
SYNTHESIZING AUTONOMIC

COMPOSITIONS IN GRID ENVIRONMENT

BY MANISH AGARWAL

A thesis submitted to the

Graduate School—New Brunswick

Rutgers, The State University of New Jersey

in partial fulfillment of the requirements

for the degree of

Master of Science

Graduate Program in Electrical and Computer Engineering

Written under the direction of

Professor Manish Parashar

and approved by

New Brunswick, New Jersey

October, 2003

ABSTRACT OF THE THESIS

Synthesizing Autonomic Compositions in Grid

Environment

by Manish Agarwal

Thesis Director: Professor Manish Parashar

Dynamic composition of applications from components and services is becoming at-

tractive, and requires advance composition models. Service composition can be simply

defined as the process of taking existing services and combining them (based on def-

initions and constraints) to form new services. In existing composition model, the

composer identifies relevant services, explicitly states their interactions and creates a

composition script. A flow engine then invokes this composition. Unfortunately this

relatively static composition approach is not very scalable and manual choreography

of compositions and interactions is not very realistic. Furthermore the assumption

that the composer has a priori knowledge about the composition goals, the partic-

ipating services and their interaction patterns is not valid for pervasive computing

environments and dynamic Grid applications, motivating the need for more flexible

and dynamic composition models. In such a model, composition plans are created

at runtime based on dynamically defined composition objectives, their semantic de-

scriptions, constraints, and available services and resources.

In this work we propose a dynamic composition model based on relational algebra

ii

and graph theory. Services are described using standard Web Service Description

Language (WSDL)and extended with semantic metadata (keywords). Relational joins

are then used to generate composition plans and choreograph ad-hoc interactions at

runtime to satisfy the composers objectives and constraints. Alternate plans may be

evaluated and ranked based on different factors. In this work, we presents the design

and operation of Accord Composition Engine (ACE). ACE address dynamic service

composition. The overall goal of ACE is to autonomically synthesize composition

plans, when possible, from available pool of services based on dynamically defined

objectives and constraints. ACE is a key component of the Accord composition

framework in Project AutoMate. The overall objective of AutoMate is to investigate

key technologies to enable the development of autonomic Grid applications that are

context aware and are capable of self-configuring, self-composing, self-optimizing and

self-adapting.

iii

Acknowledgements

I would like to acknowledge my family in India who have been supportive of my

efforts. I would like to thank my research advisor Dr. Manish Parashar for his

invaluable guidance, support and encouragement during the course of this work. I

wish to thank all my friends and members of the TASSL Laboratory, and especially

Viraj Bhat for his helpful advice. To my close friends Krishna, Murali, Lalit and my

relatives in United States for making my life easier in this foreign country. Finally

my special thanks to CAIP and all its staff, who have always promptly helped me in

resolving both administrative and systems problems.

iv

Dedication

To my Parents and Harsh Uncle

v

Table of Contents

Abstract . ii

Acknowledgements . iv

Dedication . v

List of Tables . viii

List of Figures . ix

1. Introduction . 1

1.1. Motivation . 1

1.1.1. Why We Need Composition? 1

1.1.2. What We Need In Grid and Autonomic Environment? 2

1.1.3. Why We Need Dynamic Service Composition? 2

1.2. Problem Statement . 3

1.3. Contributions of the Thesis . 3

1.4. Organization . 4

2. Prior Work . 6

2.1. Composition . 6

2.2. Composition Languages . 7

2.3. Composition in Grid and Commercial Environment 8

3. AutoMate: An Autonomic Component Framework 10

3.1. AutoMate Architecture . 11

3.2. Autonomic Components in AutoMate 12

vi

3.3. Autonomic Compositions in AutoMate 14

4. The Accord Autonomic Composition Model 17

5. Accord Composition Engine . 22

5.1. Architecture Overview . 22

5.1.1. ACE Translator . 23

5.1.2. ACE Graph Generator . 24

5.1.3. ACE Constraint Satisfaction Module 24

5.1.4. Dynamic Service Plan Generator and Evaluator 25

5.2. Operation . 25

5.3. Prototype in Action . 26

6. Conclusion and Future Work . 31

6.1. Discussion - Advantages and Limitations 31

6.2. Conclusion . 32

6.3. Future Work . 32

Appendix A. Sample service interfaces of services 34

References . 36

vii

List of Tables

4.1. Service Pool for the example travel guide service. 20

4.2. Interaction table for the example travel guide service. 21

5.1. Sample Composition Scenarios . 28

5.2. Participating services for composition scenarios 29

5.3. Interaction Links created by ACE Graph Generator 29

5.4. Source and Sink Services for Travel Guide Example 30

viii

List of Figures

3.1. AutoMate Architecture Diagram . 11

3.2. An AutoMate Component . 13

3.3. Autonomic Compositions in AutoMate 15

4.1. Accord composition algorithm . 17

4.2. Accord algorithm in action . 18

5.1. Architectural overview of the Accord Composition Engine (ACE). . . 22

5.2. Schemas for ACE service and message description tables. 23

5.3. Schema for ACE link description table. 24

5.4. Operation of the Accord Composition Engine. 25

5.5. Interface of services in Service Pool. 27

5.6. Composition Graph Instances. 30

A.1. WSDL Interface of Location Service. 34

A.2. WSDL Interface of Vehicle Dependent Driving Service. 35

A.3. WSDL Interface of Driving Direction Service. 35

ix

1

Chapter 1

Introduction

In this research we developed mechanisms and supporting infrastructure to enable

autonomic applications to be dynamically and opportunistically composed from au-

tonomic components [1]. The composition is based on policies and constraints that

are defined, deployed and executed at runtime, allowing the composition to be aware

of the current state, requirement, capabilities, available resources and services. We

present the design and operation of the Accord Composition Engine (ACE) [33] for

the dynamic composition of Grid services [13]. ACE builds on the Open Grid Ser-

vice Architecture (OGSA) [6] and autonomically synthesizes composition plans, when

possible, from available pool of services based on dynamically defined objectives and

constraints. The key innovation is a dynamic composition model based on the theory

of relational algebra and graph theory.

1.1 Motivation

In this section, we address the motivation and advantages of this work.

1.1.1 Why We Need Composition?

With the advent of web services standards and a service - oriented Grid architec-

ture [11], it is foreseeable that competing as well as complimenting services will pro-

liferate. Several independent service providers will be providing related services.

Consequently ability of taking existing services and combining and recombining them

to solve new problems and create new services will become important. The main

2

advantage will be the reduction in cost, effort and development time to create and

manage new services.

1.1.2 What We Need In Grid and Autonomic Environment?

The Grid [7] is rapidly emerging as the dominant paradigm for wide area distributed

computing. Its goal is to provide a service-oriented infrastructure [11] that leverages

standardized protocols and services to enable pervasive access to, and coordinated

sharing of geographically distributed hardware, software, and information resources.

The fundamental concept underlying the emerging service oriented Grid architecture

is the virtualization of entities as services and the seamless interactions and integra-

tion of these services. The Open Grid Service Architecture (OGSA) specification [6]

defines standard interfaces and mechanisms for describing, invoking and managing

Grid services [6]. In OGSA, entities on the Grid are represented as services and new

higher-level services and applications can be constructed from the available services.

This motivates the need for flexible and scalable composition models.

Autonomic Computing [8] aims to transform tasks that require constant human

interference and awareness, to be self-managing, self-healing, self optimizing, etc.

Since composition creation might not be a one time effort and composition plans need

to adapt to the changes in the environment and underlying resources, automating the

process of composition creation and management and making it transparent to end

user motivates the need for creating new tools and supporting services.

1.1.3 Why We Need Dynamic Service Composition?

In dynamic composition model [33, 27], composition plans are created at runtime

based on dynamically defined composition objectives, their semantic descriptions,

constraints, and available services and resources. Dynamic composition models are

naturally suited for Grid environments where new services are constantly added and

3

existing services are extended, modified or retired, and Grid applications where com-

position and interaction requirements are only known at runtime. These models can

support autonomic (i.e. with minimum human support) behavior and mutable inter-

action patterns where all service need not be envisioned at design time and can be

created on-demand bases. We believe that dynamic service composition is required

to address the challenges posed by complex applications, and to satisfy the need for

low cost solutions with short turn around time.

1.2 Problem Statement

In this research, we investigate the issues and challenges in enabling dynamic service

composition. We present the design and architecture of Accord Composition Engine

(ACE). The overall goal of ACE is to autonomically synthesize composition plans,

when possible, from available pool of services based on dynamically defined objectives

and constraints.

1.3 Contributions of the Thesis

The thesis makes these key contributions:

• Autonomic Composition Model : In our model, the composition plan(s) is

described by a path in graph structure and the formalism is motivated by the

theory of concurrent processes and relational algebra.

• Using user-defined constraints to model the behavior of composi-

tion : ACE views constraints [22] as formalization of relationships which can

hold between services participating in a composition instance. The composer is

responsible for abstracting out different aspects of composition [23] and spec-

ifying the appropriate environment and constraints. ACE provides means to

4

initialize and invoke constraints. These simple conditions are used to create re-

lationships between services. ACE is not a constraint solver and assumes that

composer will give the valid set of constraints. Validity of constraint set im-

plies that the set shows the property of confluence, termination and observable

determinism.

• Design and implementation of ACE : ACE enables the construction, de-

ployment and evaluation of autonomic service composition plans. It is a part

of the framework that dynamically integrates and composes Grid services and

enables autonomic applications.

• Service description enhancement with semantic information (key-

words): The services are described by Web service Description Language

(WSDL) [4]. ACE users complement the standard description with semantic

and contextual metadata.

• Support for enabling ad hoc interactions : The interaction links are cre-

ated during the plan generation phase These ad-hoc interactions can have hi-

erarchical or peer-to-peer relationship between them and are based on policies

and constraints that are defined, deployed and executed during the composition

plan generation phase.

• Support for finding and evaluating multiple composition plans : Com-

position request might result in multiple alternative plans. ACE provides mech-

anisms to evaluate different plans according to cost, user defined constraints,

environmental factors, etc and assist user in selecting the best plan.

1.4 Organization

The thesis is organized as follows. Chapter 1 gives the motivation of our work. It

talks about the need of composition, need of applications in Grid environment and

5

specifically the need for dynamic service composition. Chapter 2 talks about differ-

ent types of composition models and the existing languages to describe them. In this

chapter we also give a brief overview of the approach used by different projects in aca-

demic and commercial domain. Chapter 3 presents project AutoMate, a framework

to enable autonomic applications. Chapter 4 presents Accord Composition Model.

Chapter 5 presents Accord Composition Engine. It also gives describes architecture,

algorithm of operation and implementation of ACE . Chapter 6 gives conclusion and

comments on the future work

6

Chapter 2

Prior Work

Composition models have received considerable interest in both academia and indus-

try in recent years. In this chapter we summarize the recent efforts is this direction.

Section 2.1 addresses the composition types and their characteristics. Section 2.2

specifies the languages used to describe compositions and workflows in scientific and

commercial domain. Section 2.3 presents the relevant work in Grid and commercial

environment, illustrating their key features and limitations.

2.1 Composition

Service composition can be simply defined as the process of taking existing services

and combining them (based on definitions and constraints) to form new services.

The composition model used by most existing application development frameworks

assumes that the composer has a priori knowledge of the composition goals, the par-

ticipating services and their interaction patterns. In this model, composer identifies

relevant services, explicitly states their interactions and creates composition script.

A flow engine then invokes this composition. Unfortunately this relative static com-

position approach is not very scalable. As the number of available services (resources,

devices, applications, etc) increases exponentially, manual choreography of composi-

tions and interactions is not realistic. Furthermore the assumption that the composer

has a priori knowledge about the composition goals, the participating services and

their interaction patterns is not valid in all scenarios. Thus a more dynamic compo-

sition model is required. In dynamic service composition model, composition plans

7

are created at runtime based on dynamically defined composition objectives, their se-

mantic descriptions, constraints, and available services and resources. These models

can support autonomic (i.e. with minimum human support) behavior and mutable

interaction patterns where all services need not be envisioned at design time and can

be created on-demand bases. However dynamic service compositions is extremely

challenging and requires addressing a number of critical issues such as discovering

and identifying relevant services, formulating and ranking (and selecting) compo-

sition plans using current context, goals, constraints and costs, and checking their

validity. Interesting work on this subject has been done in recent years. Let us look

at the languages for composition first.

2.2 Composition Languages

Many languages have been proposed by academic and industrial research groups for

describing compositions and workflows. Industry efforts include Web Services Flow

Language(WSFL) [9] from IBM an XML language for the description of Web Services

compositions, Business Process Modeling Language(BPML) [21] which is a meta-

language for modelling an abstracted execution model for collaborative and transac-

tional business processes based on the concept of a transactional finite-state machine,

Web Services Choreography Interface (WSCI) [15], XLANG [3] from Microsoft which

specifies message exchange behavior among the participating web services for au-

tomation and composition of new business processes, Jini Services flow Language

(JSFL) [9] an XML based notation for describing composite jobs made up of inter-

acting services, Web Service Description Language (WSDL) [4] a standard language

used to describe the syntactic aspects of services [23], Business Process Execution

Language for Web Services (BPEL4WS) [21] combines the graph oriented process

representation of WSFL and the structural construct based processes of XLANG into

a unified standard for Web Service Composition and ebXML [14], a specification that

8

enables enterprizes to conduct business over the internet using an open XML-based

infrastructure. Efforts in the Grid community include Grid Services Flow Language

(GSFL) [32] an XML-based language that allows the specification of workflow descrip-

tions for Grid services in the OGSA framework and HERMES [24], a specification

language that can be used to express scripts for complex activities involving coordi-

nation and collaboration. In contrast to these standards, researchers are also devel-

oping unique Web service markup language called DAML-S which provides service

providers with a core set of markup language constructs for describing the properties

and capabilities of their services in unambiguous, computer-interpretable form.

2.3 Composition in Grid and Commercial Environment

Composition and workflow has been addressed by systems such as the Chimera Vir-

tual Data System (GriPhyN) [17], Symphony [30], METEOR [19], COSMOS [29],

Aurora [24], SWORD project [28], SELF-SERV [25] and DySCo [27]. Chimera

Virtual Data System (GriPhyN) [17] considers compositions as graphs of services.

Unfortunately the overall service graph is static and assumes a priori knowledge of

participating services and their interaction pattern. Symphony [30] is a Java based

composition and manipulation framework based on the Sun JavaBeans component

architecture [12]. Its principle elements are a meta-program constructor and a back

end execution environment for invocation. Symphony also supports only static com-

positions. METEOR [19] addresses runtime adaptability of a composed workflow.

Its focus is primarily on runtime management rather than composition planning.

COSMOS [29] and Aurora [24] are two similar examples of advanced architecture

for e-service management. Once again, the main limitation of these systems is the

rigidity in the interconnection and integration between services. SWORD [28] uses

a rule-based expert system to find composition plans. In SWORD each service is

represented as a logical rule that expresses the inputs and outputs associated with it.

9

The SWORD model only addresses interface matching informational services. SELF-

SERV [25] main focus is on the peer to peer execution model for composite service

execution and use of state charts to describe operations, components and services.

DySCo [27] enables dynamic service composition and is based on the idea of func-

tional incompleteness and multi-party orchestration. Semantics and characteristics

of services are described using an ontology based approach. DySCo primarily ad-

dress stateless e-services. Another interesting and related approach is the associative

broadcast based coordination model [26], which integrates coordination with compo-

sition. The limitation is that associative naming and binding is defined at compile

time to select an initial set of binding of components.

Efforts within the Grid computing community addressing composition in the con-

text of workflows include Webflow [31], DAGMan [18], UNICORE [20] and XCAT [16].

Webflow [31] is one of the earlier workflow systems and support application compo-

sitions in Grid environments. DAGMan [18] is the meta-scheduler in Condor-G [18]

and manages dependencies between jobs. XCAT Application Factories [16] address

workflow related issues for Grid-based components within the Common Component

Architecture (CCA) [16] framework. Different agent technologies are also developed

that will use the markup exported by services to achieve end user’s needs

10

Chapter 3

AutoMate: An Autonomic Component Framework

AutoMate [1] is a framework for enabling autonomic Grid applications. It allows

the definition of autonomic components, development of autonomic applications as

dynamic composition of autonomic components, and provides key enhancements to

existing middleware and runtime services to support these applications on the Grid.

It builds on three fundamental concepts:

• Separation of policy from mechanism distilling out the aspects of components

and enabling them to orchestrate a repertoire of mechanisms for responding

to the heterogeneity and dynamics, both of the applications and the Grid in-

frastructure. The policies that drive these mechanisms are specified separately.

Examples of mechanisms are alternative numerical algorithms, domain decom-

positions, and communication protocols; an example of a policy is to select a

latency-tolerant algorithm when network load is above certain thresholds.

• Context, constraint and aspect based composition techniques applied to ap-

plications and middleware as an alternative to the current ad-hoc processes

for translating the application’s dynamic requirements for functionality, perfor-

mance, quality of service, into sets of components and Grid resource require-

ments.

• Dynamic, proactive, and reactive component management in order to optimize

resource utilization and application performance in situations where computa-

tional and/or resource characteristics may change

11

Building on these fundamental concepts, AutoMate addresses fundamental issues

and provide key solutions in the autonomic formulation, composition, and runtime

management of applications on the Grid. AutoMate builds on the emerging Grid

infrastructure and extends the Open Grid Service Architecture (OGSA).

Figure 3.1: AutoMate Architecture Diagram

3.1 AutoMate Architecture

A schematic of the overall architecture is presented in Figure 3.1. AutoMate is

composed of the following components:

A.) AutoMate System Layer : The AutoMate System Layer builds on the Grid

middleware and OGSA and extends core Grid services (security, information

and resource management, data management) to support autonomic behav-

ior. Furthermore, this layer provides specialized services such as peer-to-peer

semantic messaging, events and notification.

12

B.) AutoMate Component Layer : The AutoMate Component Layer addresses

the definition, execution and runtime management of autonomic components. It

consists of AutoMate components that are capable of self configuration, adap-

tation and optimization, and supporting services such as discovery, factory,

lifecycle, context, etc. (which builds on core OGSA services).

C.) AutoMate Application Layer : The AutoMate application layer builds on

the component and system layers to support the autonomic composition and

dynamic (opportunistic) interactions between components.

D.) AutoMate Engines: The AutoMate Engines are decentralized (peer-to-peer)

networks of agents in the system. The context-awareness engine is composed of

context agents and services and provides context information at different levels

to trigger autonomic behaviors. The deductive engine is composed of rule agents

which are part of the applications, components, services and resources, and

provides the collective decision making capability to enable autonomic behavior.

Finally, the trust and access control engine is composed of access control agents

and provides dynamic context-aware control to all interactions in the system.

In addition to these layers, AutoMate portals provide users with secure, pervasive

(and collaborative) access to the different entities. Using these portals users can

access resource, monitor, interact with, and steer components, compose and deploy

applications, configure and deploy rules, etc.

3.2 Autonomic Components in AutoMate

Autonomic components in AutoMate export information and policies about their be-

havior, resource requirements, performance, interactivity and adaptability to system

and application dynamics. In addition to the functional interfaces exported by tra-

ditional components, AutoMate components provide semantically enhanced profiles

13

or contracts that encapsulate their functional, operational, and control aspects. A

conceptual overview of an AutoMate component is presented in Figure 3.2. The

functional aspect specification abstracts component functionality, such as order of

interpolation (linear, quadratic, etc.)

Figure 3.2: An AutoMate Component

This functional profile is then used by the compositional engine to select appropri-

ate components based on application requirements. The operational aspect specifica-

tion abstracts a component’s operational behavior, including computational complex-

ity, resource requirements, and performance (scalability). This profile is then used by

the configuration and runtime engines to optimize component selection, mapping and

adaptation. Finally, the control aspect describes the adaptability of the component

and defines sensors/actuators and policies for management, interaction and control.

AutoMate components also encapsulate access policies, rules, a rule agent, and an ac-

cess agent that allow the components to consistently and securely configure, manage,

adapt and optimize their execution based on rules and access policies. The access

agent is a part of the AutoMate access control engine and the underling dynamic

access control model, and manages access to the component based on its current con-

text and state. The rule agent is the part of AutoMate deductive engine and manages

local rule definition, evaluation and execution at the component level. Rules can be

dynamically defined (and changed) in terms of the component’s interfaces (based on

14

access policies) and system and environmental parameters. Execution of rules can

change the state, context and behavior of a component, and can generate events to

trigger other rule agents. The rule agent is also responsible for managing, resolving

rule conflicts using rule priorities and a dynamic rule-lock mechanism. AutoMate

components build on DIOS/DIOS++ [10] which provides mechanisms to directly en-

hance traditional computational objects/components with sensors, actuators, rules, a

control network that connects and manages the distributed sensors and actuators, and

enables external discovery, interrogation, monitoring and manipulation of these com-

ponents at runtime, and a distributed rule-engine that enables the runtime definition

and deployment for managing and adapting application components. Application

components may be distributed (spanning many processors) and dynamic (be cre-

ated, deleted, changed or migrated at runtime). Access to a component’s sensors and

actuators is governed by its local access control policies along with global applica-

tion level policies. Rules can be dynamically composed using sensors and actuators

exported by application components. These rules are automatically partitioned and

deployed onto the appropriate components using the control network, and evaluated

by the distributed deductive engine.

3.3 Autonomic Compositions in AutoMate

Applications are typically composed with well defined objectives. In case of auto-

nomic applications, however, these objectives can dynamically change based on the

state of the application and/or the system. As a result, we need to dynamically select

components and compose them at runtime based on current objectives. Together, the

profiles, policies, and rules allow autonomous components to consistently and securely

manage and optimize their executions. Furthermore, they enable applications to be

dynamically composed, configured and adapted. Dynamic application work-flows can

15

Figure 3.3: Autonomic Compositions in AutoMate

be defined to select the most appropriate components based on user/application con-

straints (highest performance, lowest cost, reservation, execution time upper bound,

best accuracy), on the current applications requirements, to dynamically configure

the component’s algorithms and behavior based on available resources or system

and/or applications state, and to adapt this behavior if necessary. The AutoMate

dynamic composition model may be viewed as transforming a given composition or

workflow into a new one by adding or modifying interactions and participating en-

tities. Its primary goal is to enable dynamic (and opportunistic) choreography and

interactions of components and services to react to the heterogeneity and dynamics

of the application and underlying execution environment to produce the desired user

objectives. The AutoMate dynamic composition model [33] is context aware and is

based on policies and constraints that are defined, deployed and executed at runtime

(see Figure 3.3). Composition policies and constraints are defined as simple rules and

execute on the distributed deductive engine - i.e. there is no central authority that

16

manages the composition process. These rules are defined in terms of the interfaces

and aspects exported by AutoMate components, the current context of the scenario

and the overall objective of the application. Rules are simple and non-recursive, and

can be composed and aggregated in a consistent way - based on logic and constraint

based programming techniques [22]. Users can define and deploy rules at runtime

provided they have the required privileges, and the rules inherit the priorities and

privileges of their owners. Rules execute in a distributed fashion on a peer-to-peer

deductive shell exported by the autonomic middleware as described below. Firing of

rules causes the components to adapt, optimize, interact and compose. Composition

metadata is defined locally at the component level or globally at the application or

the middleware level using a standard representation.

17

Chapter 4

The Accord Autonomic Composition Model

Figure 4.1: Accord composition algorithm

A key goal of the Grid is to provide ubiquitous resources and services availability.

Furthermore, the Grid, by definition, is a dynamic and open environment where the

18

availability and state of these services and resources are constantly changing. The

emerging Grid applications are similarly complex, dynamic and heterogeneous. As a

result, the ability to compose services (and applications) on the fly based on current

availability of services, current context and dynamically define objectives and goals

is critical. While the existing systems listed do address many aspects of composition,

they do not completely addresses the challenges of dynamic service composition. For

example, the underlying composition approaches in these systems do not support

dynamically defined objectives and constraints, or ad hoc definition of interactions

and behaviors.

Figure 4.2: Accord algorithm in action

The primary focus of the Accord dynamic composition model presented in this

thesis is to autonomically synthesize composition plans, when possible, from available

pool of services based on dynamically defined objectives and constraints. Accord en-

hances standard (OGSA) service descriptions with semantic metadata and use this

metadata along with, current context, dynamically defined composition objectives

and constraints and relational algebra to choreograph ad-hoc interaction and com-

position plans at runtime. Alternate plans may be evaluated and ranked based on

19

different cost factors.

In Accord, the pool of currently available services (or current service pool) is

represented as a graph where the nodes are the services in the pool and the links

define the interactions and the composibility of the services. A composed service

plan is then a path in this graph. The Accord dynamic composition model can be

formally defined as follows:

A.) Composition is based on a service graph G(S, L) where, S is a set of available

services and L a set of possible interactions.

• Service set S = {si} and each si is associated with an ordered set of

keywords, {K(si)}.

• Interaction set L = {li,j} such that si, sj ∈ S. Each interaction li,j has a

cost value Cost(li,j) associated with it.

B.) In the service graph, G(S, L), the available services are vertices and interaction

are edges. The edges are created at runtime using a relational join operation,

li,j ∈ si on sj(si(OutputMsg.ArgTypes)=sj(InputMsg.ArgType)
).

C.) The composer specifies composition description as initial service, sinitial, final

service, sfinal, an ordered set of keywords, {Kcomposition} and a set of constraints,

{ck}.

D.) A subgraph of the service graph called composition graph G
′
(S

′
, L

′
) is generated

using these inputs as follows:

• ∀ i, si ∈ S
′ ⇐⇒ K(si) ⊆ {Kcomposition}.

• ∀ i, j, li,j ∈ L
′ ⇐⇒ si ∈ S

′
, sj ∈ S

′
and V alid(li,j, {ck}) = True.

E.) Dynamic Service Composition can be defined as finding a path from sinitial to

sfinal in G
′
(S

′
, L′).

20

Service Name Input Argu-
ment

Arguments Type Output Arguments Output Keywords

Driving Direction
(DDS)

SrcAddr, Tg-
tAddr

String, String Driving Direction String Driving Direc-
tion, MapQuest

Location Service
(LS)

Location String Address String Address, Land-
scape

Location Service
(LS)

firstname, last-
name, city

String, String, String Address String Address, Name,
City

Vehicle Depen-
dent Driving
Service

SrcAddr, Tg-
tAddr, Vehicle

String, String, String Driving Direction String Vehicle, Driving
Direction, Yahoo

Table 4.1: Service Pool for the example travel guide service.

The complexity of the plan generation algorithm is O(S
′
+L

′
). Note that the model

defined about assumes that the composer will provide a proper set of constraints, and

the set of constraints will satisfy properties of confluence, termination and observable

determinism.

The Accord composition algorithm is presented in Figure 4.1. In the initializa-

tion and service selection step, the services in the current service pool are parsed to

generate service set S. Then a relational join operation is used to construct the set

of ad-hoc interactions, L, and the service graph G is created. The composer specifies

a composition request as a set of constraints (C), keyword metadata ({Kcomposition}),

input service (sinitial) and output services (sfinal). The keyword set and constraint set

are used to select the participating services, S
′
, generate the set of associated interac-

tions L
′
, and the composition graph G

′
. Cost associated with each l

′
i,j is calculated.

Candidate composition plans can now be generated as paths in G
′
between sinitial and

sfinal using graph path algorithms(DFS,BFS). The composition plans can be ranked

based on costs. These costs could reflect economic, operational environments and/or

user defined factors. Constraints can belong to different categories and can control

aspects of both services and compositions. Examples of constraint categories include

security constraints, behavioral constraints and integrity constraints.

To illustrate the operation of the Accord composition model consider a scenario

21

Input Source Service Response Type Target Service Output Cost

SrcAddr, TgtAddr DDS String - String 0
Landscape, Tg-
tAddr

LS (landscape), Tg-
tAddr

String, String DDS String 1

Landscape, Land-
scape

LS (landscape), LS
(landscape)

String, String DDS String 1

Landscape, Tg-
tAddr, Vehicle

LS (landscape), Tg-
tAddr, Vehicle

String, String, String VDDS String 1

Landscape, Land-
scape, Vehicle

LS (landscape), LS
(landscape), Vehicle

String, String, String VDDS String 1

Table 4.2: Interaction table for the example travel guide service.

where a user is looking for a travel guide service which gives the travel route be-

tween two locations. The set of available services includes a Driving Directions Ser-

vice (DDS) that simply returns driving directions between two specified addresses,

a Vehicle-dependent Driving Direction Service (VDDS) that returns directions as a

function of the specified vehicle (e.g. car, train, boat, bicycle), and a Location Service

(LS) that returns the exact address given an approximate location. The service pool

and interaction table for this example is shown in Table 4.1and Table 4.2. In this sce-

nario, if a service has exact endpoint addresses service DDS is directly invoked, if one

or both of the endpoints are not exact, the composition of LS and DDS is required,

and if vehicle information is included, then VDDS will be invoked instead of DDS.

The decision to include or exclude any service is based on the service request and

constraints. Since the participating services are not known in advance, interactions

between them cannot be modelled a priori and must be generated at runtime based

on the request and the set of available services.

22

Chapter 5

Accord Composition Engine

In this section we present the design and operation of Accord Composition Engine.

The overall goal of ACE is to autonomically synthesize composition plans, when pos-

sible, from available pool of services based on dynamically defined objectives and

constraints. The key innovation is a dynamic composition model based on relational

algebra and graph theory. Services are described using standard Web Service Descrip-

tion Language (WSDL) and extended with semantic metadata (keywords). Relational

joins are then used to generate composition plans and choreograph ad-hoc interac-

tions at runtime to satisfy the composer’s objectives and constraints. Alternate plans

may be evaluated and ranked based on different factors. The key advantage of this

approach is that services need not be envisioned at design time and can be created

on on-demand bases.

5.1 Architecture Overview

Figure 5.1: Architectural overview of the Accord Composition Engine (ACE).

An architectural overview of the Accord Composition Engine (ACE) is presented

in Figure 5.1. ACE can be a part of composition services available on the Grid or

composition agents within the Grid middleware. It builds on OGSA and the emerging

Grid middleware. A service in ACE corresponds to a Grid service as specified in the

23

Grid Service Specification and is described using WSDL. The description field is used

to add semantic information in the form of keywords describing the service. A service

pool is the set of services that are available to a composer. The current service pool

is defined by a Node Table, Message Table and Service Table which are constructed

dynamically using existing OGSA discovery mechanisms such as SQUID, MDS or

UDDI. The ACE architecture consists of four key models: ACE translator, Graph

Generator, Constraint Analyzer, Plan Generator and Evaluator. These modules are

described below.

5.1.1 ACE Translator

The ACE translator module parses the WSDL service description for each service in

the current service pool and uses this information to update the relevant tables. It

creates a row in the Node Table corresponding to each ”operation” in the descrip-

tion, which contains the service name, operation name, ordered sequence of input

parameters, input message name and output message name. For each message name,

a separate entry is created in the Message Table with the message name as primary

key. Each message entry also contains argument names and argument type attributes.

The schema for these tables is presented in Figure 5.2.

Figure 5.2: Schemas for ACE service and message description tables.

24

5.1.2 ACE Graph Generator

The ACE Graph Generator module is responsible for defining the interaction links

between services in the service pool using relational joins. This is done based on

the message description in the Message Table. If the arguments and attribute types

associated with the output message of a source operation is a superset of the argu-

ments associated with the input message of a target operation, then a directed edge

exists from source operation to target operation. Corresponding to each such link,

an entry is created in the Link Table. The attributes of Link Table are the source

operation name, source service name, source message name, destination operation

name, destination service name, destination message name, cost of the link (defined

by the context), level of composition (in case where composition span across multiple

service pools), and a valid flag that is true if the current link is active.

5.1.3 ACE Constraint Satisfaction Module

The Constraint Satisfaction Module is responsible for evaluating and executing the

constraints associated with individual services and service composition requests. In

ACE, constraints are represented by simple SQL expressions that modify the validity

of interaction links. Thus the ACE constraint satisfaction module operates on Link

Table and enables or disables link entries in the table. The schema for the Link Table

is shown in Figure 5.3.

Figure 5.3: Schema for ACE link description table.

25

5.1.4 Dynamic Service Plan Generator and Evaluator

The dynamic service plan generator and evaluator module is responsible for generating

composition plans in response to a composition request. It works in conjunction with

Constraint Satisfier Module and operates on the Link Table. A plan is an ordered set

of services and their interactions that can satisfy the request. Service and link costs

are used to rank plans when multiple plans exist.

5.2 Operation

Figure 5.4: Operation of the Accord Composition Engine.

The end to end operation of ACE is illustrated in Figure 5.4. For example let us

reconsider our travel guide composite service. The dynamic service composition is

triggered when a composer makes a request to the ACE agent. Composer can be a

user or a service. A request will contain the semantic description of the composition

along with the input parameters and constraints. Say a request is made to find the

driving directions between source and destination address. The composer likes Yahoo

Maps and is interested in finding the shortest route. ACE agent on getting a com-

position request will connect to the service pool (refer Table 4.1). Services present

26

in the service pool can belong to different directories. We assume that providers

have already registered their services using standard Grid registration protocols such

as GRRP. ACE agent will first select the services based on keywords and request

parameters. For example ”Yahoo” and ”Shortest route” will result in the selection

of the VDDS service (refer Table 4.1). The location service will only be selected if

either source or destination addresses are not properly defined. Finally composition

plan(s) is generated by the agent and returned to the composer. In cases where mul-

tiple plans are possible, the cost is calculated for each plan and appropriate plan is

returned. The composition request fails if (1) a plan does not exist, (2) the compo-

sition request is insufficient, or (3) the constraints are invalid. The first case occurs

when the composite service can be expressed using ACE plan but no sequence of ser-

vices exists that can satisfy the request. This situation can be handled by increasing

the number of available services in service pool and lowering the semantic correlation

threshold used to select services. In the second case, the composer can be asked for

additional specifications for the composition. For the final case, ACE assumes that

the constraints specified by the composer are valid, i.e. they exhibit the property

of confluence (same effect irrespective of constraints execution order), observable de-

terminism (actions are same) and termination (cascaded constraints execution not

allowed). If the specified constraint set does not satisfy these properties, ACE will

fail to generate a valid plan.

5.3 Prototype in Action

In this section, we will walk through our travel guide composite service example to

illustrate the working of ACE algorithm and demonstrate prototype in action. In

our model a service is choreographed on the bases of service request that specifies

the desired functionality. The plan of composition will consist of set of participating

services and requisite interactions between them. Suppose that composer wish to

27

create a service that looks up the driving direction between two addresses. The step

by step guide to the service composition process is illustrated below.

Figure 5.5: Interface of services in Service Pool.

• Step 1 :ACE agent will contact the service pool (ref Figure 5.4). Services

present in the service pool can belong to different directories. We assume that

different service providers have already registered their service interfaces with

the directories using standard Grid registration protocols such as Grid Registra-

tion Protocol (GRRP) [5]. Since a provider can export their service interfaces

in any native programming languages, a uniform standard (WSDL or GSDL) is

required to describe services. The service interfaces for our example are given

in figure 5.5. We are using Glue tool ”java2wsdl” to get the standard service

description from java class files. The sample standard descriptions (wsdl files)

of our interfaces are given in appendix (A.1 , A.2, A.3). The ACE agent is

responsible for transforming and extracting the metadata from standard service

interfaces and storing it in a relational (tabular) form. The resulting format for

our travel guide example is presented in Table 4.1.

28

• Step 2 :The ACE translator will parse the wsdl service description and will

transform it into a new schema (ref figure 5.2) and annotate it with semantic

metadata by parsing the service description. Additional semantic metadata

can also be associated by the user to further refine search and support advance

querying in later stages. Sample snapshot for our example is given in Table 4.1

Scenario Service Request Invocation parameters Description
A Name-to-Driving-

Direction-Service
[First name, Last name,
City], [First name, Last
name, City]

Looks up driving directions be-
tween two persons homes given
their name and cities

B Vehicle-Dependent-
Direction-Service

Landscape, Landscape,
Vehicle

Gives directions between two ad-
dresses as a function of available
vehicle

C Driving-Direction-
Service

Landscape, Landscape,
Keywords

Returns driving directions be-
tween locations given constraints
such as shortest path, avoiding
highways, etc

Table 5.1: Sample Composition Scenarios

• Step 3 :The composer (user or service) makes a request to the ACE agent.

Suppose the composer wants to create a ”Name to Driving Direction Service”,

where user provides the name and city of two individuals and service is expected

to return driving directions between their homes. In another variation of the

same service, user also specifies the vehicle as a part of service request. In yet

another scenario, user might have certain constraints such as he does not know

the name of the individual but knows the approximate location of his house

or he likes Yahoo Maps service and is interested in finding the shortest route

avoiding all highways. Some possible composition scenarios for our example are

given in Table 5.1.

• Step 4 : Dynamic service composition is triggered when a composer makes a

request of service to the ACE agent. The ACE agent on getting the compo-

sition request will select the appropriate services and create interaction links

between them based on request parameters, their specified order and semantic

information (keywords). The selected services for different service composition

29

Scenario Service Request Services Selected
A Name-to-Driving-Direction-

Service
Location Service, Location Service, Driv-
ing Direction Service

B Vehicle-Dependent-Direction-
Service

Location Service, Location Service, Ve-
hicle Dependent Driving Service

C Driving-Direction-Service Location Service, Location Service, Driv-
ing Direction Service

Table 5.2: Participating services for composition scenarios

scenarios are described in table 5.2.

Source Operation Target Operation Comment

Location Service (Land-
scape)

Driving Direction Service Location Service, provides ad-
dress to Driving Direction Service

Location Service (Land-
scape)

Vehicle Dependent Direc-
tion Service

Location Service provides address
to Vehicle Direction Service

Location Service (Name,
Name, City)

Vehicle Dependent Direc-
tion Service

Name-Location Service provides
address to Vehicle Direction Ser-
vice

Location Service (Name,
Name, City)

Driving Direction Service Name-Location Service provides
address to Driving Direction Ser-
vice

Table 5.3: Interaction Links created by ACE Graph Generator

• Step 5 :Then a relational join operation is used to construct the set of ad-

hoc interactions and the service graph is created. In our sample example (ref

Figure 4.1), twelve ad-hoc interactions are created (since self loops are not

allowed). The valid interactions created by ACE Graph Generator and ACE

Constraint Satisfaction Modules are given in table 5.3. Based on composition

request as a set of constraints (C), keyword metadata ({Kcomposition}), input

parameters and their order, start service(sinitial) and sink services (sfinal) are

selected. Cost of each interaction is evaluated. The candidate composition

plans can now be generated as paths. Some simple scenarios for our composition

requests (5.1) are illustrated in figure 5.6

30

Possible Sink Services or
Operations

Driving Direction Service, Vehicle Dependent Driving
Service

Possible Source Services or
Operations

Location Service(Landscape), Location Service (First
name, Last name, City)

Table 5.4: Source and Sink Services for Travel Guide Example

Figure 5.6: Composition Graph Instances.

31

Chapter 6

Conclusion and Future Work

6.1 Discussion - Advantages and Limitations

In Grid environment, composite service creation is not necessarily a one-time effort.

Composition may need to adapt to the changes in the environment and underlying

resources. Moreover as the services become more ubiquitous, it is not possible to con-

sider all the permutations manually. Thus involving end users in service composition

is unacceptable, creating a need for systems such as ACE that enable the construc-

tion of autonomic service composition plans. ACE also provides the mechanism to

rank different plans and select the most appropriate one. An additional advantage

of generating multiple plans is redundancy and fault tolerance. If one plan fails, an

alternate plan can be invoked, or multiple plans can be used simultaneously for reli-

ability or QoS. We found that dynamic service composition is extremely challenging

and requires addressing a number of critical issues such as guaranteed correctness,

scalability, performance analysis, and constraints analysis. In traditional service envi-

ronments, response time depends primarily on resource latencies and network loads.

With dynamic service composition, planning time can become an additional over-

head. As a result composition planning mechanisms must be very efficient. Another

important challenge is in ensuring guaranteed correctness. In many cases, it may

not be possible to find any guaranteed correct plan for a composition request. ACE

specifically provides no such guarantee and is based on the notion that ”uncertain

plan” is better than no plan. In static composition, the process is bound with the

service at design time and designer can evaluate the performance metrics associated

32

with it. However, in dynamic composition the binding is not possible until the plans

are found and invoked. In ACE, the ranking of different plans is done based on costs

rather than performance data. Other challenges that need to be addressed include

missing or no inputs and outputs, multiple service responses or multiple responses

types, etc.

6.2 Conclusion

This thesis addressed issues and challenges in enabling dynamic service composition

on the Grid and presented design and prototype implementation of the Accord Com-

position Engine (ACE). The ACE composition model enables autonomic generation

of composition plans, when possible, from available pool of services based on dynam-

ically defined objectives and constraints. It enhances the standard (OGSA) service

descriptions with semantic metadata and uses this metadata along with the current

context, dynamically defined composition objectives and constraints and relational

algebra to choreograph ad-hoc interactions and composition plans at runtime. Al-

ternate plans may be evaluated and ranked based on different cost factors. The key

advantage of this approach is that services need not be envisioned at design time and

can be created on on-demand bases.

6.3 Future Work

ACE addresses pre invocation planning activities of dynamic service composition.

However, there are still several issues that need to be addresses such as:

• Security: The composition description can be associated with some form of

authentication mechanism (i.e. digital signature). The motivation is to estab-

lish a trusted association between service description and implementation and

between participating services.

33

• Ontology-based description: The semantic and characteristics of the com-

position (i.e. cost, availability, response time, available options) are currently

described by simple keywords. Different service attributes need to be described

with an ontology based approach.

• Autonomic Middleware Services: The design, development and deployment

of key services on top of Grid Middleware infrastructure to support autonomic

applications and dynamic compositions. The composition engine should be able

to use the context information provided by the infrastructure layer to analyze,

execute, plan and monitor the composition components.

• Performance Evaluation: For static compositions, as services are bound at

design time, and designer can search for services that have metrics (such as cost,

time, space, availability, etc) satisfying the quality of service (QoS) requirement

of the problem being solved. Unfortunately in dynamic composed service, effi-

ciency of the process cannot be determined until the service is invoked. Since

the performance of a single participating service has the potential to affect the

performance of entire composition, it is imperative to evaluate plans and ser-

vices beforehand. Thus advance performance evaluation methods, models and

tools are required.

34

Appendix A

Sample service interfaces of services

Figure A.1: WSDL Interface of Location Service.

35

Figure A.2: WSDL Interface of Vehicle Dependent Driving Service.

Figure A.3: WSDL Interface of Driving Direction Service.

36

References

[1] M. Agarwal, V. Bhat, Z. Li, H. Liu, V. Matossian, V. Putty, C. Schmidt,
G. Zhang, M. Parashar, B. Khargharia, and S. Hariri. AutoMate: Enabling
Autonomic Applications on the Grid. In Proc. of Autonomic Computing Work-
shop, 5th Annual International Workshop on Active Middleware Services(AMS
2003), Seattle, WA, IEEE Computer Society Press, pp 48-57, June 2003.

[2] T. Bellwood. UDDI (Universal Description Discovery and Integration) Ver-
sion 2.04 API Specification. http://uddi.org/pubs/ProgrammersAPI-V2.04-
Published-20020719.htm, July 19, 2002.

[3] Satish Thatte XLANG: Web Services for Business Process Design (XLANG).
http://www.gotdotnet.com/team/xml wsspecs/xlang-c, December, 2001.

[4] E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana. Web Services
Description Language (WSDL) 1.1. http://www.w3.org/TR/wsdl, March 15,
2001.

[5] K. Czajkowski, S. Fitzgerald, I. Foster, and C. Kesselman. Grid Information
Services for Distributed Resource Sharing. In Proc. of the Tenth IEEE Inter-
national Symposium on High-Performance Distributed Computing (HPDC-10)
IEEE Press, pages 181–194, San Francisco, CA, August 7-9 2001.

[6] I. Foster, C. Kesselman, J. Nick, and S. Tuecke. The Physiology of the Grid:An
Open Grid Services Architecture for Distributed Systems Integration. In Proc.
of the Open Grid Service Infrastructure WG, Global Grid Forum, June 22 2002.

[7] I. Foster and C. Kesselman. The Grid: Blueprint for a Future Computing In-
frastructure. Morgan Kaufmann Publishers, San Francisco, CA, 1998.

[8] P. Horn. Autonomic Computing:IBM’s perspective on the State of Information
Technology. http://www.research.ibm.com/autonomic/, Oct 2001. IBM Corp.

[9] F. Leymann. Web Services Flow Language (WSFL) 1.0. http://www-
3.ibm.com/software/solutions/webservices/pdf/WSFL.pdf/, May,2001. IBM
Academy of Technology, IBM Software Group.

[10] R. Muralidhar and M. Parashar. An Interactive Object Infrastructure for Com-
putational Steering of Distributed Simulations. In Proc. of the Ninth Interna-
tional Symposium on High Performance Distributed Computing (HPDC 2000),
IEEE Computer Society Press, pages 304–305, Pittsburgh, PA, August 2000.

37

[11] M. Champion, C. Ferris, E. Newcomer, and E. Newcomer. Web Services Archi-
tecture. http://www.w3.org/TR/ws-arch/, November 14, 2002.

[12] Sun Microsystems, Inc. The JavaBeans Component Architecture. July, 2002.

[13] S. Tuecke, K. Czajkowski, I. Foster, J. Frey, S. Graham and C. Kesselman. Grid
service specification. February, 2002.

[14] ebXML Team. ebXML Requirements Specification, Version 1.06.
http://www.ebxml.org/specs/ebREQ.pdf, May 8, 2001.

[15] A. Arkin, S. Askary, S. Fordin, W. Jekeli, K. Kawaguchi, D. Orchard, S. Pogliani,
K. Riemer, S. Struble, P. Takacsi-Nagy, I. Trickovic and S. Zimek. Web Ser-
vice Choreography Interface (WSCI) 1.0. http://www.w3.org/TR/wsci/, Au-
gust 2002.

[16] M. Govindaraju, S. Krishnan, K. Chiu, A. Slominski, D. Gannon and R. Bramley.
XCAT 2.0: A Component-Based Programming Model for Grid Web Services.
Dept. of C.S., Indiana Univ, Technical Report-TR562, June 2002.

[17] I. T. Foster, J. Vckler, M. Wilde and Y. Zhao. Chimera: A Virtual Data System
for Representing, Querying, and Automating Data Derivation. In SSDBM 2002,
pages 37-46, CA, August 2001.

[18] J. Frey, T. Tannenbaum, I. Foster, M. Livny and S. Tuecke. Condor-G:
A Computation Management Agent for Multi-Institutional Grids. In Proc.
of the Tenth IEEE Symposium on High Performance Distributed Computing
(HPDC10), pages 7-9, CA, August 2000.

[19] J. Miller, D. Palaniswami, A. Sheth, K. Kochut and H. Singh. WebWork: ME-
TEOR’s Wen-based Workflow Management System. In Journal of Intellegent
Information Systems, Vol 10, number 2, pages 185-215, 1998.

[20] M. Romberg. The UNICORE Grid Infrastructure. Scientific Programming, Spe-
cial Issue on Grid Computing, Vol 10, Number 2, pages 149-157, CA, 2002.

[21] Intalio and BPMI.org. Business Process Modeling Language.
http://www.bpmi.org/bpmi-downloads/BPML-SPEC-1.0.zip, Retrieved June
24th, 2002.

[22] K. Marriott and P.J. Stuckey. Programming with Constraints: an Introduction.
MIT Press, 1999.

[23] A. Popovici, T. Gross and G. Alonso. Dynamic Weaving for Aspect-Oriented
Programming. Proc. 1st Intl Conf. Aspect-Oriented Software Development, April
2002.

38

[24] M. Marazakis, D. Papadakis and C. Nikolaou. Aurora: An Architecture for Dy-
namic and Adaptive Work Sessions in Open Environments. In Proc. of the Inter-
national Conference on Database and Expert System a Applications (DEXA’98),
Springer-Verlag LNCS Series, pages 7-9, CA, August 1998.

[25] B. Benatallah, B. Medjahed, A. Bouguettaya, A. Elmagarmid, and J. Beard.
Composing and maintaining web based virtual enterprises. In Proc. of the 1st
VLDB workshop on Technologies for E-Services, Cairo, Egypt, September 2000.

[26] B. Bayerdorffer. Distributed Programming with Associative Broadcast. In Proc.
of the 27th Annual Hawaii International Conference on System Sciences ,Volume
2: Software Technology (HICSS94-2), Wailea, HW, USA, pp.353-362, 1994.

[27] G. Piccinelli and L. Mokrushin. Dynamic e-service composition in DySCo. In
Proc. of 21st International Conference on Distributed Computing Systems Work-
shops (ICDCSW ’01), Mesa, Arizona, April 2001.

[28] S. R. Ponnekanti and A. Fox. SWORD: A Developer Toolkit for Web Service
Composition. In 11th World Wide Web Conference (Web Engineering Track),
Honolulu, Hawaii, May 2002.

[29] F. Griffel, M. Boger, H. Weinreich, W. Lamersdorf and M. Merz. Electronic Con-
tracting with COSMOS - How to Establish, Negotiate and Execute Electronic
Contracts on the Internet. In 2nd Int. Enterprise Distributed Object Computing
Workshop (EDOC ’98), April 1998.

[30] M. Lorch and D. Kafura. Symphony : A Java-based Composition and Manip-
ulation Framework for Computational Grids. In Proc. of 2nd IEEE/ACM Int.
Symp. on Cluster Computing and the Grid, pages 136-143, Berlin, Germany,
2002.

[31] D. Bhatia, V. Burzevski, M. Camuseva, G. Fox, W. Furmanski and G. Prem-
Chandran. WebFlow : A Visual Programming Paradigm for Web/Java Based
Coarse Grain Distributed Computing. In Proc. of 21st International Confer-
ence on Distributed Computing Systems Workshops (ICDCSW ’01), Concur-
rency: Practice and Experience, Vol 9, number 6, pages 555-577, 1997.

[32] Patrick Wagstrom, Sriram Krishnan and Gregor von Laszewski. GSFL: A Work-
flow Framework for Grid Services. In Supercomputing Conference (SC 2002),
Concurrency: Practice and Experience, Vol 9, number 6, pages 11-16, November
2002.

[33] Manish Agarwal and Manish Parashar. Enabling Autonomic Compositions in
Grid Environments. Submitted in the Proc. of the 4th International Workshop
on Grid Computing (Grid 2003), Phoenix, Arizona November 2003.

