CONTENT-BASED EVENT ROUTING WITH
FILTER PROPAGATION

BY DAN DAVIS

A thesis submitted to the
Graduate School-—New Brunswick
Rutgers, The State University of New Jersey
in partial fulfillment of the requirements
for the degree of
Master of Science

Graduate Program in Electrical and Computer Engineering

Written under the direction of
Prof. Manish Parashar

and approved by

New Brunswick, New Jersey

October, 2003



ABSTRACT OF THE THESIS

Content-Based Event Routing with Filter

Propagation

by DAN DAVIS

Thesis Director: Prof. Manish Parashar

Publisher/subscriber is the emerging interaction paradigm in loosely coupled ap-
plications due to its inherent scalability. However, addressing the heterogeneity
and dynamism in user interest and system state remains a key challenge in pub-
lisher /subscriber systems. Existing distributed event systems address these concerns
at centralized hubs, at end points, or require flood broadcasted advertisements. Many
systems have been implemented and tested on small overlay networks with the hope
that the algorithms will scale to larger networks.

This thesis presents a distributed routing protocol for a publisher/subscriber event
system that uses multicast routing trees to propagate content-based event filters
toward the publishers in a widely distributed network. Filter propagation makes
this system naturally distributed, efficient, and scalable. Network simulation re-
sults demonstrate that the protocol reduces unwanted event traffic and adjusts to
changes in subscription and network topology. The compatibility of this protocol
with wireless multicast routing protocols, and the minimization and approximation

of content-based predicates are also discussed.



Acknowledgements

I would like to thank my research advisor Dr. Manish Parashar for his invaluable
guidance, support and encouragement during the course of this work and throughout
my graduate studies at Rutgers. My friends have been patient with technical con-
versations and my need for distraction. My wife has proofread the document and
supported and encouraged me patiently. My parents have somewhat refrained from

asking about my progress.



Dedication

To my loving wife, Sarah



Table of Contents

Abstract . . . . . .. ii
Acknowledgements . . . . .. . ... iii
Dedication . . . . . . ... iv
List of Tables . . . . . . . . . . . . .. viii
List of Figures . . . . . . . . . . . . .. ix
1. Introduction . . . . . . . ... 1
1.1. Requirements of Publisher/Subscriber Systems . . . . . . . ... ... 2
1.1.1. Subscription, Filtering, and Aggregation . . . . ... ... .. 2

1.1.2. Quality of Service . . . . . . . . ... 3

1.1.3. Scalability . . . .. .. ... )

1.1.4. Summary of Requirements . . . . . . . . ... ... ... ... 6

1.2. Overview of the Thesis . . . . . . .. .. .. ... ... ... .. ... 6
1.3. Contributions of the Thesis . . . . . . . .. ... ... ... .. ... 7
1.4. Thesis Outline . . . . . . . . . . ... 7

2. Related Work . . . . . . . . .. 8
2.1. Event Systems for System and Network Management . . . . . .. .. 9
2.1.1. Simple Network Management Protocol Traps. . . . . . . . .. 9

2.1.2.  Common Information Model Indications . . . . ... ... .. 10

2.1.3. Tru64 UNIX Event Manager (EVM) . .. ... ... ... .. 11

2.2. Internet Routing Algorithms . . . . . . ... .. ... ... ... ... 11



2.2.1. Routing Information Protocol . . . . . .. ... .. ... ... 12

2.2.2. Distance Vector Multicast Routing Protocol . . . . . . . . .. 13
2.2.3. Link State Routing and Multicast . . . . . .. ... ... ... 15
2.2.4. Issues with IP Multicast . . . . . . ... ... ... ... ... 15

2.3. Peer-to-Peer Routing . . . . . . .. .. ... ... ... .. 17
2.4. Multicast Routing on Ad-hoc Wireless Networks . . . . . . . . .. .. 17
2.5, Siena . . ... 18
2.6. Semantic Routing . . . . . . . ... 20
2.7 SUummary ... oL 21
. Filter Propagation . . . . . . .. .. ... ... 23
3.1. Conceptual Overview . . . . . . . . . . . ... ... ... ... ... 23
3.2. Definitions and Data . . . . .. .. .. ... oL 25
3.21. Events . . . ... 25
3.2.2. Subscription Expressions . . . . . .. ... 25
3.2.3. Routing Tables . . . . . .. ... .. .. ... ... 27
3.2.4. Control Messages . . . . . . . . . .. ... 29

3.3. Behavior . . . . ... 30
3.3.1. Receivinga New Event . . . . . . .. ... ... ... ..... 30
3.3.2. Receiving a Filter Message . . . . . . . ... .. .. ... ... 30
3.3.3. Changing Subscription . . . . . . .. .. ... L. 31
3.3.4. Publishing . . . . . . ... 32
3.35. Timers . . . . . . . 32

3.4. Predicate Optimization and Approximation . . ... ... ... ... 33
. Simulation Implementation . . . . . ... ... ... ... . ...... 36
4.1. The Network Simulator . . . . . ... ... .. ... .. .. ..... 36

4.2. Topology Generation . . . . . . . . . .. ... ... 37



4.3. Simulation Implementation . . . . . . . ... ... ... 38

4.4. Experimental Framework . . . . . . ... .. o000 40

5. Experiments and Results . . . . . . .. ... ... ... .. ....... 43
5.1. Filter Efficiency . . . . . . . . ... 43
5.1.1. Overhead of Filter Timeout . . . . . ... ... ... ..... 48

5.2. Adapting to Change . . . . . . . . . . ... ... 50

6. Conclusions and Future Work . . . . . . . . .. ... ... ... .... 52
6.1. Conclusions . . . . . . . . . . . . ... 52
6.2. Future Work . . . . . . . . ... 53

References . . . . . . . H4



1.1.
2.1.
3.1.
3.2.
3.3.
3.4.
4.1.

List of Tables

Event System Requirements . . . . . . .. .. ... ... ....... 6
Comparison of Event System Features . . . ... ... ... ... .. 21
An Example Event . . . . . ... 25
Initial Routing Information . . . . . .. ... ... .. ... ... .. 28
Complete Routing Information . . . . . . .. ... ... ... ..... 29
A Sample Filter Message . . . . . . . . .. ... 29

Source Files of Experimental Framework . . . . . ... ... ... .. 40



1.1.
2.1.
3.1.
3.2.
4.1.
4.2.
4.3.
o.1.
5.2.
5.3.
5.4.
5.5.
5.6.
5.7.
5.8.
5.9.

List of Figures

Why Routing Should Consider Filter Data . . . . . ... .. ... .. 3
Multiple Multicast Trees on The Same Topology . . . . . . . . . . .. 14
Filter Propagation . . . . . . . . ... ... ... ... 24
Composite Filtering at an Event Router . . . . . ... .. ... ... 28
GT-ITM Input File . . . . . . ... ... . ... 38
Specifying an Experiment . . . . . .. ... o000 42
Diagnostic Functions . . . . . . . ... ..o 42
10 Publishers on a 100 Node Network . . . . . . .. ... .. ... .. 45
20 Publishers on a 100 Node Network . . . . . . . ... .. ... ... 45
40 Publishers on a 100 Node Network . . . . . . .. .. .. ... ... 46
80 Publishers on a 100 Node Network . . . . . . . ... .. ... ... 46
10, 20, 40 and 80 Publishers as Subscribers Increase . . . . . . . . .. 47
10, 20, 40, and 80 Subscribers as Publishers Increase . . . . .. . .. 47
Cumulative Control Message Count with No Timeouts . . . . . . .. 49
Cumulative Control Message Count with a Timeout . . . . . . . . .. 49

Cumulative Control Message Count with Injected Changes . . . . . . 51



Chapter 1

Introduction

Distributed publisher/subscriber systems route asynchronous events over a network
from a publisher to multiple subscribers. These systems are typically implemented
as middleware for use by applications. Publisher/subscriber systems promote loosely
coupled application design, i.e. application processes on different computers commu-
nicate using the publisher /subscriber middleware. Each computer may publish events
and/or subscribe to events.

Publisher /subscriber is one of the classic communication patterns. There are
many applications that use the pattern and many middleware systems that provide
publisher /subscriber semantics. Applications include system and network manage-
ment, data collection in sensor networks, and document change distribution [1], [2], [3].
Publisher /subscriber systems can be as general purpose as [P multicast or as specific
as the Salamander middleware for collaboratories [4]. The Open Grid Services In-
frastructure (OGSI) specifies web-based event systems to improve the management
of Grids [5]. Some even believe that solving the problems that prevent truly wide-
scale event systems could enable a new wave of increased utility and autonomy of
information technology [6].

To fulfill the needs of their target applications, distributed publisher/subscriber
systems must meet different requirements. These requirements include subscription,
filtering, aggregation, quality of service, scalability, and support for wireless and
mobile environments. Scalability, subscription, and filtering on a wide area network

are the key requirements that define the problem addressed in this thesis. Traditional



addressing and routing as exemplified by IP multicast is based on publisher and
subscriber addresses and not on message content. As a result these systems are not
scalable. Publisher/subscriber systems that use content for both routing and filtering
can provide distributed filtering and improve scalability. A scalable system performs
better, and may more easily meet quality of service constraints. Moreover, distributed
systems can be hard to manage and must meet a minimal level of self-configuration
and tolerance of change to scale to large networks and support mobile clients [7].

In approaching this problem, we consider several research areas that involve pub-
lisher /subscriber routing: Peer-to-Peer research, Collaboratory and Grid research,
Semantic routing research, and research on traditional internet routing protocols for
[P multicast. In particular, peer-to-peer researchers often suggest that peer-to-peer
designs are close to the original spirit of internet protocols and distributed systems [8].
In keeping with this observation, this thesis aims to use both IP multicast routing
protocols and filtering event systems as design patterns to meet the needs of modern

applications of distributed publisher/subscriber systems.

1.1 Requirements of Publisher/Subscriber Systems

1.1.1 Subscription, Filtering, and Aggregation

Publisher /subscriber systems differ in how they handle user subscriptions. For in-
stance, IP multicast allows a subscriber to subscribe to a multicast address. The
publisher sends events to the multicast address. Both the publisher and subscriber
must be aware of the content of the data, but the multicast routers between them
have no awareness of the content. CORBA’s event service is somewhat similar: appli-
cations subscribe to channels and publish to channels. The channel, like the multicast
address, defines the events the subscriber will receive.

However, a particular subscriber may only be interested in a subset of data sent

to a multicast address or channel. If the publisher/subscriber system is aware of



the content of the data, then the system may support a richer model of subscription
called filtering. In such a model, each subscriber describes the data they want when
they subscribe. Each publisher sends events conforming to a certain format so that
the system is aware of message content. The system only delivers events that match
the subscription. Both content-based routing as described by Siena and semantic-
networking research here at Rutgers provide this kind of benefit.

A publisher/subscriber system can be easily layered on IP multicast to format
data in a particular way when sent and then filtered when received. However, all the
events, even unwanted events, will be sent to all computers subscribed for events. As
illustrated in Figure 1.1, if most stock quotes are for other symbols, a large number
of messages will be required unless content and filters are considered.

Rather than wanting a subset of data, a subscriber may be interested in a sequence
of related events occuring close to the same time. If these events occur together, then
a new event can be generated as the aggregate of the events in the sequence. This
requires that a monitor in the network look for the sequence, receiving all events that

might be in the sequence.

1.1.2 Quality of Service

Applications with quality of service (QoS) constraints, including real-time constraints,

impose additional requirements on publisher/subscriber systems. For example, the

Sends all stock quotes

Wants quotes for SUNW Wants quotes for HPQ

Figure 1.1: Why Routing Should Consider Filter Data



Salamander distributed system will store event data for some time so that all events
can be delivered if the subscriber reattaches to the network. This provides a quality
of service desirable to mobile and wireless subscribers. In contrast, both TP mul-
ticast and SIENA attempt a best-effort delivery, pushing QoS requirements to the
applicaiton.

The architecture of a publisher/subscriber system may constrain the QoS quali-
ties provided. Douglass Schmidt has enhanced CORBA’s notication service to add
support for real-time constraints [9]. Due to these changes, high priority events are
delivered as quickly as possible regardless of the load on the real-time event service.
However, even real-time behavior cannot make up for an architecture that is just
too slow. A 250 millisecond deadline may be easily met with CORBA, but a 10
microsecond deadline will require a single process on a single computer solution.

Often, application specific quality of service requirements can be met by clever
reuse of existing protocols. Van Jacobsen has shown how multiple [P multicast ad-
dresses can be used to represent the same video channel at different transmission
rates to control network congestion [1]. Zhang’s work on RSVP allows reliable media
transmission by reserving buffer space for known multicast receivers [10].

The key differences between event systems and other publisher/subscriber sys-
tems lie in the qualities of service that are desirable. Events are likely to occur in
exponential bursts whereas media-oriented publisher/subscriber data occur in uni-
form rate flows from one publisher to multiple subscribers. Qualities of Service like
buffering for more reliable delivery also get at the difference between event and other
publisher /subscriber systems. Finally, many event systems also have logging and
accounting requirements that may be viewed as quality of service constraints. Van
Jabobson’s and Zhang’s work primarily benefit media-oriented multicast. In contrast,

the Salamander distributed system buffers events to avoid loss [4].



1.1.3 Scalability

Scalability is a difficult concept and is typically defined with respect to a number
of independent and dependent variables. For example, as the number of publishers,
subscribers, and routers increases, does the number of messages between participants
and the latency for event delivery remain acceptable? How do increases to the size
and rate of events affect the system?

The architecture and design of an event system govern its scalability. Each chan-
nel of CORBA’s event service is hosted on a single computer, so CORBA’s scalability
is limited by the resources on that one computer. In contrast, IP multicast is widely
scalable because each LAN subnet carries one copy of the message, and the routing
information is distributed across multiple routers. Gnutella’s success on college cam-
puses can be viewed as a scalability experiment that underscores the need to consider
communication patterns as well as distribution onto multiple servers.

A distributed system must also tolerate change and limit the amount of user con-
figuration required at each computer involved. Most networks are not self organizing;
when a computer is added to a network, some configuration is done to establish which
computers are on the network, and which will act as a gateway to other networks.
Most Gnutella clients require users to input a list of initial servers to contact. How-
ever, users are not required to input the topology and routes for the entire network.
Peer to peer research shows that while some part of this configuration is essential,
configuration can be avoided through further automation [7]. If well engineered, a
distributed system can be more resilient than a centralized solution, but this is rarely

achieved due to the modeling, testing, and forethought required.



1.1.4 Summary of Requirements

Table 1.1 lists desirable features of publisher/subscriber event systems. Support for
mobile clients and security are included in addition to the features discussed above.
Resiliency is included to clarify the interaction between reliable event delivery and

other requirements, and to highlight the benefits of best-effort delivery.

‘ Requirement | Description ‘
Subscription tyically by channel, filter expression, or hybrid
Event Aggregation supported in some event systems using filters
Reliable Delivery may be optimized for bursty data flows
Resiliency best-effort delivery reduces congestion
Real-Time must be considered relative to typical system latency
Logging and Accounting | should be distributed in distributed systems
Scalability with respect to what?
Mobile Client Support mobile clients connect unreliably

Table 1.1: Event System Requirements

1.2 Overview of the Thesis

This work studies algorithms for improved routing on a publisher/subscriber event
system running over a connected overlay network. The algorithms improve scala-
bility by providing increased selectivity through distributed filtering. The proposed
algorithm is based on filtering using predicate expressions on typed tags attached to
events. The filtering provided by the algorithm converges towards the optimal by
propagating filters from the subscriber toward the publisher in a series of steps. The
algorithm is studied in simulation on networks of a 100-nodes with from 10 to 80
publishers and subscribers. Experiments examine the steady-state efficiency of the
distributed filtering, and the ability of the algorithm to adapt to changes in publishers

and subscriber state and interests.



1.3 Contributions of the Thesis
The thesis makes the following contributions:

1. It introduces the concept of filter propagation as it applies to distributed pub-

lisher/subscriber systems.

2. It formulates filters as predicate expressions and clarifies concepts advanced
by Siena and Semantic Networking by relating them to boolean algebra and

probability.

3. It identifies new challenges for wireless ad-hoc networks by emphasizing the
power savings available if more efficient filtering is used as compared to multicast

routing.

1.4 Thesis Outline

The thesis consists of six chapters and is organized as follows. Chapter 1 serves as
the introduction and presents the overview and contributions of this thesis. Chap-
ter 2 outlines the related research and prior work in this field. Chapter 3 describes
the routing algorithm based on typed tags and predicate expressions. Chapter 4 dis-
cusses the experimental study of this routing algorithm, the network topology, and
implementation of the simulation framework. Chapter 5 details the experiments and

analysis. Chapter 6 presents conclusions and directions for future work.



Chapter 2
Related Work

This chapter begins with an overview of several distributed event systems, focusing
in particular on standards for computer system management. These are chosen from
among the many middleware systems that provide event management because they
are often used for managing computer resources, i.e. the consumer of events from
these systems would care about events such as “filesystem full,” “disk media error,”
or “computer shutting down.” As the sections below will demonstrate, all of these sys-
tems have problems with scalability. However, a massively powerful multicomputer, a
Grid, and a modern enterprise may each include more than a thousand nodes, making
scalability a critical issue.

Any event system that scales will have to be truly distributed. Consequently, I
have studied the benefits and problems with IP multicast routing and peer to peer
computing. IP multicast and its relationship to unicast routing are fundamental to
a study of routing, and multicast is often used to improve scalability. Peer-to-peer
systems focus on wide scale distribution of computation and data, and some general
peer-to-peer frameworks explicitly address publisher/subscriber communication.

Some research has been done on publisher/subscriber event routing. This research
treats publisher /subscriber as a part of the middleware. This chapter discusses Siena
(Scalable Internet Event Notification Architectures) and Semantic Networking as ex-
amples of middleware targeted at publisher/subscriber semantics that are intended

to scale to large networks.



2.1 Event Systems for System and Network Management

The cost of computer management grows as the number and capabilities of our com-
puters grow. Businesses and institutions take various approaches to limiting the cost.
For example, an organization may limit its purchases to a single vendor who will also
provide support.

Event systems reduce the cost by reducing the chance of unanticipated failures
and reducing the mean time to repair a system when a failure occurs. For example,
if an administrator is aware of increasing hard disk seek errors ahead of time, he can
install a replacement before a total failure. When an unexpected failure occurs, an
administrator is aware of the failed system or module quickly. If a wide area event
system is used, the vendor may be informed of the failure directly rather than by the
administrator.

However, SNMP and CIM, industry standards for system and network manage-
ment, are organized for traditional client/server computing and are not scalable. In
contrast, Tru64 UNIX uses a publisher/subscriber event system whose events can
have cluster scope. If computer systems are to become autonomic, in the sense pro-
posed by IBM [6], then the control structures, the nervous system, must certainly
be autonomic. One approach to the problem is an event system that includes all

computers within an organization.

2.1.1 Simple Network Management Protocol Traps

The Simple Network Management Protocol (SNMP) envisions a client/server archi-
tecture with multiple clients contacting a larger number of servers. In this model,
one client contacts multiple, widely deployed servers. The server is called an agent to
distinguish from more traditional client/server designs [11], [12]. An SNMP trap is an
asynchronous notification made by an SNMP agent to an SNMP network management

client. However, one problem fundamentally limits the scalability of SNMP. There



10

is no standardized way to subscribe to traps. American Power Conversion Corpora-
tion (APC) publishes an SNMP specification for their Uninterruptible Power Supply
(UPS) devices [13]. This spefication allows an SNMP network manager to configure
up to four addresses to which traps are sent. Tru64 UNIX’s network management
agent requires that trap receivers be manually entered in a file /etc/snmp.conf [14].
Even when an SNMP network manager may subscribe over the network, there is no
standard for what SNMP object identifier should be used for such a subscription. As
clients cannot subscribe to specific traps, many network management clients regularly
poll a large set of agents. This can cause scalability problems on the network and
within the computer on which the network management client resides.

One strength of SNMP is that a standard and registration process exists for trap
descriptions. The process of registration allows multiple agents to broadcast SNMP
traps to the same port unambiguously. This gets at the essential problem of name-
space registration for wide-scale event systems.

Distributed event systems, such as that proposed in this thesis, aim to address
the scalability issues of systems like SNMP without sacrificing the commitment to

standards and data-description languages.

2.1.2 Common Information Model Indications

The Common Information Model (CIM), standardized by the DMTF, improves this
model by allowing subscription via CIM to events called indications. In theory, in-
dications can be received by anyone. In practice, CIM has problems with scalability
despite providing subscriptions. Using Pegasus, the Open Group’s CIM server, the
receiver of a CIM indication must run a web server and parse the XML that encodes
CIM data [15]. Since many network management clients will want the same indi-
cation, a CIM router for indications can save network bandwidth. However, each
network management client is expected to register with the publishing server. The

server sends a copy of the indication to each client.



11

This thesis offers a model for event routing that can be applied to CIM. The
protocol proposed in this thesis could be implemented as a routing protocol for CIM

indications.

2.1.3 Tru64 UNIX Event Manager (EVM)

HP’s EVM system provides system wide event delivery with registration filters, a
configurable persistent store for events, and a notification system that can include
email, pagers, etc., at the system administrator’s discretion. This system uses a
shared root filesystem to extend the event delivery to a cluster. This limits EVM to
the cluster boundary.

Working for HP and using SNMP and EVM, I have often wondered what might
be possible in enterprise network management for a publisher/subscriber system that
combined the benefits of SNMP, EVM, peer-to-peer self-organization, and traditional
multicast routing. I believe that such a system would allow a more autonomic ap-

proach to system and network management [6].

2.2 Internet Routing Algorithms

A knowledge of internet routing, and multicast in particular, is critical to building

distributed event systems for several reasons:

1. A study of internet unicast and multicast routing sheds light on any routing
problem, in the sense that internet routing is fundamental to all distributed

routing.

2. Multicast represents the best widescale effort to reduce unwanted message flow

on the internet without building overlay topologies or restricting receivers.

3. Multicast is an implementation technology that can be mixed with overlay net-

works where necessary.



12

2.2.1 Routing Information Protocol

The Routing Information Protocol (RIP) was one of the earliest specified and stan-
dardized unicast dynamic routing protocols for the Internet. RIP is designed to
dynamically determine the best route to a host through a network of routers that are
each separately configured. RIP requires each router to periodically send its routing
table to its neighbors [16]. A route consists of the network identifier, the cost, and
the next hop router. Upon receiving a route message, a router finds its route to the
network and compares it. If the new route will be better, the router updates its
route to the network by setting the next hop router to the sender of the route and
incrementing the cost. Networks to which the router is directly connected have a hop
cost of 0. Routes with a lower aggregate cost are preferred to those with a higher
cost. Routing algorithms that use an aggregate cost are called distance-vector routing
protocols because the cost usually represents the distance in hops from the router to
the target network.

RIP adjusts to changes in the network topology through a process called counting
to infinity. If a network can no longer be reached due to a topology change, routers
with a route to the network will exchange routes with increasing cost until the route
is no longer considered reachable. This couting process is proven to converge due to
the Bellman-Ford theorem from dynamic programming [17], [18]. In practice, infinity
can never be reached. Therefore, some practical limit must be chosen so that the
routing tables converge reasonably quickly. For this purpose, RIP designates 16 as
infinity, limiting the width of the graph of networks. Other strategies such as split-
horizon and poisoned entry also help distance-vector routing algorithms converge

more rapidly [19].



13

2.2.2 Distance Vector Multicast Routing Protocol

The multicast capability of ethernet-based local-area networks has been exploited to
provide standardized and supported multicast. By the time ethernet based local-area
networks began to supplant token ring, IP multicast was standardized and protocols
for multicast routing were in place. However, IP multicast requires hardware support
in routers, and routers were not quick to support IP multicast.

To work around this, Stephen Deering [20] and other network scientists wrote
software daemons to tunnel multicast traffic as normal point-to-point traffic. This
created a network called the MBone. Networks with local multicast support could be
connected through tunnels, using what in modern terms would be called an overlay
network.

The canonical multicast algorithm is the Distance Vector Multicast Routing Pro-
tocol (DVMRP) [19], [20]. This algorithm leverages the routing information already
exchanged for unicast routing to build multicast routing trees. When a router re-
ceives a multicast packet from a publisher that the router has never seen, the router
uses the unicast routing information to determine what network interfaces point back
towards the source. Other network interfaces are designated as child networks. The
algorithm builds a distributed covering tree for each source host and multicast group
combination as shown in Figure 2.1. This is accomplished via a process called Trun-
cated Reverse Path Broadcast (TRPB) that treats the first packet received from a
host/group combination as a reverse broadcast. Note that the tree followed by a
multicast packet is not guaranteed to be a minimal spanning tree because the mul-
ticast packet is initially sent on all networks connected to the source, regardless of
cost. Remarkably, the tree followed by a packet is not known to any node; instead,
the routing state is distributed in the same manner as for unicast distance-vector
routing. DVMRP uses the same route costs as RIP and therefore converges in the

Salne manner.



14

(=) ()
()

(a) Multicast tree rooted at node 3

0
C—()

(b) Multicast tree rooted at node 4

Figure 2.1: Multiple Multicast Trees on The Same Topology

In the standard for DVMRP, Deering suggest that periodic graft and prune mes-
sages allow a leaf router to tell routers closer to the source whether they have a
subscriber. This suggestion is made not as part of the standard, but as a direction
for further work. It works like this: upstream routers forward multicast packets un-
til a prune message is received. The prune message indicates that the sending leaf
router has no hosts subscribed to that multicast group. The prune message expires
under the control of an associated timer. However, if a host served by the leaf router
subscribes to the multicast group before the timer expires, then a graft message can
cancel the previous prune. With respect to a particular multicast sender, a router
has a list of child routes. If a prune is received from all child routes, the router can

send a prune further upstream.



15

2.2.3 Link State Routing and Multicast

Other routing algorithms exploit plentiful memory, network bandwidth, and process-
ing power to converge more quickly following changes in topology or state of networks.
These algorithms broadcast topology changes throughout the network. Each router
receiving a topology change updates its view of the network topology, calculates a
minimum spanning tree or other tree, and uses this tree for routing. These algorithms
are called link-state routing algorithms because they adjust more quickly to changes
in topology, and can therefore adjust to changes in the state of a link, even if that
change is temporary.

Open Shortest Path First (OSPF) is a large link-state routing standard designed
for metropolitan and wide area networks [21]. OSPF specifies how link-state infor-

mation is used for unicast, broadcast, and multicast on IP networks.

2.2.4 Issues with IP Multicast

The widespread availability and success of multicast has allowed researchers to iden-

tify issues with multicast. These include:

1. IP multicast expects a well-known list of multicast channels corresponding to
television channels or radio stations. Today, meetings and presentations may
require establishing a temporary channel such as is done by NetMeeting. Some
RFCs have added ways to create a registry of temporary multicast addresses.

However, there is no agreed upon standard for allocating temporary addresses.

It would be desirable if allocating a temporary multicast address were as easy
as allocating an ephemeral UDP/TCP port number. Allocating ephemeral
UDP/TCP port numbers is an easier problem for two reasons. First, the port
number does not affect network routing, but only delivery once a packet reaches
its destination. Moreover, the operating system can be the sole authority on

allocating addresses. In other words, there is no distributed protocol required



16

before or after allocating an address. Because of this, it is only natural that
there is a standard API for allocating temporary port numbers. However, it
is possible for all operating systems to allocate temporary multicast addresses

using a common API and protocol.

. The standards for multicast include no provision for determining who may sub-
scribe to a multicast channel. Ideally, the sender may want to restrict which

hosts may listen to the channel directly or indirectly.

. If a network’s routers do not support multicast, then overlay daemons must
be configured to tunnel multicast traffic to and from the network. mrouted,
the multicast tunnel daemon, requires that the administrator know the address
of another computer that runs mrouted and is connected to the MBone. More
recent research on self-organizing overlays suggests that this may be needed only
in the beginning, and that systems may optimize automatically once joining a

multicast overlay.

. Multicast does not inherently meet such demands as buffering, quality of service,
and reliable delivery. I am aware of several papers that suggest that quality of
service must be driven by the receiver. Van Jacobson has designed a protocol
that controls and manages signal quality to match the bandwidth available for
channel based applications such as television and radio [1]. Lixia Zhang designed
the RSVP protocol to reserve buffer space within routers and thus assure packet
delivery at a given packet rate [10]. Both of these address communication with a
uniform packet rate, like a television station. However, a publisher/subscriber
system oriented towards events should expect events to come in exponential

bursts.



17

2.3 Peer-to-Peer Routing

Peer-to-peer systems such as Gnutella, Freenet, and JXTA are classified as data shar-
ing peer-to-peer systems. However, there is a common aim between publisher /subscriber
systems and the search operation on data-sharing peer-to-peer systems: both want
to minimize the number of messages sent between nodes while meeting their other
requirements. In event distribution, nodes receive messages if they are interested in
acting on the event. In data-sharing peer-to-peer systems, nodes receive messages if
they might contain the desired data. Changing the routing algorithm so that each
node considers only the needed messages requires some understanding of a node’s
interest.

From a publisher/subsriber perspective, when a node searches Gnutella, the node
publishes a search event to which other nodes subscribe. The search event is routed
through the network. In Gnutella, the routing is a flooded broadcast with a hop
limit. As the search request is forwarded, the route taken by each request is recorded.
When a node has responses, these are source-routed to the originating node.

Gnutella’s broadcast routing floods each query throughout the network. So, the
broad scan done by Gnutella is likely to generate results. Some of the work on
improving search overhead essentially involves improved routing based on response
likelihood [22]. Other work improves routing by relating the topology of the network
to data placement [23]. All of these seek to send fewer messages while tolerating the
possibility of missing the desired result. Our work offers additional approaches to

improving the efficiency of searching data-sharing peer-to-peer systems.

2.4 Multicast Routing on Ad-hoc Wireless Networks

An ad-hoc network is composed of mobile nodes without the presence of wired base
stations to facilitate communication. Routing protocols for this environment are

maturing quickly [24]. In this environment, mesh based protocols perform better than



18

tree-based protocols in terms of reliable delivery under load and mobility [25]. Since
many of the protocols studied refresh routing trees on demand, topology changing
mobility can cause an increase in protocol overhead.

Due to the dynamic nature of ad-hoc wireless networks, on-demand algorithms
rely on flooding for route discovery, and then store the collected routing information.
Randomized ways to reduce the overhead of flooding without reducing its reliabil-
ity offer a lot of benefits, especially when utilized for route discovery [26]. Some
approaches taken for ad-hoc wireless sensor networks envision disposable units with
high sensor density allowing more detailed study [27]. These devices use corner cube
reflectors to receive messages. A response can be sent by modulating the reflection.
However, the devices cannot rotate the reflectors. Inter-sensor protocols must rely on
chance to find a neighbor with an appropriately aimed reflector. The constraints of
this environment illustrate the challenges facing ad-hoc networks and the potential
of randomized protocols.

The algorithm proposed in this thesis for filtering in a multicast tree may be
adapted for mesh based multicast used for ad-hoc wireless multicast. The algorithm
involves sending a subscription filter one hop up a multicast tree towards a publisher.
This is only feasible in a tree, and so the wireless nodes routing information could be
used to form an overlay tree embedded within the routing mesh. A more challenging
approach to adapting the work of this thesis for a mesh-based routing algorithm would
attempt to preserve the mesh, and treat the subscription filter as a request requiring

confirmation by other nodes in the mesh.

2.5 Siena

Siena (Scalable Internet Event Notification Architecture)[28], [29], [30] and this thesis

have many similarities:

1. Siena and this thesis do not make guarantees about event delivery. An effort is



19

made to deliver all events, but network congestion, topology and subscription

changes can cause an event to be missed.

2. Siena and this thesis imagine an event as having a header consisting of name,
type, and value tags that are used when routing the event. The event may

contain additional information that is not available during routing.

3. Siena and this thesis view the interest of the subscriber as a boolean predicate

that matches or does not match an event.

However, there are signifigant differences:

1. Siena advances the idea of event advertisements that form a routing tree based
on the tags expected from different sources. This thesis forms a routing tree
based on the sources that are producing events, and does not require broadcast
flooded advertisements. The algorithm proposed in this thesis uses the publisher
address to discover publishers and then builds a distributed routing tree per
publisher. Siena will not scale as well in number of messages transmitted on
the network, but should consume a lesser amount of memory as the number of

publishers grows large.

2. This thesis does not automatically flood subscriptions up a routing tree, but
instead propagates event filters towards an event source as unwanted events are

received at leaf nodes.

3. Siena limits the subscription predicate to a conjunction of contraints on tags.
When the same tag appears multiple times in a Siena subscription, the in-
stances are always disjunctive [29]. Due to these constraints, Siena filters and
subscriptions are easy to optimize when aggregating, but this also limits the
expressiveness of the filtering language. For instance, the following expression

cannot be exactly matched in a Siena subsrciption:

(symbol = HPQ) A (price > 20.0) A (price < 30.0)



20

Since the subscriber can only have one constraint on price, further filtering
will be necessary after the event is received. If a subscriber used both tags by

mistake, they would receive all events for symbol HPQ that have a price tag.

4. Siena supports subscriptions for patterns of mulitple events, which is a form
of distributed event aggregation. Subscriptions for event aggregations can be

propagated, but addressing this is beyond the scope of this thesis.

2.6 Semantic Routing

In his Masters thesis at Rutgers, Dhananjay Makwana pursued research on XML
based semantic routing [31]. This work informs and inpsires mine in many ways. In
particular, his thesis provides clear examples of the applications that benefit from
publisher /subsrcriber patterns, and underlines that distributed routing is needed for
scalable performance [2], [3].

The goal of semantic routing is to route data based on subscriber interest using
XML to describe both data and interest. A subscriber’s interest is called an interest
profile. When a subscriber sends an interest profile, it causes a broadcast of interest
profiles and a calculation of the subscription up a routing hierarchy. In this context,
the decision where to route incoming data can be viewed as a transformation that
outputs the downstream routes. The algorithm used is a link-state algorithm that
works on an acyclic graph (hierarchy) of routers and subscribers.

Semantic routing relies on some of the same global information as DVMRP, show-
ing that the problem of global information is essential to such distributed systems.
For instance, even with multiple dimensions and containment hierarchies for data,
problems can arise if two independent distributed agents decide to use a particular
unique designator for communication with different meaning.

Makwana advances the idea of selectivity of interest profile in order to analyze the

aggregate interest of the subscribers. I disagree on this point because selectivity is the



21

inverse of probability. The selectivity of an interest profile is defined as the ratio of the

number of input events to the number of output events matching the profile. That is,

if a subscriber has selectivity 2, it will match 50% of the input events. Makwana then

extends this to consider the selectivity of multiple subscribers. However, he assumes

that the selection of one subscriber is independent of other subscribers. So, in his

model, two nodes with selectivity 2 will together have selectivity 4 (will match 25%

of the input events). However, if the two nodes both have the same interest profile,

then each will match the same 50% of the input events. In general, the number of

events that must be forwarded depends not only on the subscription, but also on the

topology of the network and the distribution of input events.

2.7 Summary

IP Semantic
Feature CORBA | SNMP CIM EVM | multicast | Siena | Networking
Subscription | channel | manual | filter filter channel | filter XML
profile

Event yes no no no no yes no
Aggregation
Reliable yes no yes no no no no
Delivery
Real-Time yes no no no no no no
Logging and | no no no yes no no yes
Accounting
Distributed | client/ | client/ | client/ | cluster | WAN WAN | designed

server server server | wide networks

Table 2.1: Comparison of Event System Features

Table 2.1 summarizes the features of the event systems discussed in this chapter.

The features are taken from the requirements in Section 1.1. CORBA is included

due to discussion of CORBA’s features in that section. Most of the systems included

are well established in industry. Siena and Semantic Networking represent evolving




22

solutions to these problems. Any classification of this type is an oversimplication.
CIM, EVM, and Siena support subscription by filter, but EVM’s filter expression
matches against a type hierachy with wildcards, and Siena and CIM use expression
languages with different semantics. While EVM does not have real-time support,
it supports a high event rate. To avoid oversimplification, the table tries to capture
some of the details of system distribution. One row of the table lists not only whether
each event systems is distributed, but how it may be distributed. While Semantic
Networking supports large networks, these networks must be designed to be cycle
free. IP multicast and Siena both support wide-area networks.

In addition to event systems, this chapter has also considered other topics. The
discussion of multicast included history, current issues, and support on ad-hoc wireless
networks. The relationship between peer-to-peer data sharing systems and event
systems stimulates thought on how network server topology is related to publication

and how predicate expressions might be applied to search routing.



23

Chapter 3
Filter Propagation

This chapter presents Filter Propagation, a publisher/subscriber event system closely
based on DVMRP. The chapter begins with a conceptual overview of filter propa-
gation. The chapter then discusses the data structures and messages corresponding
to central concepts. These are events, subscription expressions, routing tables, and
control messages. The chapter discusses the behavior of the system. As events and
control messages are exchanged, nodes in the system react. Timeouts may be set
and expire, leading to further actions. Finally, the chapter discusses improvements
to filter propagation arising from optimization and approximation of subscription

expressions.

3.1 Conceptual Overview

The underlying design principle of filter propagation is to forward an event too broadly
rather than drop a desired event, and also to converge to perfect filtering in the
network. The first event sent by a publisher is used as a discovery mechanism as it is
forwarded throughout the network. As each node receives the event, the node builds
its portion of a distributed routing tree specific to the publisher of the event. Then,
the node forwards the event to additional nodes. This process continues until the
event reaches all nodes in the network. A node forwards all events it receives until it
knows enough to do otherwise. After that, the node sends a filter expression upstream
towards the publisher of the event as soon as an unwanted message is received. Leaf

nodes start the process off because a leaf node can immediately determine whether



24

it is locally subscribed for the event. The following sections explain the details, but

publisher's
router

the concept is illustrated in Figure 3.1.

publisher's
router

The router cannot
send a combined filter
towards the publisher
until a filter is received
from router 3.

(a) the publisher sends an event. (b) no subscriber on router 1 or 2
wants the event; filters are sent.

The router sends a
combined filter
because filters have
been received from all
downstream routers.

The router uses the
filter from router 2 to
filter each event.

All events are

forwarded to router 3

since no filter has
\ been received.

The system has
converged to optimal
N | filtering.

(c) the publisher sends more events. (d) no subscriber on router 3 wants the
event; filters are sent.

Figure 3.1: Filter Propagation



25

3.2 Definitions and Data

3.2.1 Events

This thesis describes a distributed system for routing events from one or more pub-
lishers to zero or more subscribers. In 1.1.2, we discussed some key differences be-
tween event systems and other publisher/subscriber systems. This thesis focuses on
scalability to the detriment of reliable delivery, logging and accounting.

In this system, an event consists of tags that describe the event. Each tag has
a type, name, and value. The number and names of the tags are limited only by
practical concerns. In addition, an event has a publisher address that is used to build
routing trees. No timestamp is added to each event because there is no global notion
of time in a widely distributed system. The event shown in Table 3.1 includes a time
tag because stock publishers have a notion of when an event occurred. An event
in a sensor network might instead include tags to identify the sequence and rate of

samples.

publisher address 10.23.21.2
string symbol “HPQ”
string exchange “NYSE”

float price 22.4
int change 7
time when 3/27/2003 8:47 PM

Table 3.1: An Example Event

3.2.2 Subscription Expressions

A subscription defines the events that a client is interested in receiving. For example,
in IP multicast, the multicast address is the subscription. The multicast address is

like a channel in the CORBA event service in terms of how it affects received events.



26

In our system, a subscription is a predicate expression that can be evaluated using
the tags in a specific event. The following are example expressions that are true when

evaluated for the event shown in Table 3.1.

(when > 3/26/2003) A (change > 5)
((symbol = “HPQ") V (symbol = “MSFT")) A (price > 20.0)

(symbol = “HPQ") A ((price > 30.0) V (change > 5))

Siena has a similar form of subscription expression, but restricts the form or
class of the predicate expressions in an effort to simplify the problem of combining
subscription expressions. This thesis does not restrict these predicate expressions;
handling complicated expressions is essential to the problem of filtering.

For example, consider what happens in the network shown in Figure 3.2. Due to
the subscriptions at router 2 and router 3, the upstream router must forward events
matching the composite expression below. In this example, we imagine that router
2 and router 3 send positive subscriptions and the upstream router forwards events

wanted by either router 2 or router 3.

Subscriptions =(a > 5) A (b < 5)
Subscriptions =(a < 2) A (b > 10)
Subscription,pstream =Subscriptions V Subscriptions

~((a=5)AB<5) V(@< A®b=10)

The relationship between filtering and subscription is clarified by the use of
boolean predicates. In our terminology, a filter is the negation of a subscription:
a subscription describes what is wanted and a filter describes what is not wanted.
However, it is important that this difference is not very important in designing a

protocol. Due to the way the negation operation distributes over the conjunction and



27

disjunction operation, a system operating on filters is functionally equivalent to one

operating on subscriptions:

Filtery = ~ Subscriptions
=~ ((a>5)A(b<H))
=~ (a>5Vn~(b<b)
=(a <b5)V(b>5)

Filters = ~ Subscriptions
=(a>2)V (b>10)

Filterypstream = ~ Subscriptionypsiream

= ~ (Subscriptiony V Subscriptions)
= ~ Subscriptions\ ~ Subscriptions

=Filtery N\ Filters

=((a<5)V(b>5))A((a>2)V(b>10))

Therefore, subscription expressions can be sent to narrow the interest of an up-
stream router as if they were filtering expressions. They need not be converted, and
are kept in the form most directly related to the interests expressed by end-users and

applications.

3.2.3 Routing Tables

Every node that participates in the system can route events whether or not it is also
a publisher or subscriber. However, it is most interesting to consider nodes with
multiple interfaces. An event router’s interfaces are its connections to other nodes in
the system. These may be LANs, persistent connections in an overlay network, or

even connections in a self-organizing overlay as described in other research [7].



28

A node uses the events it receives as a form of discovery to identify the publishers
within the system. For each event publisher observed by a node, the node computes
a set of child interfaces using distance vector information. This computation provides
a distributed routing tree for each publisher that is rooted at the publisher, and
this assures that event routing is loop free. For each combination of interface and
publisher, the node keeps a subscription expression that is used to test whether to
forward or deliver the event. The expression can be viewed as a list that is evaluated
as a disjunction of sub-expressions. The expression for each interface and publisher
combination is initially the literal “true.” Table 3.2 shows the routing table at router
1 in Figure 3.2 after the first event is received at router 1. Table 3.3 shows the routing
table once the small network has converged. In an implementation where the child
interfaces are LANs that may each contain more than one child node, an additional

child node column would be needed in the routing table to distinguish the expressions

belonging to each child node on an interface.

upstream
router

Figure 3.2: Composite Filtering at an Event Router

publisher address | child interface | subscription expression
upstream router | router 2 true
upstream router | router 3 true
upstream router | self false

Table 3.2: Initial Routing Information



29

publisher address | child interface | subscription expression
upstream router | router 2 (@>5)A(b<5h)
upstream router | router 3 (a <2)A(b>10)
upstream router | self false

Table 3.3: Complete Routing Information

3.2.4 Control Messages

The control messages are called filter messages. Filter messages propagate subscrip-
tion expressions towards a specific publisher. Each filter message is sent by one node
to a neighbor node. The neighbor node is the parent in the distributed routing tree
for a specific publisher. Table 3.4 shows a sample filter message. A filter message
means that the child node wants some of the events, but not all, and the message
therefore contains a composite subscription expression. The node wants any event
that is true for the subscription expression. A filter message that contains only the
literal “false” means that the node wants to recieve no events. A filter message that
contains only the literal “true” means that a node wishes to cancel a previously sent
filter and wishes to receive all events. The sender address is needed when multiple
child nodes share the same interface. This is the case when the interface is a LAN

segment rather than a point-to-point link to another node.

publisher address 10.23.21.2
sender address 10.24.1.2
subscription expression (when > 3/26/2003) A (change > 5)

Table 3.4: A Sample Filter Message



30

3.3 Behavior

3.3.1 Receiving a New Event

When an event is received by a node, the node must first determine if the event is
from a new publisher. If the publisher is new, then the list of child interfaces for
that publisher is computed. The subscription expression for each child interface is
intitialized to the literal “true.” After initializing the list of child interfaces, processing
continues as for any event.

The node looks up the child interfaces for this publisher. Each child interface
has an associated subscription expression. For each interface, the node must decide
whether or not to forward the event. If the subscription expression evaluates to
“true,” then the event is forwarded. However, if the expression evaluates to “false,”
then the node does not deliver the event.

Finally, if each interface has a subscription expression that is different from the
literal “true,” but the event was not forwarded to any interface, then the event was
not wanted. If an event is not wanted, then a filter message is sent upstream towards
the source of the event. The filter message contains a disjunctive composite of the
subscription expressions for all of the child interfaces. To prevent storms of filter
messages when a node is receiving frequent unwanted messages, a suppression timer
is started as soon as a filter message is sent. The supression timer is associated with

the publisher and the node to which the filter message was sent.

3.3.2 Receiving a Filter Message

When a node receives a filter message on an interface, it looks up the subscription
expression for the publisher and interface, and replaces the subscription expression.
After a filter message is processed, a timer is started to determine when the filter has

expired.



31

In addition, the node may propagate the filter as soon as it receives it:

1. If the subscription expression is the literal “true,” then the receiving node must
send a filter message with the “true” subscription expression if it has previously

sent any filter message to the upstream router.

2. If the subscription expression is not the literal “true,” but all child interfaces
associated with this publisher have subscription expressions different from the
literal “true,” then the node must send a filter message with the composite sub-
scription expression and set the suppression timer as described in Section 3.3.1.

This allows the event system to converge rapidly when subscriptions change.

3.3.3 Changing Subscription

If a node changes its subscription, it must traverse the list of publishers and determine
whether to send a filter message towards each publisher. If the node has previously
sent a filter message towards a publisher, it must immediately send a filter message.
The message is required because the node’s new subscription may match more events
than the previous subscription. The simplest example of this is when a leaf node
is subscribing for the first time. The node may already have sent a filter message
indicating that it does not want to receive any events. The node must send a filter
message towards each publisher to which it has previously sent a filter message. The
logic is the same when an interior node changes its subscription. If any child interface’s
subscription expression is the literal “true,” then the filter message will also contain
the literal “true.” However, if this is the case, the interior node is unlikely to have
sent a filter message for that publisher because the interior node already wanted all

events.



32

3.3.4 Publishing

Because each node keeps a list of publishers, a new publisher may simply start sending
events, and an existing publisher may stop sending events without any necessary
upkeep. Of course, a publisher must communicate with one or more routers to join

the system.

3.3.5 Timers

The origin and handling of three timers must be described to complete the design:

Without a timer on subscription expressions, a new node joining the system might
never have an affect on the network filtering. So, each node sets a filter timer whenever
a filter message is received. The filter timer is for the combination of publisher and
child interface. When the filter timer expires, the node must discard the subscription
expression and begin forwarding all events. No messages are required when the filter
timer expires. The timeout for the filter timer should be long enough to allow network
convergence. This depends on the diameter of the network, and is one of the areas of
study.

Each subscriber keeps a suppression timer to prevent storms of filter messages.
When a subscriber first receives an event that does not match its subscription expres-
sion, a filter message is sent and the suppression timer is initialized. The subscriber
does not send another filter message until the suppression timer expires. The timeout
for the suppression timer can be safely set to half the timeout for the filter timer. If
the filter message is received successfully, no unwanted message will be received until
the filter timer has expired. If not, the subscriber will send another filter message
after the suppression timer expires.

Each node keeps a publisher timer so that the state associated with each publisher
can be removed after the publisher stops sending events. The timer is reset whenever

the node receives an event from that publisher. The timeout for this timer should be



33

substantially longer than the other two timeouts. In this loosely coupled environment,
a router cannot determine whethor a publisher has stopped sending events or has no
events to send. The benefits of filter propagation depend on keeping track of the
state associated with each publisher. Since memory is plentiful, we err on the side of

remembering old publishers.

3.4 Predicate Optimization and Approximation

As subscriptions propagate towards publishers, the composite subscription becomes
more complex. Exression optimization and approximation is desirable to bound the
time necessary to make a forwarding decision for an incoming event.

An expression is optimized if it is put in a form that involves fewer comparisons.

For example, the following expression may certainly be optimized:
(temperature < 0) V (temperature > 0)

Siena introduces a transitive, reflexive relation between subcriptions called cov-
ering, written using the square subset symbol, C. From a logical perspective, this
relation is the inverse of implication. However, it can be more intuitive to think of

one expression covering another.

expra C exprp < expry < exrprp

An expression is approximated if another expression is found that is true more
frequently than the original. It is desirable if the approximate expression also involves

fewer comparisons. We can equally say:

approximation C original

original = approximation



34

Given a predicate expression P, the following algorithm always finds an approx-
imating expression with one or more fewer comparisons as long as an AND (A)
term appears in the expression. First, assume without loss of generality that no
negation appears in P. We can make this assumption on the expression P because
~ (a <5)=(a>5). P consists of terms p[0] through p[N], each with a depth. Take
the AND term of maximum depth and replace it with either of the operand terms.

If no AND term remains, further approximation by this method of dropping terms
may result in a subscription that is true for all events. In fact, this may occur if the
terms are not chosen carefully, despite the limitation to AND terms. Terms should
be eliminated if they involve tags that appear elsewhere in the expression P.

Consider the following example:

At this point, the algorithm considered above would conclude that no further ap-
proximation beyond forwarding all events should be considered. This approximation
algorithm may still conclude that all events should be forwarded, but that is not a
poor conclusion for a heavily loaded, centrally located event router.

Algorithms similar to the above allow a router to self-optimize to reach desired
performance. A router can be configured with a maximum number of comparisons
per outgoing interface per event, and can optimize to that number of comparisons,
conluding to always forward events on that interface if necessary. The maximum
number of comparisons should be quite large because processor speed is plentiful
relative to network bandwidth.

A good deal of research on minimization of boolean functions is available due

to the importance of this minimization in automating digital circuit design [32]. In



35

a publisher /subscriber system, our design may expect that subscriber interest will
cluster. A composite subscription expression may be implemented as a list of sub-
expressions. The list may be evaluated in any order due to the associativity of boolean
disjunction. When any new subcription expression is added to an existing list, the
list should be tested to make sure that the expression is not a duplicate of any other

expression.



36

Chapter 4

Simulation Implementation

This chapter describes the simulation environment and the experimental framework

so that the results can be more easily replicated or extended.

4.1 The Network Simulator

We used the Network Simulator 2, ns, for the experiments [33]. ns is a discrete object
simulator that allows researchers to collaborate in the study of network protocols. ns
is written in a combination of C++ and Object-Oriented Tool Control Language,
otcl. To run an experiment using ns, a researcher writes an otcl program that uses
ns specific classes to run an experiment. Then, the researcher executes the program
using ns. ns interprets the program and exits.

To add a new protocol to ns, a researcher must implement one or more new classes.
It is sometimes possible to do this entirely with otcl programming. Typically, the
researcher adds one or more C++ classes to ns, and writes otcl experiments that
access these new classes.

There are several advantages to using ns for the simulation:

1. Other researchers familiar with ns can easily replicate results since the results

are produced using a standardized tool.

2. The separation between simulated experiment and simulated protocol allows
researchers to easily vary experimental parameters that might otherwise be

difficult to change.



37

3. Any new protocols simulated may become part of the standard repertoire of the

research community that uses ns.

4. Our research benefits from others’ contributions to ns.

One unforseen disadvantage is that ns does not support adding or removing net-
work nodes or links once the simulation has started. To perform experiments that

" ns supports changing the status of exist-

require nodes to “appear” and “disappear,’
ing network links. While this meets all the essential needs for experiments in network
dynamics, it also leaves in place some accidental complexity as all nodes and links
must be created before the simulation begins. Also, since a node is never truly reset,

simulated programs, called agents, running on the node, must each be individually

reset by the researcher.

4.2 Topology Generation

The topologies used in the simulation were generated using the Georgia Tech Internet
Topology Model (GT-ITM) [34], [35]. The GT-ITM can create random topologies by
any of a number of standard random methods, but is distinguished by its ability
to create random hierarchical topologies that simulate the actual topology of the
Internet. When an organization joins the Internet, they pay one or more service
providers for a connection to the wider world. Due to this, many organizations are
connected to the Internet by one or two high bandwidth links to a more centrally
placed service provider. The GT-ITM calls this the transit-stub model, where nodes
called transit nodes form a central network of simulated service providers and nodes
called stub nodes are organized into sub-networks at the periphery.

It is no accident that this type of hierarchical topology is similar to that generated
by large self-organizing overlays [7]. Jain’s research focuses on building a hierarchy

where the cluster leaders form a central network.



38

Figure 4.1 shows the input file used with the GT-ITM. The input file instructs
GT-ITM to create 10 random topologies starting with the seed 47. This creates
10 topologies that can be loaded into ns. Each topology is created with the same
parameters. There should be 4 transit nodes and an average of 3 stub domains per
transit domain, each having an average of 8 nodes. To make the network a little more
random, and to simulate a more fault-tolerant topology, there is 1 extra network link
from each stub domain to the transit domain and 1 extra network link within a stub
domain.

GT-ITM topologies are converted for use with ns by invoking sgb2ns, a program
that generates an otcl source file containing the procedure create-topology. To
use the generated topology, an experiment must load the generated source file and

then execute the procedure.

# <method keyword> <number of graphs> [<initial seed>]

# <# stubs/trans node> <#rand. t-s edges> <#rand. s-s edges>
# <n> <scale> <edgemethod> <alpha> [<beta>] [<gamma>]

# number of nodes = 1x4x(1+3x8) = 100

ts 10 47

311

120 30.51.0
420 30.61.0
8 10 3 0.42 1.0

Figure 4.1: GT-ITM Input File

4.3 Simulation Implementation

The experimental environment builds a new executable, nsevt, that includes addi-
tional classes in both C++ and otcl. Table 4.1 summarizes the added C++ and
otcl classes and files.

To implement the filter propagation algorithm described in Chapter 3, I ex-

tended the classifier object used by ns to be a filtering replicator. The new class,



39

FilterReplicator, is closely based on the Replicator class used to simulate mul-
ticast in ns. However, because there is no header file for the Replicator class, the
FilterReplicator class inherits from the Classifier class directly. The class uses
the EvtFilter class to evaluate the filter. A new packet header structure, hdr_event,
transmits the tags and their values. For the simulation, only numeric tags are sup-
ported and no tag type is needed.

A new multicast protocol class called CBM completes the routing logic. In ns, each
node has a multicast protocol object. The multicast protocol objects communicate
with each other by sending prune and graft messages. These messages allow ns to
simulate the full operation of DVMRP and later multicast algorithms as discussed in
Section 2.2.2. The CBM class is closely based on the DM class that simulates DVMRP
multicast. The CBM class operates in two modes: perfect and filter propagation. In the
perfect mode, subscriptions are calculated from global knowledge whenever the node
receives a graft message. The graft messages are passed up a routing tree towards
the publisher, leading to perfect filtering. In the propagation mode, the protocol is
as described in Chapter 3. The prune message is used for almost all filter messages,
except that the graft message is used when the subscription expression is the literal
“true.”

Two more classes represent the publisher and the subscriber. The EventSource
class inherits from the UdpAgent class and publishes events. It may be attached to the
traffic generator classes, and adds tags randomly. The EventSink class inherits from
LossMonitor and subscribes for events. It tracks the total number of received events
and also how many match the subscription. It also performs a call from C++ to otcl
to inform the CBM protocol object that the EventSink has changed subscription or

received an unwanted event.



40

4.4 Experimental Framework
With this infrastructure, the filter efficiency of three forms of filtering can be studied:

1. An experiment that uses standard DVMRP simulation can simulate filtering at
the client, the worst case for message efficiency. By clearing all counters after a
warming period, the start-up overhead is discounted, and only the steady-state

cost is included in message counts.

2. An experiment that uses the perfect mode of the CBM class can simulate perfect
filtering at the publisher with no overhead. The publishers should start some-
time before subscribers, and then message counters are cleared after a warming

period.

3. An experiment that uses the filter propagation mode of the CBM class can sim-
ulate the Filter Propagation algorithm from Chapter 3. The pruneTimeout
variable can be used to vary the filter timeout. The publisher timeout is not
simulated, and the suppression timeout is set to half the filter timeout. Setting

a filter timeout longer than the simulation disables the timeout.

Message counts are collected throughout the simulation. The EventSource class

tracks the number of events sent by each publisher. The FilterReplicator class

Classname File(s) Purpose
hdr_event event.h and event.cc an event header with tags
EventSource event.h and event.cc a publisher
EventSink event.h and event.cc a subscriber
EvtFilter evtfilter.h and evtfilter.cc a subscription expression
FilterReplicator | evtrouter.h and evtrouter.cc | a forwarder
CBM CBM.tcl Content-Based Multicast protocol
setup.tcl and override.tcl initialization logic
exper.ns perform an experiment

Table 4.1: Source Files of Experimental Framework



41

counts the number of copies of events sent to child nodes. The EventSink class
counts the number of events received at subscribers and how many of these matched
the subsciption expression. The number of control messages are counted by the CBM
class.

The exper . ns file extends tcl to seperate the experiment, the topology, the output

and the random seed:

nsevt exper.ns exper/tiny-noto topology/tiny.tcl out 89

The above command loads the file in Figure 4.2 and applies it to a topology de-
fined in topology/tiny.tcl that implements the otcl procedure create-topology
generated by GT-ITM. Results are appended to out and the random number gener-
ator is initialized with seed 89. The experiment file in Figure 4.2 instructs exper.ns
to run an experiment with 1 group and 0 transit nodes, setting a filter timeout of
32 seconds. The simulation is run for 8 seconds with the filter propagation algo-
rithm. Out of the topology, 1 node is randomly chosen to publish to group 0, and 2
nodes are randomly chosen to subscribe to group 0. The additional parameters to the
publishers and subscribers commands identify when the nodes should start and
stop publishing and subscribing. A node may be both a publisher and a subscriber.

Any protocol or software must be debugged and verified. Figure 4.3 shows how
diagnostics can be enabled on an experiment. The dump-filters function saves
routing tables to a named file. The second argument controls whether the actual
routing table or an ideal routing table is saved. The ideal routing table is computed
by a depth-first search along each outgoing interface that finds subscribers. After the
simulation, a script can compare the actual and ideal routing tables, or the routing
tables of “perfect” filtering and filter propagation. This verifies that both algorithms
converge to the same ideal routing table. The trace-events function enables a
diagnostic log used to track down the inevitable bugs. Each node records diagnostic

messages identified by timestamp, node, and logging object to the trace file. The



42

diagnostic messages closely follow the prune and graft messages and their effects on

the routing tables.

# experiment <groups> <transit> <filtertimeout> <time> <style> <seed>
experiment 1 0 32.0 8.0 propagate 47

# publishers <group> <nodes> <start> <stop> <size> <period> <color> {
# <tags> }
publishers 0 1 0.5 7.0 1000 0.05 DarkGreen {
temp random 0.0 20.0,
current random 0.0 20.0,
fish random 0.0 20.0,
+
# subscribers <group> <nnodes> <start> <stop> <percent> { <filters> }
subscribers 0 2 1.5 7.5 257 {
(temp >= 10) && (current >= 10),
(temp < 10) && (current >= 10),
(current >= 10) && (fish >= 10),
(fish >= 10) && (temp < 10),
(temp < 2.5) || (temp >= 17.5),
}

warming-period 2.0

Figure 4.2: Specifying an Experiment

# dump routing tables to file fnotimeout 7.5 seconds into the simulation
# store both actual and ideal routing tables

set ns [Simulator instance]

$ns at 7.5 "dump-filters fnotimeout 1"

$ns at 7.5 "dump-filters fnotimeout 0"

# trace time/node based diagnostics on messages to file trace-notimeout
trace-events trace-notimeout

Figure 4.3: Diagnostic Functions



43

Chapter 5

Experiments and Results

5.1 Filter Efficiency

This section evaluates the scalability of filter propagation as the number of publishers
and number of subscribers increase, using a synthetic simulation over networks of 100
nodes. To evaluate efficiency, we plot the average number of inter-node messages
per event, including control messages, in addition to the copies of the event. Four
protocols are compared using the experimental framework discussed in Chapter 4.
For each experiment, 4 different topologies and seeds are used. On each topology, the
four protocols are compared by using the same random seed to choose the publisher
and subscriber nodes and the subscription expressions. The four protocols studied

are:

1. Filtering at the subscriber, simulated by using normal DVMRP multicast. This
is a control on the study of filter propagation showing the worst case with
respect to eliminating inter-node messages. DVMRP is run with a timeout on

prunes that is longer than the simulation.

2. Filtering at the publisher, simulated using the perfect mode of the CBM protocol
class mentioned in Chapter 4. This filtering at the publisher is the best-case,
but it is not realistically achievable because no control messages are counted.
In a non-ideal world, each subscriber must transmit its subscription to each

publisher, and the network must adapt to change.

3. Filter propagation without a timeout, simulated by setting the CBM class timeout



44

beyond the end of the simulation. The control overhead for filter propagation

is included in the simulation.

4. Filter propagation with a timeout, simulated by setting the CBM class timeout
to 8 seconds. Other experiments below show that the filtering converges in 5
seconds on a network of 100 nodes, and the simulation runs for 20 seconds,
and so there are 2 timeouts following the initial convergence. These test cases

represent steady-state filter propagation with a pessimistically short timeout.

Each experiment is run with 10, 20, 40, and 80 publishers and 10, 20, 40, and
80 subscribers. Each publisher generates events with three tags that vary uniformly.
The subscribers randomly choose a filter that will match 25% of the events. The
experiment file resembles that shown in Figure 4.2, but 39 subscription expressions
are used and the number of publishers and subscribers are varied as mentioned above.
The choice of 25% is neither conservative nor liberal. In a non-synthetic environment,
some nodes would want many of the events for logging puposes, and other nodes would
want very few of the events.

Figures 5.1 compares filter propagation to the best case protocol, publisher filter-
ing, and the worst case protocol, subscriber filtering. Fach protocol is run with 10
publishers as the number of subscribers increase. Figures 5.2, 5.3, and 5.4 are similar
results for 20, 40, and 80 publishers respectively. We can see that as the number
of subscribers increases, the efficiency of filter propagation approaches the best case.
These results are an average of results for all 4 topologies.

The same results are shown differently to illustrate the scalability of filter propa-
gation. Figure 5.5 plots 10, 20, 40, and 80 publisher experiments against each other
to show how filter propagation scales with the number of subscribers. Figure 5.6
changes the x-axis to show scaling of 10, 20, 40, and 80 subscriber experiments as
the number of publishers increases. As the number of publishers increases, the aver-

age messages per event decreases due to the density of publishers in the graph. The



45

topology contains only 100 nodes, and so when there are 80 publishers, there is a

higher probability that publishers are close to many of their subscribers. Each node

may be both a publisher and a subscriber, which inreases the benefits of density.

Average Messages per Event

Average Messages per Event

filter at subscriber —e—

filter at publisher ---o--

propagate filters ----+---

propagate filters with timeout

30 40 50

Number of Subscribers

60 70 80

Figure 5.1: 10 Publishers on a 100 Node Network

filter at subscriber —e—
filter at publisher ---o---
propagate filters ----+---

30 40 50
Number of Subscribers

60 70 30

Figure 5.2: 20 Publishers on a 100 Node Network



Average Messages per Event

Average Messages per Event

95
20
45
40
35
30
25
20
15

46

filter at subscriber —e—

filter at publisher ---o---

propagate filters ----+---

propagate filters with timeout - ===

10 20 30 40 50 60 70 80
Number of Subscribers

Figure 5.3: 40 Publishers on a 100 Node Network

filter at subscriber —e— .
filter at publisher ---o---
propagate filters ---—+---___

+ -

10 20 30 40 50 60 70 80
Number of Subscribers

Figure 5.4: 80 Publishers on a 100 Node Network



47

10 publishers —e—
50 | 20 publishers ---o--
40 publishers ----+---

45 | 80 publishers - -x- - =T «

Average Messages per Event

10 20 30 40 50 60 70 80
Number of Subscribers

Figure 5.5: 10, 20, 40 and 80 Publishers as Subscribers Increase

55
- + -10-subscribers —e—
g 90| 20 subscribers --o-- " TT--__
LE 40 subscribers ----+--- e
— 45| 80 subscribers - -x- T
eb]
= 40
Lo
%D 35177 T e
= 30 . ’
S or 6o
p<; 25 \\\\‘\e 777777777777777 O
§ —————————————————————— ©
= 20
—_
15

10 20 30 40 50 60 70 80
Number of Publishers

Figure 5.6: 10, 20, 40, and 80 Subscribers as Publishers Increase



48

5.1.1 Overhead of Filter Timeout

In the experiments described above, some of the messages needed to deliver each
event are the protocol overhead, consisting of filter messages. These control messages
can be plotted over time to show how quickly the protocol responds to change. Figure
5.7 shows that when an experiment is first started, filter messages flow through the
network. Thereafter, if there is no timeout of the filter and no change of the filter, no
additional control messages are required. For comparison, the control messages for
DVMRP multicast are shown. These control messages are subtree prunes and grafts.
DVMRP multicast requires more initial messages because filter propagation waits for
a message that was not wanted; however, DVMRP has less total overhead.

As shown in Figure 5.8, there are additional control messages if there are filter
timeouts, or prune timeouts for DVMRP multicast. The increase in control messages
is both more gradual and less in magnitude than the initial convergence of the network
due to the operation of the filter propagation protocol. During the first convergence
(from 0 to 5 seconds), filter messages arrived at nodes at different times. Therefore,
the filter timers on publisher nodes will expire later on average than the filter timers
on subscriber nodes or router nodes. When the subscriber nodes’ filter timers expire,
the subscriber nodes will not immediately send filters, but will wait to receive an
unwanted message. As publisher nodes’ filter timers expire, subscribers will receive
unwanted messages. So, the rate of filter messages will be more gradual than for
initial convergence. Moreover, fewer messages will be needed because some state

already exists in the network when the first filter messages are sent.



Cumulative Number of Control Messages

30000

25000

20000

15000

10000

5000

ropagation

DVMRP multicast -----

10

15

Time (seconds)

20

25

Figure 5.7: Cumulative Control Message Count with No Timeouts

Cumulative Number of Control Messages

30000

25000

20000

15000

10000

5000

Time (seconds)

filter propagation
DVMRP multicast ------
e
filter timeout----
10 15 20

25

Figure 5.8: Cumulative Control Message Count with a Timeout

49



50

5.2 Adapting to Change

The protocol must adjust to many changes gracefully:

1. New publishers may begin to send data, or existing publishers may stop. Pub-

lishers stop for free because there are no control messages to send.

2. New subscribers may cancel pruning filters, or existing subscribers may stop

wanting events.
3. Nodes may change their subscription without changing their subscriber status.

4. The network topology may change, causing the lowest latency routing tree to

change, or even partitioning the network.

Figure 5.9 shows how quickly the filter propagation algorithm responds to new
publishers, to new subscribers, and to subscription changes of existing subscribers.
The initial convergence allows comparison with Figures 5.7 and 5.8.

When 10 more publishers are added, the overhead required is just as great be-
cause each publisher has its own routing tree, and the subscription expressions of
the subscribers must be propagated again. This is a clear disadvantage of the filter
propagation protocol over a protocol that uses a single routing tree. However, the
addition of 20 subscribers requires few control messages. The protocol is slow to
respond to the change in subscription because of the synthetic nature of the test.
Each subscription filter matches 25% of the events. For the purposes of studying
how rapidly the protocol adapts to change, it would be better to use a lower match

percentage and to have more potential subscription filters.



30000 .
filter propagation
25000 DVMRP multicast ----- change subscripitons
add 20 subscribers
20000
15000

P
/
!

10000

J

5000

20 40 60 80
Time (seconds)

Cumulative Number of Control Messages

Figure 5.9: Cumulative Control Message Count with Injected Changes



52

Chapter 6

Conclusions and Future Work

6.1 Conclusions

This thesis explored large scale publisher/subscriber systems from the perspective of
avoiding flooded publisher advertisements and subscriptions. After surveying current
research on publisher/subscriber systems and widely deployed, standardized systems
for system and network management, an algorithm was proposed that propagates
subscription expressions towards publishers. The propagation allows filtering in the
network. The algorithm eliminates the need to broadcast publisher interest at the
cost that each subscriber must keep state specific to each publisher.

This algorithm was evaluated using simulation to demonstrate the algorithm’s effi-
ciency at reducing the transmission of messages, the algorithm’s speed of convergence
following a change, and general overhead. The network simulator, ns, was extended
so that the multicast environment supports a notion of subscriber interest based on
lists of expressions. The use of a research standard simulator makes it easy for others
to reproduce and extend the results presented here, and therefore provides a valuable
research tool. The results show that the system is scalable on a topology similar to
the Internet, and that the system reacts well to change.

Predicate optimization and approximation allows routers to bound the amount of
work needed in order to make a forwarding decision. Some simple heuristics were pro-
posed that err on the side of forwarding events. These heuristics should be evaluated

in the future.



6.2

53

Future Work

This thesis raised many questions that could not be investigated in the time available.

The most interesting directions for future work are these:

1.

Several additional experiments would help assess scalability. The relationship
between the size of the network and both latency and efficiency should be stud-
ied. A more in depth investigation of the impact of topology changes to this
and related algorithms would be desirable. ns made it difficult to evaluate the

effects of topology changes on the algorithm.

The filter approximation heuristic should be compared with more aggressive

techniques from the literature on boolean optimization.

. A prototype implementation might bring insight into the use of multicast and

the support of LAN environments in addition to overlay networks. In a pro-
totype implementation, it would be interesting to investigate the accounting
requirements of system and network management applications and to imple-

ment distributed event aggregation.

The choice made to avoid a publisher advertisement motivates a direct quantita-

tive comparison between algorithms with advertisements and filter propagation.

The filter propagation algorithm rests upon the calculation of a multicast dis-
tribution tree. Because there is a separate tree for each publisher, each node
must keep state associated with the publishers. One tree would address this
shortcoming. However, many wireless routing algorithms use a routing mesh
rather than a tree. These algorithms dynamically allow message duplication so
as to be more resilient in highly dynamic environments. One possibility is to
embed a tree within the mesh used for resilient routing. A more challenging
approach would be to change the way that a filter propagates, so that it may

propagate through the mesh towards the publisher.



1]

[10]

[11]

54

References

S. McCanne, V. Jacobson, and M. Vetterli, “Receiver-driven layered multicast,”
in ACM SIGCOMM, New York, NY, August 1996, vol. 26-4, pp. 117-130, ACM
Press.

Semandex Technical Staff, “Making Sense of Sensors,” White pa-
per, Semandex, Princeton, NJ, 2002, [Online document], Available:
http://www.semandex.com/library/.

Semandex Technical Staff, “What is Content-Based Routing?,”  White
paper, Semandex, Princeton, NJ, 2002, [Online document], Available:
http://www.semandex.com/library/.

G. R. Malan, F. Jahanian, and S. Subramanian, “Salamander: A Push-based
Distribution Substrate for Internet Applications,” in Proc. of the USENIX Sym-
posium on Internet Technologies and Systems, Monterey, CA, December 1997.

S. Tuecke et al., “Open Grid Services Infrastructure,” Specification GWD-R,
Global Grid Forum, June 2003, [Online document], Available: http://www-
unix.globus.org/toolkit /.

P. Horn, “Autonomic Computing: IBM’s Perspective on the State of Information
Technology,” White paper, IBM, October 2001, [Online document|, Available:
http://www.research.ibm.com/autonomic/manifesto/.

S. Jain, R. Mahajan, D. Wetherall, and G. Borriello, “Scalable Self-Organizing
Overlays,” Tech. Rep. UW-CSE 02-06-04, Dept. of Computer Science, Washing-
ton University, May 2000.

A. Oram, Ed., Peer to Peer: Harnessing the Power of Disruptive Technologies,
O’Reilly and Associates, Sebastopol, CA, 2001.

T. Harrison, D. Levine, and D. Schmidt, “The Design and Performance of a Real-
time CORBA Event Service,” Tech. Rep. #WUCS-97-31, Dept. of Computer
Science, Washington University, St. Louis, MO, 1997.

L. Zhang, S. Deering, and D. Estrin, “RSVP: A new resource ReSerVation
protocol,” IEEFE network, vol. 7, no. 5, pp. 8—18, September 1993.

M. Rose and K. McCloghrie, “Structure and Identification of Management In-
formation for TCP/IP-based Internets,” RFC 1155, IETF, May 1990, [Online
document|, Available: http://www.ietf.org/rfc.html.



[12]

95

J. Case, M. Fedor, M. Schnoffstall, and J. Davin, “A Simple Network Man-
agement Protocol (SNMP),” RFC 1157, IETF, May 1990, [Online document],
Available: http://www.ietf.org/rfc.html.

“PowerNet Manager,” American Power Conversion Corporation (APC), [Online
document], [cited April 11, 2003], Available: http://www.apcc.com/products/.

HP Technical Staff, “snmpd(8),” Tru64 UNIX Version 5.1B Refererence
Page, HP, 2003, [Online document|, [cited April 11, 2003], Available:
http://www.tru64unix.compaq.com/.

DMTF Technical Staff, “CIM Operation over HT'TP,” Specification #DSP0200,
Distributed Management Task Force (DMTF), August 1999, [Online document],
Available: http://www.dmtf.org/standards/.

C. Hedrick, “Routing Information Protocol,” RFC 1058, IETF, June 1988,
[Online document], Available: http://www.ietf.org/rfc.html.

R. Bellman, Dynamic Programming, Princeton University Press, Princeton, NJ,
1957.

L. R. Ford and D. R. Fulkerson, Flows in Networks, Princeton University Press,
Princeton, NJ, 1962.

D. Waltzman, C. Partridge, and S. Deering, “Distance Vector Multicast Routing
Protocol,” RFC 1075, IETF, November 1988, [Online document|, Available:
http://www.ietf.org/rfc.html.

S. Deering, “Multicast Routing in Internetworks and Extended LANS,” in ACM
SIGCOMM ’88, Stanford, CA, Aug. 1988, pp. 55—64.

J. Moy, “OSPF Version 2,” RFC 1583, IETF, March 1994, [Online document],
Available: http://www.ietf.org/rfc.html.

B. Yang and H. Garcia-Molina, “Improving Search in Peer-to-Peer Networks,”
in Proceedings of ICDCS ’02, Vienna, Austria, July 2002, pp. 5-14.

C. Schmidt and M. Parashar, “Flexible Information Discovery in Decen-
tralized Distributed Systems,” in Proceedings of the 12th International
Symposium on High Performance Distributed Computing, Seattle, WA, June
2003, pp. 226-235, IEEE Computer Society Press,  [online], Available:
http://www.caip.rutgers.edu/TASSL/.

E. Celebi,  “Performance Evaluation of Wireless Multi-hop Ad-hoc Net-
work Routing Protocols,” M.S. thesis, Dept. of System & Con-
trol Engineering, Bogazici University, Turkey, 2002, [online|, Available:
http://www.cmpe.boun.edu.tr/ emre/research/msthesis/.



[25]

[26]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

56

S. Lee, W. Su, J. Hsu, M. Gerla, and R. Bagrodia, “A Performance Comparison
Study of Ad Hoc Wireless Multicast Protocols,” in IEEE INFOCOM 2000, Tel
Aviv, Israel, March 2000, pp. 565-574.

Z. J. Haas, J. Y. Halpern, and L. Li, “Gossip-based Ad Hoc Routing,”
in IEEE INFOCOM 2002, New York, NY, June 2002, [online|, Available:
http://wnl.ece.cornell.edu/wnlprojects.html.

J. M. Kahn, R. H. Katz, and K. S. J. Pister, “Next century challenges: Mobile
networking for ”smart dust”,” in Proc. of MOBICOM ’99, Seattle, WA, July
1999, pp. 271-278.

A. Carzaniga, D. S. Rosenblum, and A. L. Wolf, “Interfaces and algorithms for
a wide-area event notification service,” Tech. Rep. CU-CS-888-99, Department
of Computer Science, University of Colorado, October 1999, revised May 2000,
[online], Available: http://www.cs.colorado.edu/ carzanig/papers/index.html.

A. Carzaniga, D. S. Rosenblum, and A. L. Wolf, “Content-based addressing
and routing: A general model and its application,” Tech. Rep. CU-CS-902-
00, Department of Computer Science, University of Colorado, January 2000,
[online], Available: http://www.cs.colorado.edu/ carzanig/papers/index.html.

A. Carzaniga and A. L. Wolf, “A benchmark suite for distributed pub-
lish/subscribe systems,”  Tech. Rep. CU-CS-927-02, Department of Com-
puter Science, University of Colorado, April 2002, [online], Available:
http://www.cs.colorado.edu/ carzanig/papers/index.html.

D. Makwana, “An Introduction to Semantic Networking and its Perfor-
mance Evaluation,”  M.S. thesis, Dept. of Electrical & Computer Engi-
neering, Graduate School, Rutgers University, 2002, [online|, Available:
http://www.caip.rutgers.edu/ makwana/Acads/Research/.

E. J. McCluskey, “Minimization of Boolean Functions,” The Bell System Tech-
nical Journal, vol. 35, no. 5, pp. 1417-1444, November 1956.

ISI Technical Staff, “The Network Simulator - ns-2,” Web page, Information
Sciences Institute, University of Southern California, Marina del Rey, CA, 2002,
[online], [cited September 1, 2002], Available: http://www.isi.edu/nsnam/ns/.

E. W. Zegura, K. L. Calvert, and S. Bhattacharjee, “How to
Model an Internetwork,” in [FEE INFOCOM 1996, San Fran-
cisco, CA, March 1996, wvol. 2, pp. 594-602, [online], Available:

http://www.cc.gatech.edu/fac/Ellen.Zegura/papers/.

K. L. Calvert, M. B. Doar, and E. W. Zegura, “Modeling internet topology,”
IEEE Communications Magazine, vol. 35, no. 6, pp. 160-163, June 1997.



	Abstract
	Acknowledgements
	Dedication
	List of Tables
	List of Figures
	Introduction
	Requirements of Publisher/Subscriber Systems
	Subscription, Filtering, and Aggregation
	Quality of Service
	Scalability
	Summary of Requirements

	Overview of the Thesis
	Contributions of the Thesis
	Thesis Outline

	Related Work
	Event Systems for System and Network Management
	Simple Network Management Protocol Traps
	Common Information Model Indications
	Tru64 UNIX Event Manager (EVM)

	Internet Routing Algorithms
	Routing Information Protocol
	Distance Vector Multicast Routing Protocol
	Link State Routing and Multicast
	Issues with IP Multicast

	Peer-to-Peer Routing
	Multicast Routing on Ad-hoc Wireless Networks
	Siena
	Semantic Routing
	Summary

	Filter Propagation
	Conceptual Overview
	Definitions and Data
	Events
	Subscription Expressions
	Routing Tables
	Control Messages

	Behavior
	Receiving a New Event
	Receiving a Filter Message
	Changing Subscription
	Publishing
	Timers

	Predicate Optimization and Approximation

	Simulation Implementation
	The Network Simulator
	Topology Generation
	Simulation Implementation
	Experimental Framework

	Experiments and Results
	Filter Efficiency
	Overhead of Filter Timeout

	Adapting to Change

	Conclusions and Future Work
	Conclusions
	Future Work

	References

