others provide adaptation classes to enrich Java classes with adaptive behaviors
and a dedicated compiler that automatically generates Java code and implements these adaptive
features [21]. Systems can also use scripts or languages to describe adaptation behaviors. For
example, Beazley and Lomdahl [18] used a Simplified Wrapper Interface Generator (SWIG)
that wraps existing source code with scripting language interfaces to enable external monitor-
ing and steering. Systems such as VASE [47] also use this approach. The script is executed
when the application encounters pre-defined breakpoints and results in adaptation behaviors.
Quo [29] specifies domain-specific adaptation behaviors using a separate language and inte-
grates them with applications as an aspect [37]. A key drawback of the above approaches is
that all the possible adaptation must be known a priori and coded into the applications. If new
adaptation behaviors are required or if application requirements change, the application code

has to be modified and the application possibly re-compiled.

13

Some systems enabtiynamically specified adaptationby allowing adaptation, in the

form of code, scripts or rules, to be added, removed and modified at runtime. Many existing
projects in this category directly utilize and extend the capabilities of existing programming
frameworks to enable dynamic adaptation. For example, ACT [62] extends CORBA by using

a rule-based interceptor to dynamically weave new adaptive code into the ORB as applications
execute. Other projects investigate specific coordination languages to describe and adapt the
interactions between elements. For example, ALua [70] uses the Lua language to perform
interaction and adaptations in an interpretive manner, and supports the execution of dynamically

defined adaptation specifications in an even-driven manner.

2.2.2 Enforcing Adaptation Behaviors

An adaptation specification needs to be integrated with applications so that can monitor and
steer the application execution according to changing requirements and execution contexts.
This section first introduces adaptation enforcement mechanisms for legacy applications where
application source code is unaccessible. Adaptability using this approach is limited. The sec-

tion then discusses adaptation enforcement requiring modification of application source code.

Enforcing Adaptation Without Source Code Modification

Systems such as KX (Kinesthetics eXtreme) [71] and Pathfinder [39nadéle agentsto
integrate adaptation code with applications. Mobile agents provide power and flexibility in
the specification and deployment of monitoring and steering commands [39]. For example,
they are capable of executing orthogonally to the main computation of the target applications.
Besides, mobile agents can be deployed to the same memory space where application modules
reside, which reduces the latency when reacting to local conditions and provides corresponding
actions. Further, mobile agents can be customized to exploit application-specific information
and can efficiently perform adaptation behaviors.

However, supporting the execution of mobile agents, virtual machines or milieus are re-
quired at all ‘stops’. The virtual machine/mulieu serves as the hosting environment for mobile
agents, providing a library of operations to enable agents to perform monitoring and steering

actions and support agent communication, migration and scheduling. The requirement for such

14

a hosting environment increases implementation complexity. Besides, the behaviors of mobile
agents are restricted due to security concerns. Possible security problems include masquerad-

ing, denial of service, unauthorized access, eavesdropping, alteration, and repudiation [30].

Enforcing Adaptation Through Source Code Modification

Systems such as CUMULVS [33] and VIPER [57] use program instrumentation to enable mon-
itoring and steering. CUMULVS allows developers to declare the variables or parameters that
can be modified or steered during the computation. VIPER similarly allows developers to anno-
tate application programs to identify the data and parameters for monitoring and steering and to
associate them with synchronization points. When the application encounters a synchronization
point, the server is notified and extracts the current state of the data and parameters for adap-
tation purpose. However, CUMULVS and VIPER provide limited steering capabilities, e.g.,
they do not support coordinated steering across modules. As an improvement, problem solving
environments such as SCIRun [53], provide mechanisms such as feedback loops, cancellation,
direct lightweight parameter changes, and retained state across module firings, to enable mod-
ular and dataflow-oriented systems and create a richer set of steerable parameters. However, a
key limitation of CUMULVS, VIPER and SCIRun is that these systems cannot directly support

functional or algorithmic steering.

The component-based programming paradigm [67, 14] views applications as a composition
of individual components. Therefore, adaptation behaviors can be systematically enforced at
two separate levels - (1) intra-component: components can expose internal variables or param-
eters as sensors and actuators for external monitoring and steering, and (2) inter-component:

the interactions among components can be adapted.

If component source code is inaccessible, sensors and actuators can be obtained from com-
ponent interfaces using techniques such as (1) superimposition [22] that enables the software
engineer to impose predefined but configurable functionalities on a component, and (2) wrap-
ping [69] that enables components to be refined at runtime using wrappers to introduce new
behaviors. Alternately, components can directly expose their internal variables, data, param-

eters, functions, etc., as sensors and actuators for external monitoring and steering. To adapt

15

component interactions, filters [55, 13] or proxies [62, 59] can be interposed between interact-
ing components to manipulate messages or re-direct the messages to different components, and

consequently introduce new behaviors to the application.

2.2.3 Conflict Detection and Resolution During Adaptation Behavior Execution

The correctness of adaptation behaviors that are described using templates [19] and adapta-
tion classes [21], and compiled together with application code, can be checked by compilers.
This section focuses on adaptation behaviors described separately using description languages,

scripts, and rules, and weaved with application execution at runtime.

Conflicts can occur between multiple adaptation behaviors, and between adaptation behav-
iors and application execution. Some conflicts can be detected and resttiedlly. For ex-
ample, the conflicts among typed authorization policies can be statically detected as part of the
policy specification process [42], and resolved by having users revise the conflicting policies.
Specification time conflict detection is analogous to compile time type checking for program-
ming languages. A limitation of static analysis is that it may not detect conflicts that depend on

runtime state. As a result, it can be used to detect potential rather than actual conflicts.

Some conflicts can only be detected and resobtedintime. For example, applications
may require services to be delivered in different ways when requested in different execution
contexts [23]. In this case, conflicts occur and can be detected at runtime when a conflicting
service is invoked, and then resolved synchronously using auctions based on microeconomic
techniques. As an another example, the execution of business policies depends on runtime
business logic and information. Therefore the conflicts can only be detected at runtime when
overlapping queries and inconsistent provisions are found, and resolved asynchronously by

using legal reasoning based on the status of individual obligations in a database [11].

2.3 Accord Programming System

Accord extends object, component, and service based programming systems to support dynam-

ically defined adaptation behaviors using high-level rules. These rules can be directly defined

16

and injected by users through Accord portals, or they can be automatically generated from ap-
plication requirements and workflows specified by users. Users can add new rules, delete rules,
and modify existing rules.

Accord enforces adaptation behaviors using a runtime distributed rule execution infrastruc-
ture. It senses the internal state of elements and applications as well as execution context,
evaluates rule conditions, and performs the corresponding actions.

Accord provides different mechanisms to detect and resolve conflicts for scientific and busi-
ness applications. In the scientific computing domain, the most interesting use of rules is to di-
rectly control the behaviors and performance of applications. Therefore, simple reaction rules
and efficient and scalable parallel rule execution with minimal performance impact is criti-
cal. Rules in business applications are more complex and typically used to create business
obligations, provide recommendations and decision support, or describe entity privileges. The
component-based and service-based prototype implementations of Accord supports these two

classes of applications.

17

Chapter 3

Accord: Supporting the Development and Execution of Autonomic
Self-managing Applications

Accord extends existing programming systems to support the development and execution of
autonomic self-managing applications. Specifically, Accord builds on the separation of the

composition aspects (e.g., organization, communication, and coordination) of elements (e.qg.,
objects, components, and services) and applications from their computational behaviors that
underlies the distributed object, component, and service based paradigms. Further, Accord
extends it to enable element behaviors and element composition to be managed at runtime

using high-level rules.

To support runtime self-management, Accord relaxes static (defined at the compilation or
instantiation time) application requirements and system/application behaviors, and allows them
to be dynamically specified using high-level rules. Further, it enables the behaviors of ele-
ments and applications to be sensitive to changing system state and application requirements,
and adapt to these changes at runtime. This is achieved by extending computational elements
into autonomic elements with the specifications of high-level rules and mechanisms for self-
management, and providing a distributed runtime infrastructure that consistently and efficiently
enforces these rules to enable autonomic self-managing behaviors to respond to current require-

ments, state and execution context.

The Accord programming system consists of four concepts. The first is an application
context that defines a common semantic basis for applications, discussed in Section 3.1. The
second is the definition of autonomic elements as the building blocks of autonomic applications,
and the next is the definition of rules and mechanisms to enable autonomic elements, presented
in Section 3.2. The final is a runtime infrastructure that enforces rules to realize adaptation

behaviors, described in Section 3.3.

18

3.1 Defining Application Context

Autonomic elements should agree on a common syntax and semantics for defining and de-
scribing ontologies, namespaces, sensors, actuators, function interfaces and events that enable
elements to understand and interact with each other. Using such a common context allows
definition of rules for autonomic management of elements and dynamic composition and in-
teractions between elements. As Accord builds on and extends existing programming systems
with adaptation capabilities, it uses the mechanisms provided by these systems to define ap-
plication context. Current implementations of Accord extend a distributed object system [48],

a component based system [14], and a service based system [31], and use SIDL and WSDL
respectively to define functional interfaces, sensors and actuators. Further, these functional in-
terfaces, sensors and actuators are used to define if-then-else rules that adapt element behaviors

and interactions at runtime.

3.2 Autonomic Element

An autonomic element is the fundamental building block for self-managing applications in the
Accord system. It extends a computational element, including object, component, and ser-
vices, to define a self-contained modular software unit of composition with specified interfaces
and explicit context dependencies. Additionally, an autonomic element encapsulates rules and

mechanisms for self-management, and dynamically interacts with other autonomic elements.

invocation)

Figure 3.1: An autonomic element.

A - Event Other interface Actuator
Element ultonomlc generation invocation invocation
manager element P P
Functional port | Element manager
CorglerJTt]ztrl]?nal Control port| 5
0 ornal Internal state High-level Contextual state
perational port | (sensors rules (sensors

invocation and
events)

19

3.2.1 Port Definition

The structure of an autonomic element is shown in Figure 3.1. It is defined by three classes of

ports:

1. Thefunctional port (I') defines a set of functionalitiesprovided and used by the auto-
nomic elementy € Q x A, wheref2 is the set of inputs and is the set of outputs of the

elements, and defines a valid input-output set.

2. Thecontrol port (X) is the set of tuplesqd(&), whereo is a set of sensors and actua-
tors exported by the element, agds the constraint set that controls access to the sen-
sors/actuators. Sensors are interfaces that provide information about the element while
actuator are interfaces for modifying the state of the element. Constraints are based on
state, context and/or high-level access polices, and can control who invokes the interface,

when and how they are invoked.

3. Theoperational port (©) defines the interfaces to formulate, inject and manage rules,
and encapsulates a set of rules that are used to manage the runtime behaviors of the
autonomic element. Rules incorporate high-level guidance and practical human knowl-
edge, describing thactionsto be taken when a certagonditionis met oreventsare
received. Eventsare messages generated by elements and/or systeorslitionis a
logical combination of element (and environment) sensfcsionsconsist of a sequence
of invocations of elements and/or system actuators, and other interfaces. Two types of

rules are defined.

e Behavior rulescontrol the runtime functional and non-functional behaviors of ele-
ments. For example, behavior rules can control the algorithms, data representations
or input/output formats used by elements. Behavior rules can be directly defined

by users or automatically generated from application requirements or objectives.

¢ Interaction rulescontrol the interactions between elements, between elements and
their environments, and the coordination within an application. For example, an

interaction rule may define where an element will get inputs and forward outputs,

20

define the communication mechanisms used, and specify when the element inter-
acts with other elements. Interaction rules can be either directly specified by users

or automatically generated from the primary workflow.

Computational elements have to implement and export appropriate sensors and actuators so that
their behaviors and interactions can be monitored and controlled. Adding sensors and actuators
requires modification/instrumentation of the element source code. Sensors and actuators can
be implemented either as new methods that monitor or modify internal parameters and behav-
iors of an element, or defined in terms of existing methods. Accord provides corresponding
programming abstractions that can be used to specify sensors and actuators and register them
in element managers. The instrumented computational elements have to be re-compiled.

In case of third-party and legacy elements where such a modification may not be possible or
feasible, proxies [62, 59] can be used to collect relevant element information from interacting
messages. A proxy is interposed between the caller and callee elements to monitor and control,
for example, all the method invocations for the callee element. It may also collect performance
information (e.g., response time, memory usage, cache misses) and input parameter values
for each interfaces in the functional port and control the invocations by modifying the input
parameters for these interfaces. In this case, elements may not have to be re-compiled, but the

adaptability of the elements is limited.

3.2.2 Element Manager

As shown in Figure 3.1, each computational element is associated with an element manager that
implements the operation port. The element manager performs one or more of the following

management functions.

¢ Functional managementhe manager controls the functional behaviors of the managed
element based on changing requirements, state and execution context. For example, the
manager may generate customized functional ports that activate or deactivate operations
provided by the element based on the security of the execution environment and the
access privileges of the user. As another example, the manager may dynamically select

internal algorithms or data representations for current inputs.

21

e Performance managemerithe manager monitors the performance of the element, selec-
tively collects relevant performance data (e.g., response time and throughput), and adapts
it behaviors to meet performance requirements at runtime. For example, the managers

may dynamically decrease message frequency during network congestion.

e Interaction managementManagers may negotiate with each other to dynamically es-
tablish or change interaction relationships. For example, the manager may modify com-
munication patterns and coordination sequence between managed elements and respond
to changing application requirements and execution context. For example, the managers
may automatically establish interaction relationships between newly introduced elements

with the rest of an application.

As shown in Figure 3.1, an element manager monitors the internal state of its associated
element using element sensors, and senses the execution context using system sensors and
events. It further controls the firing of rules and performs rule actions by generating events,
invoking actuators or other interfaces exposed by the element and the system. To support the
management behaviors outlined above, elements and the system should expose appropriate
sensors and events. For example, runtime element performance data should be exposed as
sensors or events to support performance based management. Further, elements should support
different interaction relationships and enable the element managers to select among these at
runtime for interaction management. Wrappers [69], filters [55, 13], or proxies [62, 59] can be

used to introduce these capabilities in managed elements that do not directly provide them.

3.3 The Accord Runtime Infrastructure

The Accord runtime infrastructure, shown in Figure 3.2, consists of a portal, composition man-
agers, and peer element managers.

The infrastructure is constructed at runtime using services provided by the underlying pro-
gramming system. For example, the MPI runtime architecture [6] is used to construct the in-
frastructure in the object based prototype of Accord presented in Chapter 4. In the component
based prototype presented in Chapter 5, the Ccaffeine framework [14] provides the required ser-

vices. The service based prototype presented in Chapter 6 builds on the Axis framework [16].

22

Adaptati trategi
Application workflow lap .a on s r? eales
Application requirements

[

| Portals |

I
| Composition Manager

Interaction rules

Behavior rules

PR I D Middleware | || _ _ _ _ _
services
- I e e |

|
— l —~Z——
oo o
—
—
— |

Figure 3.2: Accord runtime infrastructure for a sample application composed of three elements.

The infrastructure can also be built on AutoMate middleware services including content-based

discovery service, associative messaging service, and decentralized reactive tuple space.

3.3.1 Composition Manager

Application workflows are defined by users or generated by a workflow engine, for exam-
ple [12], and expressed in XML. The workflows are then decomposed by the composition
manager into interaction rules and injected into corresponding element managers during ini-
tialization period. At runtime, the composition manager analyzes and decomposes adaptation
strategies, dynamically defined by users or generated from application requirements, into be-

havior rules and interaction rules, and injects them into corresponding element managers.

3.3.2 Element Manager

Element managers can be statically associated with elements at compilation time, or created
by the composition manager at runtime. During initialization, element managers register the
sensors and actuators exposed by associated elements, and register element and system events
required by the rules. Managers communicate with each other using XML on top of the un-

derlying communication system such as MPI messaging in the object and component based

23

prototypes, and sockets and SOAP in the service based prototype. Element managers coordi-
nate with each other and construct a distributed rule enforcement engine to enable consistent

and efficient rule execution. This is discussed below.

3.3.3 The Rule Enforcement Engine
Key Concepts and Notation

All specified rules for an application defineale space denoted af? = {R;}, whereR; =

“IF S; THEN A;”. S; represents the set of sensors and/or events in the rule condition,
denoted asS; = {s;}. A; is a list of actuators in the rule action, denotedAas= {a;}.

An active rule space denoted as?, is the set of rules in the rule space whose conditions are

currently satisfied.

The pre-condition of the rule space? consists of the sensors used Byand their current
values, and is represented €S, V.S}, whereS = |JS; andVS = Value(S). The pre-
condition is defined by the state of the computation and the execution environment, and changes

during the lifetime of the application. As a result, the pre-conditions is known only at runtime.

The post-condition of the rule spacd? consists of the set of actuators and the values that

they should take, and is represented 4sV A}, whered = | J 4;, VA = Value(A).

In traditional rule-based systems, firing of rules consists of sequentially executing the action
part of all the rules triggered by pre-condition and producing consequence. This makes it
difficult to detect and resolve rule execution conflicts and guarantee consistent rule execution
(as described in more detail below). To address this, we define post-condition, which combines
the action part of all the rules triggered by pre-condition and can be used to detect and resolve

conflicts and inconsistencies before producing the consequences.

Consequencas the change in application state and behaviors caused by invoking the ac-
tuators defined by the post-condition. Changes can affect both component behaviors and the

application process, and are applied in the next computation phase.

Two kinds ofrule conflicts are defined: (1) Asensor-actuator G — A) conflict occurs

whenSA = S A # ¢, i.e., a parameter/variable is exposed both as a sensor and as an

24

actuator in a set of rules. (2) Aactuator-actuator (A — A) conflict occurs when the post-
condition for a rule set contains multiple instances of an actuator with different values. Note
that these conflicts have to be detected at runtime as rules can be dynamically defined. They

need to be resolved only if the conflicting rules are simultaneously triggered.

Reconciliation is required in SCMD parallel applications, as different processing nodes
may generate different post-conditions based on their local states and contexts. The goal of

reconciliation is to produce a unique post-condition across all nodes.

Rule Execution Model

As mentioned above, traditional rule-based systems directly invoke actions when rules fire [11].
However, this approach aggravates rule conflicts when multiple rules are simultaneously trig-
gered. IfS — A conflicts exist, directly invoking actions when the condition of a rule is met will
change the values of the sensors in theSs&twhich in turn will change the pre-condition. This

can have two consequences. First, the modified pre-condition may invalidate already executed
rules. Second, it may trigger rules whose conditions previously evaluated as false: K
conflicts exist, actions invoked later will ‘overwrite’ the results of perviously invoked actions.
Together, these conflicts can produce both uncertainty and inconsistency in rule execution. To
address this, we employ a three-phase rule execution model, consisting of (1) batch condition
inquiry, (2) condition evaluation and conflict resolution and reconciliation, and (3) batch action

invocation. This is illustrated in Figure 3.3.

Condition evaluation,

Ba.tt?h conflict resolution, Batch action
condition and reconciliation invocation
inquiry

Pre-condition j|> Post-condition :> Consequence

Figure 3.3: The three-phase rule execution model.

The batch condition inquiry phase queries all the sensafsimparallel, gets their values
V'S, and then generates the pre-condition. Based on this pre-condition, rules whose conditions

are satisfied form the active rule spakeIn next phase, condition evaluation for all the rules

25

in R is performed in parallel. The overall evaluation time in this case will be determined by the
longest evaluation time for an individual rule. Conflict resolution and reconciliation then takes
place and the post-condition is generated.

In the final phase, the actuators in the post-condition are invoked to produce the conse-
guence. This may also be done in parallel, since the actuators in the post-condition are inde-
pendent and free of conflicts. Note that as the rule base becomes larger, the conflict resolution
time will increase. However the time required for sensor queries, condition evaluations and
actuator invocations will not change too much. Therefore, efficient conflict resolution is espe-
cially important for high-performance parallel scientific applications using this model.

Conflict Resolution

Typical conflict resolution approaches are based on rule priorities defined through implicit
textual ordering of rules or explicit precedence relationships. However, this approach can intro-
duce additional logic complexities and overheads, making it difficult to determine rule priorities
and to make general inferences about the behaviors of conflicting rules under various circum-
stances [11]. The Accord programming system enables users to explicitly set rule priorities,
and further provides mechanisms to assist in resolving conflicts among rules with the same
priority.

Detecting and resolving — A conflicts

if SA + ¢ then
e foreachruleR; € R

— if SANA; # ¢,and3s; € SA() S; anda; € SA(A; anda; = s;, Value(s;) #
Value(a;), then deleteR; from R.

In Accord, one variable or parameter can be exposed both as a sensor and an &ttuator.
conflicts happen when at least one variable or parameter belongs to bete-tbenditionand
post-conditionbut with different values. Rules that contain this variable or parameter in the
action part will be disabled to avoid changing fire-condition

Detecting and resolvingl — A conflicts:

A — A conflicts happen when an actuator will be invoked with different values. Resolving

A— A conflicts requires users to define a sequence of sensorg’(b.es {cs;}). The resolution

26

algorithm relaxes th@re-conditionby incrementally ‘deleting’ sensors .S from the pre-
condition until each actuator in thpost-conditiorhas one value or all the sensors(it$ are

exhausted.

if A; # ¢,VR; € R/, 3a € N A;, Value;(a) = ¢ then
e repeat

— read the nexts fromC'S
— relax cs in the pre-condition

— re-evaluate rules
e until Va € () A;, Value(a) has at least one value, @S is exhausted.

e if C'S is exhausted, an error is reported to users for further instructions; otherwise, the
post-condition{ A, V' A} is constructed by randomly selecting a value for those actuators

having multiple values.

Reconciliation

Reconciliation is required to generate a consistent post-condition in parallel SCMD appli-
cations as each processing node may independently generate a different post-condition based
on its local computation, data and execution context. Different reconciliation strategies are

defined for behavior rules and interaction rules. Reconciliation will be discussed in Chapter 5.

3.4 Autonomic Adaptation Behaviors in Accord

Accord enables two levels of adaptation behaviors, behavior adaptation and composition adap-
tation, discussed in the following sections. They can be used separately or in combination to
enable the autonomic self-configuring, self-optimizing and self-healing behaviors of elements

and applications.

3.4.1 Adapting Element Behaviors

At the element level, Accord treats functions, variables, and parameters as adaptation units.
Element managers monitor behaviors of individual elements by invoking sensors and listen-

ing to events, evaluate rule conditions, and perform actions through actuator invocation and

27

event generation. The behavior adaptation of one element is functionally transparent to other
elements, since the changes do not effect its functional syntax and semantics. However, the
changes will effect its non functional behaviors such as execution time, memory usage, and

bandwidth consumption.

3.4.2 Adapting Element Composition

At the application level, Accord treats elements as adaptation units. It enables dynamic com-
position of autonomic elements, which consists of (a) node (element) dynamism - elements
are replaced, added to or deleted from the workflow, and (b) edge (interaction) dynamism -

interaction relationships are changed, added to or deleted from the workflow.

Element Composition

The composition of autonomic elements consistsadéction of elemenenddefinition of in-

teractions among these elements

e Selection of elementiescribes who is interacting, based on the compaosition of functional

ports (), and can be defined as:

Eo oxcr JEi, gy CUTE,p

where, Ey is an autonomic element) E; is a set of autonomic elementsy denotes

the relation “be functionally compose-able witl"g, ,, is the functions used by ele-
mentEy, and{JI'g, , represents the functions provided by the element 5&%. This
definition says that elemeti is functionally compose-able with elemeftsE;, when

|J E; can provide all the functions required . Function composition can be based

on semantics, which is currently being investigated in semantic web community using
OWL [9], or based on syntax description, which is used by component frameworks such

as Ccaffeine [14] and service frameworks such as the Web service architecture.

¢ Interactions among elemerdgfine how and when elements interact such as the interac-
tion mechanism (messaging, shared-memory, tuple-space) and coordination model (data-
driven or control-driven). For example, CCAFFEINE [14] defines interactions as func-

tion calls, CORBA [1] uses remote method invocations, and Web and Grid services [31]

28

communicate using XML messages. Interactions may be triggered by an event or actively

initiated by an element.

Dynamic Composition

Once a workflow has been generated (e.g., using the mechanism in [12]) and the elements
have been discovered using middleware services, the composition manager decomposes the
workflow into interaction rules. This decomposition process consists of mapping workflow
patterns [72] in the workflow into corresponding rule templates, and defining the required
parameters for the templates. The composition manager injects these interaction rules into
corresponding element managers, which then execute the rules to appropriately configure the
elements and establish interaction relationships. Note that there is no centrally controlled or-
chestration. While the interaction rules are defined by the composition manager, the actual

interactions are managed by element managers in a decentralized manner.

The decentralized composition enables autonomic elements to fully exploit explicit and
implicit parallelism in the application workflow. The execution sequence among autonomic
elements is caused by data dependency when elements have to wait for the data inputs from
their interacting elements, and/or control dependency when there is no data exchange and the
waiting is required by control flow, e.g., synchronization. Elements without these dependencies
can be executed in parallel. Workflow decomposition and decentralized execution is especially
useful for large scale applications whose parallelism cannot be completely discovered a priori

and/or manually, and therefore enables the efficient execution of their workflow.

The Accord framework supports dynamic composition as described below.

e Dynamically replacing elements: An existing element can be replaced by another ele-
ment as long as the functional ports of the two elements are compatible. The replace-
ment may be triggered either by the composition manager or by the element manager. In
both cases, the replacement is achieved as follows. First, the new element is registered
(using the registration service provided by AutoMate or the underlying framework) in
the element manager, and the old element is notified by the element manager to transi-

tion to a quiescent state. In this state, the old element does not respond to invocations or

29

requests and does not produce any responses. While, it transfers its rule set to the new
element and notifies related elements to update their interaction rules. The execution of
these updated interaction rules will establish the interactions between the new element
and related elements. The old element is then deleted, as described below. If the old

element crashes, the replacement process is handled entirely by the element manager.

Two tasks are required to enable the transfer of state information. First, the element
should expose sensors and actuators to enable its state to be externally queried and modi-
fied. Second, rules should be defined to direct the element manager to periodically query

and store the state of the element.

e Dynamically adding and deleting elements: To add a new element, the composition man-
ager creates a new element manager, initializes it with the interaction rules defined by
users, and injects corresponding rules into managers of related elements. The execution
of these rules will establish interactions between the new element and the existing ele-
ments. To delete an element, the composition manager notifies related element managers
to delete corresponding interaction rules. Once the element is no longer active in this
application, it will be terminated by the lifecycle service provided by AutoMate or the

underlying framework.

e Establishing, deleting, and changing interaction relationships: Interaction rules will in-
struct the autonomic elements to establish or delete interaction relationships at runtime.
The composition manager may inject new rules and modify existing rules, which will
be executed by corresponding element managers to dynamically change the interaction

relationships to cope with the dynamism and uncertainty of applications and systems.

The decomposition of the primary application workflow into interaction rules enables users
to adjust the workflow at runtime without recompiling and restarting the applications. The
interaction relationships are managed and automatically adapted to the dynamic context by
element managers according to interaction rules. As a result, applications can be automatically
re-configured and optimized to manage the dynamism and uncertainty of the applications and

environments.

30

3.5 Autonomic Forest Fire Application: An lllustrative Example

In this section, we use the autonomic forest fire application [36] to illustrate the Accord pro-
gramming system. The application predicts the speed, direction and intensity of the fire front
as the fire propagates using static and dynamic environment and vegetation conditions. The

application is composed of 5 elements listed below.

e DSM (Data Space ManagerJhe forest is represented as a 2D space composed of cells.
The function ofDSMis to divide the data space into sub spaces based on current system
resources using load-balancing algorithms, and to n®ifthermelof the divided 2D

space.

e CRM (Computational Resource Managef)RM providesDSM with system resource
information, including the number of current available computation resources and their

usages.

e Rothermel Rothermelgenerates processes to simulate the fire spread on each subspace
in parallel. Each subspace consists of a group of adjacent cells. A cell is programmed
to undergo state changes framburnedto burningand finally toburnedwhen the fire
line propagates through it. The direction and value of maximum fire spread is computed

using Rothermel’s fire spread model.

e WindModel WindModelsimulates the wind direction and intensity.

e GUI: Experts interact with the above elements usingGi# element.

DSM partitions the 2D space based on the currently available computational resources de-
tected byCRM Rothermethen simulates the fire propagation in this 2D space according to the
current wind information obtained frokVindModel When the load on computational nodes is
unbalancedDSM will re-partition the 2D space. The process continues untibmming cells

remain.

31

3.5.1 Defining Autonomic Element

We use theRothermelbnd CRM as examples to illustrate the definition of functional, control

and operational ports, shown in Figure 3.4.

<controlPort element=""Rothermel ">
<sensor name=""getDirection™">
<functionPort element=""Rothermel”"> <out name=""direction" type=""string"*/>
<function name=""getSpaceState"" > </sensor>
<out name=""space’" type="SpaceDes" /> <actuator name=""setCellState"*>
</function> <in name=""celllD™" type=""int""/>
</functionPort> <in name="cellState™* type=""string™*/>
</actuator>
</controlPort>

(a) Functional port of Rothermel (b) Control port of Rothermel

IF isMaxUsageDiff() > 0.5 THEN setLoadBalanced(false)

(c) A rule in the operational port of CRM

Figure 3.4: Examples of the port definition.

Functional Port: Rothermekimulates the propagation of the fire in the subspace. An ex-
ample of its functional port definition is shown in Figure 3.4 (a). The funafjetbpaceState
generates information about the space. The data struSpaeeDeslescribes the space in-
formation for this application, including the direction and value of maximum fire spread, the
vegetation type and the terrain type.

Control Port: In Rothermelthe sensogetDirectionis used to get the spread direction of
the fire line that has the maximal intensity, and the actusgtCellStatés used to modify the
state of a specified cell. The value of the input paramegéitateof the actuatosetCellState
can be one oburning unburnedor burned This constraint is handled by the implementation
of setCellStateby either providing no response to an invalid input value or returning an error.

If an error is returned, it will be captured by tRethermefule agent to generate an exception,
which is forwarded to the user. An example of control port is shown in Figure 3.4 (b).

Operational Port: The operational port contains the rules that are used to manage the
runtime behavior of a element. The rules may be defined at runtime and injected into the
element, and will be executed by the rule agent embedded in the autonomic element. An
examplebehavior rulein CRMmay be shown in Figure 3.4 (c). When this rule fir€é&M will
deduce that the load is unbalanced. Note that the threshold (0.5 in this example) that triggers

the rules can be modified at run time.

32

3.5.2 Enabling Adaptation Behaviors

The adaptation behaviors for the autonomic forest fire application enabled by Accord are illus-

trated bellow.

Adapting DSM Behaviors

DSM has two patrtitioning algorithms: greedyBlockAlgorithmwhich is fast but consumes
more resources, andgaaphAlgorithm which is slow but needs less resourcB&M needs to

dynamically select an appropriate algorithm based on current system state. The behavior rule

is shown in Figure 3.5.

IF isSystemOverlLoaded() == true THEN invoke graphAlgorithm
ELSE invoke greedyBlockAlgorithm

Figure 3.5: A behavior rule fdbSM

Adding A New Element

A new elementFFM (Fire Fighter Mode)that models the behaviors of the fire fighters, may
be added into the primary workflow. This element dynamically changes the cell state and
informs Rothermel This addition of a new element at runtime is achieved by the composition
manager inserting interaction rules into béthM and Rothermel shown in Figure 3.6. The

two elements will automatically establish the interaction based on the rules.

Rothermel IF cellChangeMsg is received
THEN invoke updateCell
IF isStateChange() == true
THEN send cellChangeMsg to Rothermel

Figure 3.6: Add a new elemeRFM.

Changing Interaction Relationships

CRMcan dynamically decrease the frequency of notificatiom3Mwhen the communication

network is congested. This adaptation behavior can be enabled by the rules shown in Figure 3.7.

33

Rulel increases the threshold value to 0.5 when the network is congested. When the maximal
difference in resource usages among the nodes is larger than the thresReddurceBalanced
returns false. When the load is imbalanced, Rule2 will be triggered and will setabitiidsg

to DSM Note that, once the rules, Rulel and Rule2 in this example, have been defined, the
changes of interactions occur in an automatical manner without human intervention. Further,
this change is local to the components involvé&MandDSMin the example above, and does

not affect other components.

Rulet: IF isSystemCongested() == true
» THEN setThreshold(0.5)
Rule2: IF isResourceBalanced() == false

THEN send loadMsg to DSM

Figure 3.7: Change the interaction relationship betw@RiM andDSM

3.6 Summary

In this chapter we presented the Accord programming system that extends existing program-
ming systems with adaptation mechanisms to support the development and execution of auto-
nomic self-managing applications. Accord includes the common semantic basis, the definition
of autonomic elements as the building blocks of autonomic applications, the definition of rules
and mechanisms to enable autonomic elements, and the runtime infrastructure that enforces
rules to realize adaptation behaviors. Further, the adaptation behaviors enabled by Accord are

presented and illustrated using an autonomic forest fire application.

34

Chapter 4

DIOS++: Autonomic Object-based Accord

An object based prototype of Accord, named DIOS++, has been implemented and evaluated in
the context of distributed scientific/engineering simulations as part of the DIOS++/DISCOVER
projectl. DISCOVER enables geographically distributed clients to collaboratively access,
monitor, and control Grid applications using pervasive portals. It is currently being used to
enable interactive monitoring, steering and control of a wide range of scientific applications,

including oil reservoir, compressible turbulence and numerical relativity simulations.

DIOS++ supports the rule-based autonomic monitoring and control of distributed and par-
allel applications. It enables high-level rules to be dynamically composed and securely injected
into applications at runtime, allowing applications to manage and autonomically optimize their
execution. Rules specify conditions to be monitored and operations that should be executed
when certain conditions are detected. Rather than continuously monitoring and steering the
simulations, experts can define and deploy appropriate rules that are automatically evaluated
and executed at runtime to manage the computation, apply runtime corrections based on the

observed state, and optimize application execution.

Following the Accord conceptual architecture, DIOS++ provides: (1) abstractions to en-
hance existing application objects with sensors and actuators for runtime interrogation and
control, access policies to control access to sensors, actuators, and rule interfaces, and rule
agents to enable rule-based autonomic monitoring and steering, (2) a hierarchical control net-
work that connects and manages the distributed sensors and actuators, enables external dis-
covery, interrogation, monitoring and manipulation of these objects at runtime, and facilitates
dynamic and secure definition, modification, deletion, and execution of rules for autonomic
application management and control. Rules can be dynamically composed using sensors and
actuators exported by application objects. These rules are automatically decomposed, deployed

into the appropriate rule agents using the control network, evaluated and executed by the rule

http://www.discoverportal.org

35

agents in a distributed and parallel manner.

DIOS++ builds on the DIOS [48], a distributed object substrate for interactively monitor-
ing and steering parallel scientific simulations. DIOS++ extends DIOS with an agent-based
framework that enables rule-based autonomic management. This alleviates time- and effort-
consuming interactive monitoring and control and enables richer self-management behaviors.

DIOS++ also provides an object-level access control mechanisms.

Note that in this prototype, autonomic elements are implemented as autonomic objects, the
operational port is implemented as the access interface and rule interface, the role of composi-
tion manager is taken by the Gateway and the rule engine, and the Accord portal is implemented
by the DISCOVER server and portals. Only behavior rules are defined and used. Interaction

rules are not supported.

4.1 Autonomic Monitoring and Control with DIOS++

Rule-based autonomic monitoring and control enhances traditional computational steering and
enables long-term, complex, computation- and resource-intensive applications to monitor and
steer themselves based on user-defined high-level rules. This may include requesting or mod-
ifying program state, pausing program execution, calibrating the runtime behaviors of the ap-
plication, exploring new computational solutions for problems that are not yet well understood,

adapting programs to the current execution environments, etc.

DIOS++ enables autonomic monitoring and control by enhancing the agent based approach
with high-level rules that incorporate human knowledge. Key research issues addressed by

DIOS++ include:

¢ Integrating monitoring and steering functionalities with applications: To realize external
monitoring and steering capabilities, a small amount of modification to the application
source code is required. The objects to be monitored and steered must explicitly expose
sensors and actuators. In case of object oriented applications, this consists of invoking the

APIs provided by DIOS++ to expose their internal variables, parameters, and functions.

Applications written in procedural languages need to transform their data structures to

36

objects using, for example, C++ wrappers. Although this requires some application mod-
ification, the wrappers are only required for those data-structures that need to be managed

and the effort required is far less than rewriting the entire application.

¢ Rich monitoring and steering capabilities: Synchronous and asynchronous monitoring
and steering are enabled. In the case of synchronous control, DIOS++ performs real-
time management behaviors responding to users’ runtime requests. In the case of asyn-
chronous control, users define and submit rules to DIOS++, and DIOS++ performs man-

agement behaviors when rule condition is met.

e Consistency: Consistency of steering behaviors depends on the actuator constraints spec-
ified in the rules that are embedded inside the objects. These constraints automatically
restrict steering behaviors within a valid range. Further, the lifetime of an application is
divided into iterations of computation and interaction. During interaction phases, com-
putation is paused. Adaptation completed in one iteration will automatically become
effective from the next iteration. Further, a simple locking mechanism is used to ensure

that applications remain in a consistent state during collaborative interactions.

e Collaboration: Using the DISCOVER server, users can form or join collaboration groups
and interact with one or more applications based on their capabilities. Users in one

collaboration group can selectively receive or broadcast application information.

4.2 DISCOVER Collaboratory

The DISCOVER collaboratory (shown in Figure 4.1) provides a virtual, interactive, and collab-

orative Problem Solving Environment (PSE) that enables geographically distributed scientists
and engineers to collaboratively monitor and control high-performance parallel/distributed ap-
plications. It consists of the DISCOVER server as the front-end and DIOS++ architecture as

the back-end.

The DISCOVER server builds on a traditional web server and extends its functionality to

37

Distributed Discover Server

Collaboration /\ Interaction server A Application1
Grou K
P E Master Servlet @
[Anpiicationt Doskiop PG 2 (RMI/sockets/HTTP) _ (}:{)[
S Viz Plot % A>> Private Key,
5 3 Policy Rule-Base z MD5, SSL
o 2 (%) o
S Mobile client g s Q Application2
E :.)’ z o © =
g @ H £ls|s 212
8 & glclal8|2 s | |||Z
S = e |s|215|§ = =
o Collaboration £ c|® ez 5 P
o o | N [® [< |7y 2 o |Gateway and
c Group o = c c b =t o ‘
© E SIs]e]le|w) o | Rule engine
c Chat, 3 = 215 |al|2 =
2 Whiteboard, Desktop PC b sl >|e|a]|s s
<o Collaborative ~ < e [A Aut f
® , o = = utonomic
§ Visualization... P': < = objects
= Desktop PC T —

Application2 E
Mobile cliel WV

Figure 4.1: DISCOVER collaboratory architecture.

handle realtime application information and client requests using “handler” servlets that pro-
vide interaction, collaboration, and rule services. The DISCOVER server provides each regis-
tered client with a unique client-id, and each registered application with a unique application-id.
The client-id along with an application-id is used to identify each session. To start interaction
behaviors, users must be authenticated by the authentication handler, which builds a customized
interaction interface for each valid client to match his/her access capabilities. This ensures that
the client can only access, interact with, and steer applications in an authorized way. In DIS-
COVER, clients must explicitly request and release locks before and after steering behaviors.
In the back-end DIOS++ architecture, a similar locking mechanism is used to protect multiple
rule agents from invoking the same actuators simultaneously. Rules with high priority will lock
these actuators when the conditions specified in the rules are satisfied. The locks are released

when rules with higher priority disable these rules, or the conditions are no longer satisfied.

DISCOVER enables multiple users to collaboratively interact with and steer applications.
All clients connected to a particular application form a collaboration group by default. Global
updates (e.g. current application status) are automatically broadcast to this group. Clients can
selectively broadcast application information to the group. Further, they can select the type of
information that they are interested in. In addition, each application portal is provided with chat

and whiteboard tools to further assist collaboration.

38

4.3 DIOS++ Architecture

DIOS++ is composed of two key components: (1) autonomic objects that extend computa-
tional objects with sensors to monitor the state of the objects, actuators to modify the state,
access policies to control accesses to sensors, actuators, and rule interfaces, and rule agents to
enable rule-based autonomic monitoring and steering, (2) a hierarchical control network that is
dynamically configured to enable runtime access to and management of the autonomic objects
including their sensors, actuators, access policies and rules, and to enable dynamic and secure

definition, modification, deletion and execution of rules.

4.3.1 Autonomic Object

In addition to its functional interface, an autonomic object (shown in Figure 4.2) exports three
interfaces: (1) aontrol interface which defines sensors and actuators to allow the object’s
state to be externally monitored and controled, (2aecess interfagavhich controls access to

the sensors/actuators and rule interfaces, and describes users’ access privileges based on their
roles and the object’s state, and (3uée interface which contains rules used to autonomically
monitor and control the object, and provides methods for adding, modifying and deleting rules.
Rule operations are handled by the rule agent embedded within the autonomic object. These
interfaces and the rule agent are described in the following sections. A sample object that
generates a list of random integeiRgndomListis used as a running example. The number of

integers and their range can be set at runtime.

Rule agent Sensor Actuator
g - invocation invocation
Control interface |
Comzz}:g?nal Access interface | | Rule agent |
Rule interface | | Internal Rules Access Contextual
Autonomic object state policies events

Figure 4.2: An autonomic object.

39

Control Interface

Thecontrol interfacespecifies the sensors and actuators exported by an object. Sensors provide
methods for viewing the current state of an object, and actuators provide methods for processing
commands to modify the object’s state. For exampl®aadomLisibject provides sensors

to query the current length of the list or the maximum value in the list, and an actuator for
deleting the current list. Note that sensors and actuators must be co-located in memory with

the computational objects and must have access to their internal state.

DIOS++ provides programming abstractions to enable application developers to define and
deploy sensors and actuators. This is achieved by deriving computational objects from a virtual
base object provided by DIOS++. The derived objects can then selectively overload the base
object methods to specify their sensors and actuators. This process requires minimal modifica-
tion to the original computational objects and has been successfully used by DIOS++ to support

interactive steering.

Access Interface

The access interfacaddresses security and application integrity. It controls access to an ob-
ject’'s sensors/actuators and rule interfaces, and limit access to authorized users. The role-based
access control model is used, where users are mapped to roles and each role is granted specific

access privileges defined by access policies.

The DIOS++ defines three roles: owner, member, and guest. Each user is assigned a role
based on her/his credentials. The owner can define/modify access policies, and enable or dis-
able external access to sensors/actuators and rule interfaces. The polices define which roles can
access a sensor, actuator and rule interface, and in what way. Access polices can be defined
statically during object creation using the DIOS++ APlIs, or can be injected dynamically by the
owner at runtime using the secure DISCOVER portal. Objects can dynamically change their
access policies based on their current state without affecting other objects. Therefore, a user

may be denied of access in one object, while maintaining access privileges for another object.

40

Rule Interface

The DIOS++ architecture uses user-defined rules to enable autonomic management of appli-
cations. Therule interfacecontains rules that define actions to be executed when specified
conditions are satisfied, and provides methods for dynamically defining, modifying, and delet-
ing rules. The conditions and actions are defined in terms ofdhé&ol interfacei.e., sensors
and actuators provided by the object. A rule in DIOS++ consists of 3 parts: (1) the condition
part, defined by the keyword “IF” and composed of conditions that are conjoined by logical
relationships (AND, OR, NQOT, etc.), (2) the action part, defined by the keyword “THEN” and
composed of operations that are executed when the corresponding condition is true, and (3) the
optional after action part, defined by the keyword “ELSE” and composed of operations to be
executed when the condition is not fulfilled.

For example, as shown in Figure 4.3, considerRamdomLisbbject with 2 sensors: (1)
getLength()to get the current length of the list, and (@¢tMaxValue(to get the maximal
value in the list, and an actuatappend(length, max, mithat creates a list of sidengthwith

random integers betweenaxandmin, and appends it to the current list.

IF RandomList.getLength()<10 AND RandomList.getMaxValue()<=50
THEN RandomlList.append(10, 50, 0)

Figure 4.3: A sample rule fdRandomList

Note that rules are separated from the application logic and can be created, deleted and
modified at runtime orthogonal to the application execution. This provides flexibility, allowing
users to monitor and control the application execution, without stopping and restarting the
application. Rules are handled by rule agents and the rule engine, which are part of the control

network described in the following section.

Rule Agent

A rule agent is embedded within each autonomic object. The rule agent receives rules from
the rule engine through rule interfaces, authenticates the user defining the rules, evaluates and

executes the rules based on the internal and contextual state to dynamically monitor and steer

41

its host object by invoking appropriate sensors and actuators. Multiple rule agents may coordi-
nate with each other to provide collaborative steering behaviors accessing multiple autonomic

objects.

4.3.2 Control Network

> DISCOVER
RA X—) =) portal

RA X

Computational node

(=) Gatoway by DISCOVER |

server

) |,
Rule
RA X v <ﬁ> >
engine
DISCOVER

3 D portal
f RA E Y
- DISCOVER
Computational node portal
~~~ Control network

Figure 4.4: The DIOS++ control network.

The DIOS++ control network (see Figure 4.4) is a hierarchical structure consisting of the
rule engine and Gateway, and computational nodes. It is automatically configured at runtime
using the underlying messaging environment (e.g. MPI) and the available processors.

The lowest level of the control network hierarchy consists of computational nodes. Each
node maintains a local object registry containing references to all autonomic objects currently
active and registered. At the next level of hierarchy, the Gateway represents a management
proxy for the entire application. It combines the registries exported by the nodes and manages a
registry of the interaction interfaces (sensors and actuators) for all the objects in the application.
It also maintains a list of access policies related to each exported interface and coordinates the
dynamic injection of rules. The Gateway interacts with external interaction servers or brokers
such as those provided by DISCOVER.

Co-located with Gateway, the rule engine accepts and maintains the rules for the applica-
tion. It decomposes these rules and distributes them to the corresponding rule agents, collects
rule execution results from rule agents and reports them to the users. Each rule agent executes

its rules based on an execution script, and reports the rule execution results to the rule engine.



42

The execution script is defined by the rule engine to specify the rule execution sequence and the
rule agent'’s runtime behaviors. The specification and execution of scripts and the coordination

between the rule engine and rule agents are illustrated in the following sections.

In DIOS++, rules are evaluated and executed by rule agents in a parallel and distributed
fashion. The decomposition of rules, collection of rule execution results, and management of
rule execution are performed by the rule engine. This central-control and distributed-execution
mechanism has the following advantages: (1) Rule execution, which can be compute-intensive
is done in parallel by rule agents. This reduces the rule execution time as compared to a se-
guential rule execution. (2) A rule agent’s behavior is specified by a script that is defined and
modified at runtime by the rule engine, allowing it to adapt to the current execution environ-

ment.

The operation of the control network is explained below using a list sorting application.
The application generates a list of integers and then sorts them. It contains two objects: (1)
RandomListhat provides a list of random integers, and $ytSelectothat provides several

sorting algorithms (bubble sort, quick sort, etc.) to sort integers.

Initialization

During initialization, the application uses the DIOS++ APIs to create and register its objects,
and export its interfaces and access policies to the local computational node. Each node exports
these specifications of all its objects to the Gateway. The Gateway then updates its registry.
Since the rule engine is co-located with Gateway, it has access to the Gateway’s registry. The
Gateway interacts with the external environment (DISCOVER servers in our prototype) and

coordinates access to the application’s sensor/actuators, policies and rules.

Interaction and Rule Operation

The lifetime of an application is divided into iterations of computation and interaction phases.
Users’ requests (realtime interaction requests or rule operation requests) received during a com-
putation phase will be queued for execution during the next interaction phase. Steering actions

completed in one iteration will automatically become effective from the next iteration.



43

At runtime, the Gateway may receive incoming interaction or rule requests from users. The
Gateway first checks the user’s privileges based on her/his role, and refuses any invalid access.
It then transfers valid interaction requests to corresponding objects and transfers valid rule
requests to the rule engine. Finally, the responses to the user’s requests or the rule execution
results are combined, collated and forwarded to the user. Once again we use the example to
describe this process.

Rule definition Supposé&kandomLisexports two sensorgjetLength(andgetList() SortS-
electorexports no sensors, and two actuatsexjuentialSort(@ndquickSort() The owner can
access all these interfaces. Members can only agetkength(andgetList()in RandomList
andsequentialSort(in SortSelectarGuests can only accegstLength(jn RandomList

Using DIOS++, users can view, add, delete, modify and temporarily disable rules at runtime
using a graphical rule interface integrated with the DISCOVER portal. An application’s sen-
sors, actuators and rules are exported to the DISCOVER server and can be securely accessed by
authorized users (based on access control polices) via the portal. Authorized users can compose
rules using the sensors and actuators. Note that rules may be defined for individual objects or
for the entire application, and can span multiple objects. Users specify a priority for each rule,
which is then used to resolve rule conflicts.

Rule deploymentConsider the rules in Figure 4.5. Let Rulel have a higher priority than
Rule2:

Rule1: IF RandomList.getLength()<100 THEN RandomList.getList()
ELSE RandomlList.getLength()

Rule2: IF RandomlList.getLength()<50 THEN SortSelector.sequentialSort()
ELSE SortSelector.quickSort()

Figure 4.5: Rulel: an object rule involving only one objBeindomListRule2: an application
rule involving two objectskandomLisandSortSelectar

Rulel is an object rule, which means that the rule only applies to one object. Rule2 is
an application rule, which means that the rule can affect several objects. When the Gateway
receives the two rules, it will first check the user’s privileges. If the rules are defined by member
users, Rule2 will be rejected since member users do not have the privilege togackSert()

interface inSortSelectar



44

The Gateway transfers valid rules to the rule engine. The rule engine dynamically decom-
poses the rules and injects them into corresponding rule agents. It then composes a script for
each rule agent, which defines its lifetime and rule execution sequence based on rule priori-
ties. For example, the script for the rule agenR@andomLisimay specify that this agent will
terminate itself when it has no rules, and that Rulel is executed first. Note that this script is

extensible.

In the case of an object rule, the rule engine just injects the object rule into its corre-
sponding rule agent, as shown in Figure 4.6 (a). In the case of an application rule, the rule
engine will first decompose the rule into triggers and then inject triggers into corresponding
agents. For example, the application rule ‘Rule2’ is decomposed into 3 triggeortBSelec-
tor.sequentialSort()2) SortSelector.quickSor{(@nd (3)RandomList.getLengthg 50. These
triggers are injected into corresponding agents as shown in Figure 4.6 (b).

Rule engine ‘Sorter’ “List
[ Trigger1: sequentialSort () ]

Trigger2: quickSort() [ Trigger3: getLength ()<50

| Rule interface | | Rule interface
IF getLength ()<100
THEN getList () Rule engine
ELSE getlLength () »| IF Trigger3
- THEN Trigger1
List ELSE Trigger2

(a) (b)

Figure 4.6: (a): Deployment of an object rule. (b): Deployment of an application rule.

Rule execution and conflicts resolutidburing the interaction phase, the rule engine fires
all the rule agents at the same time, and these rule agents work in parallel. Rule agents execute
object rules and return the results to the rule engine. The rule engine then reports them to
the user. Rule agents also execute triggers, which are part of application rules, and report
corresponding results to the rule engine. The rule engine collects the trigger results, evaluates
conditions, and then issues corresponding actions to be executed in parallel by rule agents if
the conditions are satisfied. Application rule results are also reported to the user.

While typical rule execution is straightforward (actions are issued when their required con-
ditions are fulfilled), the application dynamics and user interactions make things unpredictable.

As a result, rule conflicts must be detected at runtime. In DIOS++, rule conflicts are detected



45

at runtime and are handled by grouping rules based on their priority and disabling conflicting
rules with lower priorities. This is done by locking the required sensors and actuators. For
example, suppose that a user defines two rules for the object indRamckomListshown in

Figure 4.7. Rule3 requires setting the minimal integer value to 5 when the list length is less
than 100 and larger than 50, and Rule4 requires the minimal value to be 6 when the list length
is larger than 30 and less than 70. Rule3 has higher priority than Rule4. The two rules conflict

with each other, for example, when the list length is 60.

Rule3: IF RandomList.getLength()>50 AND RandomlList.getLength()<100
THEN RandomList.setMinint() = 5

Rule4: IF RandomList.getLength()>30 AND RandomList.getLength()<70
THEN RandomList.setMiniInt() = 6

Figure 4.7: Rules with conflicts.

The rule agent script asks the rule agent to fire Rule3 first. After Rule3 is executed, the
interface ofsetMinint()is locked during the period when the length is less than 100 and larger
than 50. When Rule4 is issued, it cannot be executed as the required interface is locked. The

interface will be unlocked when the length value is not within the range 50 to 100.

4.4 The Autonomic Oil Reservoir Application: An lllustrative Example

In this section, we use the oil reservoir simulation application [45] to illustrate the ideas de-
scribed in this chapter. The application optimizes the placement and operation of oil wells
to maximize overall revenue. The application consists of the instances of distributed multi-
model, multi-block reservoir simulation components provided by the IPARS, simulated anneal-
ing based optimization services provided by the VFSA, economic modelling services, real-time
services providing current economic data (e.g. oil prices), historical data archives, and experts
(scientists, engineers) connected via collaborative portals. During initialization, experts con-
figure and launch the IPARS factory and the VFSA optimization service. In the iterative op-
timization phase, the IPARS factory gets initial guess from the VFSA and launches an IPARS
instance, which uses the Economic Model along with current market parameters to estimate

the current revenue. This revenue is normalized and then communicated to the VFSA service,



46

which in turn uses this value to generate an updated guess of the well parameters and sends this
to the IPARS Factory. The IPARS Factory now configures a new instance of IPARS with the
updated well parameters and deploys it. This process continues until the required terminating

condition is reached (e.g. revenue stabilizes).

The IPARS instance exposes its input parameters (well parameters) and physical models as
actuators. Similarly, the VFSA exposes its input parameters (the revenue) and probability value

as actuators.

DIOS++ enables directly modifying parameters exported by objects. For instance, modifi-
cation of the probability value of the VFSA will increase or decrease the process time required
to find a global minimum. Consistency of these steering behaviors is guaranteed through the ac-
tuator constraints specified in the rules that are embedded inside the objects. These constraints
will automatically restrict the values to be within a valid range. For instance, a constraint is de-
fined to maintain the probability value between 0 and 1. When a user tries to set the probability
to an invalid value, the constraint will reject the request and send an error message to the user,

shown in Figure 4.8.

IF probability <0 OR probability>1
THEN exception(VFSA, probability, error_message)

Figure 4.8: The constraint in VFSA that maintains the probability value between 0 and 1.

Let us examine a more complex case that involves multiple objects. Suppose IPARS pro-
vides two algorithms, algorithms1 that generates a result with higher precision but is resource-
consuming, and algorithm2 that generates a result with lower precision but consumes less re-
sources. IPARS begins with algorithm2 and then use algorithml when the revenue approaches
some pre-defined threshold to achieve the best performance in terms of precision under condi-

tions of limited computational resources. The rule is specified in Figure 4.9:

IF VFSA.revenue < threshold THEN IPARS.algorithm2()
ELSE IPARS.algorithm1()

Figure 4.9: A sample application rule involving VFSA and IPARS.



47

This rule is decomposed into one sensor and two actuatenssorl“VFSA.revenue<
threshold”,actuatorl“IPARS.algorithm2()” andactuator2“IPARS.algorithm1()". sensorlis
injected into the VFSA rule agengctuatorland actuator2 are injected into the IPARS rule
agent. Whersensorls triggered, IPARS rule agent will be notified aactuatorlor actuator2
will be executed. The rule will be automatically evaluated and executed to configure IPARS.

In DIOS++, monitoring and steering behaviors may be synchronous or asynchronous. Syn-
chronous monitoring and steering is a one-time behavior (an example could be the modification
of probability value in VFSA) responding to users’ realtime requests, while in asynchronous
monitoring, steering behaviors are performed whenever condition is satisfied during the life

time of an application (an example could be the complex case discussed above).

4.5 Experimental Evaluation

This section summarizes the experimental evaluation of the DIOS++ library using the IPARS

reservoir simulator framework on the beowulf cluster. The cluster contains 64 Linux-based

computers connected by 100 Mbps full-duplex switches. Each node has an Intel(R) Pentium-
4 1.70GHz CPU with 512MB RAM and is running Linux 2.4.20-8 (kernel version). IPARS

is a Fortran-based framework for developing parallel/distributed reservoir simulators. Using

DIOS++/DISCOVER, engineers can interactively feed in parameters such as water/gas injec-
tion rates and well bottom hole pressure, and observe the water/oil ratio or the oil production

rate. The evaluation consists of 3 experiments:

. 1600 mwithout 120000 @ computation O computation
: ::Zg D_ltOhS++ 100000 4— time 120000 time
L mwi o
1 @ obj rule exec
2 1000 DIOS++| 3 89000 —mrue 100000 time
T 800 S 60000 H | | deployment || & 80000
c = i 2 50000 Oapp rule
.S 600 13 40000 H ime 5 exec time
3 400 g E 40000
Q H —
% 200 = 20000 2 20000
0 number of 0 e numberof ||~ o ; ; number of
1 2 4 8 16 32 processorg 12 3 4 iterations 1 2 3 iterations
(a) Minimal overhead (b) Rule deployment overhead (c) Rule execution overhead

Figure 4.10: DIOS++ experimental evaluations.

Experiment 1 (shown in Figure 4.10 (a)): This experiment measures the runtime overhead
introduced by DIOS++ in minimal rule execution mode. In this experiment, the application

automatically updates the DISCOVER server and its connected clients with the current state



48

of autonomic objects and rules. Explicit interaction and rule execution are disabled during the
experiment. The application’s runtime with and without DIOS++ are plotted in Figure 4.10 (a).
It can be seen that the runtime overhead due to DIOS++ is very small and within the error of

measurement.

Experiment 2 (shown in Figure 4.10 (b)): This experiment compares computation time and
the average rule deployment time for successive iterations. In this experiment, we deployed
object rules in the first and third iterations, and application rules in the second and fourth
iterations. The experiment shows that object rules need less time than application rules. This is
true since the rule engine only has to inject object rules to corresponding rule agents, while it

has to decompose application rules to triggers, and inject triggers to corresponding rule agents.

Experiment 3 (shown in Figure 4.10 (c)): This experiment compares computation time,
average object rule execution time and average application rule execution time for successive
iterations. The experiment shows that application rules require longer execution time than
object rules, since the rule engine has to collect results from all the triggers, check whether the
conditions are fulfilled and invoke corresponding actions. The execution of both application
rules and object rules involves querying sensors, evaluating conditions, resolving conflicts, and
invoking actuators. Sensor queries, condition evaluation and actuator invocation can be done in
parallel. As a result, these overheads are not significantly impacted by the size of the rule base.

However, conflict resolution overhead does increase with the size of the rule base.

4.6 Summary and Conclusion

This chapter presented the design, prototype and experimental evaluation of DIOS++, an archi-
tecture for supporting the rule-based steering and control of distributed scientific applications.
DIOS++is based on the Accord conceptual architecture and extends computational objects with
control, access and rule interfaces, and embedded rule agents to allow secure external monitor-
ing and steering behaviors with rich semantics. DIOS++ enables asynchronous management
via direct interactions between users and application sensors/actuators, as well as asynchronous

and automatic management based on user-defined rules.

Rules can be defined, modified and deleted at runtime. They are evaluated and executed



49

in a distributed and parallel manner by rule agents embedded within autonomic objects, to au-
tomatically adjust the runtime behaviors of applications. Besides, these rules are defined in a
simple “IF-THEN-ELSE” format and can be used with many different applications. The exper-
imental evaluation presented in the chapter demonstrates that DIOS++ overheads are small and
the architecture is scalable.

DIOS++ is currently being used, along with DISCOVER, to enable autonomic monitoring
and control of a wide range of scientific applications, including oil reservoir, compressible

turbulence and numerical relativity simulations.



50

Chapter 5

Accord-CCA: Autonomic Component-based Accord

This chapter presents the component-based prototype of Accord based on the DoE Common
Component Architecture (CCA) and the Ccaffeine framework [14] in the context of component-
based high-performance scientific applications. Specific contributions include: (1) extension
of CCA to enable the definition of self-managing components and applications; (2) design
and implementation of a runtime framework to support self-management behaviors using dy-
namically defined rules; (3) implementation of the three-phase rule execution model to enable
consistent and efficient rule execution for distributed/parallel scientific applications; and (4)
support for performance driven self-management using the TAU framework [5]. Compared to
DIOS++, which enables function oriented adaptation at object and application levels, this pro-
totype supports both function and performance (using TAU utilities [5]) oriented adaptation,
enables dynamic composition by replacing components at runtime, and provides consistent and
efficient rule execution for intra- and inter-component adaptation behaviors. The self-managing
shock hydrodynamics simulation antH, ignition simulation are presented as case studies.

Note that in this prototype, autonomic elements are implemented as autonomic compo-
nents, the control port is constructed by exposing sensors and actuators via the CCA RulePort,
the operational port is implemented by component managers. The behavior rules are named

component rules, and the interaction rules are named composition rules.

5.1 Component-Based Distributed/Parallel Scientific Applications

5.1.1 The Common Component Architecture (CCA)

Component-based software architectures address some of the key requirements of emerging
high-performance parallel/distributed scientific applications. Specifically, the DoE Common
Component Architecture (CCA) and its implementation, the Ccaffeine framework [14], have
been successfully used by a number of applications [35, 41, 40]. CCA supports the provides-

uses design pattern. Componeptevidefunctions anduseother components’ functions via



51

ports Components are peers and independently developed. Further, CCA empl&ia-the
gle Component Multiple Data (SCMDyodel, where all processing nodes execute the same
program structure.

Ccaffeine [14], developed at Sandia National Laboratories, implements the CCA core spec-
ification and provides the fast and lightweight glue to integrate external and portable peer com-
ponents into a SCMD style parallel application. Components are created and exist within the
Ccaffeine framework. They register themselves and their ports with the framework and are
dynamically loaded and connected. As a result, the Ccaffeine framework maintains complete
knowledge about an application. Further, all the components on the same processor reside
in the same address space and these components interact with each other using method calls.

Component interaction across processors use MPI [6].

5.1.2 Behavior and Performance of Component-based Scientific Applications

The component-based programming approach not only reduces the burden of developing scien-
tific applications, but also benefits their runtime management. With componentization [14], the
behavior and performance of an application can be interpreted as a composition of individual
components. For example, the composite performance of a component assembly is determined
by the performance of the individual components and the efficiency of their interaction [59].
Therefore, management behaviors can be systematically enforced at two separate levels - intra-
component and inter-component.

The execution of scientific applications typically consists of a series of computational
phases. Between two successive phases, computations within components and communica-
tions between components are paused, and the components are reconfigured for the next phase.
This pause between phases has been caltpded interval Runtime management is usually
performed during thesguiet intervalsto ensure the integrity of the numerical computations.
Changes made to components/applications dwiggiet intervalare automatically applied in
the next computational phase.

Finally, in case of the Ccaffeine framework, due to the underlying SCMD model, con-
nections between components can be made by directly passing ports (i.e., pointers to pure

virtual interfaces), which incur negligible overheads [14]. As a result, the overall performance



52

of an application can be simply viewed as a function of the performance of its constituent
components. Further, in case of scientific applications, the performance of a component is
dominated by the cache performance of its implementation and the cost of inter-processor
communications [59]. Cache performance is defined by the degree of data locality in com-
putation algorithms and is affected by the cache size and cache management strategies used
by the execution environment. Inter-processor communication costs are defined by software
and algorithmic strategies used by the implementation (e.g., combining communication steps,
minimizing/combining global reductions and barriers, overlapping communications with com-
putations, etc.), and are affected by factors such as load-balance and communication channel

congestion (due to competing application or possibly malicious attacks).

5.2 Self-management of Component-based Scientific Applications

As mentioned in Chapter 1, addressing the challenges of emerging high-performance scien-
tific applications requires a programming system that enables the specification of applications,
which can detect and dynamically respond, during their execution to changes in both the execu-
tion environment and application state. This requirement suggests that: (1) applications should
be composed from discrete self-managing components, which incorporate separate specifica-
tions for all of functional, non-functional and interaction-coordination behaviors; (2) the spec-
ifications of computational (functional) behaviors, interaction and coordination behaviors and
non-functional behaviors (e.g. performance, fault detection and recovery, etc.) should be sepa-
rated so that their combinations are compose-able; (3) the interface definitions of these compo-
nents should be separated from their implementations to enable heterogeneous components to

interact and to enable dynamic selection of components.

Component-based scientific simulations and the CCA architecture address some of these re-
quirements and support application maintainability and extensibility. The capability of dynami-
cally swapping components has been incorporated into the CCA specification and implemented
by the Ccaffeine framework. However, enabling self-managing components/applications re-
quires extending CCA to enable components that can adapt their behaviors and interactions

based on their current state and execution context in an autonomic manner. In this section we



53

describe an extension of the CCA architecture, and specifically the Ccaffeine framework [14]
using Accord, to support self-management. This consists of extending CCA components (in-
cluding legacy components) to support monitoring and control, and extending the Ccaffeine
framework to support consistent and efficient rule-based intra-component and inter-component

self-management behaviors.

5.2.1 Defining Managed Components

In order to monitor and control the behaviors and performance of CCA components, the com-
ponents must implement and export appropriate “sensor” and “actuator” interfaces. Note
that the sensor and actuator interfaces are similar to those used in monitoring/steering sys-
tems [33, 60, 61]. However, these systems focus on interactive management where users man-
ually invoke sensors and actuators, while this research focuses on automatic management based
on user-defined rules. Adding sensors requires modification/instrumentation of the component
source code. In case of third-party and legacy components, where such a modification may not
be possible or feasible, proxy components [59] are used to collect relevant component informa-
tion. A proxy provides the same interfaces as the actual component and is interposed between
the caller and callee components to monitor, for example, all the method invocations for the
callee component. Actuators can similarly be implemented either as new methods that modify
internal parameters and behaviors of a component, or defined in terms of existing methods if
the component cannot be modified. The adaptability of the components may be limited in the
latter case. In the CCA based implementation, both sensors and actuators are exposed by in-
voking the ‘addSensor’ or ‘addActuator’ methods defined by a speciaRzéePort which is

shown in Figure 5.1.

class RulePort: public virtual Port {
public:
RulePort(): Port() { }
virtual ~RulePort() { }
virtual void loadRules(const char* fileName) throw(Exception) = 0;
virtual void addSensor(Sensor *snr) throw(Exception) = 0;
virtual void addActuator(Actuator *atr) throw(Exception) = 0;
virtual void setFrequency() throw(Exception) = 0;
virtual void fire() throw(Exception) = 0;

Figure 5.1: TheRulePortspecification.



54

Management and adaptation behaviors can be dynamically specified by developers in the

form of rules. Two classes of rules are defined:

e Component ruleaddress intra-component management. These rules manage the runtime
behaviors of individual components, including dynamic selection of algorithms, imple-
mentations, data representation, input/output format used by the components, etc., based

on the current state and execution context of the component.

e Composition rulesddress inter-component management. These rules manage the struc-
ture of the application and the interaction relationships among components based on the
current application/system state, changing requirements, and changing execution context.
Intra-component management behaviors include dynamic composition of components,
definition of coordination relationships and selection of communication mechanisms.

For example, composition rules can be used to add, delete or replace a component.

Management rules in this prototype incorporate high-level guidance and practical human knowl-
edge in the form of conditional if-then expressions, i.egdRditionTHEN action This simple
construction of rules is deliberately used to enable efficient execution and minimize impact on
the performance of the application. Tbenditionis a logical combination of sensors (exposed

by components) and performance data, andattt@n consists of a sequence of invocations

of actuators exposed by components. The rules are interpreted and executed by the runtime

framework, as discussed in the next section.

5.2.2 Enabling Runtime Self-management

To enable runtime self-management in this prototype, two specialized component types are
defined (see Figures 5.2 and 5.3): (1) Component manager that monitors and manages the be-
haviors of individual components, e.g., selecting the optimal algorithms or modifying internal
states, and (2) Composition manager that manages, adapts and optimizes the execution of an ap-
plication at runtime. Both, component and composition managers are peers of user components
and other system components, providing and/or using ports that are connected to other ports

by the Ccaffeine framework. The two managers are not part of the Ccaffeine framework, and



55

consequently provide the programmers the flexibility to integrate them into their applications

only as needed.

Driver

| CCA Ccaffeine framework

Component manager Composition manager

I:I Controllable component

Figure 5.2: A self-managing application composed of 5 components. The solid lines denote
computational port connections between components, and the dotted lines are port connections
constructing the management framework.

| Fooss===- T~ """
(I Lo e
L1 : : I!:I - C2y
ILE!J [ =
a3 C2x [ Cly :
I
T |
Cix | 0 I
| | Node y |
l L. '
Nodex |- ----------- I
) &, I
J t : C2 |
: 1 '
| Ciz ) !
| |
l l !
|
) Node z : |
b e ——————— I

Figure 5.3: Distributed self-managing application shown in Figure 5.2 executed on three nodes.
The solid lines across nodes denote the interactions among manager instances. The dotted lines
are port connections constructing the management framework within one node.

The design of the component manager and composition manager components are based on

the following observations and considerations.

e Scientific applications may contain tens of components, but only a few of them need

to be dynamically monitored and controlled. Therefore, the manager functionalities are



56

encapsulated into two component types and provide programmers with the flexibility of
integrating them with other components in the applications. For example, in Figure 5.3,
only component’1 and(C?2 are associated with component managers for dynamic man-

agement.

e The manager functionalities are provided by components instead of being integrated
within the Ccaffeine framework. This prevents the framework from being ‘overweight’

and thus avoids the resulting performance and maintenance implications.

e By encapsulating the manager functionality into these components and providing abstract
interfaces for invoking this functionality, the manager functionality can be modified and
improved without affecting other components and the framework. Additional function-
ality can be added into the manager components, and other components that deal with
specific management functions can be created and integrated with the manager compo-

nents using the ‘uses-provides design pattern’ [14].

Component Manager

Component managers provide tRelePortshown in Figure 5.1. They are instantiated only

after the other application components are composed together. Their instantiation consists
of two steps: first, instances of managed components expose their sensors and actuators to
their respective component manager instances by invoking the ‘addSensor’ and ‘addActuator’
methods, and second, component rules are then loaded into component manager instances,
possibly from disk files, by invoking the ‘loadRules’ method. This initialization of component

manager instances is a one-time operation.

Management operations are performed during applicajigat intervals The managed
components (or their proxies) invoke the ‘fire’ method of BwePortto inform the compo-
nent managers that they have entered into a quiet interval. This behavior must be explicitly
programmed, possibly at the beginning/end of a computation phase or once every few phases,
to establish the self-management frequency. Adaptations made during a quiet interval will be

applied during the next computation phase.



57

Composition Manager

The composition manager also provides tealePort(shown in Figure 5.1). Composition
manager instances are initialized by the CCA driver component to load in composition rules
(possibly from a disk file) using the ‘loadRules’ method. These rules are then decomposed into
sub rules, and delegated to corresponding component managers. The driver component noti-
fies composition manager instances of quiet intervals by invoking the ‘fire’ method. During
execution of the composition rules, composition manager instances collect results of sub rule
execution from component manager instances, evaluate the combined rule, and notify com-
ponent managers of actions to be performed. Possible actions include adding, deleting, or
replacing components. When replacing a managed component, the new component does not
have to provide and use the exact same ports as the old one. However, the new component must
at least provide all the active ports (those used by other components in the application) that are

provided by the old component.

Rule Execution Model

The three-phase rule execution model discussed in Chapter 3 is used by the component man-

agers to ensure consistent and efficient parallel rule execution.

During the batch condition inquiry phase, each component manager queries all the sensors
used by the rules in parallel, gets their current values, and then generage-tendition
During the next phase, condition evaluation for all the rules is performed in parallel. Rule
conflicts are detected at runtime when rule execution changegr¢heondition(defined as
sensor-actuator conflicts), or the same actuator will be invoked with different values (defined
as actuator-actuator conflicts). Sensor-actuator conflicts are resolved by disabling those rules
that will change there-condition Actuator-actuator conflicts are resolved by relaxing the pre-
condition according to user-defined strategies until no actuator will be invoked with different

values.

For example, consider componetit with 3 algorithms: algorithm 1 has better cache per-

formance but consumes a large communication bandwidth, algorithm 2 has comparatively more



58

cache misses but only consumes a small bandwidth, and algorithm 3 demonstrates an accept-
able cache miss and communication delay but has lower precision. It is possible that under
certain conditions, rule evaluation may results in the selection of algorithm 1 and 2 at the same
time to simultaneously decrease cache misses and communication delay, and maintain high-
precision computation. This conflict is detected and resolved by relaxing the high-precision

requirement, and therefore algorithm 3 can be selected.

Further, the framework also provides mechanisms for reconciliation among manager in-
stances, which is required to ensure consistent adaptations in parallel SCMD applications, since
each processing node may independently proposes different adaptation behaviors based on its
local state and execution context. The reconciliation for component rules consists of identify-
ing and propagating the actions proposed by a majority of the nodes. If a majority is not found,
an error is reported to the user. Composition rules are statically assigned one of two priori-
ties. A high priority means that the re-composition is necessary, while a low priority means the
re-composition is optional. Actions associated with composition rules with high priority are
propagated to all the nodes. If there are multiple high priority rules with collisions, a runtime
error is generated and reported to the user. In case of actions associated with composition rules
with low priority, a cost model is used to approximate the performance gain of each action set

and the action set with the best overall gain is selected and applied by all the nodes.

After conflict resolution and reconciliation, thmst-condition consisting of a set of ac-
tuators and their new values, is generated. post-conditionis enforced by appropriately

invoking the actuators in parallel during the batch action invocation phase.

Note that the rule execution model presented here focuses on correct and efficient execu-
tion of rules and provides mechanisms to detect and resolve conflicts at runtime. However,

correctness of rules and conflict resolution strategies are responsibilities of the users.

5.2.3 Supporting Performance-driven Self-management

The TAU [5] framework provides support for monitoring the performance of components and
applications, and is used to enable performance-driven self-management. TAU can record in-

clusive and exclusive wall-clock time, process virtual time, hardware performance metrics such



59

as data cache misses and floating point instructions executed, as well as a combination of mul-
tiple performance metrics, and help track application and runtime system level atomic events.
Further, TAU is integrated with external libraries such as PAPI [3] or PCL [4] to access low-
level processor-specific hardware performance metrics and low latency timers.

In our framework, TAU APlIs are directly instrumented into the computational components,
or into proxies in case of third-party and legacy computational components, and performance
data is exported as sensors to component managers. Optimizations are used to reduce the over-
heads of performance monitoring. For example, as the cache-hit rate will not change unless
a different algorithm is used or the component is migrated to another system with a different
cache size and/or cache policies, monitoring of cache-hit rate can be deactivated after the first
a few iterations and only re-activating when an algorithm is switched or the component is mi-
grated. Similarly, inter-processor communication time is measured per message by default but
this can be modified using the ‘setFrequency’ method irRtbkePortto reduce overheads. An-
other possibility is to restrict monitoring to only those components that significantly contribute
to the application performance. Composition managers can identify these components at run-
time using mechanisms similar to those proposed in [68] and enable or disable monitoring as
required. Finally, in case of homogeneous execution environments only a subset of nodes may

be monitored.

5.3 Case Studies

The operation of the component based prototype is illustrated using two applications, (1) a self-

managing hydrodynamics shock simulation and (2) a self-mandgfigignition simulation.

5.3.1 A Self-Managing Hydrodynamics Shock Simulation

This application simulates the interaction of a hydrodynamic shock with a density-stratified
interface. The system is modelled using the 2D Euler equation (inviscid Navier-Stokes). Details
of the equations used and the interaction are presented in [58, 63, 64]. The governing equations

(the compressible Euler equations) in conservative form are:

U + F(U), + G(U), =0 (5.1)



60

where

U = {p,pu,pv,pe,p¢}",
F(U) = {pu,pu®+ p, puv, (pe + p)u, pCu}”,

G(U) = {pv, puv, pv*® + p, (pe + p)v, p¢v}T,

pe is the total energy, related to the presspiigy p = (v — 1)(pe — 1p(u® + v?)) and( is

an interface tracking function. We have used the conservative level set formulation of Mulder
et. al [51] to track the interface. The basic idea is as follows: Consider a fungtiar),

which is defined everywhere in the domain. Then a particular value defines the interface. In
our case, we initially us€(x,0) = +1(0) in the incident (transmitted) gas. We define the
interface ag (x,t) = 0.5. The function((x, t) is governed by the partial differential equation
D(¢/Dt = 0, resulting in the last equation in the system above. We use the ideal gas law as
the equation of state. The equations are solved on a uniform cell-centered mesh i.e. the mesh
divides the domain into small rectangular cells and fluid variables are defined and indexed at

the cell centers. In 1D, the equation would be solved as

At
nt+l _ tn n+1/2 n+1/2
U = U (R - ) (5.2)

The Godunov method is used to determif +1/2

€1 /o at the cell interfaces in order to evaluate

the RHS. This involves transforming the equation at each cell into Riemann Invariants in the
X andY directions; constructing the states on the left and right of a cell interface using slope-

limiters and upwinding. Since the left and right states are not identical, a Riemann problem

+1/2

12 The construction of left

[65] is setup, which is solved (iteratively) to obtain the flu¢e
and right states holds true for most finite volume methods; solving an exact Riemann problem
could be substituted by a gas-kinetics scheeg. Equilibrium Flux Method [56]).

Figure 5.4 shows the assembly of components for the CCA-based implementation of the
simulation. The simulation uses structured adaptive mesh refinement. In this implementation,
the Runge-Kutta time integratoRK2) with an InviscidFlux component supplies the right-
hand-side of the equation on a patch-by-patch basis. This componeni@esteuctLRStates

component to set up a Riemann problem at each cell interface, which is then passed to

dunovFlux for the Riemann solution. £onicallnterfacelC component sets up the problem



61

Arena
cProps pSwe cProps pSve cProps |
CONFIG StatsPort CONFIG MyMesh  |mm CONFIG
_| MyMesh ShocklCFart PrapFart GasPropertiesPart

CaonicallnterfacelC

cProps pSwvc

Integratar GasPraperties

InitCond

Regrider CONFIG Interpolations |m CHrEps |
ShackDriver I Cracerort | l— ProlongRestrict
FrolongRestrict

cProps PSwe

COMFIS FluxFrop

cProps pSvc

IntegrateFort DiffFlux

Fluxes Flux ComputeFort

Regrider FluxFrop FropPort

StatesPropPort cProps ” FropPort

FluxPropPaort StatesProp |

StatesComputePart StatesCompute

MyMesh

CharacFProp

CharacPart

cProps FropFort
|_ cProps REu e cProps Myhesh ﬁ|
uxPropPaort
StatsPort WtyMezh CharacFPort MyProp ﬁ
M L ux ComputePort
SERIE CharacPropPort

CharacQuants

cProps pSvC

COMFIG Myhlesh

Error_Estimation_and_Regrid

ErrorEstimataor

Figure 5.4: “Wiring” diagram of the shock-hydrodynamics simulation. A second-order Runge-
Kutta (RK2) integrator drivednviscidFlux component — transformation into left and right
(primitive) states is done bgtatesand the Riemann problem solved 8pdunovFlux. Sundry

other components for determining characteristics’ speeds (u + a, u - a, u), cell-centered inter-
polations etc. complete the code.

- a shock tube with Air and Freon (density ratio 3) separated by an oblique interface that is
ruptured by a Mach 10.0 shock. The shock tube has reflecting boundary conditions above
and below and outflow on the right. THMRMesh and GodunovFlux are the significant
components in this simulation from the performance point of view, and is used to illustrate

self-managing behaviors in the discussion below.

Scenario 1: Self-optimization via component replacement

An EFM algorithm, which is based on a gas-kinetic scheme [56], may be used instead of
the Godunov method witRK2 in the implementation described abov@odunovFlux and

EFMFlux demonstrate different performance behaviors and mean execution times as the size
of the input array size increases, as shown in Figure 5.5. This difference in performance is

primarily due to the difference in data locality and cache behaviors for the two implementations.



62

GodunovFlux is more expensive thaBFMFIux for large input arrays.

4000

3500(

3000 Godunov

25001

2000 -

1500 - EFM

Mean Execution Time

1000 -

500

L L
o 5000 10000 15000

Array Size

Figure 5.5: The average execution timesEsMFlux andGodunovFlux as functions of the
array size (machine effects have be averaged out).

The appropriate choice of algorithm (Godunov or EFM) depends on simulation parame-
ters, its runtime behaviors and the cache performance of the execution environment, and is not
known a priori. In this scenario we use information about cache miss&uoidunovFIlux ob-
tained using TAU/PCL/PAPI, to trigger self-optimization, so that when cache misses increase
above a certain threshold, the corresponding instandeoofunovFlux is replaced with an

instance oEFMFIlux .

To enable the component replacement, one component manager is connected to the com-
ponentGodunovFlux through theRulePortto collect performance data, evaluate rules, and
perform runtime replacement. The component manager (1) locates and instdefRtERIX
from the component repository, (2) detects all the provides and uses pdstsdonovFIux,
as well as all the components connected to it, (3) disconi@atisinovFlux and delete all the
rules related t@odunovFlux, (4) connectEFMFlux to related components and load in new
rules, and finally (5) destroyGodunovFIux. The replacement is performed afaiet interval
From the next calculation stegFMFIlux is used instead obodunovFlux. However, other
components in the application do not have to be aware of the replacement, since the abstract
interfaces (ports) remain the same. After replacement, the cache behavior improves as seen in

Figure 5.6.



63

1 Godunov EFM

— with
replacement

without

/I</ replacement
0.5 !

Cache miss

2000 4
4000 A
6000
8000

T T T
o o o o
o o o o
o o o o
o (2} < ©
- - - -
Array size

Figure 5.6: Replacement &fodunovFlux with EFMFlux to decrease cache misses.

Scenario 2: Self-optimization via component adaptation

The AMRMesh component supports structured adaptive mesh-refinement and provides two
communication mechanisms. The first exchanges messages on a patch by patch basis and re-
sults in a large number of relatively small messages. The second packs messages from multiple
patches to the same processor and sends them as a single message, resulting in a small num-
ber of much larger messages. Depending on the current latency and available bandwidth, the

component can be dynamically adapted to switch the communication mechanism used.

In this scenario, we use the current system communication performance to adapt the com-
munication mechanism used. As PAPI [3], PCL [4], and TAU [5] do not directly measure
network latency and bandwidth, this is indirectly computed using communication times and
message sizeAMRMesh exposes communication time and message size as sensors, which

are used by the component manager to get the current bandwidth as follows:

commTime; — commTimesy

bandwidth = (5.3)

msgSize; — msgSizes

Here, commTime;’ and ‘commTimes’ represent the communication times for messages
with sizes msgSize;’ and ‘msgSizes’ respectively. When the bandwidth falls below a thresh-
old, the communication mechanism switches to patch by patch messaging (i.e., algorithm 1).
This is illustrated in Figure 5.7. The algorithm switching happens at iteration 9 when chan-
nel congestion is detected, and results in comparatively smaller communication times in the

following iterations.



64

——with
77 ’/r/ algorithm
6 switching
5 4 / \ ——without
algorithm

4
\ switching
3 -

computation

communication time (ms)

Olllllllllllllllllllllll

1 3 5 7 9 1113 15 17 19 21 23  lterations

Figure 5.7: Dynamically switch algorithms AMRMesh.

Scenario 3: Self-healing via component replacement

While Godunov methods witRK2 tend to be more accurate, they become unstable for stronger
shocks and larger density ratios. One solution is to repm#unovFlux in these cases with
EFMFlux. The appropriate choice of algorithm (Godunov or EFMFlux) depends on the Mach
number and the density ratio, and is once again not known a priori. In the best of cases, an
algorithm will operate for some time before failing to converge and indicating an error; at other
times, it will work “reliably” and produce wrong (even qualitatively wrong) results. In the case
where an error can be identified, we have the option of dynamically replacing one algorithm by
another by simply replacing the component implementing the algorithm. Of course, the same
change has to be performed on all the processors. While dynamically changing components
does raise some fundamental issues (e.g. in this case, the simulation is neither purely EFM-
based nor Godunov-based, and is not mathematically consistent either), it is expected that the
results will be at least qualitatively correct. Since such simulations often require substantial
computational resources, obtaining qualitative answers may be preferable to simply exiting

with an error.

In this scenario we investigate the dynamic replacemef@anfunovFlux with EFMFlux
so that it continues to provide qualitatively correct results. The adaptation is triggered when
GodunovFlux fails to converge, i.e., its iteration count increases above a certain threshold, and
causes the instance of compon@udunovFlux to be replaced by an instance of component

EFMFlux . The replacement process is the same as that described in scenario 1 above.



65

5.3.2 A Self-ManagingC H, Ignition Simulation

This section focuses on the overall performance improvement af fiigignition simulation.

The ignition process is represented by a set of chemical reactions, which appear and disappear
when the fuel and oxidizer react and give rise to the various intermediate chemical species.
In the simulation application, the chemical reactions are modeled as repeatedly solving the
ChemicalRates equatiofr} [2] with different initial conditions and parameters using one of a
set of algorithms called backward difference formula or BDFs. The algorithms are numbered
from 1 to 5, indicating the order of accuracy of the algorithl@D F5 is the highest order
method, and is most accurate and robust. It may, however, not always be the quickest. As
a result, the algorithm used for solving the equati@rhas to be selected based on current
condition and parameters. In this application, the bulk of the time is spent in evaluating the
equationG. Therefore, reducing the number@fevaluations is a sufficient indication of speed

independent of the experimentation environment.

As shown in Figure 5.8, the rule-based execution decreases the number of invocation to
equationG, and the percentage decrease is annotated for each temperature value. It results
in an averagel 1.33% computational saving. As the problem becomes more complex (the

computational cost of G increase), the computational saving will be more significant.

1400000

3.69%

1200000 4

1000000 A @ rule based

800000 A execution

600000 4 @non rule

based
execution

400000 +

200000 A

the number of invocation to G

04 temperature

S S S SO
S S PSSP PSS
NN N N O S A

Figure 5.8: Comparison of rule based and non rule based executi®H pfgnition.

5.3.3 Experimental Evaluation

The prototype was evaluated on a Beowulf cluster. The cluster contains 64 Linux-based com-

puters connected by 100 Mbps full-duplex switches. Each node has an Intel(R) Pentium-4



66

1.70GHz CPU with 512MB RAM and is running Linux 2.4.20-8 (kernel version). In this pro-
totype, computational components were enhanced with sensors and actuators, and manager
components were introduced into the application. The overheads associated with initializa-
tion of computational components and managers and the runtime execution of component and

composition rules were evaluated.

@ without Accord - —e— Average component rule execution
| with Accord s ¢ " )
P 4 - —a— Average composition rule execution
120 &S 3.7441 °
° 2 ‘\ T 50
100 ° 3 s
R —]
3 80 g § 40 e
2 S 5 5
9 60 o L
$ ] \18299 | 12414 E
@ 40 = - o 20
© o 0.4238(| £
Pree—eE—= Iy
0olss = 0 T T T S
A 10 100 1000 10000 S ol . A . . + | humber of
10 100 1000 10000 S ) 32 pr s
number of computations number of computations % 12 4 8 16 32
(a) Minimal overhead (b) Percentage of minimal overhead (c) Rule execution overhead

Figure 5.9: Experimental evaluation of Ccaffeine-based Accord prototype.

Experiment 1 (Figure 5.9 (a) and (b)): This experiment measures the runtime overhead
introduced by the Accord runtime management framework in a minimal rule execution mode,
i.e., the manager components load rules and query sensors but rule execution is disabled during
the experiment. The application execution time with and without Accord are plotted in Fig-
ure 5.9 (a) and the percentage overhead is plotted in Figure 5.9 (b). The major overhead in this
case is due to the loading and parsing of rules. It can be seen from the plots that this overhead

is very small compared to the application execution time.

Experiment 2 (Figure 5.9 (c)): This experiment evaluates the average execution time of
component rules and composition rules. The figure shows that, as the number of processors in-
creases, the average execution time of both the component rules and composition rules increase
but only slightly. This slight increase is primarily due to the time for reconciliation among
manager instances, which depends on the number of nodes involved. Once reconciliation is
completed, component manager instances perform the replacement in parallel. As seen from
the figure, the average execution time of a composition rule is much larger than that of a com-
ponent rule. This is because, in order to replace a component, the manager has to instantiate a
new component, connect it to other components, and load new rules. However, the execution

of component rules only involves invoking the component’s actuators.



67

Note that while the framework does introduce overheads, the benefits of self-management
would outweigh these overheads. Further, the overheads are not significant when compared
to the typical execution time of scientific applications, which can be in hours, days, and even

weeks.

5.4 Summary and Conclusion

This chapter presented a component based prototype of Accord programming system that en-
ables self-managing component-based scientific applications capable of detecting and dynam-
ically responding to changing requirements, state and execution context. The programming
system extends the common component architecture (CCA) and the Ccaffeine framework. It
enables the behaviors and interaction of components and applications to be defined using high
level rules and provides a runtime framework for the correct and efficient execution of these
rules. Mechanisms for detecting and resolving rule conflicts are provided. The operation of the
programming system was illustrated using a self-managing hydrodynamics shock simulation

and a self-managing H, ignition simulation. A performance evaluation was presented.



68

Chapter 6

Accord-WS: Autonomic Service-based Accord

This chapter discusses the prototype of Accord based on the WS-Resource specifications [31]
and the Web service specifications [10, 7, 8, 26]. Accord utilizes human knowledge to guide
the behaviors and compositions of services in response to changing requirements and execution
context. In the autonomic service-based Accord, this is achieved by adapting the service behav-
iors and their interactions using dynamically defined rules. Key components of the prototype
include: (1) the formulation of autonomic services that extend WS-Resources with specifi-
cations and mechanisms for self-management and (2) a distributed runtime infrastructure to

enable decentralized and dynamic compositions of these services.

6.1 Autonomic Services

An autonomic service (shown in Figure 6.1) consists of (1) a WS-Resource [31] providing func-
tionalities and stateful information, (2) a coordination agent sending and receiving interaction
messages for the associated WS-Resource, and (3) a service manager that manages the runtime
behaviors of the WS-Resource and its interactions with other autonomic services. Applications
can be developed as compositions (possibly dynamic and opportunistic) of these autonomic

services.

Each managed WS-Resource is extended with a control port specified as a WSDL [26]
document consisting of sensors and actuators for external monitoring and control of its internal
state. The control port can be exposed as part of the service port or as a separate document to

the service manager. An example of the control port is shown in Figure 6.7.

The coordination agent acts as a programmable notification broker [8] for the associated
WS-Resource. As shown in Figure 6.2, a coordination agent consists of 4 modules that work in
parallel: (1) distener module that listens to the incoming messages from other autonomic ser-

vices, (2)message handler¢hat process the messages using functions defined melssage



Behavior Interaction
rules rules

JL JL

Control
port

Service manager

Behavior
management

Control
port

WS-Resource

Service
invocation

Coordination agent

Interaction
management

Interactions with other
autonomic service

G

Autonomic service

function table, (3) libraries that provides functions for processing messages (e.g., translat-

ing message formats and combining messages), and invoking the associated WS-Resource and
getting response messages, and (puhblisher that sends the response messages to the sub-
scribers. The coordination agent exposes sensors and actuators to the service manager that
allows the manager to query and modify it@ssage function tableendmessage subscriber

table. The service manager can dynamically reconfigure the coordination agent by changing

themessage function tabldo select functions to process messages, and by changingethe

Figure 6.1: An autonomic service.

sage subscriber tabld¢o add and delete subscribers.

WS-Resource

[

Incoming
messages

invocation

—

Listener Message
handler

A\

A

Message
function table

y subscribers

Message
subscriber

table

1. Query functions
using message names

Coordination agent

Figure 6.2: Message processing in a coordination agent.

Autonomic
service

.
.
.

) Response
3. service messages
invocation
5. Publish d
A Response messages
Libraries messages Publisher
A
2. function 4. Query [~

Autonomic
service




70

The service manager performs (1) functional management using sensors and actuators ex-
posed by the associated WS-Resource based on behavior rules defined by users or derived from
application requirements and objectives, and (2) interaction management using sensors and ac-
tuators exposed by the coordination agent based on interaction rules derived from application

workflows.

6.2 The Runtime Infrastructure

The runtime infrastructure consists of the Accord portal/composition manager, peer service

managers, and other supporting services as shown in Figure 6.3.

Application workflow Adaptation strategies
Application requirements

| Accord portal / composition manager

Interaction - - -
| Interaction Behavior Interaction
rules
o rules rules rules

Behavior
rules Behavior

O rules
WS services (e.g., ___— X
WS-coordination,

-r=———- -

WS-transaction,

-
I:I I discovery service) :
I |
) |
l —d
e

Figure 6.3: The runtime framework. The dashed lines represent the interactions among man-
agers. The solid lines represent the interactions among WS-Resources.

6.2.1 Workflow Execution

To execute an application workflow that may be defined by a user or generated by an automated
workflow generation engine such as [38], [24], [12], [55], [43], or [32], the composition man-
ager first discovers and locates the relevant WS-Resources, instantiates a coordination agent for

each of the WS-Resources, and further instantiates a service manager for each WS-Resource



71

and coordination agent pair to enable service behavior and interaction adaptations. Coordina-
tion agents interact with their associated WS-Resources using SOAP messages. Service man-
agers are located within the same memory space with their associated coordination agents, and
they interact with each other through pointers. The communications among service managers
are based on sockets.

The composition manager decomposes the application workflow into interactions rules and
injects them into corresponding service managers, which then configure associated coordina-
tion agents to dynamically establish publication/subscription relationships and manipulate in-
teraction messages. Specifically, a service manager configuresetisage function tabldoy
associating the messages that this autonomic service subscribes to with functions for processing
them. Similarly, it also configures thmessage subscriber tabldy associating the messages
that this autonomic service produces with a list of subscribers. These operations are performed
by the service manager by invoking the actuators provided by the coordination agent. Further,
service managers configures the associated WS-Resource based on the behavior rules defined
by users or generated from application requirements.

The advantages of workflow decomposition are illustrated using an itinerary application.
This application consists of akirlineService, HotelServiceg andCarService and is used by

travellers to reserve airline tickets and hotel rooms, and rent cars for the journey.

e Decreasing communication overhead: The decentralized composition enabled by work-
flow decomposition is shown in Figure 6.4 (b). Compared to the centralized composition
specified using BPEL4AWS [15] (shown in Figure 6.4 (a)), decentralized composition
enables direct interactions among involved services, and therefore avoids unnecessary

messages and relieves the bottleneck caused by the centralized unit.

e Exploring parallelism: After the rules are deployed, autonomic services without data and
control dependencies can proceed in parallel, otherwise they are forced to wait until the
required data is received. For example in the itinerary application, the parallel execution
of CarService andHotelServicecan be explicitly defined or automatically discovered,
since the two services have no data dependencies and the workflow does not enforce

any execution construct on them. Further, the two elements do not have to wait until



72

Customer Customer -t

4/

A
-
AirlineService CarService [
\ Y
@ AirlineService
(o]
§ R
o
CarService HotelService HotelService I
(a) (b)

Figure 6.4: The itinerary workflow specified using (a) BPEL4WS and (b) Accord interaction
rules.

the AirlineService finishes. They can start as soon as the required information (the
destination airport and time) is available. As a result, the implicit parallelism can be
discovered and exploited as the workflow is decomposed and executed in a decentralized

manner.

e Facilitating dynamic composition: Dynamic composition involves addition, deletion and
replacement of services, and changes in their interactions at runtime. These changes can
be achieved by adding, deleting, or modifying related interaction rules accordingly, as

discussed in the next section.

6.2.2 Dynamic Composition

Application workflows need to be changed accordingly when business logic or user require-
ments change. In most cases, these changes only affect a part of the workflow. Workflow
decomposition discussed above can benefit the dynamic composition of autonomic services by
constraining the modification to the associated part of the workflow without affecting the rest
of the application.

In Accord, dynamic composition is enabled by adding, deleting, or modifying interaction
rules in service managers, which automatically reconfigures the associated coordination agents
accordingly. For example, a new serviearkServiceis added into the itinerary application,
shown in Figure 6.5. First, theompositionManagercreates a service manager and a coordi-

nation agent for th&arkService and then inserts interaction rules into fharkService and



73

AirlineService. The service managers of the two involved services will configure the message
function tables and message subscriber tables at the associated coordination agents based on
these rules. As a resuRarkServiceregisters as a notification subscriber to idineService

and theCompositionManager collects reservation information from tiRarkService before

it generates the final itinerary for the users. SinceRthekServiceonly interacts with their-
lineServiceandCompositionManager, only these two services need injection or modification

of interaction rulesCarServiceandHotelServiceare not affected.

CarService ‘
AirlineService Z HotelService qusumer
\ (Composition Manager)
\\ ry
ParkService Fp==——————=——=—=— !

Figure 6.5: A new servicParkServiceis added to the itinerary workflow. The dashed lines
denote the new interaction relationships created due to the addition of the new service.

6.3 An lllustrative Application: The Autonomic Data Streaming Application

This section illustrates the self-managing behaviors enabled by the autonomic service-based

Accord using an autonomic data streaming application shown in Figure 6.6. The applica-

NERSC

@)
Cd

I
7 !

Grid middleware,

Logistical Networking
BMS DTS backbone

ORNL

Figure 6.6: The autonomic data streaming application based on Accord-WS.

tion consists of the G.T.C. fusion simulation that runs for days on a parallel supercomputer
at NERSC (CA) and generates multi-terabytes of data. The data are analyzed and visualized
live at PPPL (NJ), while the simulation is running at NERSC (CA). The data also have to be

archived either at PPPL (NJ) or ORNL (TN). Data streaming techniques from a large number



74

of processors have been shown to be more beneficial for such a runtime analysis than writ-
ing data to the disk [20]. The goal of the autonomic data steaming is to stream data from the
live simulation to support remote runtime analysis and visualization at PPPL while minimizing

overheads on the simulation, adapting to network conditions, and eliminating loss of data. The

application workflow consists of the following five core services:

e The Simulation ServiceS§ executes in parallel on 6K processors of the Seaborg IBM
SP at NERSC and generates data at regular intervals that has to be transferred at runtime

for analysis and visualization at PPPL, and archived in data stores at PPPL or ORNL.

e The Data Analysis Servic®@S) runs on a 32 node cluster located at PPPL. The service

analyzes and visualizes the steaming data.

e The Data Storage Servic®$S archives the streamed data using the Logistical Net-
working backbone [54], which builds a Data Grid of storage services located at ORNL

and PPPL.

e The Autonomic Data Streaming ServicgXSS) is constructed using the Accord auto-
nomic service architecture and manages the streaming of data from the SS to the DAS (at

PPPL) and DSS (at PPPL/ORNL). It is a composite service composed of two services:

— The Buffer Manager ServicdBMS) manages the buffers allocated by the service
based on the rate and volume of data generated by the simulation and determines

the granularity of blocks used for data transfer.

— Data Transfer Servic®(TS) manages the transfer of blocks of data from the buffers
to remote services for analysis and visualization at PPPL, and archiving at PPPL or

ORNL.

Two self-managing scenarios fADSSare described below.

6.3.1 Service Adaptation

BMS selects the appropriate blocking technique, orders blocks in the buffer and optimizes

the size of the buffer(s) used to ensure low latency high performance steaming and minimize



75

the impact on the simulation execution. The adaptations are based on the current state of the
simulation, more specifically the following three runtime parameters: (1) The data generation
rate, which is the amount of data generated per iteration divided by the time required for the
iteration, and can vary from 1 to 400 Mbps depending on the domain decomposition and the
type of analysis to be performed. (2) The network connectivity and the network transfer rate.
The latter is limited by the 100 Mbps link between NERC and PPPL. (3) The nature of data
being generated in the simulation, e.g., parameters, 2D surface data or 3D volunig\dSta.

provides the following three algorithms:

¢ Uniform Buffer Management: This algorithm divides the data into blocks of fixed sizes,
which are then transmitted by tl¥T'S. This static algorithm is more suited for the sim-
ulations generating data at a small or medium rate (50Mbps). Using smaller block sizes
have significant advantages at the receiving end as less time is required for decoding the

data and processing blocks for analysis and visualization.

e Aggregate Buffer Management: This algorithm aggregates blocks across iterations and
the DTS transmits these aggregated blocks. This algorithm is suited for high data gener-

ation rates, i.e., between 60-400 Mbps.

e Priority Buffer Management: This algorithms orders data blocks in the buffer based on
the nature of the data. For example, 2D data blocks containing visualization or simulation

parameters are given higher priority as compared to 3D raw volume data.

To enable the adaptation, tBMS exports two sensors, “DataGenerationRate” and “DataType”,
and one actuator, “BlockingAlgorithm” as part of its control port shown in Figure 6.7.

The self-optimization behavior of BMS is governed by the rule shown in Figure 6.8, which
states that if the data generation rate is greater than the peak network transfer rate (i.e., 100
Mps), the aggregate buffer management is used, otherwise the uniform buffer management
algorithm is used. The resulting behavior of this rule is plotted in Figure 6.9. The figure show
that BMS switches to aggregate buffer management at simulation time intervals between 75 sec
to 150 sec and 175 sec and 250 sec as the simulation data generation rate peaks to 100Mbps

and 120 Mbps during these intervals. The aggregation is an average of 7 blocks. Once the data



76

generation rate falls to 50Mbps, BTS switches back to the uniform buffer management scheme,
by constantly sending 3 blocks of data on the network.

Figure 6.9 (b) plots the percentage overhead on simulation execution without and with
autonomic management. Overhead is computed as the absolute difference between the time
required to generate data without data streaming and the time required to stream the data us-
ing ADSS. The plots show that BTS switches from uniform buffer management to aggregate
buffer management at data generation rates of around 80-90 Mbps. This increases the overhead
slightly, however the overheads remains less than 5%. Without autonomic management, the
overheads increase about 10% for higher data rates as BTS continues to use uniform buffer

management.

6.3.2 Application Adaptation

This scenario addresses data loss in the cases of extreme network congestion or network fail-
ures. These cases cannot be addressed using simple buffer management or replication. One
option in these cases to avoid data loss is to write data locally at NERSC rather than stream-
ing. However, the data will not be available for analysis and visualization until the simulation
complete, which could be days. Writing data to the disk also causes significant overheads to
the simulation [20].

ADSS address these cases by temporarily or permanently switching the streaming to the
DSS at ORNL instead of PPPL. NERSC and ORNL are connected by a 400 Mbps link which
has a lower probability of being saturated. The data can be later transmitted from ORNL
to PPPL. Congestion is detected by observing the buffer - when the buffer is filled to a pre-
defined capacity, the ADSS switches subsequent streaming to ORNL, and when the buffer is
no longer saturated, switches the steaming back to PPPL. Note that the data that is already
gueued continues to be concurrently steamed to PPPL. If the service observes that buffer is
being saturated continuously, it infers that there is a network failure and permanently switches
the streaming to ORNL. In this case, the blocks already in the PPPL buffer are transferred to
the ORNL queue. The rule specifying this self-management behavior is listed in Figure 6.10.

The resulting self-healing behavior is plotted in Figure 6.11. The figure shows that as the

ADSS buffer(s) get saturated, the data streaming switches to the DSS at ORNL, and when the



77

buffer occupancy falls below 20% it switches back to PPPL. Note, that while the data blocks

are written to ORNL, data blocks already queued for transmission to PPPL continue to be
streamed. The figure also shows that, at simulation time 1500 (X axis), the PPPL buffers once
again get saturated and the streaming switches to ORNL. If this persists, the steaming would

be permanently switched to ORNL.

6.4 Summary

This chapter presented the autonomic service-based Accord for self-managing Grid applica-
tions. It enables the development of autonomic services and the formulation of autonomic
applications as the dynamic composition of autonomic services, where the runtime computa-
tional behavior of the services as well as their compositions and interactions can be managed at
runtime using dynamically injected rules. As a result, applications are capable of adapting their
runtime behaviors to deal with the dynamism and uncertain of Grids and Grid applications. An
autonomic data streaming application is used to illustrate the self-managing behaviors enabled

by Accord.



<controlPort name=""BMS_controlPort" service=""BufferManagerService ">

<types>
<sensor name=""DataGenerationRate ">
<element name=""DataGenerationRateReq " type=""string"*/>
<element name=""DataGenerationRateResp"" type=""double™*/>
</sensor>
<sensor name=""DataType" >
<element name=""DataTypeReq"" type=""string™"/>
<element name=""DataTypeResp " type=""string""/>
</sensor>
<actuator = name=""BlockingAlgorithm™">
<element name=""BlockingAlgorithmReq"" type=""string™*/>
</actuator>
</types>

<message name=""GetDataGenerationRateln™">

<part name=""body " element=""DataGenerationRateReq />
</message>
<message name=""GetDataGenerationRateOut ">

<part name=""body"" element=""DataGenerationRateResp />
</message>
<message name=""GetDataTypeln"">

<part name=""body"" element=""DataTypeReq />
</message>
<message name=""GetDataTypeOut ">

<part name=""body"" element=""DataTypeResp />
</message>
<message name=""SetBlockingAlgorithm™ >

<part name=""body"" element=""BlockingAlgorithmReq />
</message>

<portType name=""BMSControlPortType™ >
<operation name=""SensorDataGenerationRate™ >
<input message=""tns:GetDataGenerationRateln™*/>
<output message=""tns:GetDataGenerationRateOut" />
</operation>
<operation name=""SensorDataType ">
<input message=""tns:GetDataTypeln™"/>
<output message=""tns:GetDataTypeOut />
</operation>
<operation name=""ActuatorBlockingAlgorithm™ >
<input message=""tns:SetBlockingAlgorithm™"/>
</operation>
</portType>
</controlPort>

Figure 6.7: The control port @MS.

78



79

<rule name=""BlockingRule™" attribute=""active ">

<trigger name="DGR" sensor=""DataGenerationRate™ op=

value=peakRate type=""float" />

<when>
<operand trigger="DGR""/>
</when>
<do>
<action actuator=""BlockingAlgorithm™">
<input value=""aggregation™" type=""string />
</action>
</do>
<else>
<action actuator=""BlockingAlgorithm™*>
<input value=""uniform"" type=""string" />
</action>
</else>
</rule>

GT

Figure 6.8: The behavior rule f@&MS.

Number of Blocks Sent (10 MB/block)

Aggregate Buffer Management

120Mbps
—

20

10

Uniform Buffer Mangement

" 50Mbps ’

% Overhead on the Simulation

—®— 9%Overhead vs Mbps using Autonomic Management
15 =| ~© %Overhead vs Mbps without Autonomic Management

T T T T T T ' '

150 200 250 300 350 400 o 20 40 60
Data Generation Rate (Mbps)

Simulation Time (sec)

(@)

T T T T
80 100 120 140

(b)

Figure 6.9: (a) Self-optimization behaviors of the Buffer Management Service - BTS switches
between uniform blocking and aggregate blocking algorithms based on application data gener-
ation rates and network transfer rates and the nature of data generated. (b) Percentage overhead
on simulation execution simulation with and without autonomic management.



<rule name=""TransferRule " attribute="active " >
<trigger name=""transferFailed™” sensor=""DataTransfer™
op="EQ" value=""0""type=""integer />
<trigger name=""transferSwitch™* sensor=""NumOfSwitches™
op="LT" value=switchThreshold type=""integer />

<when>
<and>
<operand trigger=""transferFailed " />
<operand trigger=""transferSwitch*/>
</and>
</when>

<do>
<action actuator=""TransferAlgorithm™ >
<input value=""local"" type=""string™"/>
</action>
</do>

<when>
<not>
<operand trigger=""transferSwitch*/>
</not>
<do>
<action actuator=""TransferAlgorithm™ >
<input value=""local™" type=""string™"/>
</action>
<action actuator=""Accord:SetRuleAttribute™" >
<input value=""TransferRule?type=""string"*/>
<input value=""inactive" type=""string™*/>
</action>
</do>

<else>
<action actuator=""TransferAlgorithm™*>
<input value=""remote’" type=""string />
</action>
</else>
</rule>

Figure 6.10: The interaction rule for ADSS.




81

120
—®— Data Sent to Local DSS (at ORNL) vs Simulation Time(sec)
Q— 9, Buffer Occupancy vs Simulation Time (sec)
100 -
(o] e]
> _ [m]
2 80
©
Q
3
o
S 60
:g o
=1
o 40 -
N D
] Buffer full . . Buffer full second time
2 o Local Storage Service Triggered Oocal Storage Service Triggered
0 T T T
0 500 1000 1500 2000

Simulation Time(sec)

Figure 6.11: Effect of switching from the DSS at PPPL to the DSS ORNL in response to
network congestion and/or failure.



82

Chapter 7

Summary, Conclusion, and Future Work

The primary objective of the research presented in this thesis is to investigate a programming
system that addresses the programming requirements of pervasive Grid applications and envi-
ronments. Specifically, it enables the development and execution of autonomic self-managing
applications that can dynamically adapt themselves to address changing requirements and exe-

cution context.

7.1 Summary

The thesis presented the Accord programming system for autonomic self-managing applica-
tions. Accord builds on existing programming systems and extends them to (1) enable the
definition of autonomic elements that encapsulates functional and non-functional specifica-
tions, rules, and mechanisms for self-management, (2) enable the formulation of self-managing
applications as dynamic composition of autonomic elements, and (3) provide a runtime in-

frastructure that enables the correct and efficient runtime rule execution to enforce adaptation

behaviors.

An object based prototype of Accord, DIOS++, enables rule-based management and control
of distributed scientific applications. DIOS++ provides: (1) abstractions to enhance existing
application objects with sensors and actuators for runtime interrogation and control, access
policies to control access to sensors/actuators and rule interfaces, and rule agents to enable rule-
based autonomic monitoring and steering, and (2) a hierarchical control network that connects
and manages the distributed sensors and actuators, enables external discovery, interrogation,
monitoring and manipulation of these objects at runtime, and facilitates dynamic and secure
definition, modification, deletion and execution of rules for autonomic application management
and control. The framework is currently being used to enable autonomic monitoring and control
of a wide range of scientific applications including oil reservoir, compressible turbulence and

numerical relativity simulations.



83

A component based prototype of Accord extends the Common Component Architecture to
enable self-management of component-based scientific applications. This prototype supports
both function and performance oriented adaptation, enables dynamic composition by replacing
components at runtime, and provides consistent and efficient rule execution for intra- and inter-
component adaptation behaviors. Two scientific simulations, the self-managing hydrodynamics
shock simulation and the self-managitgd, ignition simulation, are used to illustrate the
operations of the system and the self-managing behaviors.

A service based prototype of Accord extends the Axis framework to support self-managing
service-based applications and enables runtime adaptation of service and service interactions,
and dynamic service composition. The itinerary reservation application is used to illustrate the
operations of this prototype.

Accord is part of the AutoMate projeét Project AutoMate investigates autonomic so-
lutions to deal with the challenges of complexity, dynamism, heterogeneity and uncertainty
in Grid environments. The overall goal of Project AutoMate is to develop conceptual mod-
els and implementation architectures that can enable the development and execution of such

self-managing Grid applications.

7.2 Conclusion

The characteristics of pervasive and Grid environments impose unique requirements for the
programming systems, that the programming systems must be able to support applications that
can detect and dynamically respond during execution to changes in both, the state of execution
environment and the state and requirements of the application.

Dominant programming systems for parallel and distributed computing are limited in their
ability to address these requirements primarily due to their inherent assumptions about the un-
derlying environment, for example they assume reliable environment and static interactions.
They do however provide some core mechanisms that can be used to enable required adap-
tation behaviors. For example, CORBA [1] supports late-binding and dynamic invocation of

object instances, which can be used to enable dynamic selection of appropriate object instances

http://fautomate.rutgers.edu/



84

possibly based on current execution context. CORBA further provides interceptors that can be
used to manipulate the messages in the ORB and to introduce new behaviors at runtime into ap-
plication execution. Component based programming systems also provide similar capabilities.
The specification of CCA [14] embraces the idea of dynamic replacement of components. This
feature can be used to enable dynamic selection of components that implement the same ports
based on current context. The web service architecture and WSRF proposed in recent years
support runtime customization of services, for example, dynamic binding of communication
protocols.

The Accord programming system extends these programming paradigms to meet the re-
quirements. This is done by separating context-sensitive concerns and enabling element be-
haviors and interactions to be defined at runtime. Specifically, this is achieved by extending
computational elements to autonomic elements with the specifications of high-level rules and
mechanisms for self-management, and providing a distributed runtime infrastructure that con-
sistently and efficiently enforces these rules to enable autonomic self-managing functional,
interaction, and composition behaviors.

Further, a new generation of scientific and business applications are enabled by Accord as

demonstrated in this thesis.

7.3 Directions For Future Work

We envision the following key directions for future extension of the research presented in this

thesis:

e Adaptation across layers: The research presented in this thesis mainly focuses on the
application and programming system layer. However, some features may span multiple
layers. To fully exploit the dynamism in environments and requirements, adaptation
should be enabled in multiple layers, from application and programming system layer
to middleware layer and further to the “virtual organization” [52] layer. Corresponding
adaptation capabilities and models should be defined for each layer. Further, interaction

protocols between layers and interfaces should be formalized and standardized.

e Autonomic generation of rules and workflows: Interaction rules can be generated from



85

application workflows. Similarly behavior rules can be generated from application re-
guirements and objectives, instead of being defined by users. This involves investigating
workflow patterns, categorizing requirements and objectives, and designing correspond-
ing rule templates. A runtime rule generator will be investigated to dynamically analyze

workflows and requirements and translate them into corresponding rules.

Knowledge-based rule execution and conflict resolution: Scientific and business applica-
tion present different requirements for rule execution and conflict resolution. This thesis
focuses on scientific applications. Business models and policies will be investigated to
enable rule execution and conflict resolution for business applications, and integrated

with the Accord programming system.

Negotiation between managers: Currently element managers collaborate with each other
and resolve conflicts based on rules. Element managers will be provided with negotiation
capability to dynamically achieve consensus during conflicts or disagreements. Negotia-
tion protocols and mechanism used by element managers will be investigated. They can
be built on the negotiation and consensus research projects being actively investigated in

both academia and industry.



86

References
[1] Common Object Broker Resource Architecture (CORBA). http://www.corba.org.

[2] GRI-Mech. http://www.me.berkeley.edu/gnech/.

[3] PAPI. Performance Application Programming Interface.
http://icl.cs.utk.edu/projects/papi.

[4] PCL - The Performance Counter Library. http://www.fz-juelich.de/zam/PCL.

[5] TAU: Tuning and Analysis Utilities. http://www.cs.uoregon.edu/research/paracomp/
tau/tautools/.

[6] The Message Passing Interface (MPI) standard. http://www-unix.mcs.anl.gov/mpi/.

[7] WS-BaseNoatification 1.0 specification. ftp://www6.software.ibm.com/software/
developer/library/ws-natification/WS-BaseN. pdf.

[8] WS-BrokeredNotification 1.0 specification. ftp://www6.software.ibm.com/software/
developer/library/ws-natification/WS-BrokeredN.pdf.

[9] OWL Web Ontology Language Overview. http://www.w3.0rg/TR/owl-features/, 2004.

[10] Publish-Subscribe Notification  for Web  services. http://imww-
106.ibm.com/developerworks/library/ws-pubsub/WS-PubSub.pdf, 2004.

[11] A. Abrahams, D. Eyers, and J. Bacon. An Asynchronous Rule-Based Approach for Busi-
ness Process Automation Using ObligationsT ird ACM SIGPLAN Workshop on Rule-
Based Programming (RULE’'02pages 323-345, Pittsburgh, PA, 2002. ACM.

[12] M. Agarwal and M. Parashar. Enabling autonomic compositions in grid environments. In
the 4th International Workshop on Grid Computjfhoenix, AZ, 2003.

[13] M. Aksit and Z. Choukair. Dynamic, adaptive and reconfigurable systems overview and
prospective vision. Ithe 23rd international conference on distributed computing systems
workshopspages 84-89, Providence, Rhode Island, 2003.

[14] B. A. Allan, R. C. Armstrong, A. P. Wolfe, J. Ray, D. E. Bernholdt, and J. A. Kohl.
The CCA core specification in a distributed memory SPMD framewdZkncurrency
Computation14(5):323—-345, 2002.

[15] T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. Klein, F. Ley-
mann, K. Liu, D. Roller, D. Smith, S. Thatte, I|. Trickovic, and S. Weer-
awarana. Business Process Execution Language for Web Services version 1.1.
ftp://lwwwe6.software.ibm.com/software/developer/library/ws-bpel.pdf, 2003.

[16] Apache. WebServices - Axis. http://ws.apache.org/axis/, 2005.

[17] H. E. Bal, J. G. Steiner, and A. S. Tanenbaum. Programming Languages for Distributed
Computing SystemsACM Computing Survey21(3):261-322, 1989.



87

[18] D. Beazley and P. Lomdahl. Controlling the data glut in large-scale molecular-dynamics
simulations.Computers in Physi¢c4.1(3), 1997.

[19] F. Berman, R. Wolski, H. Casanova, W. Cirne, H. Dail, M. Faerman, S. Figueira, J. Hayes,
G. Obertelli, J. Schopf, G. Shao, S. Smallen, N. Spring, A. Su, and D. Zagorodnov. Adap-
tive Computing on the Grid Using AppLe & EE transactions on parallel and distributed
systemsl4(4):369-382, 2003.

[20] V. Bhat, S. Klasky, S. Atchley, M. Beck, D. McCune, and M. Parashar. High Performance
Threaded Data Streaming for Large Scale Simulation&RiD 2004 number 243-250,
2004.

[21] P. Boinot, R. Marlet, J. Noy, G. Muller, and C. Cosell. A declarative approach for design-
ing and developing adaptive componentstHa 15th IEEE International Conference on
Automated Software Engineeringages 111-119, 2000.

[22] J. Bosch. Superimposition: A component adaptation technidpfermation and Soft-
ware Technologyl1999.

[23] L. Capra, W. Emmerich, and C. Mascolo. A Micro-Economic Approach to Conflict Reso-
lution in Mobile Computing. InNorkshop on Self-healing Systems (SIGSOFT0&)es
31-40, Charleston, SC, USA., 2002. ACM.

[24] A.J. S. CardosoQuality of Service and Semantic Composition of WorkfldD thesis,
University of Georgia, 2002.

[25] K. Channabasavaiah, K. Holley, and E. M. Tuggle Jr. Migrating to a service-
oriented architecture. http://www-106.ibm.com/developerworks/webservices/library/ws-
migratesoa/, 2003.

[26] E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana. Web Services Description
Language (WSDL) 1.1. http://mww.w3.org/TR/wsdl, 2001.

[27] Y. Diao, J. L. Hellerstein, S. Parekh, and J. P. Bigus. Managing Web server performance
with AutoTune agents. http://www.research.ibm.com/journal/sj/421/diao.html.

[28] F. Bergenti DIl and A. R. DEIS. Three Approaches to the Coordination of Multiagent
Systems. Irthe 2002 ACM symposium on Applied computigdrid, Spain, 2002.

[29] G. Duzan, J. Loyall, and R. Schantz. Building adaptive distributed applications with
middleware and aspects. thme 3rd International Conference on Aspect-oriented Software
Developmentpages 66—73, Lancaster, UK, 2004.

[30] S. Fischmeister. Mobile code paradigms. http://www.softwareresearch.net/site/teaching/
WS0203/PDFdocs.DS/mobikegents.pdf, 2002.

[31] I. Foster, J. Frey, S. Graham, S. Tuecke, K. Czajkowski, D. Ferguson, F. Ley-
mann, M. Nally, I. Sedukhin, D. Snelling, T. Storey, W. Vambenepe, and
S. Weerawarana. Modeling Stateful Resources with Web Services.  http://www-
128.ibm.com/developerworks/library/ws-resource/ws-modelingresources.pdf, 2004.

[32] N. Furmento, A. Mayer, S. McGough, S. Newhouse, T. Field, and J. Darlington. ICENI:
optimization of component applications within a grid environmddrallel computing
2002.



88

[33] G. A. Geist, J. A. Kohl, and P. M. Papadopoulos. CUMULVS: Providing fault-tolerance,
visualization and steering of parallel applicationstia Environment and Tools for Par-
allel Scientific Computing Workshplpyon, France, 1996.

[34] N. Karonis, B. Toonen, and I. Foster. MPICH-G2: A Grid-Enabled Implementation of
the Message Passing Interfadeurnal of Parallel and Distributed Computing003.

[35] J. Kenny, S. Benson, Y. Alexeev, J. Sarich, C. Janssen, L. Mclnnes, M. Krishnan,
J. Nieplocha, E. Jurrus, C. Fahlstrom, and T. Windus. Component-Based Integra-
tion of Chemistry and Optimization SoftwareJournal of Computational Chemistry
25(14):1717-1725, 2004.

[36] B. Khargharia, S. Hariri, M. Parashar, L. Ntaimo, and B. U. Kim. vGrid: A framework
for building autonomic applications. the 1st International Workshop on Heterogeneous
and Adaptive Computing-CLADE 2008eattle, WA, USA, 2003.

[37] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Videira Lopes, J. Loingtier, and
J. Irwin. Aspect-Oriented Programming. thre European Conference on Object-Oriented
Programming (ECOOR)1997.

[38] J. Woo Kim and R. Jain. Web Services Composition with Traceability Centered on De-
pendency. Irthe 38th Hawaii International Conference on System Scierfs.

[39] B. Kohn, E. Kraemer, D. Hart, and D. Miller. An agent-based approach to dynamic mon-
itoring and steering of distributed computations.lniternational Association of Science
and Technology for Development (IASTEDas Vegas, Nevada, 2000.

[40] S. Lefantzi, J. Ray, C.A. Kennedy, and H.N. Najm. A Component-based Toolkit for
Reacting Flows with High Order Spatial Discretizations on Structured Adaptively Refined
Meshes Progress in Computational Fluid Dynamic2004. In press.

[41] S. Lefantzi, J. Ray, and H. N. Najm. Using the Common Component Architecture to
Design High Performance Scientific Simulation Codesthininternational Parallel and
Distributed Processing Symposiuhice, France, 2003.

[42] E. C. Lupu and M. Sloman. Conflicts in policy-based distributed systems management.
IEEE transactions on software engineerj@$(6):852—869, 1999.

[43] S. Maijithia, I. Taylor, M. Shields, and I. Wang. Triana as a graphical web services com-
position toolkit. Inthe UK e-Science Programme All Hands MeetiNgttingham, UK,
2003.

[44] V. Mann, V. Matossian, R. Muralidhar, and M. Parashar. DISCOVER: An environment
for web-based interaction and steering of high-performance scientific applica@ons.
currency and Computation: Practice and Experient®(8-9), 2001.

[45] V. Matossian and M. Parashar. Autonomic Optimization of an Oil Reservoir using De-
centralized Services. Ithe 1st International Workshop on Heterogeneous and Adap-
tive Computing— Challenges for Large Applications in Distributed Environments (CLADE
2003) Seattle, WA, USA, 2003.



89

[46] Microsoft.  Service Orientation and Its Role in Your Connected Systems Strat-
egy. http://msdn.microsoft.com/architecture/soa/default.aspx?pull=/library/en-
us/dnbda/html/srorientwp.asp, 2004.

[47] J. D. Mulder. Computational steering with parametrized geometric objePtsD thesis,
Universiteit van Amsterdam, 1998.

[48] R. Muralidhar and M. Parashar. A distributed object infrastructure for interaction and
steering.Concurrency and Computation: Practice and Experier03.

[49] H. Nakada, S. Matsuoka, K. Seymour, J. Dongarra, C. Lee, and
H. Casanova. GridRPC: A Remote Procedure Call APl for Grid Computing.
http://mww.eece.unm.edu/ apm/docs/ABBAidRPC0702.pdf, 2002.

[50] E. Ort. Service-Oriented Architecture and Web Services: Concepts, Technologies, and
Tools. http://java.sun.com/developer/technicalArticles/WebServices/soa2/, 2005.

[51] W. Mulderand S. Osher and J. A. Sethan. Computing Interface Motion in Compressible
Gas DynamicsJournal of Computational Physic$00(2):209-228, 1992.

[52] M. Parashar and J.C. Browne. Conceptual and Implementation Models for the Grid. In
IEEE, Special Issue on Grid Computinglume 93, 2005.

[53] S. Parker and C. Johnson. An integrated problem solving environment: The scirun com-
putational steering environment. HICCS-31 1998.

[54] J.S. Plank and M. Beck. The Logistical Computing Stack — A Design For Wide-Area,
Scalable, Uninterruptible Computing. DNS: 2002 Dependable Systems and Networks,
Workshop on Scalable, Uninterruptible ComputiBgthesda, Maryland, USA, 2002.

[55] S. R. Ponnekanti and A. Fox. Sword: A developer toolkit for building composite web
services. Irthe 11th International World Wide Web Confereri2@02.

[56] D. I. Pullin. Direct Simulation Methods for Compressible Ideal Gas Fldeurnal of
Computational Physi¢c84:231-244, 1980.

[57] S. Rathmayer and M. Lenke. A tool for on-line visualization and interactive steering
of parallel hpc applications. Ithe 11th International Parallel Processing Symposium
(IPPS’97) Geneva, Switzerland, 1997.

[58] J. Ray, R. Samtaney, and N.J. Zabusky. Shock Interactions with Heavy Gaseous Elliptic
Cylinders : Two Leeward-Side Shock Competition Models and a Heuristic Model for In-
terfacial Circulation Deposition at Early TimeBhysics of Fluids12(3):707-716, 2000.

[59] J. Ray, N. Trebon, R. C. Armstrong, S. Shende, and A. Malony. Performance Measure-
ment and Modeling of Component Applications in a High Performance Computing En-
vironment: A Case Study. Ithe 18th International Parallel and Distributed Processing
Symposium (IPDPSO04%anta Fe, NM, USA, 2004.

[60] L. Renambot, H. E. BAL, D. Germans, and H.J.W. Spoelder. CAVEStudy: an Infrastruc-
ture for Computational Steering in Virtual Reality Environmentsthim9th IEEE Interna-
tional Symposium on High Performance Distributed Computiages 57-61, Pittsburgh,
PA, 2000.



90

[61] R. L. Ribler, J. S. Vetter, H. Simitci, and D. A. Reed. Autopilot: adaptive control of
distributed applications. Ithe High Performance Distributed Compuring Conference
pages 172-179, 1998.

[62] S. M. Sadjadi and P. K. McKinley. Transparent self-optimization in existing corba appli-
cations. Inthe 1st international conference on autonomic computdgC, NY, USA,
2004.

[63] R. Samtaney, J. Ray, and Norman J. Zabusky. Baroclinic Circulation Generation on Shock
Accelerated Slow/Fast Gas Interfac@$ysics Fluids10(5):1217-1230, 1998.

[64] R. Samtaney and N.J. Zabusky. Circulation Deposition on Shock-Accelerated Planar and
Curved Density Stratified Interfaces : Models and Scaling lal@sirnal of Fluid Mech.
269:45-85, 1994.

[65] J. Smoller. Shock Waves and Reaction-Diffusion Equations, Series of Comprehensive
Studies in MathematicsSpringer-Verlag, 1982.

[66] B. Srivastava and J. Koehler. Web Service Composition - Current Solutions and Open
Problems. INCAPS 2003 Workshop on Planning for Web Servipages 28—-35, 2003.

[67] C. Szyperski.Component Software Beyond Object-Oriented Programm@mmnponent
Software Series. Addison-Wesley, Great Britain, 2 edition, 2002.

[68] N. Trebon, J. Ray, S. Shende, R. C. Armstrong, and A. Malony. An approximate method
for optimizing HPC component applications in the presence of multiple component im-
plementations. Suffix SAND2003-8760C, Sandia National Laboratories, 2003.

[69] E. Truyen, W. Joosen, P. Verbaeten, and B. N. Jorgensen. On interaction refinement in
middleware. Inthe 5th International Workshop on Component-Oriented Programming
2000.

[70] C. Ururahy, N. Rodriguez, and R. lerusalimschy. ALua: Flexibility for parallel program-
ming. Computer Language28(2), 2002.

[71] G. Valetto and G. Kaiser. Using process technology to control and coordinate software
adaptation. Irthe 25th international conference on Software enginee2093.

[72] W.M.P. van der Aalst, A.H.M. ter Hofstede, B. Kiepuszewski, and A.P. Barros. Workflow
Patternsdistributed and parallel database$4(3), 2003.



2005
2001

1998

91

Curriculum Vitae
Hua Liu

Ph.D. in Computer Engineering; Rutgers University, NJ, USA.

MS in Computer Engineering; Beijing University of Posts & Telecoms, Beijing,
China.

BS in Computer Science; Beijing University of Posts & Telecoms, Beijing, China.

2001-2005Graduate Assistant, Center for Advance Information Processing, Rutgers University,

2001

NJ, USA.

Software Engineering, Bell-labs, Lucent Technologies, Beijing, China.

1998-2001Research Assistant, BNR lab jointly managed by Nortel Networks and Beijing Uni-

versity of Posts & Telecoms, Beijing, China.

Publications

Rule-based Monitoring and Steering of Distributed Scientific ApplicatiddsLiu
and M. Parashar. International Journal of High Performance Computing and Net-
working (IJHPCN), issue 1, Inderscience, 2005.

Accord: A Programming Framework for Autonomic Applicationsl. Liu and M.
Parashar. IEEE transaction on Systems, Man, and Cybernetics, special issue on En-
gineering Autonomic Systems, Editors: R. Sterritt and T. Bapty, IEEE Press, 2005.

Rule-based Visualization in the Discover Computational Steering Collabordtbry

Liu, L. Jiang, M. Parashar and D. Silver. Journal of Future Generation Computer
System, Special Issue on Engineering Autonomic Systems, Elsevier Science, volume
21, issue 1, page 53 - 59, Jan 2005.

AutoMate: Enabling Autonomic Grid Application$. Parashar, H. Liu, Z. Li, V.
Matossian, C. Schmidt, G. Zhang and S. Hariri. Cluster Computing: The Journal of
Networks, Software Tools, and Applications, Special Issue on Autonomic Comput-
ing, Kluwer Academic Publishers.

Enabling Autonomic Grid Applications: Requirements, Models and Infrastructure
M. Parashar, Z. Li, H. Liu, C. Schmidt, V. Matossian and N. Jiang, Hot Topics,
Lecture Notes in Computer Science, Springer Verlag, 2005.

Enabling Self-management of Component-based High-Performance Scientific Appli-
cations H. Liu and M. Parashar, Proceedings of the 14th IEEE International Sympo-
sium on High Performance Distributed Computing (HPDC-14), Research Triangle
Park, NC, July 2005.



92

A Framework for Rule-Based Autonomic Management of Parallel Scientific Applica-
tions H. Liu, and M. Parashar, Proceedings of the 2nd IEEE International Confer-
ence on Autonomic Computing (ICAC-05), Seattle, Washington, USA, June 2005.

A Component-based Programming Framework for Autonomic Applicatténisiu,

M. Parashar, and S. Hariri, Proceedings of the 1st IEEE International Conference on
Autonomic Computing (ICAC-04), IEEE Computer Society Press, New York, NY,
USA, pp. 10 - 17, May 2004.

Rule-based Visualization in a Computational Steering Collaborataryliang, H.

Liu, M. Parashar and D. Silver, Proceedings of the International Workshop on Pro-
gramming Paradigms for Grid and Metacomputing Systems, International Confer-
ence on Computational Science 2004 (ICCS 2004), Krakow, Poland, June 2004.

Enabling Autonomic, Self-managing Grid Applicatio@sLi, H. Liu and M. Parash-
ar, Proceedings of SELF-STAR: International Workshop on Self-Properties in Com-
plex Information Systems, Springer Verlag, Bertinoro, Italy, May-June, 2004.

DIOS++: A Framework for Rule-Based Autonomic Management of Distributed Sci-
entific Applications H. Liu and M. Parashar, Proceedings of the 9th International
Euro-Par Conference (Euro-Par 2003), Lecture Notes in Computer Science, Editors:
H. Kosch, L. Boszormenyi, H. Hellwagner, Springer-Verlag, Klagenfurt, Austria,
Vol. 2790, pp 66 73, August 2003.

AutoMate: Enabling Autonomic Applications on the Gritfl. Agarwal, V. Bhat,

H, Liu, V. Matossian, V. Putty, C. Schmidt, G. Zhang, L. Zhen, M. Parashar, B.
Khargharia and S. Hariri, Proceedings of the Autonomic Computing Workshop, 5th
Annual International Active Middleware Services Workshop (AMS2003), Seattle,
WA, USA, IEEE Computer Society Press, pp 48-57, June 2003.



