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ABSTRACT OF THE DISSERTATION

A Scalable, Decentralized Coordination Infrastructure for

Grid Environments

by Zhen Li

Dissertation Director: Professor Manish Parashar

While Grid computing is rapidly emerging as the dominant paradigm for distributed

problem solving for a wide range of application domains, the heterogeneity, dynamism,

and uncertainty of Grid environments result in significant application coordination chal-

lenges. A key challenge is managing the runtime dependencies and interactions among

the elements. These dependencies and interactions can be complex and various and

both system entities and interactions between them can be ad hoc and opportunistic.

As a result, realizing these coordinations becomes extremely challenging.

This research investigates a shared-space based decentralized architecture model for

addressing scalable and robust coordination for Grid applications. This model employs

fully decentralized architecture and provides a global virtual shared-space abstraction

that can be associatively accessed by all peers in the system. In this research, we design

and develop Comet coordination infrastructure to demonstrate the conceptual archi-

tecture model. The architecture of the Comet is based on a content-based distributed

hash table, which employs a locality preserving mapping to map the multi-dimensional

information space used by the coordinating entities to the one-dimensional peer node

index space. The resulting shared-space maintains content locality and guarantees

that content-based information queries are delivered with bounded costs. The key
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contribution of this thesis is a conceptual architecture model and an implementation

infrastructure for realizing coordination abstractions that support dynamic, scalable,

and asynchronous application interactions on wide-area Grid environments.

The developed architecture model and the Comet infrastructure are used to sup-

port coordination and computation in Grid environments. Two prototype systems

have been implemented and evaluated. The first prototype, CometG, provides a decen-

tralized (peer-to-peer) computational infrastructure that extends Desktop Grids to sup-

port parallel asynchronous applications. CometG constructs decentralized coordination

spaces and programming abstractions for parallel asynchronous iterative computations

and asynchronous formulation of the replica exchange algorithm for molecular dynam-

ics applications. The second prototype, Rudder coordination framework provides agent

abstractions and coordination protocols for supporting dynamic composition of Grid

applications. Experimental evaluations of these prototypes demonstrate the flexibil-

ity, scalability and effectiveness of the infrastructure, as well as its ability to support

complex coordination requirements of Grid applications.
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Chapter 1

Introduction

1.1 Motivation

The wide-area Grid computing, which is based on the aggregation of large numbers

of independent hardware, software and information resources, is rapidly emerging as

the dominant paradigm for distributed problem solving for a wide range of application

domains. The Grid computing environment, such as pervasive information systems

and computational Grids, has enabled a new generation of applications that are based

on seamless access, aggregation and interaction. Grid applications, combining intel-

lectual and physical resources spanning multiple organizations and disciplines, provide

vastly more effective solutions to scientific, engineering, business and government prob-

lems [70]. For example, it is possible to conceive a new generation of scientific and

engineering simulations of complex physical phenomena that symbiotically and oppor-

tunistically combine computations, experiments, observations, and real-time data, and

can provide important insights into complex systems such as interacting black holes and

neutron stars, formations of galaxies, and subsurface flows in oil reservoirs and aquifers

etc.

The underlying Grid computing environment is inherently large (scaling to thou-

sands of nodes), complex, heterogeneous and dynamic, globally aggregating large num-

bers of independent computing and communication resources, data stores and sensor

networks. As a result, maintaining global knowledge about the current system nodes

and the interaction entities in the applications is infeasible. Furthermore, the emerging

applications are similarly complex and highly dynamic in their behaviors and interac-

tions. The defining characteristics of these emerging systems and applications are [70]:



2

• Heterogeneity: The environments aggregate large numbers of independent and

geographically distributed computational, communication and information re-

sources. Also, the capabilities (e.g., storage, processing power, bandwidth), of

the nodes are different, and they may choose to share only a fraction of their

resources. Furthermore, the network interconnections among the nodes do not

conform to a single architecture or technology. Similarly, applications typically

combine multiple independent distributed software elements, such as components,

services and data sources, with different executing operating systems, versions,

configurations, etc.

• Dynamism: The computation, communication and information environment is

continuously changing during the lifetime of an application, including the avail-

ability and state of resources and services. The nodes can join, leave the system,

or fail at any time. The applications similarly have dynamic runtime behaviors,

where the organization and interactions of the elements can change based on

context, content and state.

• Uncertainty: This is caused by multiple factors including: (1) dynamism, which

introduces unpredictable and changing behaviors that can only be detected and

resolved at runtime; (2) failures, which have an increasing probability of occur-

rence as the system scales increase; and (3) incomplete knowledge of global system

state, which is intrinsic to large decentralized and asynchronous distributed envi-

ronments.

Together, the characteristics of Grids listed above result in significant application

development and management challenges that span all levels, including the program-

ming models, run time systems, middleware, and operating systems. Enabling flexible

and robust coordination becomes a key issue.

1.2 Problem Description

The scale, heterogeneity, and dynamism of emerging Grid environments make coordi-

nation a significant and challenging problem. Coordination can be defined as managing
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the runtime dependencies and interactions among the elements in the system. These

dependencies and interactions can be complex and various (e.g. peer-to-peer, client-

server, producer-consumer, collaborative, at-most/at-least/exactly, etc.). Further, both

the coordinated entities and their interactions can be ad hoc and opportunistic. As a re-

sult, realizing these coordination behaviors using low-level protocols becomes extremely

difficult. To address this issue, coordination infrastructures that provide high-level ab-

stractions to address scalable flexible coordinations are necessary. These infrastructures

should provide middleware services to deal with data communication and synchroniza-

tion, as well as process cooperation and competition. They should also allow application

developers to distinguish the coordination concerns from the computation concerns, and

allow these concerns to be separately specified and implemented.

Clearly, designing and developing a coordination infrastructure is non-trivial. A key

issue in the design and development of such a coordination infrastructure is the choice

of the underlying coordination model. Models based on direct communication, such as

Remote Procedure Call (RPC), imply a strict coupling in time, place and name be-

tween the interacting entities, which is not suitable for the large decentralized systems.

This is because maintaining common knowledge about the names/identifiers, addresses

of an end-point as well as the syntax and semantics of the interfaces in these systems

is infeasible. In contrast, models based on shared-space abstractions, which provide

temporal and spatial decoupling and associative data access mechanisms, can deal with

the incomplete knowledge and system dynamism and heterogeneity. As a result, this

approach has been popularly adopted for coordination in distributed environments.

These include middlewares for supporting the coordination among system entities or

software agents (e.g., TuCSoN [67] and MARS [29]), for dealing with physical system

dynamism and uncertainties (e.g., Lime [63] and PeerWare [35]), and for exchanging

data between heterogeneous components using XML tuples (e.g., XMLSpaces [88] and

XMARS [30]). While these systems (discussed in more detail in the following Chapter)

have successfully demonstrated the power and feasibility of shared-space based mid-

dleware, scalability and resilience in distributed wide-area environments remain open

issues.
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1.3 Overview of Comet

The overall goal of this research is to design, implement and evaluate a coordination

infrastructure that enables the communications and interactions of heterogeneous en-

tities in large decentralized distributed Grid environments. The specific objectives

includes: (i) design a conceptual architecture model, which provides scalable, resilient,

and simple coordination and programming abstractions; (ii) develop an coordination

infrastructure to demonstrate the conceptual architecture model; (iii) develop applica-

tion systems to illustrate the effectiveness and feasibility of using the infrastructure for

supporting wide-area Grid applications.

This thesis presents Comet, a fully decentralized coordination infrastructure for

Grid environments. Comet provides a scalable, decentralized tuple space abstraction

to address communication and synchronization of distributed processes and software

elements. Comet defines a fully decentralized conceptual architecture model, which

provides a global virtual shared-space constructed from the semantic information space

used by entities for coordination and communication. Comet adapts Squid [79] informa-

tion discovery scheme and implements an associative Distributed Hash Table (DHT),

which deterministically maps the information space using Hilbert Space Filling Curve

(SFC) [62] onto the dynamic set of peer nodes in the Grid system. The locality preserv-

ing nature of Hilbert SFC enables the Comet to maintain content locality and efficiently

resolve content-based lookups. The Comet architecture model provides communication,

coordination, and application abstractions, which allow these programming concerns to

be separately addressed during system and application development.

The Comet infrastructure implements the conceptual architecture model. A peer

node in Comet has 3 layers: a communication layer which provides scalable content-

based messaging services and manages system heterogeneity and dynamism; a coor-

dination layer which provides Linda-like [31] primitives and supports a shared-space

coordination model; and an application layer which provides programming frameworks

and mechanisms. The Comet infrastructure has been deployed and evaluated on a

wide-area environment using the PlanetLab [7] testbed, as well as a campus network
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at Rutgers University.

The developed Comet infrastructure is used to support coordination and computa-

tion in Grid environments. Two prototype systems have been implemented and evalu-

ated. The first prototype, CometG [56], provides a decentralized computational infras-

tructure that extends Desktop Grid environments to support parallel asynchronous ap-

plications. CometG constructs decentralized coordination spaces and application-level

programming abstractions for parallel asynchronous iterative computations as well as

asynchronous formulation of the replica exchange algorithm for molecular dynamics

applications. The second prototype, Rudder [55, 53, 54, 58] coordination framework

provides agent abstractions and coordination protocols for supporting dynamic com-

position and coordination of Grid applications. Experimental evaluations of these pro-

totype implementations demonstrate the flexibility, scalability and effectiveness of the

infrastructure, as well as its ability to support complex coordination requirements of

Grid applications.

1.4 Contributions

This research investigates coordination infrastructures for addressing the heterogeneity,

dynamism, scalability, and uncertainty of the Grid environments. The key contribution

of this work is that it lays out a conceptual architecture model and provides a practical

implementation of a coordination infrastructure that facilitates scalable, robust, and

efficient interaction and communication for Grid applications. The main components

of this research include:

• Design of the Comet conceptual architecture model, which provides a global

virtual shared-space abstraction that can be associatively accessed by all sys-

tem peers. Comet adapts the Squid information discovery scheme and employs

a locality preserving mapping to map the multi-dimensional information space

used by the coordinating entities to the one-dimensional peer node index space.

The resulting shared-space space maintains content locality and guarantees that

content-based information queries are delivered with bounded costs. The Comet
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architecture model provides separated abstractions to address the communication,

coordination, and application programming concerns.

• Design and develop Comet decentralized coordination infrastructure to demon-

strate the conceptual model. Each peer node in Comet consists of 3 layers: the

communication layer which provides associative messaging services and manages

system dynamism using a self-organizing overlay; the coordination layer which

implements Linda-like coordination primitives, by which all peers can associa-

tively access the space without knowing the physical location or identifiers of

the hosts; and the application layer which provides programming mechanisms to

enable application formulations and executions.

• Develop application programming systems using Comet for solving practical prob-

lems. Two developed prototype systems include CometG computational infras-

tructure that extends Desktop Grid to support parallel asynchronous applications

and Rudder coordination framework that provides software agents and coordina-

tion protocols to address dynamic composition of application workflows.

• Deploy and evaluate Comet, Rudder, and CometG on wide-area Grid testbed and

Rutgers University campus networks. The experiments evaluate the performance

of Comet coordination primitives, the Rudder coordination protocols, and the

CometG computation system. The experimental results demonstrate the scala-

bility and efficiency of these systems as well as the feasibility of using Comet to

support wide-area Grid deployment.

1.5 Thesis Outline

The rest of the thesis is organized as follows.

Chapter 2 gives an overview of shared-space coordination model and existing co-

ordination systems as well as their applications. It discusses the limitations of these

existing systems with respect to the requirements of Grid computing. Furthermore,

this chapter compares the key differences between Comet with the related systems.
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Chapter 3 presents the Comet conceptual architecture model and the development

of Comet infrastructure. The Comet model employs fully decentralized architecture and

provides a global virtual shared-space abstraction that can be associatively accessed by

all peers in the system. The Comet infrastructure implements and demonstrates the

conceptual model. The design, implementation, deployment, and evaluation of Comet

are presented.

Chapter 4 describes the CometG computational infrastructure, which extends Desk-

top Grid for parallel asynchronous applications. The effectiveness of CometG has

been illustrated using parallel asynchronous iterative computations and parallel asyn-

chronous replica exchange simulations. This chapter presents the implementation, de-

ployment, and evaluation of CometG as well as CometG-based applications. Experi-

mental results demonstrate the efficiency and scalability of CometG and its ability to

support wide-area deployments of Desktop Grid applications based on parallel asyn-

chronous algorithms.

Chapter 5 presents the Rudder coordination framework, which provides agent ab-

stractions and coordination protocols for supporting dynamic composition and inter-

action of Grid applications. It describes the Rudder agents, the agent coordination

protocols, and the Rudder-based dynamic application workflow compositions. This

chapter also describes the implementation, deployment, and evaluation of Rudder.

Chapter 6 concludes the thesis and gives out future research directions.
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Chapter 2

Background and Related Work

This chapter describes the shared-space coordination model and investigates existing

shared-space based coordination systems and their applications. The existing shared-

space coordination systems are described based on their target applications and com-

puting environments. A comparison of Comet with the related existing systems is

presented.

2.1 Shared-space Coordination Model

The shared-space coordination model was made popular by Linda [31], which defines a

centralized tuple space as a shared message repository to exploit generative communi-

cation [40] model. The key attributes of Linda included:

(i) Asynchronous communication that decouples senders and receivers in space and

time. An inserted tuple will exist independently in the tuple space until it is explicitly

removed by a receiver and tuples are equally accessible to all receivers but bound to

none.

(ii) An associative multicast medium through which multiple receivers can read a

tuple written by a single sender using a pattern-matching mechanism instead of the

name and location of the producer.

(iii) A small set of operators (write, read, and remove) providing a simple and

uniform interface to the tuple space.

In Linda, a tuple is an ordered sequence of typed fields and a tuple space is a multiset

of tuples that can be accessed concurrently by several processes using simple primitives.

Tuples are inserted into the tuple space by executing the out(t) operation, extracted

using the destructive primitive in(t̄) and read using the non-destructive primitive rd(t̄),
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where t is the tuple and t̄ is a template that matches the tuple. If multiple tuples

match a template, one tuple will be nondeterministically returned. Both in and rd are

blocking operations. The template t̄ may contain wildcards, denoted by “?”, which

is matched against actual values in a tuple during the associative matching process.

For example, a tuple 〈“task”, 12〉 will be matched by the template 〈“task”, ?Interger〉.
Details can be found in [31].

The shared-space model provides a very flexible and powerful mechanism for sup-

porting extremely dynamic coordination patterns. In this model, processes interact

using an associative shared tuple space. The message sender formulates the message as

a tuple and places it into the tuple space. The receiver(s) can associatively look up rel-

evant tuples using pattern-matching on the tuple fields. This associative asynchronous

communication model automatically supports dynamic communication and interaction

between the coordinating entities. Recently shared-space coordination model has been

adopted to build coordination infrastructures to address the challenges in different com-

puting environments as described below.

2.2 Shared-space Coordination Infrastructures and Applications

Several research projects and commercial products have successfully adopted the shared-

space coordination model to construct coordination systems. Examples include JavaS-

pace (Sun, 2000) [36], TSpaces (IBM, 1998) [52], MARS [29], XMARS [30], XMLSpaces

[88], TuCSoN [67], and MARS [29]. These systems have enhanced the original Linda

model with language expressiveness, control flexibility, and implementation architec-

tures to support applications on various computing environments. These systems are

summarized in Table 2.1 and described below.

Several projects employ shared-space coordination model and Java technology to

support interactive Internet distributed applications. These systems provide a tuple

space embedded in the Java run-time environment and offer loosely coupled communi-

cation with the paradigm of distributed shared memory. JavaSpaces [36] depends on

the Jini services, where all operations are invoked using a local smart proxy and Java
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Table 2.1: Shared-space coordination infrastructures for various computing environ-
ments.

System Java-based distributed computing
JavaSpaces [36] JavaSpaces provides a Java-based distributed computing environment. Each

JavaSpace is provided by a single server, which can be either local or remote.
JavaSpaces operations are invoked using Java Remote Method Invocation
(RMI).

TSpaces [52] TSpaces acts as a communication buffer with database capabilities. It offers
applications a number of services, including group communication, database
access, URL-based file transfer, and event notification. The TSpaces plat-
form is implemented using a centralized architecture.

PageSpace [32] PageSpace introduces the notion of active Web pages, which are capable of
executing code, coordinates the interactions between these active pages. It
implements a Java tuple space shared between different processes. The tuple
space can be local or remote and employs a client-server architecture.

System Mobile agent computing
MARS [29] MARS provides local tuple spaces for mobile agent communication and inter-

action. The tuple space is enhanced with reactive programming capabilities,
which allow an agent to respond to actions performed on the tuple space.
The MARS agents can only coordinate with other agents that reside on the
same node.

TuCSoN [67] TuCSoN introduces the notion of a programmable data space, which provides
the possibility to program the way in which the coordination medium reacts
to the execution of coordination primitives. The implementation of TuCSoN
employs a centralized architecture.

System Peer-to-peer computing
PeerSpace [27] PeerSpace provides a JXTA-based distributed peer-to-peer data space. Each

peer node maintains a list of the neighbors, which are the tuple spaces known
to the node. The tuple distribution and search is achieved by permitting the
interactions among neighbor data spaces.

PeerWare [35] PeerWare realizes a virtual global space using a forest of tree data structure,
in which each peer holds its own data structure expressed in terms of a tree
of documents. PeerWare also supports event-based publish/subscribe prim-
itives. However, the information about the location of system components
is required by the primitives.

System Wireless computing
Lime [63] Lime implements a virtual global space on top of shared local spaces, which

are located on a group of physical mobile hosts. Lime supports reactive pro-
gramming and provides distributed transactions. Its coordination primitives
require the location information of the mobile hosts.

TOTA [59] TOTA relies on spatially distributed tuples, which are injected in the net-
work and propagated according to application-specific patterns. The tuple
propagation mechanism can not guarantee the tuple lookup operation.
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Remote Method Invocation (RMI). Although JavaSpaces can provide a flexible second-

tier of “middleware”, it is not database-centric and has no security model. TSpaces [52]

acts as a network communication buffer with database capabilities. It targets the com-

munications between applications and devices in a network of heterogeneous computers

and operating systems. PageSpace [32] aims to support distributed applications which

require active processing elements. It introduces the notion of active Web pages which

are capable of executing code. In common, these Java-based tuple space systems can

operate across a range of hardware platforms and operating systems. However, the

centralized architectures limit their scalability for supporting large scale applications.

Some projects have employed shared-space infrastructures for mobile agent comput-

ing. These infrastructures, exemplified by MARS [29] and TuCSoN [67], enhance tuple

spaces with reactive programming which allows a mobile agent to respond to actions

performed on the tuple space. MARS [29] provides a local tuple space at each node,

which is accessed by agents residing on it. An agent can only coordinate with other

agents that reside on the same node. Agent migration is required for inter-node com-

munication. TuCSoN [67] introduces the notion of programmable data space, which

enables the tuple space reacts to the executions of the coordination primitives. These

spaces are still based on centralized architecture and specifically designed for mobile

agent computing environments.

Shared-space systems, such as PeerSpace [27] and PeerWare [35], have been pro-

posed to address the dynamism and complexities of resource coordination in peer-to-

peer environments. PeerSpace [27] builds on the JXTA peer-to-peer technology. In

PeerSpace, each peer node maintains a list of neighbors and interacts with its neighbor

nodes to distribute the tuples, which has no guaranteed costs and scalability. Peer-

Ware [35] adopts a global virtual tree data structure to address large system scales, in

which each peer shares a tree of documents with the other peers. PeerWare also pro-

vides publish/subscribe primitives to support event-based communication. However,

the coordination primitives of PeerWare requires the location information of system

components (nodes, hosts or agents), which is hard to maintain in Grid environments.

Several coordination middlewares, e.g., Lime [63] and TOTA [59], employed the
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shared-space model to address the coordinating requirements among mobile devices.

Lime [63] utilizes logically mobile agents running on physically mobile hosts to offer a

global shared space that supports reactive programming and event notifications. Lime

enforces distributed transactions with strong atomicity, which presents a scalability

problem. Moreover, the Lime coordination primitives require the host location infor-

mation. TOTA [59] relies on spatially distributed tuples, which are injected in the

network and propagated accordingly to specific patterns. The tuple propagation pat-

terns are dynamically reshaped by the TOTA middleware to implicitly reflect network

and application dynamics. Each TOTA node holds references to a limited set of neigh-

boring nodes and the system structure is dynamically maintained and updated by the

nodes. However, the tuple distributed mechanism of TOTA can not guarantee the tuple

lookup operations.

This research investigates Comet, a decentralized shared-space based coordination

infrastructure for Grid environments. Comet provides a global virtual shared-space

that can be associatively accessed by all peers in the system, and access is indepen-

dent of the physical location of the tuples or identifiers of the host. Different from the

centralized tuple space systems described above, Comet employs a fully decentralized

architecture and a distributed hash scheme to achieve scalable data distribution perfor-

mance. The two systems most related to this research are Lime and PeerWare, which

build on the concept of Global Virtual Data Structures (GVDS). Lime [63] is designed

for mobile environments. It exploits a flat data structure that transiently builds share

spaces upon a set of hosts. PeerWare [35] realizes a forest of trees, composed of nodes

and documents, which are contributed by each peer. However, Lime and PeerWare

implicitly employ the context-aware programming style where information about the

location of system components (e.g., nodes, hosts or agents) is required by the coor-

dination primitives. However, maintaining such a global knowledge about location in

large and highly dynamic distributed systems is infeasible. In contrast, we use the

context-transparent approach and realize a GVDS as an associative distributed hash

table, where all operations only use tuple content and are independent of the current

state of the system and the mapping of content to these peers.
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Chapter 3

Comet, A Scalable Decentralized Coordination

Infrastructure for Grid Environments

This chapter presents the conceptual architecture model and implementation of Comet,

a scalable decentralized coordination infrastructure. The Comet conceptual architec-

ture model is based on a global virtual shared-space constructed from a semantic in-

formation space that is used by entities for coordination and communication. Comet

adapts Squid [79] information discovery scheme to deterministically map the infor-

mation space onto the dynamic set of peer nodes in the Grid system. The resulting

structure is a locality preserving semantic distributed hash table (DHT) on top of a

self-organizing structured overlay. The resulting decentralized tuple space maintains

content locality and guarantees that content-based tuple queries, using flexible content

descriptors in the form of keywords, partial keywords and wildcards, are delivered with

bounded costs. The Comet space can be associatively accessed by all system peers with-

out requiring the location information of tuples and host identifiers. The Comet also

provides transient spaces that enable applications to explicitly exploit context locality.

3.1 The Comet Coordination Architecture

The Comet is constructed from a semantic multi-dimensional information space de-

fined by the coordinated entities. This information space is deterministically mapped

onto a dynamic set of peer nodes in the system using a locality preserving mapping.

Comet is composed of layered abstractions prompted by a fundamental separation of

communication and coordination concerns. A schematic overview of the system archi-

tecture is shown in Figure 3.1. The communication layer provides scalable content-

based messaging and manages system heterogeneity and dynamism. The coordination
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layer provides Linda-like associative primitives and supports a shared-space coordina-

tion model. Dynamically constructed transient spaces are also supported in Comet to

allow the applications explicitly exploit context locality for improving system perfor-

mance. The application layer provides programming abstractions and mechanisms to

enable application formulation and execution.
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Figure 3.1: A schematic overview of the Comet.

3.1.1 Tuples and Template Tuples

In Comet, a tuple is a simple XML string, where the first element is the tuple’s tag

and is followed by an ordered list of elements containing the tuple’s fields. Each field

has a name followed by its value. The tag, field names, and values must be actual

data for a tuple and can contain wildcards (“*”) for a template tuple. This lightweight

format is flexible enough to represent the information for a wide range of applications,

and can support rich matching relationships [88]. Further, the cross-platform nature of

XML makes this format suitable for information exchange in distributed heterogeneous

environments.

A tuple in Comet can be retrieved if it exactly or approximately matches a template

tuple. Exact matching requires the tag and field names of the template tuple to be

specified without any wildcard, as in Linda. However, this strict matching pattern must

be relaxed in highly dynamic environments, since applications (e.g., service discovery)

may not know exact tuple structures. Comet supports tuple retrievals with incomplete
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structure information using approximate matching, which only requires the tag of the

template tuple be specified using a keyword or a partial keyword. Examples are shown

in Figure 3.2. In this figure, tuple (a) tagged “contact” has fields “name, phone, email,

dep” with values “Smith, 7324451000, smith@gmail.com, ece”, can be retrieved using

tuple template (b) or (c).

<contact>  
     <name> Smith </name>    

     <phone> 7324451000 </phone>

     <email> smith@gmail.com </email>

     <dep> ece </dep>

</contact>

<contact>  
     <name> Smith </name>    

     <phone> 7324451000 </phone>

     <email>* </email>

     <dep> * </dep>

</contact>

     <na*> Smith </na*>    

      < >

      < >

     <dep> ece </dep>

(a) (b) (c)

*
*

<contact>  

</contact>

Figure 3.2: Examples of tuples in Comet.

3.1.2 Tuple Distribution and Retrieval

Comet adapts Squid information discovery scheme and employs the Hilbert Space-

Filling Curve (SFC) [62] to map tuples from a semantic information space to a linear

node index. The semantic information space, consisting of based-10 numbers and En-

glish words, is defined by application users. For example, a computational storage

resource may belong to the 3D storage space with coordinates “space”, “band width”,

and “cost”. In Comet, each tuple is associated with k keywords selected from its tag

and field names, which are the keys of a tuple. For example, the keys of tuple (a) in

Figure 3.2 can be “name, phone” in a 2D student information space. Tuples are local in

the information space if their keys are lexicographically close, or if they have common

keywords. The selection of keys can be specified by the applications.

A Hilbert SFC is a locality preserving continuous mapping from a k-dimensional

(kD) space to a 1D space. It is locality preserving in that points that are close on the

curve are mapped from close points in the kD space. The Hilbert curve readily extends

to any number of dimensions. Its locality preserving property enables the tuple space

to maintain content locality in the index space. In Comet, the peer nodes form a 1-

dimensional overlay, which is indexed by a Hilbert SFC. Applying the Hilbert mapping,

the tuples are mapped from the multi-dimensional information space to the linear peer

index space. As a result, the Comet uses the Hilbert SFC constructs the distribute
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hash table (DHT) for tuple distribution and lookup. If the keys of a tuple only include

complete keywords, the tuple is mapped as a point in the information space and located

on at most one node. If its keys consist of partial keywords, wildcards, or ranges, the

tuple identifies a region in the information space. This region is mapped to a collection

of segments on the SFC and corresponds to a set of points in the index space. Each node

stores the keys that map to the segment of the curve between itself and the predecessor

node. For example, as shown in Figure 3.3, five nodes (with id shown in solid circle)

are indexed using SFC from 0 to 63, the tuple defined as the point (2,1) is mapped to

index 7 on the SFC and corresponds to node 13, and the tuple defined as the region

(2-3,1-5) is mapped to 2 segments on the SFC and corresponds to nodes 13 and 32.

0 0

0 0

(a) (b)

Figure 3.3: Examples of mapping tuples from 2D information space to 1D index space.

3.1.3 The Communication Abstraction

The Comet communication abstraction provides an associative messaging service, which

guarantees that content-based information queries, specified using flexible content de-

scriptors, are served with bounded costs. This abstraction provides a single operator:

post (M). The message M consists of (1) a semantic selector that is flexibly defined

using keywords, partial keywords and wildcards from the information space, and spec-

ifies a region in this space, and (2) a payload consisting of the data and operation to

be performed at the destinations. The operations can be “store”, “delete”, “read”,
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etc. This operator forwards the message M to all destination nodes containing content

that lies in the region defined by the semantic selection, i.e., that matches the selector.

Note that the resolution of this operator depends on the current information existing in

this system. Further note that, unlike low-level messaging protocols that send/receive

messages to/from specific destinations, the destination(s) in this case are dynamically

determined based on the state of the system.

Tuple space operations can directly build on this operator. For example, the opera-

tor out(t) can be implemented as post (M), where the semantic selector is defined by

the keys of the tuple and the payload includes the tuple and the action “store”. The

rd(t) can be similarly implemented using the template t to define the semantic selector

and the payload including the action “read”. Note that the post can return one, all or

some of the matched tuples.

3.1.4 The Coordination Abstraction

Coordination Primitives

The coordination layer provides tuple operation primitives to support the shared-space

based coordination model. The basic coordination primitives are listed below:

• out(ts, t): a non-blocking operation that inserts tuple t into space ts.

• in(ts, t): a blocking operation that removes a tuple t matching template t from

the space ts and returns it.

• rd(ts, t): a blocking operation that returns a tuple t matching template t from

the space ts. The tuple is not removed from the space.

The above primitives retain the Linda semantics, i.e., if multiple matching tuples are

found, one of them is arbitrarily returned (and removed). Furthermore, advanced prim-

itives, such as rdall(ts, t) that returns all the matching tuples, can also be supported

to address specific application requirements.
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Transient Spaces

The above uniform operators do not distinguish between local and remote spaces, and

consequently Comet is naturally suitable for context-transparent applications. How-

ever, this abstraction does not maintain geographic locality between peer nodes, and

may have a detrimental effect on the efficiency of the applications imposing context-

awareness, e.g., mobile applications. These applications require that context locality be

maintained in addition to content locality, i.e., they impose requirements for context-

awareness. To address this issue, Comet supports dynamically constructed transient

spaces that have a specific scope definition (e.g., within the same geographical region

or the same physical subnet). The global space is accessible to all peer nodes and acts

as the default coordination platform. Membership and authentication mechanisms are

adopted to restrict access to the transient spaces. The structure of the transient space

is exactly the same as the global space. An application can switch between spaces at

runtime and can simultaneously use multiple spaces.

3.1.5 The Application Abstraction

The Comet application layer provides programming abstractions to support the coordi-

nations and computations in Grid environments. Specifically, it provides the CometG

computational system for parallel asynchronous Grid computations, and Rudder coor-

dination framework for composing component-based applications. These systems are

introduced below and described in more detail in Chapter 4 and Chapter 5.

The CometG provides coordination space abstractions and programming modules

to support master-worker/Bag-Of-Task(BOT) parallel formulations of asynchronous

computations. The coordination spaces support dynamic task distribution and man-

agement as well as inter-task communications. The programming modules support

application-specific computational components that define computations and provide

task retrieval/submission mechanisms as well as interaction/negotiation protocols. Specif-

ically, prototypes of parallel asynchronous iterative application and parallel asynchronous

replica exchange simulations have been developed to demonstrate the CometG system.
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The Rudder framework provides agent abstractions and coordination protocols for

supporting dynamic composition and coordination of applications. It defines agents to

represent and control discrete software elements. An element can be an application,

service or resource unit (e.g., computer, instrument, and data store). Agents advertise

element capabilities, provide uniform access to elements, configure an element based

on its execution context, and control an element execution. Transiently generated

composition agents dynamically discover and compose elements to realize applications.

The following section describes the implementation of the communication and coor-

dination layers of Comet and the experimental evaluation of the Comet system using a

campus-network at Rutgers University and the PlanetLab [7] testbed. The implemen-

tation, evaluation, and illustrative applications of CometG and Rudder are presented

in Chapter 4 and Chapter 5.

3.2 Implementation of the Comet Infrastructure

The Comet infrastructure is implemented on Project JXTA [73], a platform indepen-

dent peer-to-peer framework, where peers can self-organize into peergroups, discover

resources, and communicate with each other. Comet is provided as a JXTA peergroup

service and can be concurrently exploited by multiple applications. The JXTA peer-

group provides a secure environment where only member peers can access the service

instances running on peers of the group. If any peer fails, the collective peergroup ser-

vice is not affected and the service is still available from other peer members. Transient

spaces are also implemented based on the peergroup concept.

3.2.1 The Communication Layer

The communication layer provides an associative communication service and guarantees

that content-based messages, specified using flexible content descriptors, are served with

bounded cost. The two main components of this layer are a structured one-dimensional

self-organizing overlay and a content-based routing engine.

The overlay is composed of peer nodes, which may be any node in the system (e.g.,
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gateways, access points, message relay nodes, servers, or end-user computers). The

peer nodes can join or leave the network at any time. While the Comet architecture

is based on a structured overlay, it is not tied to any specific overlay topology. The

overlay provides a simple operator to the layers above: lookup(identifier). Given an

identifier, this operator locates the node that is responsible for it, i.e., the node with

an identifier that is the closest identifier greater than or equal to the queried identifier.

In the current implementation of Comet, we use Chord [84], which has a ring topology,

primarily due to its guaranteed performance, efficient adaptation as nodes join and

leave the system, and the simplicity of its implementation. In principle, the Chord

overly could be replaced by other structured overlays.
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Figure 3.4: Example of the Chord overlay.

In the Chord overlay network, each node has a unique identifier ranging from 0 to

2m-1. These identifiers are arranged as a circle modulo 2m, where each node maintains

information about its successor and predecessor. In addition, each node maintains the

identifiers of (at most) m other neighbors, called fingers, in a finger table. The ith finger

node is the first node that succeeds the current node by at least 2i−1, where 1 ≤ i ≤ m.

The finger table is used for efficient routing. An example of a Chord overlay network

with 5 nodes is shown in Figure 3.4. Each node constructs its finger table when it

joins the overlay and finger tables are updated any time a node joins or leaves the

system. The lookup algorithm in Chord enables the efficient data routing with O(Log

N) cost [84], where N is the number of nodes in the system.

The routing engine provides a decentralized information discovery and associative

messaging service. It implements the Hilbert SFC mapping to effectively map a multi-

dimensional information space to a peer index space and to the current peer nodes in
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the system, which form a structured overlay. The resulting peer-to-peer information

system supports flexible content-based routing and complex queries containing partial

keywords, wildcards, or ranges, and guarantees that all existing data elements that

match a query will be found. The engine has a single operator: post(keys, data),

where keys form a semantic selector and data is the message payload provided by the

layers above. If the keys only include complete keywords, the engine routes the message

using the overlay lookup mechanism. If the keys contain partial keywords or wildcards,

the message identifies a region in the information space. The region is defined as a

cluster [62] if the SFC enters and exits it once. A cluster might be mapped to one or

more adjacent overlay nodes and one node can store multiple clusters. While resolving

a query by sending a message to each cluster is not scalable, since the number of nodes

can be very high. In Comet, the optimization scheme [79] provided by Squid is used to

improve the scalability. This scheme embeds the query tree into the overlay network

and distributes the cluster refinement at each node to allow the query to be resolved in

a decentralized manner.
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Figure 3.5: Example of content-based routing in Comet.

Content-based routing using Comet is achieved as follows. SFCs are used to generate

a 1D index space from the multi-dimensional keyword space. A simple query composed

of only keywords is mapped to a point on the SFC. A complex query containing partial

keywords or wildcards is mapped to regions in the keyword space and to corresponding

clusters (segments of the curve) on the SFC. The 1D index space generated from the

entire information space is mapped onto the 1D identifier space used by the overlay

network. As a result, using the SFC mapping any query request can be resolved. For

example, the tuple in Figure 3.3(a) defined as a point (2,1) in a 2D space is mapped

to index 7 on SFC and routed on Chord (an overlay with 5 nodes and an identifier
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space from 0 to 26-1) to node 13, the successor of the index 7. Similarly, the tuple in

Figure 3.3(b) defined as a region (2-3,1-5) in the 2D space is mapped to 2 segments on

the SFC, and routed to node 13 and node 32 on Chord, is shown in Figure 3.5.

3.2.2 The Coordination Layer

The coordination layer implements tuple operation primitives to support the shared-

space based coordination model, and realizes transient spaces to allow applications

explicitly exploit context locality. The main components of this layer include a data

repository for storing pending requests, and retrieving tuples, a flexible matching engine,

and a message dispatcher that interfaces with the communication layer to convert the

coordination primitives to messaging operations and vice versa. As described in Section

3.1, tuples are represented as simple XML strings as they provide small-sized flexible

formats that are suitable for efficient information exchange in distributed heterogeneous

environments. The data repository stores tuples as DOM level 2 objects [2]. It employs

a hash structure to perform associative lookup in a constant time in memory.

Implementation of Coordination Primitives

In Comet, it is assumed that all peer nodes agree on the structure and dimension of the

information space for an application. The out, rd and in operators are implemented

using the post operator provided by the communication layer. Using the keys associated

with each tuple, each tuple is routed to an overlay peer node and a template tuple may

be routed to a set of nodes. If the keys of a template are completely specified (only

contain complete keywords), the template will be routed to the node that would store

matched tuples using the overlay lookup protocol. The tuple distribution and exact

retrieval processes using out and in/rd operators are illustrated in Figure 3.6 (a) and

(b) respectively.

The process illustrated in the above figures consists of the following steps: (1) Key-

words are extracted from the tuple and used to create the keys for the post operation.

The payload of the message includes the tuple data and the coordination operation. (2)

The query engine uses the SFC mapping to identify the indices corresponding to the
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Figure 3.6: Comet tuple space operation: (a) Tuple distribution using the out operator.
(b) Exact tuple retrieval using the in/rd operator.

keys and the corresponding peer id(s), to which these identifiers are mapped. (3) The

overlay lookup operation is used to route the tuple to the appropriate peer nodes. This

operator maps the logical peer identifer to the JxtaID of the node, and forwards the tu-

ple using the JXTA Resolver Protocol. The out operation only returns after receiving

the Resolver Query Response from the destination to guarantee tuple delivery. In case

of in and rd operations, templates are routed to the peer nodes in a similar manner.

The in and rd operations block until a matched tuple is returned by the destination.

The approximate retrieval process is similar. A retrieval request may be sent to

multiple nodes in this case, and each of them may return a matching tuple. However,

the in and rd operations are implemented differently. In case of rd, the first tuple

that is returned is accepted and forwarded to the application, and subsequent tuples

returned are ignored. In case of an in operation, one of the matching tuple must

be deleted and this is coordinated by the requesting node. For each matching tuple

found, the node with the matching tuple sends it to the requesting node and waits for

a delete confirmation. The requesting node responds with a delete confirmation to the

first matching tuple that it receives and responds with an ignore message to all other

returned tuples.
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Implementation of Transient Spaces

Comet supports dynamically constructed transient spaces, which are implemented based

on JXTA peergroup. Figure 3.7 illustrates the implementation and operation of tran-

sient spaces in Comet. In the figure, the global space includes five nodes and a transient

space is constructed using two nodes, 5 and 10. The transient space interface provides

operations for creating, switching between and destroying spaces. The creating process

consists of coordination service initialization, in which a peergroup is created and in-

stantiated at each involved peer node, and finger table stabilization, in which the peer

node joins the group. Peer nodes can belong to several tuple spaces and the switching

operation enables an application to dynamically switch between coordination services

associated with these spaces. To destroy the transient space, each peer node in the

peergroup stops the associated service and deletes its local instance of the space.
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Figure 3.7: Transient tuple spaces in Comet. (1) All the peer nodes join in the global
space. Peer node 5 and peer node 10 add requests to a create transient space. (2) The
requests are initialized, peer node 5 and 10 are notified that a new space need to be
created. (3) Peer node 5 and peer node 10 get the message, execute the join protocol
to instantiate a new space service. (4) Once the application is done, the leave protocol
will be executed to notify the nodes and destroy the transient space.

3.3 System Operation and Evaluation

The overall operation of Comet consists of two phases: bootstrap and running. The

bootstrap phase is used to setup a coordination group. During this phase, peer nodes

join the Comet JXTA peergroup and exchange messages with the rest of the group.

Each joining peer attempts to discover an existing peer in the system and to construct

the overlay and setup its routing table. It also sends discovery messages to the group.

If the message is unanswered after a pre-defined time interval (in the order of seconds),

the peer assumes that it is the first one in the system. If a peer responds to the message,
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the joining peer queries this bootstrapping peer according to the join protocol of the

overlay, and updates routing tables in the overlay to reflect the join.

The running phase consists of stabilization and user modes. In the stabilization

mode, peer nodes manage the structure of the overlay. In this mode, peer nodes respond

to periodic queries from other peers to ensure that routing tables are up-to-date and to

verify that other peer nodes in the group have not failed or left the system. In the user

mode, peer nodes participate in user applications. In this mode, application developers

can configure the system, setup application parameters such as relevant spaces, and

initiate the application program.

3.3.1 Experimental Evaluation

The Comet infrastructure has been deployed on a wide-area environment using the

PlanetLab [7] testbed, as well as a campus network at Rutgers University. The objective

of the experiments presented below is to evaluate system performance and scalability,

and demonstrate the feasibility of using Comet to support wide-area deployments.

The first sets of experiments were conducted on the Rutgers campus network. Each

machine was a peer node in the Comet overlay and the machines formed a single Comet

peergroup. This set of experiments evaluated the costs of basic tuple insertion and exact

retrieval operations. The tuples in the experiments were fixed at 200 bytes. A ping-

pong like process was used in the experiments, in which an application process inserted

a tuple into the space using the out operator, read the same tuple using the rd operator,

and deleted it using the in operator. In these experiments, the out and exact matching

in/rd operators used a 3D information space. For an out operation, the measured time

corresponded to the time interval between when the tuple was posted into the space

and when the response from the destination was received, i.e., the time between Post

and PostResponse in Figure 3.6(a). For an in or rd operation, the measured time was

the time interval between when the template was posted into the space and when the

matching tuple was returned to the application, assuming that a matching tuple existed

in the space, i.e., the time between Post and receiving the tuple in Figure 3.6(b). This

time included the time for routing the template, matching tuples in the repository, and
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returning the matching tuple. The average performances were measured for different

system sizes. Figure 3.8 plots the average measured performance and shows that the

system scales well with increasing number of peer nodes. When the number of peer

nodes increases 32 times, i.e., from 2 to 64, the average round trip time increases

only about 1.5 times, due to the logarithmic complexity of the routing algorithm of

the Chord overlay. rd and in operations exhibit similar performance, as seen in the

figure. To further study the in/rd operator, the average time for in/rd was measured

using increasing number of tuples. Figure 3.9 shows that the performance of in/rd is

largely independent of the number of tuples in the system, where the average time is

approximately 105ms for the scenario with 2000 to 12000 tuples.
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Figure 3.8: Average time for out, in, and rd operators for increasing system sizes on
Rutgers campus network.
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Rutgers campus network. System size fixed at 4 nodes.
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The second set of experiments evaluated the performance of Comet using Plan-

etLab [7] (a large scale heterogeneous distributed environment composed of intercon-

nected sites with various resources). Once again, each machine ran an instance of

Comet, serving as a peer node in the overlay. Since PlanetLab nodes are distributed

across over the globe, communication latencies can vary significantly over time and

with node location. As a result, the following methods were adopted in the experi-

ments: (1) In each experiment, at least one node was selected from each continent,

including Asia, Europe, Australia, and North America. (2) Nodes randomly joined the

Comet system during the bootstrap phase, resulting in a different physical construction

of the ring overlay in each run. (3) The experiments were conducted at different time

of the day during a 4-week period, and each experiment ran continuously for about

3 hours. The experiments measured the average run time for each of the primitives

and abstractions provided by Comet, including the tuple insertion operation out, exact

retrieval operation rd/in, approximate retrieval operation rd/in, and transient space

performances.
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Figure 3.10: Average time for out, rd, and in operators for increasing system sizes on
PlanetLab. (1) Average run time for out and exact rd/in operators. (2) Histogram of
out operator run time on 32 nodes.

First, the same ping-pong process was used to test the basic tuple operators. The

average run time of the operations for increasing number of nodes is plotted in Fig-

ure 3.10 (1). Each value plotted is averaged over 3 experiments. The X-axis is plotted

on a logarithm scale with base 2 of the number of used nodes. The Y-axis is the av-

erage run time in seconds. As seen in Figure 3.10 (1), the operation time increases by

a factor of about 2 when the system size grows by a factor of 8. As mentioned before,
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this is expected as the complexity of the underlying Chord lookup protocol is O(Log

N), where N is the number of nodes in the system. Note that the costs plotted in the

figure have the same order as the cost of the Chord lookup protocol presented in [84].

This protocol has been shown to scale to 104 nodes using simulations in [84]. As a

result, we believe that Comet will exhibit similar scalability. Figure 3.10 (2) plots the

histogram of out operation run time on 32 nodes in one experiment. This plot shows

that 95% of the samples are less than 0.65 second, one standard deviation away from

the mean.

Second, we evaluated the approximate rd/in operations using 2D and 3D informa-

tion spaces. The templates used in the experiments are: (Case 1) one keyword and

at least one partial keyword, e.g., (contact, na*), (contact, na*, *), and (Case 2) one

keyword or partial keyword, e.g., (con*, *), (contact, *, *). For a in/rd operation, the

measured time is the time interval between when the template is posted into the space

and when the matched tuple is returned. The average time over about 500 operations is

shown in Figure 3.11. The figure shows that while the operation time increases with the

node number and the space dimensions, and the rate of increase is much smaller than

the rate of increase of the system size. Further, simulations have shown the number of

query processing nodes is a small fraction of the total nodes [79], i.e., below 8% in 2D

and 20% in 3D for (Case 2) when system size increases from 1000 to 5000 nodes. As a

result, we conclude that the Comet approximate retrieval operations can also scale to

large systems.

Finally, we evaluated the transient spaces in Comet. The time for creating a tran-

sient space is about 100 seconds per node, including the time to initialize a peergroup

and execute the join protocol. The insertion and exact retrieval performance for a 4-

node space scenario varies with geographical locations, as shown in Figure 3.12. The

average run time for the case where the nodes are located within a LAN at Rutgers

University is about 4 times smaller than the case where these nodes are within America,

and 6 times smaller than the case where the nodes are distributed across 4 continents.

Creation is a one-time cost, and from the results it can be concluded that using transient

spaces can improve system performance in terms of operation latencies.
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Figure 3.11: Average run time for approximate rd/in operations on PlanetLab.
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This chapter presented the conceptual architecture model and implementation of

Comet coordination infrastructure. The Comet provides a global virtual shared-space

constructed from a semantic information space that is deterministically mapped onto

the dynamic set of peer nodes in the Grid system. The Comet space can be associatively

accessed by all system peers without requiring the location information of tuples and

host identifiers. The Comet also provides transient spaces that enable applications to

explicitly exploit context locality. The Comet was deployed and evaluated using Rut-

gers campus networks and PlanetLab testbed. The experiments using campus network

show that the Comet scales well with increasing number of peer nodes and increasing

number of tuples. The experiments on PlanetLab demonstrate the feasibility of using

Comet to support wide-area deployments and its capability to address the heterogene-

ity, dynamism, and uncertainty of Grid.



31

Chapter 4

CometG, A Decentralized Computational Infrastructure

for Grid-based Parallel Asynchronous Applications

This chapter presents CometG [56], a decentralized (peer-to-peer) computational infras-

tructure that extends Desktop Grid environments to support parallel asynchronous for-

mulations of general iterative computation and replica exchange simulations. CometG

builds on top of the Comet tuple space and provides efficient, scalable communication

and coordination abstractions. Furthermore, it provides programming abstractions to

implement robust parallel asynchronous applications. Two prototype systems have been

implemented and evaluated on top of CometG to demonstrate the effectiveness of this

infrastructure. The design and implementation of CometG as well as the two prototype

applications are presented as below.

4.1 CometG Computational Infrastructure for Grid-based Asynchronous

Applications

4.1.1 Motivation

Grid computing, based on the aggregation of large numbers of independent hardware,

software and information resources spanning multiple organizations, is rapidly emerg-

ing as the dominant paradigm for distributed problem solving for a wide range of

application domains. Complementary to Grid virtual organizations, Desktop Grids [48]

leverage Internet connected computers to support large computations. Desktop Grid

systems have been successfully used to address large applications in science and en-

gineering with significant computational requirements, including global climate pred-

ication (Climatprediction.net) [1], molecular sequence analysis (Folding@Home) [3],
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protein structure prediction (Predictor@Home) [6], search for extraterrestrial intelli-

gence (SETI@Home) [8], gravitational wave detection (Einstein@Home), and cosmic

rays study (XtremWeb) [9].

While the successes of the above applications do demonstrate the potential of Desk-

top Grids, current implementations are limited to embarrassingly parallel [90] applica-

tions based on the Bag-Of-Task (BOT) paradigm, where the individual tasks are inde-

pendent and do not require inter-task communications. As a result, these implementa-

tions cannot support more general scientific and engineering applications, such as those

based on parallel iterative computations and replica exchange simulations for struc-

tural biology and drug design, as the parallel formulations of these applications require

synchronization and inter-task communications. Parallel asynchronous formulations of

computation algorithms relax synchronization and communication requirements, and

can tolerate heterogeneous computation powers and unreliable communication channels.

These formulations have been proposed to extend Desktop Grids beyond embarrassingly

parallel applications and support parallel applications, such as computing the lowest

eigenvalue and eigenvector of stochastic matrices for Google pageranks [77] and solving

linear systems [25].

Parallel asynchronous applications can definitely benefit from the potentially large

numbers of processors available on Grid. However, developing and executing Grid-

based implementations requires addressing the complexity of the Grid environment,

including its heterogeneity in computational, storage and communication capabilities,

its dynamism and its unreliability. While some Java-based platform independent com-

munication libraries, such as mpiJava [5] and JavaPVM [92] and been developed to sup-

port parallel Grid applications, these libraries have targeted relatively tightly coupled,

similarly configured, and simultaneously available Grid environments such as multi-site

inter-connected clusters [64, 44]. Consequently, supporting the synchronization and

communication requirements of general scientific application in heterogeneous, dynamic

and unreliable wide-area environment continues to present significant difficulties.

Clearly, this development complexity of Grid applications must be abstracted from
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the application scientists/engineers and effectively addressed by a computational in-

frastructure. Such an infrastructure should support dynamic and anonymous task

management, allowing application execution to be independent of system configuration

and promoting the simplicity and convenience of the Bag-Of-Task (BOT) paradigm.

Further, it should provide appropriate coordination and communication mechanisms to

support dynamic dependencies and interactions. Specifically, the task coordination and

communication mechanisms should be: (1) asynchronous to enable decoupled (in time

and space) and dynamic task allocation and inter-processor communication; (2) asso-

ciative to allow interactions to be anonymous and based on content rather than defined

in terms of addresses or names of end-points’, since maintaining common knowledge

about names and addresses in dynamic Grid environments is infeasible and can pose

security risks [25]; (3) scalable to address increasing system size (number of nodes) and

application problem size; and (4) failure-resilient to reduce the loss of application com-

putational effort when system or application failures occur. The tuple space paradigm,

which supports an asynchronous associative communication model and provides simple

programming abstractions, presents an attractive approach for addressing the issues

outlined above.

The tuple space paradigm, made popular by Linda [40], addresses many of the re-

quirements outlined above. Its key features include: asynchronous communication that

decouples senders and receivers in space and time; an associative multicast medium

through which multiple receivers can read a tuple written by a single sender using

pattern-matching mechanisms instead of names and locations; and a small set of oper-

ators (write, read, and remove) providing a simple and uniform interface to the tuple

space. Additionally, resilience to process failures can be simply provided by a stable

tuple space [19] where failed processes can be recovered on any host. Further, tuple

space paradigm naturally supports BOT solutions for parallel applications using the

master worker model - the master inserts task tuples into the space and collects result

tuples, and the workers extract task tuples from the space and insert result tuples.

While sufficiently scalable distributed tuple space implementation, where the tuple re-

trieval performance is proportional to at least the logarithm of the system size [65],
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can effectively address the requirements outlined above, such implementations in Grid

environments remain a challenge. Further, the original Linda model must be enhanced

and customized to support specific asynchronous algorithms. First, tuple insertion and

retrieval are unordered and non-deterministic. As a result, the programmer must im-

plement “latest version” retrieval semantics (e.g., by adding a sequence number field to

the tuple) and guarantee processing of all tasks (e.g., by using a global counter tuple).

Second, associative communications implemented using pattern-matching mechanisms

are inherently inefficient for large data transfers [83]. This inefficiency is further ampli-

fied if the tuple delivery requires multiple routing steps, as large message sizes increase

transmission time as well as probability of failure at each step. This research inves-

tigates CometG, a tuple space based computational infrastructure, which addresses

the issues discussed above and extends Desktop Grid environments to support parallel

asynchronous applications.

4.1.2 CometG Architecture

The CometG computational infrastructure builds on Comet, described in Chapter 3, a

scalable decentralized tuple space that spans the nodes of the Desktop Grid. The Comet

space is essentially a global virtual shared-space constructed from the semantic infor-

mation space used by entities for coordination and communication. This information

space is deterministically mapped, using a locality preserving mapping Hilbert Space

Filling Curve (SFC), onto the dynamic set of peer nodes in the Grid system. The

resulting structure is a locality preserving semantic Distributed Hash Table (DHT)

built on top of a self-organizing structured overlay. CometG provides abstractions and

mechanisms on top of Comet to construct services for dynamic and anonymous task

distribution, task execution, decoupled communication and data exchange required by

the application.

The architecture of CometG consists of 3 key layers. The communication layer

provides scalable content-based messaging services as well as channels for direct com-

munication, and manages system heterogeneity and dynamism. The coordination layer

provides Linda-like primitives and supports the tuple space coordination model. The
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application layer provides abstractions and services for asynchronous computations,

which are implemented using the communication and coordination layers. While the

CometG architecture can support scalable tuple distribution, failure of nodes can re-

sult in tuple loss. This is addressed by the CometG application layer using timeout

regeneration and checkpointing-restart mechanisms.

4.1.3 The Design and Implementation of CometG

As described in Chapter 3, the tuple space provided by Comet is a global virtual

semantic shared-space constructed from the semantic information space used by the

coordinating entities. The application computational entities employ this space to

retrieve computation tasks and interact with each other. In CometG, an application

defines a k-dimensional semantic information space with user specified dimensions and

coordinates; and a computational task defines a tuple in this space. Note that it is

assumed that the information space is known to participating nodes.

In CometG, a task tuple is implemented as a Comet tuple, i.e., a simple XML

string, where the first element is the tuple’s tag and is followed by an ordered list of

elements containing the tuple’s fields. Figure 4.1 show an example of tuples that match

exactly. The task tuple in Figure 4.1(a), tagged “Task”, has fields BlockID, TotalBlocks,

Partition, Solver, Precision, MaxIteration, MasterNetName and DataPort with values

5, 10, strips, Jacobi, 0.0001, Inf, foo.cs.bar.edu, 9914 respectively, and can be retrieved

using the template in Figure 4.1(b).

(a) (b)

<Task>  

     <BlockID> 5 </BlockID> 

     <TotalBlocks> 10 </TotalBlocks>  

     <Partition> strips </Partition> 

     <Solver> Jacobi </Solver>

     <Precision > 0.0001 </ >

     <MaxIteration> Inf </MaxIteration>

     <MasterNetName> foo.cs. .edu

     </MasterNetName>

     <DataPort> 9914 </DataPort>

</Task>

<Task>  

     <BlockID> * </BlockID> 

     <TotalBlocks> * </TotalBlocks>  

     <Partition> * </Partition> 

     <Solver> * </Solver>

     < >* </ >

     <MaxIteration> * </MaxIteration>

     <MasterNetName> * </MasterNetName>

     <DataPort> * </DataPort>

</Task>

bar.

Precision Precision Precision

Figure 4.1: An example of a tuple and a template in CometG: (a) A task tuple. (b) A
task template.

The CometG communication layer provides an associative communication service
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and guarantees that content-based messages, specified using flexible content descriptors,

are served with bounded cost. This layer is implemented based on the communication

layer of Comet and includes a content-based routing engine and the 1-dimensional struc-

tured self-organizing overlay. The routing engine implements the Hilbert SFC mapping

and supports flexible content-based routing and complex querying using partial key-

words, wildcards, or ranges. It also guarantees that all peer nodes with data elements

that match a query/message will be located. The overlay is composed of peer nodes,

which may be any node in the Desktop Grid system (e.g., end-user computers, servers,

or message relay nodes). The coordination layer supports a tuple space coordination

model and provides the following primitives:

• out(ts, t): a non-blocking operation that inserts tuple t into space ts.

• in(ts, t, timeout): a blocking operation that removes a tuple t matching template t from

the space ts and returns it. If no matching tuple is found, the calling process blocks until

a matching tuple is inserted or the timeout expires. In the latter case, null is returned.

• rd(ts, t, timeout): a blocking operation that returns a tuple t matching template t from

the space ts. If no matching tuple is found, the calling process blocks until a matching

tuple is inserted or the timeout expires. In the latter case, null is returned. This method

performs exactly like the In operation except that the tuple is not removed from the

space.

The implementation and operation of the above tuple insertion and retrieval primi-

tives are based on the content-based routing provided by Comet, which are illustrated

in Figures 4.2 and 4.3 respectively.

4.2 Parallel Asynchronous Iterative Computations in Grid Environ-

ments

Parallel asynchronous formulations of iterative algorithms [23, 38] relax synchronization

and communication requirements, and can tolerate heterogeneous computation powers

and unreliable communication channels. These formulations have been proposed to
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extend Desktop Grids beyond embarrassingly parallel applications and support paral-

lel iterative applications, such as computing the lowest eigenvalue and eigenvector of

stochastic matrices for Google pageranks [77] and solving linear systems [25]. However,

current implementations of these algorithms are limited to tightly coupled clusters and

local area networks, and scalable wide-area implementations remain a challenge.

Asynchronous Iterative Algorithms and Applications

Iterative algorithms are generally of the form: xk+1 = f(xk), k = 0, 1, .., where x0

is given, xk is an n-dimensional vector, and f is a function from Rn → Rn. The

sequence xk generated by the above iteration converges to some x∗, and if f is continuous

then x∗ is a fixed point of f . These algorithms are typically parallelized using the

block-decomposition paradigm, where the xk is decomposed as m components and f is

partitioned conformally. The entire problem can be solved in parallel by m processors

and the iteration vector at each step is xk = [xk
1, x

k
2, ..., x

k
m], each component of which

can be processed by a single processor.

Iterative algorithms can be categorized as synchronous or asynchronous based on

their requirements for global data synchronization. Synchronous iterative algorithms

have an implicit barrier at the end of each iteration step, and require that all com-

munications be completed and all messages become available before the next iteration

starts. Asynchronous iterative algorithms relax this requirement for global synchroniza-

tion, and allow processors to continue computing using only partial information from

other processors. This allows these algorithms to tolerate variances in computational

power and communication delay, which are typical in Grid environments. Note that,

as expected, the convergence of asynchronous iterative algorithms is delayed due to the

unsynchronized data. However, in spite of this, these algorithms have the potential of

outperforming synchronous algorithms as they avoid synchronization overheads, which

can be significant in Grid environments.

Potential applications of parallel asynchronous iterative computation span a range

of scientific and engineering disciplines, such as high-performance linear algebra and

optimization problems. Examples include: (1) computation of eigen-systems, which
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are used in the study of nuclear reactor dynamics, dynamic finite element analysis

of structural models, and the next generation particle accelerators [93]; (2) solution

of large sparse linear systems of equations obtained from the discretization of partial

differential equations (PDE) [49], which are used for aircraft simulation, computer

graphics, weather prediction, fluid flow, gravitational fields, and electromagnetic field

description; and (3) variational inequalities that can be viewed as generalization of both

constrained optimization problems and systems of equations, which are used as models

for equilibrium studies ranging from economics to traffic engineering [23].

Note that while there has been significant work on parallel asynchronous iterative

computations in recent years, these efforts have focused on algorithmic and imple-

mentation issues such as convergence rate, termination detection, and load balanc-

ing [16, 17, 20, 22, 23]. This research leverages these efforts and focuses on the de-

velopment and execution of applications based on these algorithms on Desktop Grid

environments with Internet-scale connectivity.

Existing Parallel Asynchronous Iterative Computational Systems

Related research efforts that focus on supporting asynchronous parallel applications in

peer-to-peer systems include P 3 [66], Jace [18], and parallel iterative computing using

associative broadcast [25]. P 3 proposes a peer-to-peer network platform for high per-

formance parallel computing in an Internet-based environment. It uses a distributed

file system for inter-process communication and synchronization. Scalability in P 3 is

achieved using dynamic load balancing between computing nodes, P2P communication

and dynamically changing sets of manager nodes. However, the P 3 network implemen-

tation is still ongoing to the best of our knowledge.

Jace [18] is a Java based distributed programming environment designed specifically

for distributed asynchronous iterative computations. It provides a parallel virtual ma-

chine to implement computing tasks using message passing. However, it does not allow

nodes to dynamically join and/or leave the system, and the application data is stati-

cally partitioned across and stored at the participating nodes. Further, fault-tolerance

issues are not addressed by Jace.
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Parallel iterative computing using associative broadcast [25] is most closely related

to the research presented in this thesis. In [25], the programming models and imple-

mentation issues for executing parallel computations on Desktop Grids are discussed,

and combining associative interactions with parallel asynchronous iterative algorithms

is proposed as an effective approach. Specifically, asynchronous data communications

between the parallel computation tasks is achieved using the associative broadcast

mechanism. The implementation of associative broadcast, however, does not currently

address scalability to Grid environments. Further, this system does not support dy-

namic task distribution. CometG implements a scalable tuple space to support the

associative communication model, and also provides support for dynamic task distri-

bution and fault-tolerance.

4.2.1 CometG-based Parallel Asynchronous Iterative Computations

Programming Abstractions

The CometG application layer provides coordination space abstractions and program-

ming modules to support master-worker/BOT parallel formulations of asynchronous

iterative computations. Specifically, two customized coordination spaces, TaskSpace

and BorderSpace, are defined and implemented separately. TaskSpace stores task tu-

ples representing application tasks and specifying the masters that are responsible for

the tasks. This space implements First-In-First-Out (FIFO) semantics for tuple and

template operations, and provides a queue abstraction for task distribution and man-

agement. An example of a task tuple is shown in Figure 4.1. BorderSpace is used for

exchanging data tuples between neighboring tasks. This space enforces over-write se-

mantics during tuple insertion, where tuples in the space always store the latest content,

resulting the latest messaging semantics. A border tuple has a border id field and an

associated binary data block. The data block is not used for content-based distribution,

lookup, and pattern-matching.

The programming modules include masters and workers. A worker module contains

an application-specific computational component that can locally compute a retrieved

task. The worker uses the tuple space abstractions to retrieve tasks and exchange
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borders. Task retrieval consists of two steps - removing a task description from the

TaskSpace and downloading the task data from the corresponding master. A master

module is responsible for partitioning the application data, generating tasks, collecting

results, and terminating the application when it completes. CometG provides single

master mode as well as multiple master mode. In multiple master mode, hierarchical

or decentralized termination algorithms [17] are supported based on the organization

of the masters. A master module has five components:

• The configuration manager thread, which reads the application configuration (including

whether it is a single or a member of multiple master organization) and the data parti-

tioning strategy.

• The task generator thread, which generates application tasks based on the partition-

ing strategy, encapsulates task descriptions as tuples and inserts the task tuples into

TaskSpace.

• The data transfer thread, which uses the direct communication channel to process requests

for task data retrieval and for result submission from workers, as well as coordination

messages (e.g., “convergence” message) between masters.

• The terminator thread, which checks for convergence among tasks that the master is

responsible for, monitors convergence messages from other masters, and terminates when

overall convergence is achieved.

• The task monitor, which maintains a table of tasks the master is responsible for, and

records the current state of the tasks in this table. The state of a task can be generated,

retrieved, computing, submitting or completed.

Supporting Large Application/System Scales

CometG supports large application/system scales using multiple coordination groups.

A coordination group includes one TaskSpace, one BorderSpace, and a group of masters

and workers. A group can support multiple applications with logically separate seman-

tic spaces. An application can also span multiple groups, each of which handles a part of

the application. The application is hierarchically partitioned, first across coordination

groups, and then across masters within each coordination group. Task with communi-

cation dependencies should be mapped to the same coordination group if possible as
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communications across groups can be expensive. Workers within a coordination group

communicate using the shared BorderSpace. Masters within and across coordination

group communicate using direct communication channels.

Using coordination groups thus distributes the load of TaskSpace and reduces the

size of BorderSpace, effectively improving the scalability of the system. Nevertheless,

it may not always be possible to partition the application to eliminate inter-group

communications. However, as the number of these communications is relatively small,

these communications can simply be ignored in the case of asynchronous applications.

While ignoring them will effect convergence, we have observed that the improvement in

overall application performance using this approach outweights these effects. In cases

where the number of inter-group communications is large, or when task dependencies

are complex, data exchange can be coordinated through a single node in each group [72].

Addressing Grid Unreliability

The CometG computational infrastructure provides application level fault tolerance

mechanisms to address the unreliability inherent in Grid environments. These mech-

anisms assume a fail-stop failure model and timed communication behavior [34, 33].

Under these assumptions, possible failures include border tuple communication failure,

master failure, and task loss. These failures are address below:

Border tuple communication failures are simply handled by Rd timeouts, due to

the resilient nature of asynchronous algorithms. Master failures are handled using

checkpoint-restart. The runtime system periodically checkpoints the local state of each

master, including its task table and current intermediate results, to a stable storage.

Users are currently responsible for the detecting the failure of a master node. When a

master fails, users can recover its state from the stable storage and resume the computa-

tion. Finally, task loss is handled using timeout-regeneration and a retrieval-submission

protocol. It is well known that detecting this kind of failure in tuple spaces is very diffi-

cult because there can be multiple reasons for the failure, including TaskSpace crashes,

message losses, communication link failures, failures of workers with unfinished tasks,

etc. In CometG, the loss of un-retrieved and retrieved tasks, are handled separately as
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follows.

Un-retrieved task loss occurs only when the relevant TaskSpace node crashes since

task tuple insertions are guaranteed. Masters can detect this failure using a keep-alive

mechanism, and can handle it by regenerating unfinished tasks. The regenerated tasks

will be deterministically routed to an operational TaskSpace node on the DHT due to

the resilience of the overlay (e.g., the Chord routing around failure functionality [84]).

Retrieved task loss is detected using the task tables at the masters. Each task in

the table is associated with a timer, which is initialized when the task is retrieved

by a worker. If the results for a task are not returned before the timer expires, the

task is considered as lost. The master regenerates the lost task and updates the task

table. The value of the task timer depends on the computational requirements of the

specific application as well as the current performance of the system. In CometG, this

value is dynamically determined based on a user specified threshhold and the observed

maximum task processing time, which is the time interval from when a task is retrieved

to when the corresponding results are returned.

Note that task regeneration can lead to the problem of duplicated tasks where the

same task may be allocated to multiple workers. This can be addressed using a simple

retrieval-submission protocol where the master refuses all data transfer requests and

result submissions for a task that it has tagged as completed in its task table. Further,

redundancy in storage and routing can be embedded at the overlay layer as described

in [78], where a group of nodes act as one CometG peer. However, the tuple space con-

sistency problems as well as group synchronization issues, such as redundancy degree,

group memberships, group communication protocols, etc. [34] must be considered.

4.2.2 Grid-based Parallel Asynchronous Iterative Applications Using

CometG

This section illustrates the use of the CometG computational infrastructure to im-

plement and execute a Grid-based PDE application. The application uses parallel

asynchronous Jacobi iterations for solving the heat distribution problem [23]. In this

illustrative application, the temperature at the edges of a square sheet are known, and
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the temperature at a point in the interior surface of the sheet is computed based on

the temperatures around it. The square sheet is discretized as a 2-dimensional grid

and represented as a 2-dimensional array of points. In each iteration, the value of each

point in the interior of the array is computed as an average of four points around it.

The computation is repeated until the stop criterion is satisfied, i.e., the difference in

temperature values at a point between iterations is less than a prescribed threshold, or

the bound on the number of iterations is reached.

Each grid point is the average of the
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Figure 4.4: CometG-based implementation of the heat distribution problem using par-
allel asynchronous Jacobi iterations.

Assuming that the application uses strip partitioning, the grid points are divided

into blocks of rows. Each block defines a task and is processed by one worker. Since

each point needs its four immediate neighbors, each worker needs to exchange data

in the rows at the top and bottom of the block with workers processing neighboring

blocks. The workers assigned the top most and bottom most rows are exceptions and

need to exchange data in only one row. A conceptual overview of the CometG based

implementation of this application is shown in Figure 4.4.

Flow charts for the operation of master and worker nodes are presented in Figure 4.5,

and are described below. Once a worker is initiated, it repeats the following steps until

explicitly terminated: (1) extract a task tuple from TaskSpace, (2) read the required
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Figure 4.5: Operation of master and worker nodes for the CometG-based implementa-
tion of the heat distribution problem.

top and/or bottom border rows from BorderSpace, (3) locally compute temperature,

(4) insert updated border rows into BorderSpace, (5) repeat steps (2)-(4) until the

stop criterion specified in the task tuple is reached, and (6) send results to the master

corresponding to the task using a direct communication channel.

When the master is launched, it uses user inputs to configure the application (e.g.,

setup the number of coordination group and master organization, etc.) and initiates

the BorderSpace. If a single master is used, that master is responsible for the entire

grid. The master first partitions the grid into blocks and inserts corresponding tasks

into TaskSpace. When a task is assigned to a worker, the worker obtains task data from

the master using the direct communication channel. When the task completes, the

work submits the results to the master also using the direct communication channel.

After all its tasks have completed, the master checks if the stop criterion is satisfied

by the computed data, since the overall application may not satisfy the stop criterion

even though each task locally satisfies its stop criterion. If the overall stop criterion is
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not satisfied, the master repartitions the grid to create new tasks and inserts them into

TaskSpace. This process constitutes one global application iteration, and is repeated

until the overall stop criterion is satisfied, at which point, the master terminates the

application.

If multiple masters are used, the user must define the organization of the masters,

e.g., a hierarchical structure [18], and the termination detection algorithm to be used.

The grid is uniformly partitioned across the masters in this case, and each master locally

partitions its sub-grid into blocks and inserts corresponding tasks into TaskSpace. The

operation at each master then proceeds as in the single master case described above.

When a master detects local termination, it coordinates with the other masters to

establish global convergence. In case of a hierarchical master organization, it sends

a “converge” message up the hierarchy to the root node. If the master stays in a

“converged” state, no further messages are sent, otherwise, a “diverge” message is sent

to the root. The root node checks the messages received from all the masters at the end

of each iteration, and if all of them are in the converged state for a specified number

of iterations, it broadcasts a “stop” message to the masters, which causes them to

terminate the application.

4.2.3 Experimental Evaluation

CometG and the PDE application have been deployed on a wide-area environment

using PlanetLab [7] test bed, as well as a campus network at Rutgers. The objective

of the experiments presented in this section is to evaluate and demonstrate system

performance and scalability, its ability to tolerate faults, and its ability to support wide-

area deployments of parallel asynchronous iterative applications. The experiments use

a horizontal block partitioning strategy and vary the size of the problem as listed in

Table 4.1. In the multiple master mode, a hierarchical organization of the masters was

used and measurements were made at the root node. The different experiments and

the results obtained are described below.

The first set of experiments were conducted on a Grid consisting of 70 heterogeneous

Linux-based computers on the Rutgers campus network. Each machine was a peer node
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in CometG overlay and the machines formed a single CometG group. The evaluation of

basic tuple insertion and exact retrieval operations were presented in Chapter 3. The

tuples in the experiments were fixed at 200 bytes, which is roughly equal to the size

of a task tuple. Increasing the size of border tuples can cause message transmission

delays. However, the message routing time remains the dominant factor as the system

size increases. Note that the JXTA 2.3 Resolver Protocol used to implement CometG

has been shown to effectively transfer message of size up to 128 Kbyte [15], which is

sufficient for supporting border tuple communications for the current application.

The first experiment measured overall application performance using a problem of

size 3000x3000 grid points and precision thresholds of 10−3, 10−5, and 10−7. The grid

was partitioned into 100 blocks and uniformly distributed across 10 master nodes. The

masters were organized as a hierarchy with one root using the algorithm in [18]. All

other nodes served as worker nodes, each hosting 2 worker instances. The total exe-

cution time is plotted in Figure 4.6. In this plot, the X-axis represents the number

of workers plotted using a logarithmic scale with base 10. The plots show the overall

application performance improvements and demonstrate that, as expected, the improve-

ments are more significant when there is more computation (e.g., when the precision

threshold is smaller).

The second experiment demonstrates the CometG fault tolerance mechanisms for

handling task losses due to worker dynamism. The experiment was conducted on 32

machines and used a problem of size 2000x2000 grid points and a precision threshold

of 10−5. The grid was partitioned into 100 tasks distributed across 4 master nodes.

The user defined task timeout threshhold was set to 50s. All the other nodes served as

workers and hosted multiple worker instances. Tuple losses were simulated by having

workers that have retrieved a task tuple fail with a probability of 25%. A global

Table 4.1: Problem sizes used in the experimental evaluation.

Problem Size Partitions Block Size Border Tuple Size
2000x2000 100 0.32M 16.026K
3000x3000 100 0.7M 24.026K
8000x2000 200 0.64M 16.026K
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Figure 4.6: Overall application execution time for a problem size of 3000x3000 and 100
partitions on the Rutgers campus network.

monitor process was used to calculate the number of alive workers in the system each

time worker was started or failed. In the experiment, 20 workers were initially started

on randomly selected nodes. As the application progressed, workers failed and the lost

task tuples were regenerated. Meanwhile, 20 new workers were started at 285s and 439s

after the start of the application, at the rate of one worker every 3s. The results of

this experiment are plotted in Figure 4.7. Figure 4.7 (a). plots the fluctuations in the

number of workers during the lifetime of the application. Of the 100 total tasks in the

application, 22% were regenerated once and 3% were regenerated twice due to worker

failures. Figure 4.7 (b). illustrates the life-cycles of tasks including timeouts and the

resulting task regenerations. For clarity, this figure only shows a subset of tasks with

id between 80 and 90. Plots for other tasks are similar.

The second set of experiments were setup on the wide-area PlanetLab [7] test bed.

PlanetLab is a large scale heterogeneous distributed environment composed of inter-

connected sites on a global scale. The goal of the experiment is to demonstrate the

ability of CometG to support application even in an unreliable and highly dynamic

environments such as PlanetLab, which essentially represents an extreme case for a

Desktop Grid environment. The CometG is currently deployed on 234 machines on

PlanetLab, which have been used in the experiment presented below. In the experiment,
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tuples. (a) Fluctuations in the number of worker due to failures. (b) Life-cycles of tasks
80 through 90.

each machine ran an instance of the CometG stack, randomly joined the CometG

overlay during bootstrap phase, and served as a master or worker node with one worker

instance per node.

The experiment used a problem of size 8000x2000 and a precision of 10−5. The

problem was partitioned into 200 tasks, which were uniformly distributed and across 4

CometG coordination groups. Each group had about 60 peer nodes, of which 5 nodes

acted as masters and others served as workers. The task timeout threshhold was set to

500s and the border tuple read timeout was set to 100s. The experiment was conducted

on December 9, 2006, and lasted more than three hours, including the infrastructure

setup, bootstrap, application deployment, configuration, and execution. The applica-

tion terminated after two global iterations, during which multiple worker nodes left the

system or failed and were handled by the CometG fault tolerance mechanisms. One

master in coordination group 3 also failed and was restarted manually. The task tables

of all the masters were collected and summarized in Figure 4.8 and Figure 4.9. Fig-

ure 4.8 separately plots the retrieval, computation, and result submission times for all

the tasks for each of the two global iterations. The X-axis in these plots represents

the task id, and the Y-axis represents the execution time of each phase. Note that

the computation time for the second iteration is significantly smaller and the first, as

expected. Figure 4.9 plots the total execution time for each iteration. The X-axis once

again represents the task id. The variation in the execution time for different tasks
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illustrates the heterogeneity of the workers and the PlanetLab test bed. These experi-

ments demonstrate that CometG system can effectively support parallel asynchronous

iterative applications on an extreme case of a wide-area Desktop Grid environment with

very high heterogeneity, dynamism, and uncertainty.

The experimental results presented in this section demonstrate both, the efficiency/scalability

of CometG and its ability to support wide-area deployments of Desktop Grid applica-

tions based on parallel asynchronous iterative algorithms.

4.3 Asynchronous Replica Exchange for Grid-based Molecular Dy-

namics Applications

Replica exchange is a powerful sampling algorithm that preserves canonical distribu-

tions and allows for efficient crossing of high energy barriers that separate thermody-

namically stable states. In this algorithm, several copies or replicas, of the system

of interest are simulated in parallel at different temperatures using “walkers”. These

walkers occasionally swap temperatures and other parameters to allow them to bypass

enthalpic barriers by moving to a higher temperature. The replica exchange algorithm

has several advantages over formulations based on constant temperature, and has the

potential for significantly impacting the fields of structural biology and drug design -

specifically, the problems of structure based drug design and the study of the molecular

basis of human diseases associated with protein misfolding.

While these replica exchange simulations can definitely benefit from the poten-

tially large numbers of processors available in a Desktop Grid environment, general

formulations of the replica exchange algorithm require complex coordination and com-

munication patterns between the walkers. Coupled with the complexity of the Grid

environment, including its scale, its heterogeneity in computational, storage and com-

munication capabilities, its dynamism and its unreliability, Grid-based replica exchange

simulations present significant challenges. It is probably for this reason that, to the

best of our knowledge, all the current parallel/distributed implementations of replica
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exchange simulations in use by the structural biology community target small homoge-

nous systems. Further, these implementations are based on a simplified formulation

of the algorithm that limits the potential power of the technique in two important

aspects: (1) the only parameter exchanged between the replicas is the temperature

of each replica, and (2) the exchanges occur in a centralized and totally synchronous

manner, and only between replicas with adjacent temperatures. The former limits the

effectiveness of the method and impedes temperature mixing, while the latter limits its

scalability to a small number of homogeneous and relatively tightly coupled processors.

Clearly, the complexity of developing Grid-based replica exchange must be ab-

stracted from the application scientists/engineers and effectively addressed by a com-

putational infrastructure. Such an infrastructure should support dynamic walker man-

agement and efficient, robust and scalable exchanges to enable large scale simulations

of the structure, function, folding, and dynamics of proteins. This thesis presents the

design, implementation and evaluation of such a computational infrastructure. It con-

sists of two components: (1) an asynchronous formulation of replica exchange that is

more suited to Grid environments and (2) a Grid-based asynchronous replica exchange

engine (GARE). The asynchronous replica exchange formulation builds on our initial

algorithm proposed in project Salsa [51] and has the following characteristics: (1) the

exchanged parameters and the overall parameter ranges used by the simulation are de-

termined at the beginning of the simulation and are known to all the walkers; (2) the

parameters assigned to a walker only change when the walker performs an exchange;

(3) exchanges can occur between walkers on different nodes; and (4) the walkers can

dynamically join or leave the system. The first two observations allow individual walk-

ers to locally determine the ranges of interest and enable exchange decisions to be made

in a decentralized and decoupled manner. The third allows actual exchanges to occur

between pairs of walkers in parallel. The last observation enables the replica exchange

to deal with the environment and system dynamism.

The Grid-based asynchronous replica exchange engine builds on CometG and ex-

tends it to provide the abstractions and mechanisms required by asynchronous replica

exchange, including mechanisms for dynamic and anonymous task distribution, task
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coordination and execution, decoupled communication and data exchange. It provides

a virtual shared space abstraction that can be associatively accessed by all walkers with-

out knowledge of the physical locations of the hosts over which the space is distributed.

The walkers can use this space to dynamically discover exchange partners, negotiate

with them, and exchange data. Walkers periodically post temperature ranges that are

of current interest for exchange to the space. If this range overlaps with the range of

interest posted by another walker, an exchange can occur. The actual exchange is then

negotiated and completed by the individual walkers in a peer-to-peer manner. As a

result, exchanges are decoupled, dynamically and asynchronously determined, and not

limited to neighboring temperatures.

4.3.1 Parallel Replica Exchange for Structural Biology and Drug De-

sign

The sequencing of the human genome, in conjunction with rapidly increasing efforts in

structural genomics, is producing an explosion in the number of available high resolu-

tion protein structures. Molecular simulations of protein structural changes and drug

binding to proteins depend critically on the design of highly efficient algorithms to

search over the very rough energy landscapes which govern protein folding and bind-

ing. Scalable parallel replica exchange implementations can potentially address these

molecular search problems and can significantly impact structure based drug design

applications.

The Replica Exchange Algorithm

Replica exchange is an advanced canonical conformational sampling algorithm de-

signed to help overcome the sampling problem encountered in biomolecular simula-

tions. The method had been proposed independently on several occasions in various

disciplines [86, 41, 60, 45]. In this method, several copies, or replicas, of the system

of interest are simulated in parallel at different temperatures using walkers. These

walkers occasionally swap temperatures based on a proposal probability that maintains

detailed balance [42]. Note that general formulations of replica exchange simulations
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allow walkers to exchange multiple parameters, e.g., temperature plus energy. However

current implementations only exchange temperatures.

These exchanges allow individual replicas to bypass enthalpic barriers by moving to

high temperatures. A parallel version of this algorithm was proposed by Hukushima

and Nemoto [45]. The replica exchange algorithm is easy to implement and does not

require time-consuming preparatory procedures. Further, it can decrease the sampling

time by factors of 20 or more, as compared to constant temperature molecular dynamics

when applied to peptides at room temperature [76]. Details of the algorithm can be

found in [42] and application examples can be found in [85, 13].

The molecular dynamics replica exchange canonical sampling method has been im-

plemented in the IMPACT (Integrated Modeling Program, Applied Chemical The-

ory) molecular mechanics program [46], and is the molecular simulation method used

in this research. The implementation follows the approach proposed by Sugita and

Okamoto [85]. The method consists of running a series of simulations at fixed specified

temperatures. Each replica corresponds to a temperature. An exchange of tempera-

tures between replicas i and j at temperatures Tm and Tn is attempted periodically

and is accepted according to the following Metropolis transition probability [85]:

W = min {1, exp [−(βm − βn)(Ej − Ei)]} (4.1)

where β = 1/kT and Ei and Ej are the potential energies of replicas i and j, respectively.

After a successful exchange, the velocities of replicas i and j are rescaled at the new

temperature.

Existing Parallel Implementations of Replica Exchange-based Molecular Dy-

namics Simulations

Molecular dynamics programs are essentially loops over a large number of integration

steps, each of which advances the time forward for one step. Replica exchange is at-

tempted periodically after a chosen interval of steps. As mentioned in the introduction,

existing parallel implementations of replica exchange are MPI [4]-based, centralized
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and synchronous, and target relative small tightly coupled homogenous systems. For

example, in the existing implementation in IMPACT, a central master node collects

temperature data about all the replicas from the walker nodes, and then broadcasts the

collected data array to the walkers. Each walker node receives this data array and sorts

the array locally. Neighboring temperatures in the sorted array are potential partners

for temperature exchange. The master node randomly selects between two modes of

exchange. One is to exchange with upper neighboring temperature and the other is to

exchange with lower neighboring temperature. The master notifies the walkers about

the selected mode, and walkers can then mutually exchange temperatures based on this

information. During the actual exchange, one of the two walker nodes with neighboring

temperatures in the sorted array that are paired up for temperature exchange, acts as a

temporary server. This walker collects temperature and potential energy data from the

other node, determines whether the exchange is feasible based on the transition prob-

ability given in Eq. (4.1), and replies with either the new temperature, if the exchange

is successful, or with a notice of denial otherwise.

The parallel replica exchange implementation described above has several limita-

tions. First, the scheme limits the exchange to only neighboring temperatures. This

limitation is not a concern when the number of replicas is small and there is a small

chance of exchange between non-nearest temperatures. However, as the number of pro-

cessors (and correspondingly walkers) increases, the difference between target tempera-

tures becomes small enough to allow exchanges between non-nearest neighbor replicas.

In such cases, more flexible schemes which allows non-nearest neighbor temperature ex-

change are desirable. Second, the implementation is based on a centralized master that

gathers and scatters data system wide. Gathering data from all the nodes on a single

node may be infeasible in large systems, and a centralized master can quickly become

a bottleneck. Further, gather and scatter operations are synchronous and expensive.

Also, since the master node also participates in the simulation as a walker, there is a

load imbalance which can lead to additional synchronization overheads.

The Folding@home [3] project at Stanford University has proposed a multiplexed

replica exchange algorithm. The algorithm uses multiplexed-replicas with a number of
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independent molecular dynamics runs at each temperature, and attempts exchanges of

configurations between these multiplexed-replicas. In this formulation, the efficiency

of the simulation is enhanced as a number of independent molecular dynamics simula-

tion replicas are run at each temperature and there are a larger number of potential

exchange partners available. Further, the multiplexing between replicas is arranged in

such a way that the discrepancy between exchange partners is reduced. In contrast,

Salsa improves simulation efficiency by eliminating the limitation of nearest neighbor

exchanges, instead of introducing redundant computations. Both algorithms, however,

use parallelism to improve the efficiency of the simulation.

To address the above limitations, we proposed an initial asynchronous realization

of the replica exchange algorithm in project Salsa [51]. This formulation distinguished

itself from existing implementations in two aspects: (1) it allows arbitrary walkers with

mutual interesting range to exchange temperature; (2) it enables the temperature ex-

changes in an asynchronous and parallel manner, and is used in this project. However,

Salsa still targeted closely coupled and reliable cluster environments and only supported

a single walker per node. This research targets Grid environments, and builds on the ini-

tial Salsa asynchronous replica exchange formulation to address platform heterogeneity,

environment unreliability, and dynamic walker management.

4.3.2 GARE/CometG, A Grid-based Asynchronous Replica Exchange

Engine

GARE/CometG is a Grid-based asynchronous replica exchange engine (GARE) builds

on CometG [56]. GARE/CometG provides abstractions and mechanisms to support

scalable parallel implementations of the general replica exchange formulation, where

walkers can exchange non-nearest neighbor temperatures in a decoupled, decentral-

ized, and asynchronous manner. Figure 4.10 presents a conceptual overview of the

GARE/CometG infrastructure. It provides a virtual decentralized shared space ab-

straction that can be associatively accessed by all walkers. Walkers can use this space

to dynamically discover exchange partners and negotiate with them, and exchange data.

Walkers periodically post temperature ranges that are of current interest to the space.
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If this range overlaps with the range of interest posted by another walker, an exchange

can occur. Then the individual walkers negotiate and complete the actual data ex-

change in a peer-to-peer manner. As a result, exchanges are decoupled, dynamically

and asynchronously determined, and not limited to neighboring temperatures.

Programming Abstractions

The system builds on CometG and consists of three main layers. The communication

layer provides an associative communication service and a direct communication channel

to efficiently support data transfers between peer nodes. The content-based routing

service provided by this layer maps the multi-dimensional information space to the

linear node index space. Note that in the case of replica exchange implementations

that only use temperature exchange, i.e., k = 1, CometG uses simple hashing where

the index is directly derived from the overall temperature range used by the simulation.

The overlay network is composed of peer nodes, which may be any node in the Desktop

Grid system (e.g., end-user computers, servers, or message relay nodes).

The coordination layer enables discovery of potential exchange partners between

walkers. This layer supports the tuple space coordination abstractions [31], including

out, in, and rd operators. The primary components of the coordination layer are a data

repository for storing posted replica ranges, a local matching engine, and a message

dispatcher that interfaces with the communication layer to translate the coordination

primitives to content-based routing operations at communication layer and vice versa. A

CometG service daemon running at each node is responsible for handling these exchange

interest postings and storing them locally, and for detecting matches with existing

postings of exchange interest at the node.
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The application layer provides an environment for dynamically managing walkers

and protocols for asynchronous exchange. Walkers are extensions of CometG compu-

tational tasks and the walker environment configures, initiates, monitors, and manages

the local walkers. Walkers are dynamically dispatched to CometG nodes during node

initiation. The protocol provides three operators for implementing the asynchronous

replica exchange algorithm:

• post (t): inserts a tuple t into space. This operator is used by a walker to express

its desire to exchange. Tuple t contains the details of the exchange including a

specification of the parameters and ranges (upper and lower bounds) of interest.

• query (walkerid, timeout): sends a query message to a potential partner. The call-

ing walker blocks until receiving a “confirm” or “refuse” response or the specified

timeout period expires.

• getp (walkerid, d, timeout): exchanges a walker’s data d with a selected partner. If

the attempt to exchange is successful, the calling walker blocks until the exchange

is finished or the specified timeout expires. If the attempt fails, getp returns with

a failure code.

The post operator is implemented using the out operation provided by the coordina-

tion layer. Figure 4.11 illustrates the post operation in a 2D replica exchange simulation.

In this example, the tuple specifies ranges of interest for the two parameters, which de-

fine a rectangular region in the information space. The Hilbert SFC is used to map this

region to appropriate index spans in the linear index space and the corresponding peer
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nodes to which these index spans have been mapped. The tuple is then routed on the

overlay to these nodes. To guarantee data insertion, each post request is confirmed by

responses from the corresponding destination peer nodes. The getp and query operators

are implemented using the peer-to-peer communication channel to ensure efficient data

exchange.

Addressing Grid Unreliability

The GARE/CometG provides fault tolerance mechanisms to address the dynamism

and unreliability inherent in Grid environments. These mechanisms assume a fail-

stop failure model and timed communication behavior [33]. Under these assumptions,

possible failures include walker failure, posted data loss, and negotiation failure. These

failures are addressed as follows:

• Walker failures are handled using checkpoint-restart. The walker environment

periodically checkpoints the local state of each walker, such as its current exchange

parameters, to a stable storage. When a walker fails, it can be restarted using

this checkpoint. Currently, the detection of walker failures and walker restarts

are manual. Note that due to the asynchronous nature of the algorithm, other

walkers are not affected by the failure and restart of a walker except that any

attempt to exchange with this walker will not succeed.

• Loss of posted data occurs only when the node at which a tuple is stored fails

since tuple insertions are guaranteed. From a walker’s point of view, the impact

of this failure is that its attempt to exchange will not succeed and it will repost

its request tuple in the next exchange cycle. The resilience of the overlay (e.g.,

Chord’s ability to route around failures [84]) guarantees that the repost will be

routed to an operation peer node.

• Negotiation failures may result due to the failure of a walker, loss of a message,

failure of a communication link, or failure or departure of a node. These failures

are handled using timeouts for the query and getp operations. Once again, due to

the resilient nature of asynchronous algorithms, the application is not affected.



60

Further, redundancy in storage and routing can be incorporated within the over-

lay as described in [78], where a group of nodes act as one peer. In this case, the

consistency of the tuple space as well as issues of group synchronization, such as de-

gree of redundancy, group membership, group communication protocol, etc., must be

addressed.

4.3.3 Grid-based Asynchronous Replica Exchange Using CometG

The operation of asynchronous replica exchange using GARE/CometG is illustrated

using a temperature exchange example. The operation consists of three phases: (1)

the post phase in which, candidate exchange partners are identified and notified; (2)

the query phase in which, potential exchange partners negotiate and agree to exchange;

and (3) the getp phase in which, confirmed partners attempt to exchange data. When

a walker attempts to exchange its current temperature, it computes the target tem-

perature range that it is willing to exchange with, and posts this range using the post

operator. Based on the temperature range posted, the request is routed to all the nodes

whose index ranges overlap with the posted range. When a remote post request is re-

ceived by a peer node, it first checks its local repository for potential exchange partners

that have previous posted interests with overlapping temperature ranges. If one or

more potential exchange partners are found, the corresponding walkers are notified.

Otherwise, the incoming request is stored.

The process is illustrated in Figure 4.12. In this figure, the ranges of interest of

walker1, walker2, and walker3 overlap. When the relevant node receives the post

from walker3, it discovers that walker1 is a potential exchange partner and notifies

the two walkers. Then, walker3 queries walker1 to see whether it is available for an

exchange. This is necessary because, even though walker1 has expressed a desire to

exchange, it may have already partnered with another walker or may have decided to

give up and continue with its computations. On receiving this query, walker1 checks

its local state, which can be either “free” or “pending”. A walker is available for an

exchange only if it is in the “free” state. The “pending” state indicates that the walker

is either exchanging with another walker or has committed to exchange with another
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Figure 4.12: Operation of a sample asynchronous replica exchange.

walker but the exchange has not yet occurred. Since walker1 is in the “free” state, it

responds affirmatively to walker3 and commits to the exchange. Once both walkers

confirm their intents to exchange, they change their states to “pending” and perform

data exchange using the getp operator. Since walker3’s post also matches walker2’s

interest, walker3 receives a query from walker2. Since walker3 has already committed

to exchange with walker1 and is in the “pending” state, it refuses this request. In this

example, walker2, rather than attempting an exchange with another potential partner,

continues computing using its current data and waits until the next exchange cycle to

attempt an exchange.

Once a pair of walkers agree to exchange, they initiate the actual exchange by

invoking the getp operator, which proceeds as follows. One of the walkers sends its

current data (e.g. temperature and energy) to its potential partner. The potential

partner determines whether the exchange can be completed based on the data it receives

and its own data. This step is necessary since the exchange happens asynchronously and

in parallel with the computation, and a walker’s data (i.e., energy) may have changed

since it posted its exchange interest. If the walker decides to continue with the exchange,

it will send an exchange acceptance to its partner along with its current local data. It

will then wait for a similar acceptance from the partner to complete the exchange. Note
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that an exchange is between a pair of walkers and multiple exchanges between different

pairs of walkers can proceed in parallel. After the exchange is completed, both walkers

remove posted tuples from the space since these tuples and the data they contain are

no longer valid.

Since a post request typically maps to multiple peer nodes and each node may find

more than one partner, it is possible that a requesting walker is notified of multiple

candidates located on different nodes. In this case, the first notification that reaches

the requesting walker is accepted. In the algorithm, a walker specifies the ranges for

each parameter that it is interested in exchanging as part of the post operator. Usually,

the larger the range is, the higher is the probability of finding an exchange partner

and results in better solution quality. However, a larger range will also map to a large

number of nodes, which in turn increases communication overheads as well as the load

at the nodes, and reduces system performance. In the current system, the post operator

randomly selects a subset of the nodes to which the interval is mapped, and forwards

the post request to these nodes. The size of this subset can be configured by users to

achieve desired tradeoffs between solution quality and simulation performance.

If the parameter ranges are not evenly distributed, the posted ranges will result

in load balancing issues. In the current implementation, the fact that the parameter

ranges are known is used to define a simple load balancing protocol. The distribution

of parameter ranges within the linear index space can be analyzed and this analysis can

be used while partitioning the index space across the nodes to ensure that the system is

load-balanced. Since more general replica exchange formulations may use dynamically

defined ranges, we are working on a dynamic load-balancing protocol.

4.3.4 Experimental Evaluation

GARE/CometG has been deployed on a wide-area environment using PlanetLab [7]

test bed, as well as a campus network at Rutgers. The objectives of the experiments

presented in this section are to demonstrate the ability of GARE/CometG to support

wide-area deployments of replica exchange applications and to evaluate performance

and scalability.
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Table 4.2: Number of temperature cross-walk events.
Number of walkers 8 16 32 64 128
Posted temperature range decentralized simulation
[−200K, 200K] 49 91 115 251 582
[−100K, 100K] 11 43 82 113 262
Posted temperature range centralized simulation
[−200K, 200K] 74 119 150 178 202
[−100K, 100K] 26 55 81 92 126
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Figure 4.13: Average wall-clock execution time for different numbers of walkers.

A temperature replica exchange simulation, which is based on the IMPACT frame-

work, is used in the experiments presented below. In this evaluation, all the experiments

are configured to run for 10,000 sampling cycles, and exchange is attempted every 25

cycles. Temperatures are distributed eventually within the 200-700 K range. At equi-

librium each walker should visit each temperature with equal probability. The rate of

temperature equilibration is measured by the number of “cross-walks”, where a walker

originally within the low temperature range (200 K ≤ T ≤ 250 K) reaches the upper

temperature range (650 K ≤ T ≤ 700 K) and then returns to the lower temperature

range. The number of “cross-walks” is measured in the experiments to evaluate the

system performance - the larger the number of crosswalks for a run, the better is the

performance of the simulation. In the experiments presented below, the temperature

range posted by walkers was set to a window of size 400K and 200K around its target

temperature, i.e., [temp - 200K, temp + 200 K] and [temp - 100K, temp + 100 K].

The first set of experiments were conducted on a Grid consisting of heterogeneous

Linux-based computers on the Rutgers campus network. Each computer runs a single
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CometG instance and supports 4 walkers. Table 4.2 shows the number of temperature

cross-walks measured for decentralized replica exchange simulations with 8, 16, 32, 64,

and 128 walkers, compared with the corresponding number of cross-walks obtained

using a traditional centralized approach where exchanges are all conducted at a central

(master) node. The latter case was achieved by mapping the CometG shared space

to a single peer node. As shown in the table, the number of observed temperature

cross-walks increases with increasing numbers of walkers and the posted temperature

range. The decentralized implementation achieves more cross-walks than the centralized

approach when the number of walkers is greater than 64, although the centralized

approach achieves more crosswalks for a small number of walkers. This is because a

centralized node quickly becomes a bottleneck as the number of walkers increases. The

average wall-clock execution time of the simulation for different numbers of walkers

are plotted in Figure 4.13. As seen in the figure, the decentralized implementation

scales well, while as expected, the centralized implementation does not scale. The

impact of centralization is even more pronounced for larger systems in wide-area Grid

environments.
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Figure 4.14: Effect of the posted temperature ranges on the number of temperature
crosswalk events for large numbers of walkers.

The second set of experiments measured the number of temperature cross-walks for

larger numbers of walkers in the decentralized implementation. The GARE/CometG-

based replica exchange implementation supports non-nearest neighbor temperature ex-

changes, which is essential for ensuring proper mixing of temperatures across the walk-

ers, especially when the number of walkers is large. This experiment used a fixed system

size of 32 nodes and evenly distributed the walkers across these nodes. Figure 4.14 plots
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Figure 4.15: Evaluation of GARE/CometG-based replica exchange on the PlanetLab
wide-area test bed. (a) Execution time of the different walkers. (b) Change in the
number of walkers due to the dynamism of the environment.

the number of cross-walks for temperature range [-200K, 200 K] and [-100 K, 100 K]

using 512, 640, 960, and 1280 walkers. These results illustrate the effects of increasing

the temperature range on the number of cross-walks. The results also demonstrate the

ability of GARE/CometG to effectively support the increased communication due to

larger numbers of walkers and larger temperature ranges.

The third experiment was conducted on the wide-area PlanetLab [7] test bed.

PlanetLab is a large scale heterogeneous distributed environment composed of inter-

connected sites on a global scale. The goal of this experiment is to demonstrate the

ability of GARE/CometG to support replica exchange applications in unreliable and

highly dynamic environments such as PlanetLab, which essentially represents an ex-

treme case for a Desktop Grid environment. GARE/CometG was deployed more than

200 machines on PlanetLab, however, only a fraction of these nodes could be effec-

tively used at anytime. This experiment was conducted on January 03, 2007. In the

experiment, we used temperature range at [-200K, 200K] and 32 walkers, which were

dynamically mapped to nodes that joined the replica exchange space. Walkers were dy-

namically initialized on the nodes (up to 4 walkers per node). The timeout threshhold

of getp and query operation was set to 5 seconds. These walkers dynamically joined the

application, started their computation and performed exchanges, and left the system

when their computation terminated or the node failed or lost connectivity. The joining

or leaving of walkers did not impact the execution of other walkers. The number of
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walkers was monitored during the experiment. The application terminated after all

the walker finished their sampling cycles, in which 86 cross-walk events were observed.

The results of the experiment are plotted in Figure 4.15. Figure 4.15 (a) plots the

execution time for each walker. This plot illustrates the heterogeneity of the PlanetLab

nodes. Figure 4.15 (b) demonstrates the fluctuations in the number of walkers during

the lifetime of the application due to the dynamism of the environment.

This chapter presents the design and implementation of CometG decentralized com-

putational infrastructure that extends Desktop Grid environments to support robust

parallel asynchronous applications. CometG builds on top of Comet and provides scal-

able communication/coordination abstractions and programming abstractions for sup-

porting parallel asynchronous iterative computations and replica exchange simulations.

Two prototype systems have been implemented and evaluated on top of CometG to

demonstrate the effectiveness of this infrastructure. The experimental results demon-

strate both the performance and scalability of the CometG system. The results also

illustrate the effectiveness of using CometG to support the parallel asynchronous ap-

plications in Desktop Gird environments.



67

Chapter 5

Rudder, An Agent-based Coordination Framework for

Autonomic Composition of Grid Applications

This chapter describes Rudder [55, 53, 54, 58], a decentralized agent-based coordina-

tion framework for supporting autonomic composition of Grid applications. Rudder

provides software agents and coordination protocols for the dynamic discovery and se-

lection of software service elements, enactment and configurations of workflows, and

the management and adaptations of these workflows to respond to changing Grid envi-

ronments. Rudder also implements the agent interaction and negotiation protocols and

enables appropriate application behaviors to be dynamically negotiated and enacted.

The defined protocols and agent activities are supported by Comet, which provides

a scalable decentralized shared-space based coordination substrate. The implementa-

tion, operation, experimental evaluation, and an illustrative example of the system are

presented.

5.1 Autonomic Composition of Grid Applications

The goal of the Grid infrastructure is to enable a new generation of applications that

combine intellectual and physical resources spanning multiple organizations and disci-

plines, and provide vastly more effective solutions to scientific, engineering, business

and government problems [70]. As Grid computing has evolved, the collaborative prob-

lem solving enabled by the Grid has also evolved from primarily file exchange to direct

access to hardware, software and information components. The resulting Grid appli-

cations, which are based on seamless discovery, access to, and interactions among re-

sources and services, have complex and highly dynamic computational and interaction

behaviors, and when combined with the uncertainty of the underlying infrastructure,
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result in significant development and management challenges. Autonomic development

and management strategies, which are inspired by biological systems and the human

autonomic nervous system, have recently been proposed [39, 47, 71] to address these

challenges.

A key issue in the development and management of these autonomic applications is

the autonomic composition of the distributed autonomous elements. A single available

element might not address specific application requirements, and composing several

elements to form a unit with integrated functionalities is necessary. Autonomic com-

position enables applications or parts of an application to be dynamically composed

from discrete elements to meet the changing requirements and system behaviors, deal

with element failures, optimize performance, address QoS constraints, etc. However,

enabling autonomic composition is difficult in Grid environments because the available

elements are typically numerous, heterogeneous, and available in a dynamic on-demand

manner. Challenges include element descriptions, their discovery, and their dynamic

and adaptive composition, interaction and coordination. Recent initiatives, such as

the “Semantic Grid” [75], complement the Grid service-oriented architecture [37] to

enhance the scientific process with seamless interaction on a global scale. Effectively,

the composition of loosely coupled Grid services is emerging as the desired paradigm

for constructing Grid applications. In this context, solutions being developed as part of

the “Semantic Web” [21] can be leveraged to support accurate Grid service description,

discovery, and composition. However, an effective autonomic composition framework is

still absent in Grid environments.

Dynamic composition, then, can be viewed as the runtime specification, configura-

tion and enactment of these workflows. Workflows and workflow composition has been

an area of active research in the Grid community in recent years. Current research

efforts in this area can be broadly classified into two categories: (1) automatic workflow

generation and (2) dynamic workflow enactment. Issues addressed by research efforts in

the first category include ontology reasoning, deductive theorem proving, and AI plan-

ning, while research efforts in the second category focus on infrastructure support for

service discovery, workflow configuration and execution, and workflow adaptation. This
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research belongs to the second category. Specifically, this thesis presents Rudder based

dynamic workflow compositions, which employs semantic web, multi-agent systems,

and workflow enactment techniques to discover, select, and compose heterogeneous and

distributed Grid services.

5.1.1 Autonomic Composition of Grid Applications: Requirements

and Current Approaches

As outlined above, the inherent scale, complexity, heterogeneity, and dynamism of

emerging Grid environments and applications result in significant programming and

runtime management challenges. As a result, developing Grid applications requires

redefining Grid programming frameworks and middleware services. Specifically, it re-

quires that static (defined at the time of instantiation) application requirements, their

structures and system and application behaviors be relaxed, and that the behaviors and

structures of elements and applications be sensitive to the dynamic state of the system

and the changing requirements of the application and be able to adapt to these changes

at runtime. Clearly, enabling autonomic composition of elements and applications is

a key issue in effectively addressing these requirements. Enabling autonomic com-

position requires conceptual frameworks and an implementation infrastructure. Con-

ceptual frameworks consist of models, languages, standards, methods and constraints

that govern the composition of elements. Implementation infrastructures provide the

mechanisms, including programming and run time systems, to enforce the compositions

specified using the conceptual framework.

Conceptual Frameworks

Conceptual frameworks address the following issues: (1) Element specification: The

conceptual framework should unambiguously identify an element, and should be suffi-

ciently rich to capture the capabilities of an element, including its functional attributes

(e.g., input, output, precondition, effects, etc.) and non-functional attributes (e.g.,

cost, service quality, security, etc.). Further, the specification should be formally de-

fined and capable of being processed, interpreted and reasoned using agents/machines,
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e.g., to check if two descriptions are equivalent, partially match, or are inconsistent.

(2) Application process specification: The conceptual framework should provide infor-

mation about the elements involved in the application process, their roles, and their

interactions. This specification is similar to a workflow, and includes a set of activities

and their execution dependencies. (3) Composition policy specification: The concep-

tual framework should define composition methods and constraints and enable users to

specify requirements such as cost, performance, QoS, etc.

Related work in conceptual frameworks for autonomic composition includes efforts

within the Semantic Web community addressing the description, discovery and com-

position of services. Projects such as myGRID [91] represent recent efforts aimed at

uniting the Semantic Web and Grid computing communities. In particular, the Web

Ontology Language (OWL) [69] is emerging as a standard in industry as well as in the

scientific and engineering research communities, for Web service discovery, composition,

and invocation. The OWL-S Profile specifies a service using three information compo-

nents: service capability specified in terms of its inputs, outputs, preconditions, effects,

and component sub-processes; service attributes such as QoS, cost, and classification in

the taxonomy; and description of service providers. Note that in addition to describing

advertised services, profiles can also be used to describe requested services. The OWL-S

Process Model allows the requesters to decide whether and how to interact with a ser-

vice. It defines the basic functions performed by service providers as atomic processes,

which can be composed into more complex processes using control structures such as

sequence, if-then-else, or split. Finally, OWL-S Grounding specifies the implementation

details of a service such as messaging protocols and message formats.

In the Grid computing community, workflow models are popular approaches for

describing and composing complex scientific applications. A Grid workflow is a set of

tasks that are processed on distributed resources in a defined order to accomplish a spe-

cific goal. Workflow management techniques can be applied to generate Grid workflow

and dynamically assemble applications using services and resources distributed across

the Grid. In general, workflow-based systems enact abstract workflow descriptions as

composition plans to discover and compose elements. The workflow description can be
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user-defined or autonomically generated. Workflow descriptions may use markup lan-

guages such as XML, WSFL [10], XLANG [11], BPEL4WS [12],and GSFL [50], or use a

graphic representation such as Petri Nets [74] and UML (Unified Modeling Language).

However, these languages do not provide well-defined semantics, which in turn limits

their ability to support seamless service interoperability. On the other hand, while the

OWL-S profiles allow descriptions to be more precise, its process model lacks flexibil-

ity. For example, OWL-S does not describe the relationships between the elements,

their synchronization, or the termination of a process. A possible solution is to extend

workflow descriptions to use the OWL-S profile ontology for element and composition

specification.

Finally, composition polices and constraints allow users to express specific require-

ments and expectations such as performance and availability. Grid environments pro-

vide a large number of similar or equivalent services and resources. These services

may provide the same functionality but may optimize different non-functional aspects

such as performance, cost, reliability, security, etc. Further, different users or applica-

tions may have different expectations and requirements. Therefore, only considering

functional characteristics during the composition may be insufficient.

Implementation Systems

Critical components of an implementation system for autonomic composition include

an efficient, scalable and flexible discovery mechanism, and a high-level integration

mechanism. The discovery mechanism enables the selection of appropriate elements

while the integration mechanism enables selected elements to be composed coherently,

without conflicts in element dependencies and interactions. Most of existing approaches

compare the syntactic and semantic components [61] of element descriptions during the

generation of the composition plan. However, this approach may not ensure runtime

compatibility during application execution due to the dynamic availability and state of

elements and resources on the Grid. As a result, runtime composability and compati-

bility checking is important for autonomic composition, specially since interactions can

ad hoc, ephemeral and opportunistic.
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Realizing an autonomic composition framework for Grid applications presents sev-

eral challenges. Such a system has to implement services and protocols to address

element representation, discovery, and cooperation, while addressing the scale, hetero-

geneity and dynamism of Grid environments and applications. Key design issues include

the overall system architecture as well as discovery, communication, and coordination

subsystems. In a centralized architecture, every element publishes its existence, capa-

bilities and functionalities in a globally known and possibly centralized registry, and

every agent queries this central registry to discover elements and compose applications.

However, such architecture suffers from performance and scalability bottlenecks, single

point failures, and may be more vulnerable to denial of service attacks. On the other

hand, decentralized architectures are more scalable, resilient and have higher availabil-

ity, but require mechanisms for maintaining information consistency and tend to be

more complex. High-level communication and coordination subsystems that are based

on semantics rather than names/identifiers and addresses and provide abstractions for

process cooperations, communication and synchronization, can help reduce this com-

plexity.

The software agent paradigm provides decentralization, dynamic and coordinated

decision-making and autonomous behaviors, and supports representation translation,

dynamic discovery and negotiated coordination, making it an effective approach for

realizing autonomic composition systems. The motivations for employing agents to ad-

dress autonomic composition for self-managing Grid applications include two aspects.

First, agents with knowledge capabilities provide a natural abstraction for bridging ex-

ternal and internal data structures in the system. Typically, discovery systems provide

external representations that enhance element accessibility and allow users to relatively

easily express what they can offer or what they want, e.g., using the OWL-S profile

ontology. Internally, discovery substrates use specific representation, such as keywords,

for data indexing and query resolution to achieve efficient and scalable data lookup.

Agents provide an effective mechanism for translating between and gluing these rep-

resentations. Second, the adaptive behaviors of agents enable the composition plans

and policies to be enacted through a dynamic negotiation process. Agent negotiation
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mechanisms can be used to the selection of the most appropriate elements from those

that are currently available. This includes evaluating non-functional attributes of the

elements, which can be difficult to estimate or predict in dynamic Grid environments

and may result in sub-optimal selections.

5.2 Rudder, an Agent-based Coordination Framework for Grid Ap-

plications

Rudder agent framework [55, 53, 54, 58] provides agent abstraction and coordination

protocols for supporting dynamic composition, coordination, interactions and applica-

tion self-managing behaviors. The Rudder framework builds on top of Comet substrate.

The Comet substrate provides a shared-space abstraction and supports the implemen-

tation of the coordination protocols. Rudder employs the Comet substrate to provide a

two-level composition spaces. A conceptual overview of Rudder is shown in Figure 5.1,

and consists of 4 key components:
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Figure 5.1: A conceptual overview of the Rudder.

• GlobalSpace, which is a persistent space that supports the registration, publishing

and semantic discovery of service elements. A service provider can access the

GlobalSpace to register and publish its service in Rudder.

• InteractionSpace, which is a dynamically constructed contextually localized space

that is dedicated to a particular workflow. This space provides the interac-

tion/coordination medium for configuring and enacting a workflow, and only

includes the providers of services that are a part of the workflow.
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• Composition agent (CSA), which manages one or more workflows. This agent is

responsible for discovering service elements to perform workflow tasks, instanti-

ating a CA to manage each discovered service element, dynamically negotiating

with the CAs to select elements based on system context and user preferences,

and generate task execution plans to enact the workflows.

• Component Agent (CA), which manages a software/service element and the exe-

cution of the workflow task assigned to that element. This agent is responsible for

monitoring the service element and enforcing the workflow adaptation to respond

to application/system dynamics based on specified adaptation policies.

5.2.1 Classification of Rudder Agents

The Rudder agent framework defines two types of agents: Component Agent (CA) and

Composition Agent (CSA). CAs represent discrete service elements and use OWL-S

profile to identify and control the elements. A service element may be an application,

service or resource unit (e.g., computer, instrument, and data store). Such an element

along with its CA represents a managed element in Rudder. The responsibilities of a

CA include advertising the capabilities of the element, providing uniform access to the

element, configuring the element based on its execution context, managing its execu-

tion, and adapt the composition. The CA supports workflow adaptation using element

switching, which allows a failed or an active element to be replaced with a single ele-

ment at run time to obtain good performance. In Rudder, the candidate elements form

a redundancy group for a workflow task. The service discovery assumes these elements

have equivalent functionalities and input/output parameters. Thus, any element in

such a group can be replaced with another in the same group, while maintaining the

syntactic and logic correctness of the workflow. A CA has 3 main components, shown

in Figure 5.2, which are described in the following:

• Task manager accesses the InteractionSpace and manages the task execution. It

extracts the plan tuple from the space, generates the task templates, dispatches

the retrieved task, generates the resulting task tuples, and inserts them into the
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Figure 5.2: The structure of an element service agent.

space. It has two dispatching modes: default mode, in which the task is dispatched

to element controller, and forwarding mode, in which the task is dispatched to

element proxy. The task manager switches to forwarding mode if the element

switching is triggered.

• Element controller monitors the element and invokes the task execution. It pe-

riodically queries to see if the element is still available. If the element does not

response for a pre-defined time interval, the element is considered to be failed.

Once getting a task, it invokes the element to execute the task and waits for the

results. During task execution, it also queries the performance metric and the

transferred states. If execution is successful, it returns the results to the task

manager. Otherwise, a failure is returned. the element controller triggers the

switching when the element fails or the switching rule fires.

• Element proxy selects and forwards the task request from the task manager to

a replacement candidate element. After getting the task, it broadcasts a query

message to all candidate CAs and accepts the first replying SA as the replacement.

It then sends task execution request to this CA and waits for the results. If state

transfer is required, it retrieves the current states and sends a continue execution

request to the CA. The replacing CA gets the execution request and invokes a task

execution. Finally, it forwards the results to task manager. If no candidate CA is

selected for a defined time interval, it raises a selection failure. The task manager

catches this failure and inserts a “Stopped” execution plan into the space. Once

this happens, the CSA notifies the administrator to re-initiate a discovery.
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CSAs are transiently generated agents. The CSAs dynamically discover and com-

pose managed elements to realize applications. CSAs employ predefined composition

plans to discover relevant elements and to negotiate with the CAs to select, configure,

and compose the elements. In Rudder, composition plans are generated from the ap-

plication process and are available to the CSA 1. Further, the semantics of terms and

concepts used in the composition plans as well as the application specific ontology are

common knowledge among agents. A composition plan has three components: (1) a

set of atomic tasks, each of which has a semantic description, using the application on-

tology, that can be used to discover and select elements to fulfill the task; (2) a process

description describing the dependencies and interactions between tasks; (3) constraints,

which reflect user requirements and may be defined at the task level (e.g., minimize the

execution time of a task) as well as the plan level (e.g., minimize total cost). A compo-

sition plan is enacted by a CSA by using the task descriptions to semantically discover

elements, selecting and configuring appropriate elements, composing these elements us-

ing the process description and coordinating with other agents to satisfy constraints

and application requirements.

5.2.2 Coordination Protocols In Rudder

Coordination protocols provided by Rudder include discovery protocols and interac-

tion/negotiation protocols. Rudders uses Comet to realize GlobalSpace, which supports

and implements discovery protocols for semantic service storage and discovery.

Discovery Protocol: enables agents to register, unregister, and discover elements.

In Rudder, element profiles are categorized based on an application defined taxonomy,

and mapped onto a corresponding semantic space. The GlobalSpace uses a profile to

map the element to the corresponding logical semantic space, where the dimensions

of the space are the keywords that can be used to describe the service element. The

coordinates of the service in this space are then used to store the service into GlobalSpace

and to discover it. The discovery process consists of navigating this semantic space

1Plans may be automatically generated through AI planning and deductive theorem proving. How-
ever, this is not currently addressed in Rudder.
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to narrow an element query to a small set of potential matching profiles and then

performing semantic matching on these profiles.
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Figure 5.3: Discovery message for registering/unregistering an element.

When an element is added to the system, its associated CA parses the element’s

OWL-S profile description, and creates a registry entry that uniquely identifies the

element in Rudder. The attributes form the coordinates of a semantic space. For

example, a computational storage resource may belong to the 3D storage space with

coordinates “space”, “band width”, and “cost”. The process is shown in Figure 5.3. The

registry itself is decentralized and is implemented using the Comet substrate described

below. The CA is also responsible for maintaining the consistency of this information

in the registry and updates the registry when one or more of the element’s attributes

change. A periodic heart-beat message is used to ensure the liveliness of elements.

When the element permanently leaves the system, the agent unregisters the service and

deletes the corresponding registry entry.

The discovery protocols allow agents to search for elements. Searching consists of

two steps. First, the agent generates the request description identifying the semantic

space and consisting of relevant keywords, partial keywords, and/or wildcards. It then

searches for candidate elements within the decentralized repository in a distributed

manner. The matching process consists of an initial lexical matching of the keywords

in the query followed by a semantic matching [87] to evaluate the similarity between

the request and matched element profiles. The matching elements are returned to the

requesting agent.
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Interaction Protocols: allow distributed agents to interact, coordinate and ne-

gotiate during composition in order to reach a mutually acceptable agreement. Imple-

mented protocols are based on existing agent interaction protocols [28], such as those for

consensus, mutual exclusion, bargaining, auctions, distributed constraint satisfaction,

coalition formation, distributed planning, etc.

The appropriate protocols are selected based on the composition context. During

element selection, the CSA can make a decision based on a fixed criteria (e.g., mini-

mum execution time), and consequently the simple and efficient Contract-Net Protocol

(CNP) [82] (see Section 5.3.4) is employed. Similarly, a Marketplace like service-oriented

negotiation protocol [81] (see Section 5.3.4) is employed when the agents need to achieve

a mutually acceptable agreement within a dynamic context, for example, the negotia-

tion of non-functional element properties.

5.2.3 System Implementation

The current prototype of Rudder has been implemented using Comet. A conceptual

overview of the Rudder implementation architecture is presented in Figure 5.4. As
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Figure 5.4: An overview of the Rudder implementation architecture.

described in Chapter 3, the Comet coordination layer provides primitives to support

shared-space based coordination model, including out, in, rd, and rdall operators.

Each peer node in Comet provides an agent environment responsible for generating, con-

figuring, and destroying agents. Agents are implemented in JAVA as single thread pro-

cessing units. The agents communicate with each other by associatively reading, writ-

ing, and extracting tuples, and interact using the Rudder interaction protocols. These

protocols are implemented using the abstractions and services provided by Comet.
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The Rudder discovery protocol is implemented as follows. When an element is added

to the system, its CA registers the element by writing its profile into the global tuple

space using the Comet out (ts, t) operation, where ts identifies the semantic space

and tuple t encapsulates the registration request. The registration request is routed

by Comet to the appropriate peer node in the overlay and the profile is stored in a

local repository at that node. Similarly, an element can be unregistered using the in

operator. Agents can query a single matching element using the rd operator or all

matching elements using the rdall operator.

As in the registration case, the query is routed by Comet to the appropriate peer

node(s) in the overlay, where semantic matching is used to check the similarity between

the request and available profiles. The semantic matching process compares the syn-

tactic and semantic composability of the elements. It is similar to semantic web service

matching [87] and ensures that the interacting elements are compatible in aspects of op-

eration modes (request-response), messages, number of parameters, data types, binding

protocols, etc. This matching can be implemented using OWL-S matching tools such

as OWL-S Matcher [68].

Interaction protocols are implemented using the communication abstractions pro-

vided by Comet as follows. For each negotiation, the first step involves session setup

where the initiating agent creates a session identifier. This agent then sends the setup

message to the selected agents and waits for their acceptance. Once the negotiation

has been setup, the initiator informs the participants of the interaction protocol and

related information, such as negotiation item, bargaining strategies, roles, etc. After

the setup is complete, the agents engaged in the negotiation can directly interact in a

peer-to-peer manner.
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5.3 Autonomic Composition of Grid Workflows Using Rudder

Rudder uses the workflow model as its basis for autonomic composing applications. A

Grid workflow can be viewed as a set of tasks organized as a well-defined flow of exe-

cutions, and can be thought of as a composition of Grid services with interaction de-

pendencies. Workflows are effective integration strategies for developing dynamic Grid

applications. Further, recent advances in workflow-based techniques allow a workflow

to be decomposed as sub-flows and enacted in a decentralized manner, enhancing both

performance and scalability [26].

Unlike traditional workflow management system, the Rudder framework presented

in this thesis also addresses dynamic service selection and negotiation. In business

workflow management, services are selected during the plan generation phase based on

user defined constraints or parameters. This approach is effective for business workflows

as these applications generally consist of shorter transaction processing tasks with small

amounts of data. However, Grid applications are generally more dynamic and involve

more long running tasks, larger data flows, and utilize heterogeneous and dynamic

resources. This requires dynamic workflows involving dynamic selection, configurations

and composition of services. Further, negotiations are required to resolve conflicts and

competition between candidate services at runtime to meet user objectives.

In autonomic workflow composition, the first step is to generate composition plans.

A composition plan includes a predefined workflow process and user specified con-

straints. Composition plans are generated as follows. First, the application process

is represented using a standard workflow language. This representation is then struc-

turally decomposed into a set of component workflows. A composition plan is created

by syntactic processing each component workflow. Specifically, the process description

is directly extracted from the workflow description. Each task description is defined as

an OWL-S profile. Users may additionally specify non-functional properties for tasks,

such as QoS, cost, etc.

Once the composition plans have been generated, the system instantiates CSAs to

enact the plans in a distributed manner.The CSAs employ discovery protocols to search
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for candidate elements for each task in the plan, and ensure that the selected elements

have compatible syntactic and semantic attributes. As several existing elements may

provide “similar” functionalities, the agent may use the non-functional properties of

the element (e.g., cost, security, privacy, time, availability, etc.) to select the most ap-

propriate one. Further, dynamic runtime selection between these elements may require

negotiation. Key steps in the autonomic composition process are illustrated below.

5.3.1 Autonomic Workflow Composition

Rudder views autonomic composition, as the dynamic configuration, enactment, and

adaptation of workflows. In Rudder, workflows are specified using XML, along with

adaptation policies that define how a task or the workflow may be adapted during

execution to satisfy non-functional requirements (e.g., performance, response time, re-

source usage, availability, etc.). The operation of Rudder is illustrated using the sample

workflow shown in Figure 5.5. This workflow starts its execution at task A. When it

completes, task A initiates task B, which, after its completion, initiates either task C

or D, based on its result. Task C initiates task F, after which, the workflow terminates.

Alternately task D is executed, and the workflow terminates.

A B

C

D

F

Branch
Start

End

End

Figure 5.5: An illustrative workflow.

The workflow composition in Rudder consists of 3 phases. (1) Discovery and se-

lection: a dynamically instantiated CSA discovers a group of element services for each

workflow task, and instantiates a CA for each service. It then negotiates with each

CA group to dynamically select an element service. After that, the CSA generates a

task execution plan for each task. (2) Composite service setup: the CSA dynamically

establishes an InteractionSpace across itself and the providers of the selected element

services. Then, it distributes the execution plans to CAs through the space. (3) Work-

flow execution: the agents coordinate to execute the workflow by taking and writing
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composition tuples. During each task execution, the CA may switch the composed

element to adapt the workflow. The composition tuples, the three composition phases,

and workflow adaptations are described in more detail in the following.

5.3.2 Composition Tuples

Rudder defines two type composition tuples for executing the composition process,

which are plan tuple and task tuple. A plan tuple describes a task execution plan and

is generated by the CSA. A task tuple triggers a task execution and is generated by the

CA from the task execution plan.

<Plan>
  <Name>B</Name>

  <Status> Activated </Status>
  <Dependency> 
     < Pre Type=”Sequence”> A</Pre> 

     < Post Type=”Branch”> If (Size>1000) Then C
      Else D  </Post>

  </Dependency>
  <CAlist>
     < Selected> 

         CA -id-51BBA99F4F1B4084BE62963D772A7BE305  
     < Selected>

     < Candidate> 
         CA -id-BE3E85BF0F1671F4F2B80D9E13BFD4D5BD
         CA -id-1441E705D9D2E4CC6B369D350C87FCCC50

         … .
    </Candidate>

  </CAlist>
  </AdaptationPolicy>
       < Switching StateTransfer=”True”> 

        If (performance < thresh_hold) Then switching 
       < /Switching>

       < TranStates>
          < Name>z</Name>
         … ..

       < /TranSates>       
  </AdaptationPolicy>

</Plan>

<Plan>
  <Name>*</Name>

  <Status> Activated </Status>
  <Dependency> 
     *

  </Dependency>
  <CAlist>

     < Selected> 
         CA -id-51BBA99F4F1B4084BE62963D772A7BE305  
     < Selected>

     < Candidate> 
        *

    </Candidate>
  </CAlist>
   </AdaptationPolicy> 

       * 
   </AdaptationPolicy>

</Plan>

(1) (2)

Figure 5.6: An example of a plan tuple and template.

Figure 5.6 (1) presents a sample plan tuple for task B of the workflow shown in

Figure 5.5. It consists of the following 5 fields: (1) Name, which identifies the task

in workflow. (2) Status, which can be “Activated” or “Stopped”. (3) Pre and post

dependencies, which specify the task’s relationships to its immediate predecessor(s) and

successor(s). These relationships can be one of “Sequence, Branch, And-join, Or-join, or

And-split”, which are shown in Figure 5.7. Predecessor and successor tasks are specified

using task names. Dependency specifications may also include logical operators such

as “and”, “or”, and “if...then...else...”. Note that the start task is the predecessor of
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Figure 5.7: Pre and Post dependency relationships.

the first task in the workflow, and the end task is the successor of the last task in the

workflow. (4) CAlist, which includes the selected CA identifier and all candidate CA

identifiers. (5) Adaptation policy, which specifies how to adapt the workflow in response

to specific events. For example, if the performance (e.g., throughput, bandwidth, or

latency) of a service drops below the required thresh-hold, the element may be replaced.

In the element switching, the state transferring can also be supported. If the state

transferring is required, the user must explicitly set the transfer attribute as true and

identified the names of the transferred states in the following fields.

A task execution plan tuple can be retrieved using a plan template, which matches

the plan tuple and may have wildcard “*”. Figure 5.6 (2) shows the plan template

for retrieving the “Activated” task execution plan B. A task tuple has fields of name,

predecessor, and input data including (host and port). The task tuple for task B is

presented in Figure 5.8(1). The tuple has name as “B”, task “A” as its predecessor,

and its input data is located at “foo.cs.bar.edu” at port “9900”. A task tuple can

be retrieved using a matching task template. Figure 5.8(2) shows the template for

retrieving the sample task tuple.

<Task>
      < name>B</name>

      < predecessor>A</predecessor>
      < inputdata>
         < host> foo.cs.bar.edu </host>

         < port> 9900 </port> 
      < /inputdata>

 </Task>

<Task>
      < name>B</name>

      < predecessor>A</predecessor>
      < inputdata>

         *
      < /inputdata>
 </Task>

(1) (2)

Figure 5.8: Examples of task tuple and template.

The task tuples and templates are generated by the CAs based on task execution
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plans. Specifically, the CAs map the Pre dependency to task templates, and the Post

dependency to task tuples. The task tuples are generated after the task execution.

Each part in the Post dependency is mapped to a task tuple. The CA set its plan name

as the predecessor, the succeeding task name as the tuple name, and the corresponding

data location as the input data. For example, the CA for task A generates the task

tuple in Figure 5.8 (1).

The CAs generate the task templates from the Pre dependency as below: (i) Se-

quence relationship maps to a task template, which has plan name as the name, the

wildcard “*” as input data, and the preceding task name as the predecessor. For ex-

ample, the task template B in Figure 5.8 (2) is generated from plan B. (ii) Each part

participating the And-join relationship maps to a task template, which has the similar

setting as above. (iii) All parts participating the Or-join relationship maps to a task

template, which has the similar setting except using wildcard “*” as the predecessor.

5.3.3 Workflow Composition Phases

This section presents the three workflow composition phases in Rudder. Figure 5.9

illustrates the discovery and selection phase, which has 4 steps. The user submits

the workflow and adaptation polices of the composite service. A CSA is instantiated

to process the user inputs. The CSA parses the workflow specification and generates

discovery request for each workflow task. Then, it uses the GlobalSpace to discover a

group of candidate services for each task, and instantiates a CA for each discovered

service. The CSA negotiates with each SA group to dynamically select an appropriate

service and marks others as backups. Finally, the CSA generates a task execution plan

for each workflow task.

Figure 5.10 illustrates the 4 steps of the composite service setup phase. The CSA

initiates a transient Comet space as the InteractionSpace, and invites all the selected

CAs to join this space. Each CA accepts the invitation and executes a Comet join

protocol [57]. After joining the space, the CA locally accesses the InteractionSpace

to In its task execution plan tuple. Once all CAs have joined, the CSA inserts the

“Activated” plan tuples into the space, which will be extracted by the corresponding
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Figure 5.9: Phase 1: Discovery and selection.
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Figure 5.10: Phase 2: Composite service setup.

Figure 5.11 illustrates the workflow execution phase. The CSA inserts the first task

tuple to start the execution, and waits for an end task tuple or a “Stopped” plan tuple.

Then, the CAs coordinate to execute the workflow by taking and writing task tuples.

For example, the CA for task B in Figure 5.5, starts executing the task after taking task

tuple B. After execution, the CA inserts either task tuple C or task tuple D into the

space, depending on the result of task B. The last task’s CA inserts an end task tuple,

which will be consumed by the CSA. Finally, the CSA collects the output data and

returns to user. If the composite service is permanently terminated, the CSA informs

the infrastructure to destroy the InteractionSpace and all the CAs.

5.3.4 Autonomic Composition Mechanisms

Rudder employs agent-based negotiation mechanisms to enable the autonomic workflow

composition. The major negotiation mechanisms include: Contract Net Protocol based
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Figure 5.11: Phase 3: Workflow execution.

element selection and marketplace model non-functional properties negotiation.

Dynamic Element Selection

Dynamic element selection is based on negotiations among CSAs and CAs and is il-

lustrated using the Contract Net Protocol (CNP) [82], assuming that the CSA has a

composition plan to enact and there are several elements and corresponding CAs capa-

ble of executing tasks in this plan. The CNP based negotiation process is illustrated

in Figure 5.12. During negotiation, the CSA acts as the manager and the CAs act

as contractors. The process consists of the following steps: (1) The CSA searches for

candidate CAs using the discovery protocol and advertises the specified task to all can-

didate CAs. (2) CAs analyze the received task information and respond with a bid;

(3) The CSA evaluates received bids, assigns the task to the CA with the best bid,

and refuses the other CAs; (4) The CA delegates the task to its associated element

and returns the result(s) from task execution to the CSA within a bounded time. If

result(s) are not received by the CSA within this time, the CSA explicitly terminates

the process. The protocol is implemented using the communication and coordination

abstractions provided by Comet. For example, the discovery phase is implemented us-

ing the rdall(ts, t̄) operation, where ts is the name of semantic space used in the task

description and t̄ consists of keywords from this space. Subsequent agent interactions

use peer-to-peer communication abstractions provided by Comet .

The primary reasons for using the CNP-based negotiation protocol are its efficiency

and flexibility. The cost of the Contract-Net Protocol is O(N), where N is the number

of participating agents. The CNP negotiation process can be customized to specific

application requirements. For example, the criteria used by the CSA for choosing CAs
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Figure 5.12: Dynamic element selection using CNP-based negotiation.

can be dynamically specified. Further, the CSA may cache information about discovered

elements, and can (re)-negotiate with these cached elements if the selected element can

no longer perform the task for some unexpected reason. The overall process can be

further optimized by having the CSA evaluate bids after receiving a percentage of the

bids instead of waiting for all responses.

Multi-Stage Property Negotiation

The marketplace model can be used to negotiate non-functional properties of a compo-

sition plan. In this negotiation model, instead of a one time determination, values are

decided through multiple stage adjustment. This is achieved by iteratively exchanging a

finite set of issues between the buyer and seller agents. A buyer agent receives a “plan”

from a seller agent, evaluates it and decides either to accept it and stop the negotiation

with an agreement, or reject it and propose a counter plan. In case of unsuccessful ne-

gotiations, the participating agents can choose to be further coordinated by a mediator,

which can be an agent or a system administrator. This mechanism enables agents to

resolve locally decided strategies and select a mutually acceptable strategy.

In the implementation of the marketplace model, each negotiation session is setup

by an initiator agent. The initiator agent may use the discovery protocol to discovery

other participants, which is similar to that used in the CNP protocol described above.

Once setup is complete, the agents engaged in the negotiation directly communicate

using Comet peer-to-peer communication abstractions. Each negotiating agent uses

the remaining amount of a local resource [81] (e.g., remaining number of iterations) to
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determine its plan in successive negotiation iterations as follows:

f(curr) = k( maxr−curr
maxr−minr

)
β

(5.1)

where the possible values of the allocated resource is between [minr,maxr], the current

value is curr, the preference factor k (0 < k < 1) determines the initial value of the issue

under negotiation, and the conceding rate β(β > 0) determines the agent behaviors. If

β > 1 the function concedes faster and results in a greedy agent. If β <= 1, the agent

is selfless.
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Figure 5.13: Example of two agent negotiation using the marketplace model.

The mechanism described above enables applications to dynamically tune their con-

figurations to ensure that they continue to meet the composition constraints despite

system dynamism and uncertainty. For example, a self-managed distributed Video-On-

Demand application must select the appropriate level of network service that can best

meet the user requirement while minimizing cost. The desired value of service level must

thus be negotiated between the video file server element and the end-user client. For

instance, the server has an acceptable range [10, 25] and the client can accept the value

in the range of [15, 60]. The appropriate value can decided in Rudder using negotiation

between the two component agents. Let the initiator agent have β = 10 and the other

agent have β = 5. The resource-driven function with k = 0.1 used by the both agents

are plotted in Figure 5.13(b). As shown in Figure 5.13(a), an agreement is reached after

6 iterations and the negotiated value of the issue is 21. The effectiveness and efficiency

of this negotiation process can be tailored using different agent configurations.
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5.3.5 Operation and Experimental Evaluation

Rudder is implemented as a peer-to-peer infrastructure where the peers are nodes rep-

resenting organizations on the Grid that provide and/or consume Grid services. The

architecture of the Rudder stack is shown in Figure 5.4. The overall operation of Rudder

includes two phases: bootstrap and running. During the bootstrap phase, the infrastruc-

ture peer nodes join the GlobalSpace group. The running phase consists of stabilization

and user modes. In the stabilization mode, a peer node responds to messages/queries

from other peers in the system, which maintains the overlay routing table and handles

node failures or leaving. In the user mode, the user can start composition process on

any peer node. The dynamic instantiation time for an InteractionSpace includes the

time for creating the shared-space and initializing it (in the order of seconds), and

time required for a peer node to join this new space (about 10 seconds). Note that this

setup time for an InteractionSpace is a one-time cost for a workflow and can significantly

improve performance by reducing operation latencies.

The experimental evaluation presented as below focuses on element discovery and

element selection for dynamic composition. The experiments were setup both on a

Rutgers campus network and PlanetLab testbed. The execution time is measured for

systems with different number of peer nodes, and for different numbers of elements and

agents. In case of two agent negotiation, the overall communication cost is based on

the number of negotiation iterations and the latency of peer-to-peer messaging, which

is independent of the system size.

Element discovery: The first experiment measures the time required to semanti-

cally discover registered elements, which is the interval between when a CSA issues a

discovery request and when results containing all element profiles matching the query

are returned. This time includes the time for routing the templates at the peers, locally

matching the template profile with registries in the local repository at the node, and

returning matching results. Note that this measurement does not include the cost of

semantic matching. The template used in this experiment is specified using element

attributes, including service type, location, and performance/QoS guarantees, etc., and
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has a size of at least 440 bytes. The experiments were conducted on the Rutgers campus

network. The average execution time shown in Figure 5.14 illustrates that the discov-

ery time increase (from 0.1s to 65s) is much slower than the increase in the number of

elements (from 3 to 2700), and is independent of the system size. This demonstrates

the scalability of the system and its suitability to distributed decentralized systems.
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Figure 5.14: Scalability of element discovery.

Element selection: The second set of experiments evaluate the Contract-Net

Protocol based element selection the Rutgers campus networks, in which CAs represent

elements randomly distributed at the peer nodes and a CSA attempts to find the best

CA to execute a task. The task length is fixed and independent of the element selection

time. The tasks are generated using a Poisson process with inter-arrival mean time of 1s

and 5s to simulate different application behaviors. The CSA begins the bid evaluation

process when (1) it receives all the bids or (2) it receives a certain percentage of bids.

The measured execution time is from the time when the CSA announces a task to the

time when it gets the results from the selected CA to which the task is assigned, and

does not include the task execution time. The time thus includes task announcement,

element selection, and result return communication time.

The first experiment was setup on Rutgers network. Figure 5.16(b) plots the average

execution time for the two cases, i.e., when the CSA begins to evaluate the bids after

receiving all the bids and only 50% of the bids (i.e., Eva r=0.5). In Figure 5.16(b) ,

the execution time increases linearly with the number of CAs, and the performance of
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Figure 5.15: Average CNP-based element selection and execution time.

this process is improved in case (2). Element discovery time is also measured in this

experiment, and is separately plotted in Figure 5.16(b) (1). In the plot, the discovery

time increases only about 20% when the number of matched profiles increases 400%.

The second experiment was conducted on PlanetLab testbed using the same mea-

surements. Figure 5.16 plots the average execution time for the two cases, i.e., the CSA

begins evaluating bids after it receives all the bids; and the CSA begins evaluating bids

after it receives only 50% of the bids (i.e., Eva r=0.5). Figure 5.16(a) plots the ele-

ment discovery time, which increases by only about 28% when the number of matched

profiles increases by 600%.
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Figure 5.16: Average CNP-based element selection and execution time.

The results of above two experiments show that element discovery scales well and
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is fairly independent of the system size and the execution overhead increases linearly

with the number of CAs, which is expected.

5.4 An Illustrative Example: Autonomic Oil Reservoir Optimization

Using Rudder

One of the fundamental problems in oil reservoir production is determining the op-

timal locations of the oil production and injection wells. However, the selection of

appropriate optimization algorithms, the runtime configuration and invocation of these

algorithms and the dynamic optimization of the reservoir remain challenging problems.

In this example we use Rudder to support the autonomic compositions, interactions and

adaptations to enable an autonomic self-optimizing reservoir application. The applica-

tion consists of key elements: (1) sophisticated reservoir simulation components (e.g.

IPARS [89] factory) that encapsulate complex mathematical models of the physical

interactions in the subsurface; (2) distributed data archives that store historical, exper-

imental, and observed data; (3) sensors embedded in the instrumented oilfield providing

real-time data about the current state of the oil field; (4) optimization services based

on the Very Fast Simulated Annealing (VFSA) [24] and Simultaneous Perturbation

Stochastic Approximation (SPSA) [89]; (5) the economic modeling service.

These elements need to dynamically discover one another and interact as peers to

achieve the overall application objectives. First, the simulation components should

dynamically obtain necessary resources, detect current resource state, and negotiate

required qualities of service. Next, the simulation components must interact with one

another, and with archived history and real-time sensor data, to enable a better charac-

terization of the reservoir. Further, the reservoir simulation components interact with

optimization services and with the data to optimize well placement, with weather ser-

vices to control production, and with economic modeling service to detect current and

predicted future oil prices so as to maximize the revenue from the production.

The operation of this application using Rudder, is illustrated in Figure 5.17. The

overall process is achieved by (1) generating composition agents based on application
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workflows, (2) agents discovering and composing the involved components to enable

the oil reservoir management process, which includes monitoring oil production behav-

iors and detecting needs for optimization, and (3) agents using high-level policies to

orchestrate interactions to optimize well placement and oil production.

Out(OptimizerConfig)

IPARS Simulator

Simulator Pool
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Figure 5.17: Autonomic Oil Reservoir Optimization

First, the composition engine (ACE) [14] generates the following workflows to satisfy

the application objectives: (i) the optimization service provides the IPARS reservoir

simulator with an initial guess of well parameters based on the configuration of the

oil field; (ii) IPARS uses the well parameters along with current market parameters

to periodically compute the current revenue using an Economic Model (EM) service;

and (iii) IPARS iteratively interacts with the optimization service to optimize well

parameters for maximum profit. Based on above workflows, three CSAs are instanti-

ated for the EM, Optimizer, and IPARS respectively. The CSAs dynamically discover

the appropriate autonomic elements with desired functionality and cost/performance

characteristics using the discovery protocol, and configure the workflows using inter-

action rules. The CAs use the interaction rules to dynamically establish interaction

relationships among the elements and using appropriate communication mechanisms.

The CSAs then coordinate with the CAs to enable the application.

Application self-management and self-optimization behaviors are achieved via the

autonomic behaviors of the agents. Each CA monitors and manages the execution of its
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element, while the CSAs discover and compose elements and resources to satisfy current

application objectives. For example, the choice of optimization algorithm depends

on the size and nature of the reservoir. In case of reservoirs with many randomly

distributed maxima and minima, the VFSA algorithm can be employed during the

initial optimization phase. Once convergence slows down, VFSA can be replaced by

SPSA, which is suited for larger reservoirs with relatively smooth characteristics. Using

these policies, the Optimizer CSA selects the appropriate optimization service, and

configures it to optimize the application according to the current objectives of the

application.

This chapter describes Rudder agent-based coordination framework for autonomic

composition of Grid applications. Rudder provides software agents to enable the dy-

namic discovery and composition of application workflows. In Rudder, the agents dy-

namically select appropriate service elements, enactment, and configure the elements as

parts of application workflows. Rudder implements the agent negotiation protocols and

enables appropriate application behaviors to be dynamically negotiated and enacted.

The agent protocols and activities are implemented using Comet coordination substrate.

The Rudder system has been implemented, deployed, and evaluated. The experimental

results on PlaneLab wide-area testbed and Rutgers campus networks demonstrate both

the performance and scalability of Rudder. The autonomic oil reservoir optimization

using Rudder is presented as an illustrative example.
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Chapter 6

Summary, Conclusion, and Future Work

6.1 Summary

The primary objective of the research presented in this thesis was to investigate coor-

dination infrastructures that address the complex coordination/computation require-

ments of Grid applications. The key contribution of this thesis is the Comet conceptual

architecture model and implementation infrastructure, which provide coordination ab-

stractions for supporting dynamic, scalable, and asynchronous applications in wide-area

Grid environments. The Comet employs fully decentralized architecture and provides

a global virtual shared-space abstraction that can be associatively accessed by all peer

nodes in the system. The Comet space is constructed from a semantic information

space that is deterministically mapped using a locality preserving mapping onto the

dynamic set of peer nodes in the Grid system. The resulting Comet space maintains

content locality and guarantees that content-based tuple queries are delivered with

bounded costs. Comet is composed of layered abstractions prompted by a fundamental

separation of communication and coordination concerns.

The Comet decentralized coordination infrastructure was developed to demonstrate

the conceptual architecture model. Each peer node in Comet runs a stack with a

communication layer, a coordination layer, and an application layer. The communica-

tion layer provides associative messaging services and manages system dynamism using

a self-organizing overlay. The coordination layer implements Linda-like coordination

primitives, by which all peers can associatively access the space without knowing the

physical location or identifiers of the hosts. The application layer provides programming

abstractions to enable application formulation and execution. The Comet infrastruc-

ture has been deployed and evaluated using Planetlab wide-area testbed as well as a
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campus network at Rutgers University. The experimental results demonstrated the

scalability and efficiency of Comet and the feasibility of wide-area Grid deployment.

Two prototype systems were developed using Comet. The first prototype was

the CometG decentralized (peer-to-peer) computational infrastructure, which extended

Desktop Grid environments to support parallel asynchronous applications. CometG

provides coordination spaces and programming abstractions for parallel asynchronous

iterative computations as well as an asynchronous formulation of the replica exchange

algorithm for molecular dynamics applications. The second prototype was the Rudder

coordination framework. Rudder provides software agents and coordination protocols

for the dynamic discovery and selection of software service elements, enactment and

configurations of workflows, and adaptations of these workflows to respond to changing

Grid environments. The two prototype systems were deployed and evaluated on the

PlanetLab testbed and a Rutgers campus network. The experimental results demon-

strated the flexibility, scalability and effectiveness of the Comet infrastructure, as well

as its ability to address complex coordination requirements of Grid applications.

6.2 Conclusion and Contributions

The emergence of wide-area Grid computing and Desktop Grid computing, based on

the aggregation of large numbers of resources, is rapidly emerging as the dominant

paradigm for distributed problem solving for a wide range of application domains.

However, the heterogeneity, dynamism, and uncertainty of the underlying computing

environment result in significant application development and management challenges,

enabling flexible robust application coordination becomes a key issue. The shared-

space based coordination model that provides temporal and spatial decoupling associa-

tive data access mechanisms can address most requirements of the Grid applications.

However, realizing a scalable robust shared-space based coordination infrastructure for

distributed wide-area environments presents several challenges.

This thesis presented the Comet decentralized coordination infrastructure for Grid

environments. Comet implements a scalable, decentralized tuple space, which provides
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Linda-Like primitives to enable communication and synchronization of distributed pro-

cesses and software elements. The Comet employs peer-to-peer architecture and lay-

ered abstractions for prompting the separation of communication, coordination and

programming concerns. The combination of these layers provides a flexible, efficient,

scalable, and application-friendly support for Grid applications. The effectiveness of

the Comet is demonstrated by two prototype application systems. The deployment

and experimental evaluations of these systems illustrate the scalability and flexibility of

Comet, and the effectiveness of using Comet to support applications in wide-area Grid

environments.

Key contributions of this research are summarized below.

Comet Conceptual Architecture Model

Comet provides a global virtual shared-space constructed from the semantic information

space used by entities for coordination and communication. This information space is

deterministically mapped, using a locality preserving mapping, onto the dynamic set

of peer nodes in the Grid system. The space builds on an associative DHT, which uses

locality preserving mapping Hilbert Space Filling Curve (SFC) to map tuples/templates

from the multi-dimensional information space to the one-dimensional peer indices. As a

result, the Comet space maintains content locality and provides efficient content-based

data queries.

Comet employs a layered architecture which promotes the separation of coordina-

tion, communication, and application programming concerns. The communication layer

provides content-based routing, direct communication channels, and system dynamism

management. The coordination layer implements Linda-like coordination primitives, by

which all peers can associatively access the space without knowing the physical loca-

tions or identifiers of the tuples or hosts. The application layer provides programming

abstractions and mechanisms for enabling application formulation and execution.
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Comet Coordination Infrastructure

The Comet coordination infrastructure implements and demonstrates the architecture

model. The Comet infrastructure provides tuples and templates in format of XML

strings, which are lightweight, flexible, and suitable for efficient information exchange

in distributed heterogeneous environments. It adapts the Squid information discovery

scheme to construct the distribute hash table for tuple distribution and lookup. A

peer node in Comet infrastructure runs a stack with three layers. The communication

includes a content-based routing engine and a structured self-organizing overlay. The

coordination layer include a data repository for storing, pending requests, and retrieving

tuples, a flexible matching engine, and a message dispatcher that interfaces with the

communication layer to convert the coordination primitives to messaging operations

and vice versa. The application layer provides the CometG computational mechanisms

for parallel asynchronous Grid computations, and Rudder coordination framework for

composing component-based applications.

CometG Computational Infrastructure

CometG is a peer-to-peer computational infrastructure that extends Desktop Grid envi-

ronments to support parallel asynchronous formulations of Grid computations. CometG

builds on top of Comet tuple space and provides coordination space abstractions and

programming modules to support master-worker/BOT parallel formulations of asyn-

chronous computations. The coordination spaces support dynamic task distribution and

management as well as inter-task communications. A programming module support an

application-specific computational component that can locally compute a retrieved task,

and contains task retrieval/submission mechanisms as well as interaction/negotiation

protocols. Prototypes of parallel asynchronous iterative applications and parallel asyn-

chronous replica exchange simulations have been developed to demonstrate the CometG

system.
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Rudder Coordination Framework

Rudder is a decentralized agent-based coordination framework for supporting the dy-

namic composition of Grid applications. Rudder provides software agents and coordi-

nation protocols for the dynamic discovery and selection of software element services,

enactment and configurations of workflows, and the management and adaptations of

these workflows to respond to changing Grid environments. The Rudder uses the work-

flow model as its basis for autonomic composing applications. Its agent interaction and

negotiation protocols enable appropriate application behaviors to be dynamically nego-

tiated and enacted. The major negotiation mechanisms include: Contract Net Protocol

based element selection and marketplace model non-functional properties negotiation.

The defined protocols and agent activities are supported by Comet coordination infras-

tructure.

6.3 Future Work

The directions for future extensions of this research are envisioned as below:

• Failure resilient tuple space infrastructure. A resilient tuple space coordination

system must address both, the failures of coordinating application processes as

well as the failures of the tuple space system. The current Comet provides system-

level and application-level approaches for addressing crash failures and arbitrary

execution delays of application processes. One major enhancement can be im-

plementing resilient coordination algorithms using wait-free concurrent data ob-

jects [43]. The Comet architecture naturally supports the scalable implementation

of wait-free data objects using a conditional atomic swap (cas) operator [80]. Us-

ing the cas operator, application developers can simply realize robust and efficient

coordination behaviors using wait-free algorithms [43].

• Large-scale Desktop Grid based asynchronous parallel computations. Chapter 4

described the CometG computational infrastructure, which currently can support

coordination groups consisting of tens to hundreds of peers. Further, each peer

can run multiple instances of masters and/or workers. The scalability of CometG
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can be potentially extended to thousands or even millions of nodes with the

following enhancements: (1) separating the space nodes from end nodes, where the

space nodes provide coordination services and the end nodes host the application

program modules; (2) employing relatively powerful peers, i.e., super-peers, with

larger memory capacity and network bandwidth, as space nodes and master nodes;

and (3) using high-throughput task dispatch implementations such as the task

servers popularly used by current Desktop Grid projects to support millions of

users.

• Advanced workflow composition and control system for Grid applications. Chap-

ter 5 presented Rudder coordination framework for dynamic composing pre-

generated application workflows. It is possible that the application workflow

needs be changed at runtime to address dynamically changing environments or

user requirements. The possible changes can be adding, deleting, modifying a task

or sub-flows so that workflow instances can be created on-the-fly and coordinated

at runtime. The composition and coordination model based on asynchronous

decoupled shared-space abstraction naturally supports the realization of these

adaptations. Investigating and developing an autonomic workflow composition

and control system on top of Rudder is a promising research direction.
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