
EVENT BASED ARCHITECTURE FOR

INTERACTIVE COMPUTATIONAL

COLLABORATORIES

BY MANJOT DHILLON

A thesis submitted to the

Graduate School—New Brunswick

Rutgers, The State University of New Jersey

in partial fulfillment of the requirements

for the degree of

Master of Science

Graduate Program in Electrical and Computer Engineering

Written under the direction of

Prof. Manish Parashar

and approved by

New Brunswick, New Jersey

, 2003

ABSTRACT OF THE THESIS

Event based Architecture for Interactive

Computational Collaboratories

by MANJOT DHILLON

Thesis Director: Prof. Manish Parashar

A Collaboratory is defined as a place where scientists and researchers work together

to solve complex interdisciplinary problems, despite geographic and organizational

boundaries. Computational collaboratories provide uniform (collaborative) access to

computational resources, services and/or applications. These systems expand the

resources available to researchers, enable multidisciplinary collaborations and prob-

lem solving, increase the efficiency of research, and accelerate the dissemination of

knowledge.

The growth of the Internet and the advent of the computational Grid have made

it possible to develop and deploy advanced computational collaboratories. These

systems build on the advanced technologies and high-end computational resources

underlying the Grid, and provide seamless and collaborative interactions between ex-

perts, resources, services, applications, and data. As collaboratories become more

pervasive across the Grid, they will be required to handle extremely large number

of entities and interactions between these entities. Grid entities may be scientific

applications involved in computations that produce data which is of interest to the

ii

users, users trying to access resources or services, to monitor or interact with exe-

cuting applications, and/or collaborating with other users, or mediator components

coordinating the flow of data between the users and the applicationsConventional

synchronous request-response style communications leads to a tightly coupled archi-

tecture, which may not handle the dynamics of the Grid as entities join and leave

the Grid, and may not scale as the number of entities grows. Event-based messaging

services which support asynchronous message transfer between decoupled informa-

tion generators and consumers, lend themselves naturally as a scalable messaging

middleware for supporting Interactive Computational Collaboratories especially in a

Grid based environment. In this thesis we present an event based architecture aimed

at supporting collaboration and steering in an Interactive Computational Collabora-

tory. The thesis also addresses some of the issues of deploying these Collaboratories

in a Grid environment. The implementation and evaluation of this architecture, and

its application to the DISCOVER computational collaboratory for interaction and

steering is also presented.

iii

Acknowledgements

iv

Dedication

To

v

Table of Contents

Abstract . ii

Acknowledgements . iv

Dedication . v

List of Tables . viii

List of Figures . ix

1. Introduction . 1

1.1. Contributions of the Thesis . 1

1.2. Background . 2

1.3. Problem Statement . 4

1.4. Organization . 4

2. Related Work . 6

2.1. Middleware for large scale systems 6

2.2. Publish-subscribe systems . 8

2.3. Middleware support for computational collaboratories 9

3. Design of the Event Framework . 11

3.1. The Collaborative Environment . 11

3.2. Requirements for a Event Framework to support Collaboratories . . . 11

3.3. The Event Framework . 14

3.3.1. Domain Services . 14

vi

4. Implementation of the Event Framework 18

vii

List of Tables

viii

List of Figures

3.1. Component view of the Event Framework 13

3.2. Subscription with no Aggregation . 16

3.3. An aggregated subscription scenario 16

4.1. Application client roles for various event types 19

ix

1

Chapter 1

Introduction

1.1 Contributions of the Thesis

The thesis makes the following contributions:

1. Investigate the requirements of Event Services for supporting Interactive Com-

putational Collaboratories. These requirements also capture some of the issues

of supporting such collaboratories in a Grid Environment.

2. Develop a design which fulfills some of the key requirements as formualted above.

The design makes use of the clustered access patterns found in computational

collaboratories to reduce network traffice and increase the scalability of the

design.

3. The thesis also makes a dictionary of the event types supported by a given

Collaboratory. Theis dictionary, like the XML schema helps describe the type

of data supported by a given type of collaboratory.

4. Lastly a prototype of the design is implemented on the discover computational

collaboratory. The evaluation of this design is presented for geographically

distant producer and consumers.

2

1.2 Background

A collaboratory is defined as a virtual meeting point where scientists and researches

collaborate to solve complex multidisciplinary problems, despite geographic and or-

ganizational boundaries[2]. Computational collaboratories provide uniform (collabo-

rative) access to computational resources, services and/or applications such as ana-

lytical tools, instruments and raw data, summaries and analyses for multidisciplinary

research, archival information and tools for synchronous and asynchronous collabo-

ration. These systems expand the resources available to researchers, enable multi-

disciplinary collaborations and problem solving, increase the efficiency of research,

and accelerate the dissemination of knowledge. The growth of the Internet and the

advent of the computational ”Grid” [3] have made it possible to develop and deploy

advanced computational collaboratories[4][5]. Recent efforts include the following:

1. The Upper Atmospheric Research Collaboratory (UARC)[6][7] provides a vir-

tual shared workspace in which a geographically dispersed community of space

scientists perform real time experiments at remote facilities, in locations such

as Greenland, Puerto Rico, and Alaska.

2. The Diesel Combustion Collaboratory (DCC) [8][9] is a problem solving envi-

ronment (PSE) for combustion research providing tools such as a distributed

execution management system for running combustion models on widely dis-

tributed computers (including supercomputers), web accessible data archiving

capabilities; electronic notebooks and shared workspaces; visualization of com-

bustion data; and video conferencing and data-conferencing tools.

3. Access Grid[10] is an ensemble of resources that can be used to support human

interaction across the grid, and consists of multimedia displays, presentation

and interactions environments, interfaces to grid middleware, and interfaces to

visualization environments.

3

4. Netsolve [11] is a client-server system that enables users to solve complex scien-

tific problems remotely and allows users to access both hardware and software

computational resources distributed across a network.

5. EMSL [12] is a symmetric collaboration between computer scientists, domain

scientists (physical and biological sciences), and sociologists and relies on the

development of new communications technologies - shared computer displays,

electronic notebooks, virtual reality collaboration spaces - and an integration of

these technologies with current videoconferencing and email capabilities.

6. The Astrophysics Simulation Collaboratory [13] involves a community of scien-

tists, researchers, and developers who wish to collaborate on the development

of scientific codes for the astrophysics community at large. It builds on Cactus

[14], which is an open source problem-solving environment designed for scien-

tists and engineers in the field of numerical relativity and astrophysics.

7. DISCOVER [1][15][16] provides a virtual shared workspace for scientists and

researchers to steer and collaboratively interact with large parallel and dis-

tributed applications in diverse fields such as oil reservoir simulations, seismic

whole-earth simulations, computational fluid dynamics, and numerical relativ-

ity.

Most of these systems build on the conventional request response as the means of

communication between the various components of the collaboratories. This architec-

ture may suffice for standalone collaboratories, serving a limited number of consumers

but as more and more collaboratories are deployed on the Grid, these architectures

do not scale with the increased number of consumers in the Grid.

4

1.3 Problem Statement

A critical component of these Collaboratories is the interaction between the various

entities of the collaboratory. As these collaboratories become more pervasive across

the Grid, they will be required to handle extremely large number of entities and the

interactions between these entities. These entities may be in the form of scientific

applications involved in computations and producing data that is of interest to the

users, users trying to access various services offered by the Collaboratory or medi-

ators coordinating the flow of data between the users and the applications. These

collaboratories normally rely on the conventional synchronous request response style

of communication, which leads to a tightly coupled architecture that does not scale

easily when new entities are added. To support these collaboratories in a Grid-based

environment alternative architectures are needed that scale with the increasing num-

ber of users. Event based systems, based on the publish/subscribe paradigm, have

been commonly used for providing decoupled architectures while building large-scale

distributed systems. Various event models based on different architectures have been

proposed for solving problems in different domains. These Event-based messaging

services which support asynchronous message transfer between decoupled informa-

tion generators and consumers, lend themselves naturally as a scalable messaging

middleware in the Grid environment. Most of these designs are generic to large

scale applications. Hence we need a design which utilizes the types of interactions

and access patterns in a Computational collaboratory to provide a loosely coupled

traffic-ergonomic design.

1.4 Organization

1. Chapter1 lays the background of the problem by explaining what computa-

tional collaboratories and event-based systems are and the need for a scalable

event based service for supporting computational collaboratories in a grid-based

5

environment.

2. Chapter 2 looks at the background work, compares the various event-based

models in existence, relevance of some of the models to our problem domain

and then discusses the need for a different event based model.

3. Chapter 3 defines the requirements of an Event based service for supporting

the computational collaboratories. We develop the schemas for the various

types of events required for access, security and messaging among the different

components of the collaboratory.

4. Chapter 4 discusses the design for the Event service, analyzing in detail the

mechanisms for discovery, publishing of and subscription to the various event

types. It also looks into mechanisms for reducing the event traffic among the

various components of the collaboratory.

5. Chapter 5 provides the experimentation for the evaluation of effect in latency

across a LAN and a WAN when a) the number of clients are changed and b)

the consumers send federated and unfederated requests.

6

Chapter 2

Related Work

2.1 Middleware for large scale systems

With the information revolution and the advances in the information technology, in-

creasing number of machines are being connected to the Internet. With the consistent

increase in microprocessor performance and memory speed and capacity, increasing

amount of information is being stored in and disseminated to these peripheral devices.

Different middleware technologies have been deployed across the Internet to handle

the increasing flow of information.

1. Client Server The traditional Client-Server communication model is the sim-

plest and most widely used communication model in the Internet. This model

is essentially synchronous with point to point communication between the client

and the server. Common information is stored on a server for access by clients

that access or manipulate this data. A client invokes a method on a server and

synchronously waits for the response. The client and server require some knowl-

edge about the location of the other. This leads to a very tightly coupled design

unsuitable for large scale distributed systems. A three-tier design with an in-

termediate broker mitigates the problem to some extent. It is the responsibility

of this broker to route the request to the appropriate server. Thus, the location

of the server can change without the need to inform all of the clients. In fact in

most implementations this can occur dynamically, providing automatic trans-

fer from one server to another when a fault occurs. The middle tier may also

be used to translate information into a format acceptable to the clients. The

7

three tier-model though less tightly coupled than a simple client-server is still

synchronous in that the client has to place a request for data before receiving

it from the server.

2. Publish-Subscribe Publish-subscribe is another middleware technology for

interconnecting applications on a distributed network. In the publish-subscribe

model, the unit of information is called an event and consumers express interest

in particualr categories of these events. The middleware hides the location

details of the producers and the consumers. Also the process of information

delivery is asynchronous as the events matching the interests of a consumer are

delivered to it as they are produced. Two types of publish-subscribe systems

are being used to support various applications :

(a) Subject-based Addressing Subject based addressing is the older and

more mature form of publish-subscribe. Various applications in the field

of finance, network and weather monitoring, transportation and process

automation have leveraged this technology. In this technology each of the

events in the application space belongs to one of the fixed set of subjects.

Channel-based subscription is a form of subject-based subscription where

each subject maps to a given channel. The consumers express there interest

through a subset of the subjects and then subscribe to the channel(s)

corresponding to these subjects. A big strength of this technique is the

possibility of mapping a subject onto a multicast group allowing enhanced

scalability and performance. Since the number of muliticast groups are

limited, only a limited number of subjects may be mapped. Hence the use

of multicast for a wide range of subjects is infeasible. Also if there is an

overlap between the various subject categories i.e. a given event is part of

more than one subject categories then depending on the interest profile of

the consumer, it is possible to get more than one copy of the same event

8

from different subscribed channels. This leads to a waste of bandwidth

and resources. example

(b) Content-based Addressing An emerging technology alternative to

subject-based publish-subscribe is content-based publish-subscribe. In this

technology the information contained in an event is described with the help

of an event schema. The consumers express their interests by specifying

predicate expressions over these event-schema. This allows the filtering of

information at a finer granularity as the consumers need not have knowl-

edge about pre-defined subjects. example

2.2 Publish-subscribe systems

The publish-subscribe paradigm is based on the notion of information consumers

called subscribers, information generators called producers and a framework which

gathers, formats, filters and disseminates the information produced according to the

interests of the consumers. A subscription language helps specify the predicates for

building subscription objects and a matching algorithm matches the generated events

against the subscriptions. Different publish-subscribe systems are the realizations of

the above basic idea. Now we look at some of the publish-subscribe models:-

1. Sienna Sienna is a large-scale publish-subscribe system with a distributed mid-

dleware framework . For scaling in a wide area environment, the middleware

is based on a network of servers called event servers. The work also evalu-

ates the connection of these servers in various topologies and proposes various

optimizations for efficient routing of events. These include the advertisement

operation which optimizes routing of subscriptions and notifications, and the

use of IP multicast to replicate events as close to the consumer as possible and

application of filter objects as close to the producers as possible.

9

2. Eco Eco stands for Events, Constraints and objects. Event consumers sub-

scribe directly to the event producers by registering a callback reference. Eco

specifies three types of constraints, namely notify constraints, pre and post

constraints. Notify constraints provide filtering capabilities and pre and post

constraints are used for event synchronization and concurrency. Since there is

no centralized component like the event channel, this provides for a distributed

architecture, without single point of failure. Besides notify constraints, Eco pro-

vides another feature to limit the scope of event delivery called zones. Events

for a particular zone may not be delivered outside that zone, even for matching

constraints.

3. Gryphon The work mainly concentrates on efficient matching of the subscrip-

tions to the subscribers interests. They are also investigating the use of IP

multicast for dissemination in publish-subscribe systems.

2.3 Middleware support for computational collaboratories

The computational collaboratories require the sharing of resources across geograph-

ically distributed entities. As the computational collabratories are increasingly de-

ployed on the computational Grid, the number of entities sharing the resources is

expected to become too non-trivial to be supported by centralized messaging sys-

tems. A few of the collaboratories which build on scalable middleware substrates in

general and publish-subscribe based systems in particular are described below.

1. Salamander Salamander describes a push-based publish-subscribe system for

collaboratories. Access to the middleware substrate is provided via data server,

which may be connected in a suitable topology. The client subscriptions are

in the form of persistent queries comprising attribute expressions. The data

produced by the publishers is marked by attribute value pairs which are used

to make the routing decisions. This is a simplistic publish-subscribe model and

10

issues related to data discovery, effecient filtering and data aggregation are not

addressed.

2. Narada A more recent work which addresses wide area event brokering target-

ing large scale collaborations in education and science is the NaradaBrokering

peer-to-peer messaging system. It is based on the publish subscribe model and

defines a network of broker peers that can be dynamically deployed to provide

efficient events distribution among groups of interested peers. The NaradaBro-

kering system was built on JMS and then integrated with JXTA.

11

Chapter 3

Design of the Event Framework

3.1 The Collaborative Environment

As the computational collaboratories are deployed across the Grid, increasing number

of users and applications would be connected to these collaboratories. To support

this increased load on middleware resources, these collaboratories should be built

on truly scalable architectures. Publish-subscribe technology enables building highly

decoupled and truly scalable large scale distributed systems. The consumers and

publishers are decoupled from each other and the intelligence stored in the data

packets allows them to be routed appropriately. Hence minimum state information

needs to be stored inside the network and the network scales easily. Optimizations to

the basic publish-subscribe model leads to further economies of scale and reduction

in network traffic. Any change in type of supported information does not cause a

change in the central programming logic and is handled by changing the event and

subscription types at the end points.

3.2 Requirements for a Event Framework to support Collab-

oratories

Computational collaboratories differ from regular publish subscribe systems because

of the absence of a simple producer-consumer relationship between the application

and the clients. A generic Event Service for supporting computational collaboratories

should fulfill the following requirements:-

12

1. Information Publishing and Discovery As applications connect to and dis-

connect from collaboratories, the meta information related to these applications

should be dynamically available to the clients.

2. Subscription Clients should be able to subscribe to events of interest exported

by an application. The subscription language should support specification of

logical operations so that clients can subscribe to any logical subset of the event

information published.

3. Access Control Different level of access privileges should be associated with

different categories of clients. A junior scientist may just be allowed to access the

monitoring and collaboration services and steering services may be accessible

to only senior scientist.

4. Authentication and Security The credentials of a consumer may be au-

thenticated by the event-service before providing access to the resources. The

event-service may provide a secure communication environment by encrypting

or signing the event-messages and the various communication channels support-

ing the applications and the clients

5. Event persistence and archival Collaboratories support an environment

where clients are dynamic in nature and are not always connected to the same

domain. As the clients move across the domain-space, the event framework may

buffer the events produced while the client is disconnected and forward them

to the correct domain when the client reconnects. The Event service may also

provide a per client history of the events consumed and produced. hh

6. Quality of Service The Event-Service may support various parameters for

the QoS needs of different applications. An application may require end-to-end

reliability or a best effort service. Different priority values may change the way

the events are queued and served along the path of event-delivery. This is also

13

important for applications that require real-time guarantees for time sensitive

information.

7. Efficient Event Dissemination Some simulation applications may generate

astronomical amount of event data. Hence mechanisms are required to effi-

ciently manage and distribute this event data across the Event-Service network.

8. Scalability As Grid-based computing becomes more pervasive and the access

to applications and communications amongst them becomes standardized, more

and more applications will be supported on the Grid. Hence the Event-Service

should provide a scalable architecture to support the increasing number of ap-

plications and the corresponding consumers accessing these applications.

Figure 3.1: Component view of the Event Framework

14

3.3 The Event Framework

The overall architecture of the Event framework is presented in Figure 3.1. The figure

shows the relationship and interactions between the clients of the Event service, the

middleware substrate and the registry. The client is a user of the services provided by

the Event framework and in publish-subscribe terminology, a client may be a producer

of events, consumer of events or both. This enables true peer-to-peer connections be-

tween various ”‘clients”’ of the Event framework. The design also leverages the access

patterns in computational collaboratories. Collaborating parties generally consist of

teams of scientists and a given team is very likely to be geographically collocated. We

divide the system-space into domains where each domain comprises of geographically

adjacent consumers and producers. For each domain, the Event framework provides

services for handling the monitoring, steering and collaboration interactions inside a

domain and across the domains.

3.3.1 Domain Services

All collocated clients are managed by the services provided in that domain. There

are four basic domain services as below:-

1. Registry Service The system uses a registry for storing the information related

to the published applications, their location and the interfaces exported by

them.The Registry service has a handle to the central registry and registers

all the publish requests in its domain. The Registry Service also unpublishes

exported information by removing it from the central registry. The central

registry contains information about the applications published, the notification

channel supporting this application and the type of information exported by

the application. Since the central registry only contains meta data information

about the application, it is relat ively lightweight and hence is not a bottleneck.

2. Resolver Service The Resolver Service enables a consumer to discover and

15

connect to applications of interest. The need for the resolver service arises

because of the fact that the producers and the corresponding consumers may be

distributed across various domains. Hence a Service is required which selects a

producer based not only on the type information published but also the domain

of the producer. The Resolver Service provides the consumer with interfaces for

querying the Registry. The result of the query is returned as a list of matching

applications and the corresponding notification channel references.

3. Subscription Service The consumers subscribe to applications of interest

using interest profiles. For applications in the same domain as the consumer, the

Subscription Service attaches the subscriptions to the local event channel. For

applications in a remote domain, the Subscription Service obtains an aggregated

profile for that domain using the Aggregation Service. It then attaches an

aggregated subscription to the remote channel and individual subscriptions to

the local channel.

4. Aggregation Service Profile aggregation aims at hiding multiple non-local

consumer interests behind a single aggregated interest profile. Hence all con-

sumers in a remote domain can be represented by a single interest profile. Thus

a single copy of the matching event is relayed to the remote domain. The re-

mote domain further matches this event against the individual interest profiles

in that domain. This leads to a very scalable architecture, where all the con-

sumer interests for a remote domain can be aggregated into a single interest

profile and effectively a single consumer.

5. Authentication and Access control The division of the design space into

domains eases the manageability of checking the authentication and controlling

the access privileges of different. Hence authentication and access control for all

the clients in a domain is provided by the authentication and control service in

that domain. Figure 3.2 shows the case where profile aggregation is not used.

16

Figure 3.2: Subscription with no Aggregation

The three local users attach three seperate subscriptions to the application in

the remote domain. If an event matches all the three subscriptions, then three

seperate copies traverse the length of the network between the remote and the

local domain.

Figure 3.3: An aggregated subscription scenario

Figure 3.3 shows the case where an aggregated subscription, representing the

consolidated interests of the local consumers is attached to the remote channel.

In this case, only one event copy of an event matching all the three subscriptions

is sent to the local channel. The local channel further evaluates this event

against the local subscriptions and delivers accordingly. Hence though there is

17

an exta matching operation, we use only 1/3rd of the network bandwidth. Now

the saving in Network bandwidth also depends on the logical overlap between

the interest profiles. In case of completely disjoint interest profiles, no event

matches more than one profile and hence no savings in network usage. An

aggregated profile does increase the complexity of the matching process, but this

increase in complexity is more than offset by the decrease in Event copies sent

by the remote channel. Also addition of every consumer in the local domain,

having an interest in a remote application only causes a modification of the

aggregated profile in the remote domain and an additional interest profile in

the local domain. Hence the effects of increase in the number of consumers is

largely constricted to local domains hosting these consumers.

g

18

Chapter 4

Implementation of the Event Framework

A publish-subscribe sytem comprises of four major components namely the type of

information to be published, a way to publish this information and correspondingly

discover the published information, specify interest to the information and finally

filter, format, match and disseminate the information to the matched parties. Hence

the specification of these four components would enable the implementation of a

publish-subscribe system. We build our Event Framework on top of Corba Trading

and Notification Services.

1. Event Dictionary The Event Dictionary contains information about the type

of the Events supported by the system and the information contained in these

events. In publish-subscribe sytems, information contained inside Events is

used to route them to their destinations. Hence the composition of the Event

message should allow the information to be specified in a strcuted way so that

it can be easily filtered and matched against the interest profiles. CORBA

Notification Service provides the support for Structured events . A Structured

event is made up of a header and a body. /reference[FIG] shows the composition

of a structured Event message. The header of the event message further consists

of two portions :-

(a) Fixed Header The fixed portion of the header contains three fields namely:-

i. Event Domain Originally defined for specifying the industry to which

a given event belongs to for example, telecommunications, aviation,

19

transport etc. Computational collaboratories are application-centric,

hence we define this field to be the name of the application exporting

this event.

ii. Event Type Event type defines the specific type of event inside a given

domain. For example a flightCancellation event inside the Aviation

industry. For our system, this field captures the type of interactions

possible inside a computational collaboratory. Capturing the event in-

teractions in a computational collaboratory is complicated by the fact

that applications and clients can be both producers and consumers of

information. Figure 4.1 shows the roles of applications-clients for dif-

ferent types of events. Hence simple client subscription to application

Figure 4.1: Application client roles for various event types

published data does not suffice and the application also has to sub-

scribe to events generated by the client. The main event types based

on application-client communications inside the DISCOVER Compu-

tational Collaboratory are as below:-

A. Monitoring Application sends periodic messages about the state

of the application and the state of the computations inside the

application. An application can be in four states, namely running,

computing, interacting or paused.

20

B. Steering Steering messages are commands from the clients to

change/query the simulation specific data inside the application.

Event channel in a given domain may have more than one appli-

cations attached to it. Hence, the application subscription for re-

ceiving client commands contains application domain as the event

domain and ”Steering” as the event type.

C. Collaboration Two types of collaboration is addressed. A client

may be interested in all the actions and corresponding results of

a client. This is achieved by replicating the subscription of the

target client and attaching it to the proxy of the interested client.

Two clients collaborate by specifying subscriptions for collabora-

tion events generated by each other.

iii. Event Name Name specifies the name for a single event instance.

(b) Variable Header This portion of the header contains name value pairs

used for specifying the QoS qualities for event delivery.

The body of the event message is also composed of two parts.

(a) Filterable body This part of the body is composed of name value pairs.

Constraint expressions specified in the Filter objects are evaluated against

the Fixed header and the name value pairs specified in this portion of the

event message.

(b) Remainder body This portion carries data attached to the event message

in the form of a Corba ANY. The data could be plain text, an executable

or a multimedia file.

2. Publishing information Publishing event information involves providing means

of accessing and searching the meta information related to the published event

types and then locating and accessing the publishers satisfying the search crite-

ria. We use the CORBA Trading service for publishing, searching and locating

21

information of interest. A record of meta information in the Trading Service

is called a Service offer and consists of Service Type which defines the meta in-

formation to be associated with the offer and and Object Reference which gives

the location of the Object offering the sevice. The following steps are involved

in offering, searching and locating information in the Trading Service:-

(a) Offer Description TheService Type is a description of the Service offer

and consists of :-

i. Interface Name In our implementation, an Application is bound

to the local notification channel and all the event information pro-

duced by the application is distributed through the notification chan-

nel. Hence for the Clients, the notification channel acts as the Server

of information and the Interface Name is the IDL repository ID of the

Notification Channel.

ii. Property Types Property Types describe the behavour of the Ser-

vice. A property type consists of a name, zero or more types and mode

of the property. A meaningful name provides an automatic description

of the property. The type of the property specifies whether its a inte-

ger boolean or a complex data type. But the Trader Constraint lan-

guage can handle only simple data types. The mode specifies whether

the value for this property is mandatory or optional while exporting

the Service Offer. A property which is mandatory for all application

service offers is the network number of the local domain of the appli-

cation. Clients use this value to determine whether the application is

in the local or remote domain and propagate their subscriptions ac-

cordingly. Queries for selecting offers are evaluated against the values

of the property types. Common properties for simulation applications

22

are the name of the application, category of clients having access priv-

ileges to the application etc.

(b) Service Offer A Service Offer gives information about the service being

exported by the server. A Service Offer consists of the following:-

i. Service type This is the name of the service type as described in

offer description above.

ii. Object Reference This is the object reference of the Service export-

ing the Service offer.

iii. Property values The Service Offer also specifies values for all manda-

tory and zero or more optional properties in the service type descrip-

tion.

The exported offers are queried by specifying the service type, constraints using

the Trader Constraint Language and the number of properties to be returned.

Common constraints could be the name of an application or all applications

for which the client has access privileges. The result of the query operation is

returned as a list of Service offers where each offer contains a reference to the

object exporting this offer and the property values specified while exporting this

offer.After the client obtains the object reference, it interacts with the object

directly without any mediation from the Trading Service. The OMG Trading

Service specification also has the provision of exporting service offers across

different instances of the Trading Service by linking these instances to form a

federation of Traders. Thus a local Trading Service may be configured to return

results from the local offer space and only forward the query to the federation

when no matching offers are found locally. This further leads to a distributed

solution to our problem and the interests of the publishers and consumers are

restricted to their local domains unless required otherwise.

3. Subscriptions Subscriptions are the interest profiles of the consumers and

23

are matched against the published information to generate events of interest.

Specifying the subscriptions requires a query language and we use the Trader

Constraint Language which is a standard language for querying the Trader

object.

4. The Event Dictionary The event dictionary captures the data space of system

by specifying the type of events used and the information contained in these

events.

5. Event service interfaces

