INTERACTION STREAMS: - AN APPROACH FOR WORKSPACE
MANAGEMENT IN COLLABORATIVE ENVIRONMENTS
by
PREETI MEHRA
A thesis submitted to the
Graduate School-New Brunswick
Rutgers, The State University of New Jersey
in partial fulfillment of the requirements
for the degree of
Master of Science
Graduate Program in Electrical and Computer Engineering
written under the direction of
Prof. Manish Parashar

and approved by

New Brunswick, New Jersey

October, 2003

ABSTRACT OF DISSERTATION

Interaction Streams: - An Approach for Workspace Management in

Collaborative Environments

by Preeti Mehra

Dissertation Director:

Professor Manish Parashar

A Collaboratory has been defined as a group of people working together from diverse
physical locations on a common task using a shared workspace. A computational
collaboratory is a virtual environment where scientists and researchers work together to
solve complex interdisciplinary problems, despite geographic and organizational
boundaries. These systems provide uniform pervasive (and collaborative) access to
computational resources, services, applications and/or data, and can expand the resources
available to researchers, enable multidisciplinary collaborations and problem solving,
accelerate the dissemination of knowledge, and increase the efficiency of research. The
emergence of Grids-based computational collaboratories and the potential for seamless
aggregation, integration and interactions has made it possible for scientists and engineers
to conceive a new generation of realistic, scientific and engineering simulations of

complex physical phenomena.

In this thesis the collaboration requirements for a computational collaboratory are
investigated. These requirements are based on the nature of interactions between users

and their interactions with the applications, services and data. The design and

i

implementation of a workspace management and organization tool called Interaction
Streams for private/shared workspaces in portals of collaborative environments is
described. Interaction Streams maintain a navigable record of all user-user and user-
applications interactions and collaborations. Each user has a personal Interaction Stream
consisting of events occurring in their local and shared workspaces. Stream filters are
provided to organize and present the information from these streams. Visual
representations of these streams consist of a stack of time ordered documents depicting
the events. Features such as borders, titles and icons complement the documents based on
the keys to ensure rapid accessibility and categorization. Streams hold answers to
questions such as “did a group of users ever collaborate”, “on which applications or in

what context did a group of users collaborate”, or “which interactions were done by a

particular group of users and on which applications”.

The portals are a part of the Discover computational collaboratory [1]. Discover is a
virtual, interactive computational collaboratory that enables geographically distributed
scientists and engineers to collaboratively monitor, and control high performance
parallel/distributed applications on the Grid. Its primary goal is to bring Grid applications
to the scientists'/engineers' desktop, enabling them to collaboratively access, interrogate,

interact with and steer these applications using pervasive portals.

il

Acknowledgements

I am grateful to my advisor Prof. Manish Parashar for his invaluable guidance, immense
patience, encouragement and support throughout my stay at Rutgers. I am thankful to
Prof. Deborah Silver and Prof. Yanyong Zhang for their valuable advice and pertinent
suggestions regarding my thesis. I would also like to thank the CAIP support staff for
their prompt and detailed responses to my queries and for the excellent facilities that they
provide in the various laboratories at CAIP and in particular at The Applied Software
Systems Laboratory (TASSL). I acknowledge the support and love of all my friends
for making my studies at Rutgers a memorable phase of my life. Finally, this work
wouldn’t have been possible without the love, support and encouragement from my

family members.

v

Table of Contents

Abstract of Dissertationcoieeiii e i
ACKNOWIEdZEMENtS. . .uoiuiiiniiiiniiiiiiieiiinriiiereinteietoentssnessenssssssssssssnssssnsones iv
Table of CONLENLS ..ccuvineiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieiietietieciatisecsassscenecscsncene \%
List 0f Tables....couiiiiiniiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiitieiietietiatesecsacensanecens viii
LiSt 0f FIGUIES. «ooouuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiittiieiiietitsteinsmessosssssessonssenns ix
1. INtroduction.cceueineiiuiiiiiiniiiiiieiiiiiieiieiiieiieeieeiieeieteneeiesieceecsscsnccnscnnes 1
0 R 1o 1577 5 < 1

1.2 Backgroundooouiiiiii i e 1

1.3 Problem Statement............oouoiniiiii e 2

1.4 Contribution to thesiS.oiuiiiii i 3

1.5 Organization of the thesis............cooiii i e 4

2. Background and Related Research........ccccovviiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiinnennes 5
2.1 Background Worki............ooiii e 5

2.2 Related WOrkK. ... 8

2.2.1 LAfeStr@amIS. .. ettt 8

2.2.2 Mirror World. ..., 11

2.2.3 DISCIPLE. ... 12

3. DISCOVER- Computational Collaboratory for Interaction and Steering 15
3.1 Clientin DISCOVER..... ..o 16

3.2 Client Server Communication Model..................oooiiii, 17

3.3 Multiple Application SUPPOTt........ooviiiniiiiiiii e 19

4. Interaction Stream in DISCOVER ...cuuiiitiiiiiiiiiereiiereeerenreceesesecesssscenssnes 22

4.1 User Interaction Streamo.eiuiiiiniitiiinii i 22
4.1.1 User Interaction Stream VIEWS...........oovviiiiiiiiiniiiniiiieeenenn. 23
4.1.2 User Interaction Stream VIEWS.........o.ovviiiiiiiiiiiniiieinieeenenn. 25
4.1.3 User Substream VIEWSooviuiiuiiniiiiiiiinei e, 25

4.2 Application STreamc.ovuiiiiitii e 28
4.2.1 Application Stream VIEW.........c.coviiiiiiiiiiiiiiiiiiieieiieainans 28

5. Design of the Interaction Streamsccceiiiiiiiiiniiiiiniiiienriciinresinsccsnnes 30

5.1 Elements Comprising the Interaction Stream.................coooviiiiiiinn... 30
5.1.1 Classification of events in User Workspace................oovvevennnnn. 31

5.2 Client Server COMMUNICATIONeuutntintitiitiitie et 32
5.2.1 DISCOVER system Architecture............ccoovviiiiiiiiiniinnennnn.. 33
5.2.2 Communication Sequence of Client Server.........................eeee. 35

5.3 ISSueS FaCed......oniinii i 37
5.3.1 Stream Log@ingoviniiniitiiiii i 37
5.3.2 Stream Retrievals. ... 38

6. Implementation of Interaction Streams..........cccevviiiiiniiiiiiiieiiinriiieiennrcnnens 41

6.1 Implementation...........o.oiuiiniiiii e 41
6.1.1 Stream Retrievalscooiiiiiiiii i, 41
6.1.2 Stream Logging Implementation....................oooiiiiiiin.. 42
6.1.3 Database Desig@n.........oouiiniitiiiiii i 43
6.1.4 Applications Used for testing.......ccc..ooevuiviiiiiiiiniiniiinan.n. 45

6.2 Evaluation ..o 45

vi

6.2.1 Experiment 1 ..ot e, 46

6.2.2 EXPeriment 2.......c.oiuiiiiiiiiit e 47
6.2.3 EXperiment 3... ...t 47
7. Conclusion and Future Workc.ccoiieennn 49
LS 5) 1 L s 51

Vil

List of Tables

1. Categories of events in the user Workspace

viil

List of Figures

1. Entities and their INteractions.c.oiiiiiiiii e, 6
2. The Lifestreams Viewport for X Windows............c.cooiiiiiiiiiiiiiiiiiiiia, 9
3. The Eventstream interface of DISCIPLE...............oooii, 13
4. Three tier architecture of DISCOVER..... ... o 16
5. Client Server Communication Model in DISCOVER...................... 18
6. Snapshot of the DISCOVER portalcooviiiiiiii e, 20
7. Snapshot of DISCOVER portal with multiple Application Support................ 21
8. Collaboration Stream view in DISCOVER................o, 24
9. Substream View in DISCOVER........ . 26
10. The system architecture of DISCOVER...............oooiiiii e, 34
11. Client Server communication with Collaborationcol. 36
12. Collaboration Stream View for zoom in feature

a. Initial view of the requested streamcoiiiiiiiiii .. 39

b. The stream view after the activation of the zoom in feature................. 40
13. Entity relationship diagram of Discover database......................coooeiiiini. 44
14. Graph depicting time overhead for inSETtionsc.coevviiiiiiiiieenneennnnn 46
15. Graph depicting memory usage for Streamscceevviiiiiiiiiiiiiiinieannn.n. 47
16. Graph depicting retrieval times for streams..............cooviiiiiiiiiiieiieeinn, 48

X

Chapter 1

Introduction

1.1 Objective

The objectives of the thesis are to:

e Identify the set of requirements for making a groupware system usable.

e Develop a feature called the Interaction Streams that will meet the requirements of
such a system and improve its usability.

e Design, implement and evaluate the prototype of this feature by its incorporation in to
the Discover Computational collaboratory to enable session archival and logging of

the collaborators and the applications.

1.2 Background

A collaborative environment is a groupware system where geographically distant users
meet to solve the task at hand. The advancements in technologies have aided the
computer collaborative work experience come closer to the real world collaborative
experience. The technology designed to facilitate the work of groups by helping them
communicate co-ordinate and solve problems is coined as groupware. “The field of study
that examines the design adoption and use of a groupware is called as the Computer
Supported Collaborative Work (CSCW).” A collaborative system can be categorized into

two primary types based on the task that they are solving namely Synchronous systems

(distant users working together in real-time in the environment) and Asynchronous

systems (distant users working on their own convenient time in the environment).

A lot of importance is put into the design of a real time collaborative groupware. The design
not only requires the immense knowledge of the group’s behavior but also the knowledge of the
underlying technology that affects the quality of the system. Due to the dynamic nature of a
synchronous collaborative groupware, the key features built into the system should include
scalability, responsiveness, consistency and usability. “Usability is the quality of a system that
makes it easy to learn, easy to use, easy to remember, error tolerant and subjectively pleasing.”
[13] The success of a shared environment is primarily determined by the usability of the system.
A collaborative system can be usable only if it meets requirements of unconstrained operation,
ability to work in functional real world groups and offers response times comparable to single
user systems. The ease of use of a system can be achieved by placing the least amount of
restrictions on the workspace of the user and by the provision of various means and tools to store,

manipulate, visualize, annotate and share information and data.

1.3 Problem Statement

During the design and the development phase of collaboratory, maximum efforts are put
to form a robust infrastructure so that it can provide real-time communication for the
geographically distant users. Even though this infrastructure is the most indispensable
part of the system, the usability of the system is restricted to the tools provided to the user
on the front end of the environment. Most of the collaborative environments provide tools
for sharing files, messages, voice applications, images etc... These applications however
suffer from poor session and application logging and retrievals. Session logging and

retrieval tools have proved to be very useful feature in a collaborative environment. Such

tools aid in the visualization and review of the project ranging from textual to graphic
representations of the events that occurred during the project. A great amount of data can
be summarized with ease aiding any member of the group to get up to date with the

current status of the project.

While such tools can increase the usability of the collaboratory, developing them
poses a lot of challenges. Data storage, data retrieval, data representation, scalability, and
privilege checks are a few of them. A key to the development of a collaborative
environment is its ease of use. A lot of thought has to be put into the design and
development of the front end of the collaboratory so that it provides the user with the

maximum intended functionality without imposing restrictions on its use.

1.4 Contribution to the Thesis

This thesis addresses the issues faced by the users of a collaborative environment and

makes the following contributions: -

e [t lists the issues faced and formulates the requirements of a collaborative system to
deal with these issues, hence increase the usability of the system.

e Design and implementation of a tool used for session logging and retrieval that aids in
the visualization and review of the collaborative environment.

e Incorporation of this tool into DISCOVER - a web based computational
collaboratory. Evaluation of the tool in this environment

¢ Enabling multiple application access to the clients in DISCOVER by multi-threading

the web based clients.

1.5 Organization of the Thesis

This thesis has been organized into seven chapters. The background work and the related
work comprise the main body of Chapter 2. It introduces certain projects that influence
our approach to increase the usability of the system. It then compares our approach to

these approaches.

Chapter 3 describes DISCOVER — A web based Computational Collaboratory for
interaction and Steering. This also contains the design overview of the system with
special emphasis on the client architecture and the client server communication channel.
It then introduces the concept of multi application support for the client and states its

design.

Chapter 4 describes the design of the Interaction Streams for the DISCOVER system.
It further describes the implementation and the operation of these streams. Chapter 5 and
6 describes the design and the implementation and evaluation of the tool in the
DISCOVER system. Chapter 7 presents the conclusions and has directions for its future

work.

Chapter 2

Background and Related Research

2.1 Requirements of Collaborative Portals

The aim of a collaborative computational problem solving environment is to provide
scientists with a set of mechanisms and tools for collecting, storing, manipulating,
accessing and sharing information using meaningful annotation tools supporting their
views and ideas. When accessing such an environment, a scientist should be able to
reliably and transparently initialize, deploy, access, monitor and steer applications while
collaborating with other scientists. Central to the design of such a collaborative scientific
problem solving environment is understanding the types of interactions taking place
between the participating entities and, identifying their corresponding enabling tools and
mechanisms. Global scientific investigation involves seamless interactions between all
the participating entities — i.e. users (scientists and engineers), data sources, applications,
and resources. User to user(s) interactions can be defined as a sharing of any human-
understandable information, being textual, visual or audible, among a managed group of
interested parties. Applications interact with resources and data centers when they need to
allocate resources and fetch data to perform a certain computation or to store computation
results. Users interact with applications, data and resources to monitor, control and steer
the application, and resources and explore the results produced. Based on these
interactions a set of tools for enabling collaborative computational problem solving are

described below.

¥

--¢l Application

P Llser Data

Figure 1: Entities and their interactions in collaborative environment

Group management allows users to create or join groups by interest. Every group
needs to be maintained by administrators who have special privileges for altering the
group configuration, such as the credentials and capabilities required for joining a group,

privileges of each group member and total number of members allowed.

Monitoring and steering allows users to (synchronously or asynchronously) access,
monitor and control application objects in a secure, controlled and consistent way.
Sharing tools associated with the results from queries allow users to share specific
results with a group of scientists. Data manipulation tools allow users to render the

results obtained to enhance their analysis and interpretation.

Locking/leasing mechanisms are necessary to maintain consistency when an
application is accessed concurrently by multiple users but can only support one control
channel. A lease is a lock that is valid for a fixed duration. Locks/leases are only granted

to users that have appropriate privileges.

Collaboration tools such as Chat and Whiteboard provide users with a means for
collaborating while analyzing the results. The whiteboard also provides annotation tools
allowing users to mark, draw, write or point to information on rendered application

results.

Logging and Management tools are necessary for maintaining history of the
sequence of events that occurred in the system, including users’ requests, application
responses or status messages and user collaborations. These tools are critical for allowing

scientists to analyze and interpret results of interactions and collaborations.

A key focus is the design of an effective workspace management tool to provide a
navigable record of all user-user and user-applications interactions and collaborations in
computational collaboratories. General collaborative environments such as Groove [16]
or Netmeeting [17] provide users with tools for sharing files, text/voice/video messages
and applications. However, this is done in a generic manner without taking the specific
requirements of an application into account and providing a set of standardized tools to
the collaborating users. Recent scientific collaboratory efforts include the Upper
Atmospheric Research Collaboratory[18], providing an environment for space physicists
around the globe to collaborate and share information collected by upper atmospheric
instruments. The Astrophysics Simulation Portal[19] built on Cactus[20] is a framework
that allows scientists to deploy and monitor simulations on the computational Grid using
the Globus[21] toolkit. While these frameworks address collaboration, their tools are
highly customized to the application domain. Most of these collaborative environments
suffer from poor session logging and retrieval tools. Some environments do support such

tools but are limited to logging in shared workspaces and used for generating session

replays or enabling asynchronous work in the collaboratory. A few of them do provide
information retrieval and querying on the logged data but are almost unusable due to the
complex nature of the tools provided. Hence Interaction Streams is developed in order to
enable logging, information retrieval and representation of the workspaces in the

computation collaboratries.

2.2 Related Work

Design of a groupware system has been a field of continuous research. It requires a
complete understanding of its prospective users. This section describes a few systems that

present personal workspace (desktop) and shared workspace organization metaphors.

2.2.1 Lifestream

Developed at the Yale University by a team led by Dr. Gelernter, Lifestreams, a concept
for dynamically organizing a user’s personal workspace was introduced. Lifestreams uses
a simple organizational metaphor; a time ordered stream of documents to replace the
conventional files and directories [3][4][5]. Stream filters and software agents are used to
organize, locate, summarize and monitor incoming information. Lifestreams has also
been termed as the diary of ones electronic life. The lifestream of a user contains every
document that he creates or the documents that are sent to him by other users. The tail of
the stream contains documents from the past (starting with ones electronic birth
certificate). Moving away from the tail and towards the present, the stream contains more
recent documents. The future of the stream contains documents that one might need:

reminders, calendar items, and to-do lists.

The lifestreams project is based on a client-server architecture that runs over the
internet. Server is responsible for the handling and the storage of the documents. The
client of the system is a viewport that enables the basic operations associated with the
streams by providing an interface to it. Figure (2) depicts the viewport developed for the
X windows system. The figure 2 shows a stream of documents that can be rolled into the
past by a date annotated scroll bar. Colors and animation are extensively used as a means
to depict the salient features of the document and provides an easy means to distinguish

the documents.

S 4 |

Display Document Substreams Automated Tasks Thursday, Sep 19 12:08 PM 1996 EDT

New I I I Squish I

Find: |
4 Keywords .. Boolean Query

Sat 08-31/96

Sun 09/01/96

Mon 09/02/96

Tue Sep 3 10:17:30 1886

David K comments]

To: davidy nick |
From: efreeman 1

Here are a few camments on the \
digsertation from David K. I'm not
sure what he is referring to in pt 3, I've|
asked him to clarify.
Stream: efreeman | g
Main stream spell
15984 Documents

Sat 08/31/96 to Tue 09/03/86

] | > Yy

Mon 07/28/91 Thu 09/19/95 L

Tue 09/03/96

Figure 2: The Lifestreams Viewport for X Windows

10

The lifestreams system provides 5 basic operations.

1. New: - This operation is used when the user creates any new documents ranging
from an email to calendar to do list.

2. Clone: - This operation is used to create the duplicates of the documents

3. Xfer: - This operation is used when one needs to forward documents or emails

4. Find: - This operation allows user to enter a Boolean query and creates a
substream.

5. Summarize: - This operation allows the user to take a substream and compress it

into an overview document.

The operation that gives lifestreams the most power is the find operation where one
can enter a Boolean query. This query results in a substream of documents satisfying the
stated criteria. Substreams can be nested thus adding some complexity to the tool. As new
documents satisfying the criteria are created, they get added to the stream. No extra
storage is provided for this sub stream hence these Boolean queries can be saved and
recovered whenever needed. The Boolean queries can range from a simple query like all

emails received to complex queries like emails received on the subject A on date B.

Summarize also termed as the squish technology is used to generate summary of
substreams. It does so by creating the summary as a document and adding that document
to the particular substream. The task of classifying the documents into preset categories is
accomplished by the use of agents. There are a variety of agents that are spawned based
on the kind of document under consideration. Lifestreams uses three kinds of agents that

extend the functionally provided.

11

The agents are listed below.

1. Personal Agents: - These are typically attached to the user interface and can
automate tasks.

2. Document Agents: - These live on the documents and are spawned by various
events like the access of the document.

3. Stream Agents: - These agents are attached to the streams and are spawned when

stream undergoes some change like a new document is added to the stream.

Lifestreams has proved to a very useful tool for managing and accessing ones personal
information. We feel that the concepts embodied by lifestreams can be adapted to aid in

the visualization of the collaborative sessions in DISCOVER.

2.2.2 Mirror World

Fueled by the research and writings of Dr. David Gelernter and Dr. Eric Freeman, Mirror
Worlds Technologies was established in 1997 to develop and commercialize the patented
technology of TiTLE[8]. The first commercial release of their product Scopeware
enterprise solution was launched in March 2001. A desktop product, called the
Scopeware Vision was later launched in 2002. Scopeware is a visual management system
that resides over the operating system and the native file system still using their time
based ordering. Scopeware Vision is distinguished from typical search engines in how it
presents the information to you based on the query. The stream is still a time-ordered
visual representation of all the information, normalized in a single view. Files and email

appear together in a browsable, or searchable, view allowing for quick visual recognition.

12

The Vision stream, as compared to browsing or searching traditional file folders, is a
more visual and comprehensive [8].
Scopeware Vision’s patented TiTLE system represents the four key dimensions that
mirror the way a human mind works. The four key dimensions are listed below.
1. Time: - People think in time ordered sequence and vision displays information
in a time ordered manner.
2. Type: - Different types of information like the email, spread sheets etc are
distinguished by the use of visual representations.
3. Look: - Thumbnail representations are provided for rapid recognition.
4. Essence: - Rather than launching the application to view a document, vision

provides a summary of the document.

2.2.3 DISCIPLE

Developed at The Rutgers University, DISCIPLE (DlIstributed System for Collaborative
Information Processing and LEarning) is a project in mobile computing and
collaboration. The key objective of the DISCIPLE project has been to develop an
advanced groupware design that enables interactive collaboration in the context of the
task at hand. The participants at different locations collaboratively access, manipulate,

analyze, and evaluate multimedia data. [6]

The whiteboard in DISCIPLE enables users to work and see the current state of the
objects in their current project. Inspired by the Lifestreams project, a similar tool called
Eventstreams was added to the project to add the functionality of data retrieval and

access. The streams are composed of events that are actions performed on the objects in

13

the shared space. The concept of personal document stream has been expanded to define
a collaboratory’s Lifestreams of events. All the users in a group are considered to be of

equal privilege and the whole work is done in a collaborative mode.

%Y EventStream M[=] B3

File Substreams Help

Plane 4
f}'h
- Migel Srythe
Bicvcle 11/15/98 3:20:22 P
Rocket Kickoff Session
labeld
Huorst Schmidt
Index | Usger 10| Time Stamp | Seszion | Object Type | Action/Event F:I

(31 2 11M15/38 32 & 1
2 3 11415438 3¢ 2 1

=
-
fa 4 44 MEJdnna.cld Pl 4
4 | b

FRecord Count: 14 /14

—

—

Provider=Microsoft Jet OLEDE . 3.51 Persist Secunty Info=False D ata Source=C:A\D j
Figure 3:- The Eventstream interface of DISCIPLE

Figure 3 shows a view of the Eventstream interface. [7] It lists the events triggered by
the members of the shared workspace on different objects. Eventstream provides the
functionality of the Boolean query of the find operation by providing drop down menus
and prompting the user to make a selection from this. Eventstream is extensively used as
a logging tool to get the collaborators up to date with the current activity. Even though
the concept of lifestreams has been well used as eventstreams in a collaborative
environment of DISCIPLE, it does fall short in many scenarios for the DISCOVER
project. Every user has preset privilege levels for every application. Thus the idea of a

single Lifestream for all the users does not prove to be attractive. In our approach, we

14

decided to stay with the idea of an every collaborator having his personal stream, but as
the project is a collaborative environment, we enabled the union and intersection of the

streams strictly monitored by the collaborators privilege levels for every application.

15

Chapter 3
DISCOVER - Computational Collaboratory for Interaction

and Steering

DISCOVER is an interactive computational collaboratory that provides transparent
access to remote complex applications for monitoring and sharing. The main objective of
this application is to provide geographically distributed scientists to collaborate monitor
and control the application by providing a user with a web-based user-friendly interface.
This chapter provides an overview of the design of DISCOVER ranging from the server
to the virtual desktop. It then introduces the design of the thin clients to enable multiple

application access and control as opposed to single application access.

DISCOVER is designed as a three tier architecture (fig 4), comprised of remote thin
detachable client portals at the front end, a peer to peer network of interaction servers in
the middle and a control of network sensors, actuators and interaction agents

superimposed on the application at the backend. [2][3]

The client can be invoked from a web browser. The client when connected to the
server receives a list of active running application. The current client has a capability to
monitor one application per client. The middle tier is a web server that extends the
capability of interaction and collaboration. This server is responsible for translating and
forwarding the requests and steering commands from the clients to the control network

with the applications at the backend. Some of the other functionalities built into the

16

server are session management, locking mechanism, concurrency control, and security

and authentication services.

Lpplication 2

Smabtion Ederaction Eroker

Sescinm drchial L~
Diatabace aapport

Weer Matherntication
Via/ Comprtation. [
Irtera ctiony' SteeTing

=B Interaction
: 2 Agent
senfe e ,K./ . \4 PN A
I:ng Ohj 1 hj2
Femote Loeal
Doatab ase Dratab ase

Figure 4: - Three tier architecture of DISCOVER

3.1 The Client

The client portal is a virtual desktop that provides means for the scientist to monitor and
interact with the applications, collaborate with his group members and review the logs of
the information. The desktop is divided into two domains called the global and the local
desktop. A global desktop is a shared workspace of the group formed by the
collaborators. DISCOVER employs replicated shared workspace architecture for efficient

response times. Locking mechanisms are incorporated to deal with the issues of

17

replicated workspaces. Objects can be dragged into private or global desktop to change
the objects sharing mode. The desktop contains an object list containing the objects and
their supported interfaces imported from the application by the interaction and
collaboration DISCOVER servers. Every object encompasses the methods that allow
monitoring the object status termed as views, and methods tat allow changing the
parameters of the objects termed as commands. The portal has designated windows to
display the application status messages, requested views results and command updates.
The application status messages are divided into global status messages, global updates
and local status messages. The global status messages indicate whether the application is
in the computation or the interaction phase. The local status messages are used to indicate
the status of the users request or command to the application. The portal provides tools
like chat and whiteboard that provides the users with a means to share the information by
text or graphic messages. The whiteboard has various drawing, writing and annotation
tools. A whiteboard can be a user’s private whiteboard or can be a part of a collaboration
room. In the collaboration mode every users work is distinguished by the means of

different color schemes and telepointers. The figure 5 shows the snapshot of the portal.

3.1.1 The client server communication model

The communication between the client and the server is completely asynchronous. This is
attributed to the fact that the application alternates between the interaction and
computation cycles. The client requests get queued at the server and are transferred to
application sequentially during the interaction cycle. Due to the asynchronous nature of
the application and the web based client server model, the client keeps polling the server

to get the responses for the requests sent by the client. This is accomplished by running a

18

] Diomso | raneptFAABR - Micincll Indminel | eplosss

L
) ciobatBoungmpBodies:
[} origreeranmPiat singent refning might

[Refremangrianmasen Anshie Maley s 3 wrk
& Commands Curreft Maalev = 3 avifEshfs

=ity ey e |
[Getaiue
D Commands
¢ CILVIPO My Trnpld
P C0 Views
[} cotvaiue
&[] Commands
$) DoEnaFuncsandd
¢ ClViews
O} v
[y wirvvat
D Mgam 2
[} ksikce
) vsice
[} sticeitvahue
El ShedValue

[MISCOVER Whitehosid M= E

TEN B W REEEE B

Risaiis w3 BISCIER Chal
=1
T YT W TR

AW Progustey 11mistss

Figure 5: - Snapshot of the DISCOVER portal

thread termed as the client update thread. The implementation of the portal allowed the
user to be connected to only one application at a time per client. As the communication is
asynchronous, keys have to be used to determine the corresponding client to the response
received at the server end. These keys proved to be insufficient to map the responses to
the correct application if the client was connected to more than one application. If the
user needed to be connected to any other application at the same time, then a different
instance of the client needed to be spawned. Due to this limitation, a collaborator would

usually limit him to one application at a time.

19

3.1.2 Multiple application support

The main aim of DISCOVER is to provide application access to the user for monitor and
control by placing the least amount of restrictions and providing the additional
functionalities of collaboration by use of various tools. One of the major drawbacks of
the portal was the lack of multiple application support. In order to access the portal for a
purpose of chatting with another collaborator, one had to request an interaction with the
application. Due to these restrictions imposed on the user, the portal was revised to

counter them.

One can now access the portal even in absence of any active application and utilize the
basic tools. When the user signs in to the portal, the list of applications and the list of
users are presented to him. The user can now select to interact with any or all of the
active applications from the list using the same portal. He is further presented with the
option of holding individual chat sessions with any of the users without application
interaction. The focus of the portal has now been shifted from interaction with the
application to user collaboration. Whenever the user interacts with an application, a new
panel is created for the application interaction within the portal. The look and feel of the
new portal is still the similar to the earlier design to make transition simple. The figure 6

describes the new client server communication model.

20

: = aApplication
send Thread » N ques Eques eq:es T I,___{_\.
CLIENT || o011 thread . | D : . .
o+ ! !
L i i
L . !
E Updates P |
send Thread A | i
!
CLIENT indlib = - -0 E
Pol11 Thread o B
S I
(0]
send Thread E Responses P
—_—)
CLIENT R 4: Y))
' Foll Thread v : i
B i i
Iﬁ R < !
T . : E i K
= Command Key Client Table E 1i carion
R 2
Q\w‘\

_I’C]ierlt D | Mode

Figure 6: - Client Server Communication Model in DISCOVER

The portal now consists of multiple application interaction frames distinguished by the
application identifiers received by the servers. As described earlier the application
alternates between computation and interaction cycles. Hence the client has to maintain
the send and the poll threads. Keys were needed earlier to distinguish the client to the
response. But now as the client to application mapping has been changed multilevel keys
have been added to facilitate proper response delivery. The server maintains a two level
hash where every request or a command now has a unique key. The server queues the
responses for every client in a client table depending on the mode of the client. As the
client can have different collaboration modes for different applications, the keys are now
a combination of the client identifiers and the application identifier. When the server
receives a new response form the application for the request sent by the client, it appends

the appropriate client-application queues based on the collaboration modes. The main

21

goal of the client is to provide thin clients. Hence the least amount of complexity has
been added to the clients to make the clients lighter to support easy web access. As every
application interaction frame is now a new instance in the client portal, every instance
now has its own send and poll threads. This helps keep the overall client structure simple
as now another level or keys or hash tables need not be maintained in the client. As every
instance has its own poll threads, the response times that are very important in real time

monitoring systems, are kept very low. The figure 7 shows the view of the current portal.

& 5=

Applications List r DemoTransport2dAMR connected on Apr 25 2003 at 08:19:15 AM r DemoTransport2dAMR connected on Apr 25 2003 at 08:28:16 AM |
DemoTransport2dAMR c
DemoTransport2dAMR c;

Exit || Whiteboard H Chat || Steer Li[eStream|
Object_List
Objects
e [AC]12-D Transport Application
% [[DOGridHierarchy
® Jviews
[slobalBoundingBoxDes:
[sridHierarchyPlot
[rRefinementintarmation
& 3 Commands
& T3 [LPIPO:Myld
% O POy Trogld
% [views Minval :
D Getalue Minval = -0.026088

Reqguested View Results
I (3. 1200006-02, 3.1200006-102)

Extents: (33,33)

hzal
Maxval= 0.960965

Min'/al :
Minyal=-0.053273

Users List @[] Commands
@ I [DO]GHdFunction2d:u Glohal Status Updates Local Status Updates
Mo Collsborataors @ T visws FinalLevel 2 OBJECTIC: GridFunction2d:u NODE#0 OBJ# 4
D Maxval \terationst - 26 iew Marme: Minval
[Minval FineLevsl - 2 5. ‘vour request: Minval has been sent
e Iterations : 27
D MNormz2 =
[srslice B, vour request XYslice has been sent
[#stice Global Updates Application Users List
[vaiice Status: GOMPUTING
D SlicexValue
D Slicetvalue
& [commands
Status: INTERACTIMNG

LifeStream | SubStream

Figure 7: - Snapshot of DISCOVER portal with multiple Application Support

22

Chapter 4

Interaction Streams in DISCOVER

The Interaction is composed of documents organized by the events that have taken place.
These time ordered events range from an application status update to a complex
whiteboard session. As geographically scattered users create the interaction streams, the
problem of unsynchronized clocks is dealt by considering the servers clock to be the
standard. This time is displayed on the local portal on the users machine. The stream is
further categorized into two kinds of streams, namely User Stream and Application

Stream.

A User Stream contains the log of the private and group sessions that the user has had
in his lifetime of usage of the portal. This is a very important feature for the client as it

provides him with a complete visual log and session replay features of the workspaces.

An Application Stream contains the complete information of the application’s life
cycle, such as the status of the objects at particular time intervals, the users registered, the
time the users logged in to interact with the application, the monitoring and steering
requests. This stream enhances the security of the system as it provides a powerful

medium to audit the application by the administrator of the application.
4.1 User Stream

User Stream is a complete log of the users work and interaction data in the DISCOVER

portal. All the registered users of the DISCOVER system possess and own their personal

23

streams. Our system provides the flexibility to the owner of the stream to decide the
space for the storage of the stream. At present the DISCOVER server also provides
storage in the pool of its resources, but as the streams are ever expanding, we expect the
owners to have designated storage areas for their applications. A comprehensive log of all
the clients and applications streams can be an issue of concern. But as this is the
development stage the storage is considered to be vast less. This feature could be made
optional in the further releases of the interaction streams. We extend the importance of

this feature to the increase in the security of the system.

4.1.1 User Stream View

A user can request to the view of his Stream by the clicking the Lifestream button
provided to him in the portal. The User Stream View displays a sequence of time-ordered
documents ranging from present to the past. The date annotated scroll bar provided at the
bottom of the user stream interface provides the capability of flipping through the stack
of the documents. The user can bring a certain document in focus by selecting the
document from the stack in the stream view. The document selected is rolled over to the
front and hence the rest of the stack is refreshed with the appropriate information. Every
document holds the information about the state of the application or the action taken by
the user. These documents present concise information of the event, thus enabling the
user to pick out the document of interest with ease. These documents hold various kinds
of event information like user log in or log off, request of a view, global updates etc...
This information is divided in to categories and icons have been associated with each
category. These icons provide basic information like a simple user connect request to

complex events like a response of a user request containing a plot graph. Simplicity is

24

built into these documents by presenting concise information of the event to establish the

required characteristics.

Date

Descipr
Iteratior
Finele

D: Slobal Update

DemoTransport2d AME

Date .ﬁa Log Of

DemoTransport2dAME

Descipr

Iteratior| Date

Finele

g& Log In

Descipr]

DemoTransport2dAME

The cli
CemoT

Date

=

Descipr]

Global Update DemoTransport2d AME

The clig Date

Descipr|
Iteratior
Finele

DemoTransport2d AME

g iew Response

Date

2003-04-25
08:20:57

Descipriion

& !IEI
LifeStream -
& =0
g Wienw Response DemoTransport2dA A
I 2003-04-25
2 lobal Update DemoTransportzd AR L2 08:20:57
Desciprtion

xmin =0 xmax= 1
ymin =0 ymax= 1
dx=0.03125 dt= 0.015625

Absolute Maxlev=23
Current Maxlev=2
Thresheld = 0,005
RegridEvens =4
Buffadilfidth = 2
Blockiidth = 1
MinEfficiency =085

D

Textlisplay -
Object ID : 2-0 Transport Application HODE# 0 OBJ# O

InterfFaceMame : Appletail ol

=N
O eryiew

2003-04-25

Figure 8: - Lifestream view in DISCOVER

This stack of pages is just a means to get to the desired event faster; hence the details

of the event can be obtained by the click of the overview button provided at the bottom

right corner of the document, which opens a new window to display the complete

information of the event. Figure 8 displays such a user stream. The top label of the

document depicts the kind of the event by the use of icons and the name of the

application is depicted right next to it. The date and the time the document’s creation is

presented below this information. This is followed by the description of the event.

25

4.1.2 User-Application Stream View

The User Stream view provides complete log of the users interaction on the discover
portal with all the applications. A user’s interaction with an application at any time is an
indication of the user’s interest in the application. Hence we decided to include a user
application stream view. This view is similar to the User stream in all aspects, but the
stack now consists of the documents from the current application in focus. Selecting the
Lifestream button provided in the application interaction panel can create this stream

view.
4.1.3 User Substream View

The User Stream View provides a complete log of the user’s work and the user’s
application interaction in the DISCOVER system. Dealing with such huge amounts of
information can be cumbersome when the user is looking for just a specific event. To
deal with such needs of the user, a User Substream View has been added to the system.

Figure 9 below represents such a view.

This view consists of 5 main elements.

1. Application List: - This is the list of the applications that the user is registered to
in the DISCOVER system. This list is obtained from the DISCOVER server.

2. Collaborators List: - This list consists of the users who are registered to the same
applications as the user and hence are termed as the collaborators.

3. Time From: - This allows the user to select the lower limit of the time duration of

the user’s interest.

26

4. Time To: - This allows the user to select the upper time limit of the duration of
the user’s interest.
5. Event List: - This list consists of the kinds of events. The events are divided into

eight categories. All of these categories are contained in the Event List.

& Create The Substream [_ (O]

Substream
Select Application Select Collaborators

IPARS
DemoTransportZ2dAMR

Select Time From Select Time From

‘ear

2I]l]3

J

Create Substream

Figure 9: - Substream View in DISCOVER

All the lists generated by accessing the information from the DISCOVER server’s
database resources. The user has no rights to edit or enter additional information into
these lists. This prevents the user from unauthorized access into other User’s stream. We
have imposed this restriction to maintain the security imposed by system by assigning

appropriate privilege levels for all the users for all registered applications.

27

Substream creation is probably the most important feature provided in the interaction
tool. Selecting any, some or the entire criterion, one can now obtain a stream of filtered
documents. Multiple values can be selected from any of the lists to comprise the decisive
factors for the Stream. The Create Substream Button when clicked gathers the selected
conditions and creates a union of all the conditions. As the streams are created on the fly,

the stack created is dynamic and no permanent storage is assigned to it.

All the elements except the list of the collaborators create the substream from the
user’s personal stream. The condition of the query is a result of the combination of all the
conditions specified by the user in the substream view. All the documents fulfilling these
conditions now comprise the new substream. These documents are displayed in similar
user interfaces as the Users Stream frame. The Collaborators List is of special interest
here as this now allows the user to index into stream owned by his collaborators. The
substream created is an intersection not a union of the two streams, hence the events
occurred during the collaboration of selected collaborators and the user forms a collection
or a group of these documents. Even when two people are in collaboration mode, their
privilege levels can limit the information that is displayed to the user in his portal e.g. a
user with a privilege level lower than 2 cannot request views of objects of the application
and also cannot obtain the views requested by his collaborator. Due to the synchronous
nature of the DISCOVER system, the users need to be in collaboration mode in order to
obtain any information about another user. This feature has been incorporated to build the

security of the system.

28

4.2 Application Stream

The main purpose of the Application Stream is to provide the owner of the application
auditing capabilities. Every application is registered to the DISCOVER server by a user
termed as the owner of the application. This auditing stream is accessible only to the
owner to the application. Similar to the User Stream, this is stored in the DISCOVER
system’s pool of resources. This feature could be made optional in the further releases of
the interaction streams. We extend the importance of this feature to the increase in the

security of the system.

4.2.1 Application Stream View

The Application Stream View is similar to the User Stream View. The application Stream
view consists of a stack of time-ordered documents. Every document holds the
information about the state of the application ranging from application connects to
application disconnects. The date annotated scroll bar provided at the bottom of the stack
provides the capability to the user to flip through this stack of documents. These pages
just provide minimal concise information of the event. This stack of pages is just a means
to get to the desired event faster, hence the complete information of the event can be
obtained by selecting the document, which opens a new window to display the

information.

The Application Stream can be used to insert some asynchronous characteristics into
DISCOVER system. In the current system, the state of the application can be monitored
only when the user is connected and interacting with the application via the portal. As the

Application Stream logs all the updates on the status of all the objects present in the

29

application, one can access these logs and get the required information. But the main

motive for the application stream is to serve as a basis for an auditing stream.

30

Chapter 5

Design of Interaction Streams in DISCOVER

This chapter presents the design of the new tool called the Interaction Streams in

DISCOVER.

5.1 Elements comprising the User Stream

The User’s Stream is comprised of the following pieces of information.

Application Identifier: - This is the identifier assigned by the server that is
assigned to the application when the application is first initiated on the server.
Time: - This is a combination of the date and the time when the event was
initiated. This is the primary key of the stream. As the server sends the requests
sequentially to the client, all the events have different time stamps associated
with them. The server puts the timestamps when any information is sent to the
client. Thus in case the users are in collaboration mode, the responses or updates
received at the users end have the same time stamp. At the time of the substream
formation, it is this primary key that differentiates whether the event was a
collaboration event.

Description: - This field contains all the information about the event. It can
contain information ranging from the chat message to the plot points of the graph
of a View Response. The complete description is used only when the document is

selected for complete view.

31

e Event: - This field consists of the kind of event that comprises the document.

5.1.1 Classification of Events in The User Workspace

As explained in the earlier chapter the documents contain information based of different

kinds of interaction events in the users portal workspace. A user’s complete workspace is

a combination of the workspaces of all the applications that the user is currently

interacting with. The events are categorized into 2 kinds based on their source of origin.

They can be either user initiated or application initiated. User initiated events can be

personal or a can be sent by a collaborator when the user is in collaboration mode. The

application-initiated events usually consist of the updates. These events are listed below.

Event Name Description Event Type | Symbol
The event when the user sends and
User
1 | Client Log In interaction request to the ~,
Initiated
application.
The event when the user requests a
view. The response of the view is
User
2 | View Response stored as View Response. View lg‘
Initiated
response can be either textual or
graphical.
The event where the user sends a User
o
3 | Steer NT7
steer request Initiated

32

The event where the application

Application _
4 | Global Update sends the global update messages to 3'-'"
Initiated
the users portal
The event where the client sends a User
5 | Client Log Off sa
disconnect request to the application | Initiated
Application The event where the application is Application ;
5 - S
Connect started on the DISCOVER server initiated =t
The event where the application is
Application Application
6 complete or disconnects due to some ﬁ
Disconnect initiated
problem
The event where a user sends a
User _
7 | Chat Event conversation message to another _,o
initiated
user.
The event where a user draws or User -
6 | Whiteboard Event L
writes on the whiteboard initiated

Table 1:- Categories of Interactions

5.2 Communication Model with the Interaction Stream Tool

The incorporation of the Interaction Stream tool has introduced changes in the system

architecture of DISCOVER. This section describes the changes in the design of the

entities of the system.

33

5.2.1 System Architecture of DISCOVER

The figure 10 shows the system architecture of DISCOVER with the introduction of the

Interaction Stream Interface. The design now consists of the following elements.

e P2P network of DISCOVER servers

The DISCOVER servers form a p2p network providing the necessary services and the
messaging substrate. This network is the key to providing seamless interaction
between the applications and the clients. The applications connect to any of the
available resources in this p2p network. Services have been introduced to maintain
consistent logging of the user and application information in the storage pool of
resources. The primary reason to introduce this service at the server is to maintain
thin clients and moreover all the client events are processed through the server. Hence

it makes this integration meaningful.

e Storage resource pool

This storage pool comprises of object relational distributed databases. These
resources provide resource access services to the other entities in the network. The
servers use these services to store or retrieve information from the resource pool.
These services also play a great role in the incorporation of the new tool of interaction

streams at the client.

34

Clients

Discover server p2p
architecture with
messaging substrate

Pool of
Services

Ny

Client

Clients

Workspace| CS interface

Object relational distributed
databases accessed by data
resource access services

Figure 10: - The system architecture of DISCOVER

e (lient

The thin client view 1is the current portal that supports multiple application
interaction. Every active application interaction comprises the workspace of the
client. The client utilizes the services provided by the messaging substrate in order to
interact with the applications. An interface called the Interaction Stream Interface has
been added to the client. The responsibility of this interface is to access the services
provided by the resources pool and visualize the streams. When the interaction

streams tool is activated, this interface develops a query based on the conditions

35

declared by the client and then requests the interaction stream service for the set of
the documents that fulfill the presented user specified condition. Once the client
receives this set of document, the interface provides it meaning by presenting the user
with a visual representation of these documents. The user can now flip through the

stack of the documents as discussed earlier.

5.2.2 Client-Server Communication for the Formation of Interaction Streams

The figure 11 depicts the new client server communication model for user-initiated
events. The earlier sequence of events persists in the communication. Steps have been
added in the communication to enable application and client event logging. Once the
response or any interaction update is received from the application, it is assigned a
timestamp at the server. These queued responses are matched with the keys and passed
on to the poll threads of the client. Once these requests are sent to the threads, the events
are logged in the server’s storage resources in the user’s interaction stream. Thus in case
of a collaboration event, the timestamp of the event is the same for all the users in the
collaboration mode. Even though the responses are sent sequentially and arrive at
different times from the server to the clients, it still possesses the unique timestamp.

Hence we have assigned time as the primary key in the interaction stream.

Due to the client server nature of the portal, to get application-initiated events like a
thread running at the portal handles the global updates that send request to receive the
updates. Hence even though the event seems to be initiated by the portal, it is an
application event that needs to be communicated to the portal. Hence all the events come

as responses to the portal.

36

‘Ii — - - Applicarion
- - - 1
send Thread > N - ﬁ ﬁ ﬁ % .J_/ ----- -
CLIENT | po11 Thread _ [D ' i M t |
e . !
L U | i
|
send Thread > E User imteractions Jli — :
CLIENT poll Thread T Sl
s I
send Thread E Updates & Responses a J—
CLIENT Pol1 Thread 5 I’ ‘I
B - !
: Rl B B
0] !
-g K . ’.z'
Interaction stream Handler I E ﬁmﬁgaﬁﬂﬂ

il

-
Client ID Buffer

Databases

Figure 11: - Client Server communication with Collaboration stream module

Due to the client server nature of the portal, to get application-initiated events like a
thread running at the portal handles the global updates that send request to receive the
updates. Hence even though the event seems to be initiated by the portal, it is an
application event that needs to be communicated to the portal. Hence all the events come

as responses to the portal.

37

5.3 Issues faced in the design of the tool

For a smooth operation of such a tool, the following issues had to be considered and
dealt with. Because the tool requires dealing with massive amounts of information and
repeated access of the databases in the resource pool, response time and memory overrun

are the major concerns.

5.3.1 Stream logging

As explained earlier, the server is responsible for logging all the events into the stream.
This translates to repeated insertions into the databases. Latencies enter into the system
from various sources. Due to the client server model of the system, the client request is
sent out and is queued at the server until it can be processed. Hence there is latency in
the request- response from the client-server. The application responds to the user request
sent to the server only when it enters the interaction phase. This is another cause for the
latency being built in. Moreover these responses are further queued at the server with
other updates like user list updates, global updates etc. Hence these responses arriving at
the client sequentially contribute to the total latency. In order to make the interaction and

collaboration real time, latency should be kept under check.

We have taken a buffering approach to counter the problem of the latency. As
discussed earlier, the server thread maintains a queue of the responses for the clients in a
hash indexed by the client id. The responses are sequentially sent to the client and a copy
of the response is stored in a buffer. When the buffer is full or the client decides to
terminate the interaction with the application, the buffer is emptied into the database. As

the time taken to connect to a database is much more significant than the time taken to

38

enter records into an open database, the buffer scheme helps in controlling some lag
introduced by the logging of events. The size of the buffer can be decided by considering
factors such as the kind of database used, namely relational or object oriented, local or

remote.

We consider the databases to have unlimited memory right now. But in the future
versions of the system, we can introduce concepts of deleting records from a user’s

personal workspace or archiving old records.

5.3.2 Stream Retrievals

As the interaction stream is set of all the events occurred during the lifespan of the client
with all registered applications, the record count is limitless. These large records pose a
threat of memory over-run. This factor possesses a lot of importance as it threatens to
run down the system. Moreover the numbers of records accessed also translate directly

into latencies.

A scheme called zoom in is created to counter this problem. The stream views contain
the stack of documents arranged from the present to the past in the view. These
documents can be flipped through by the use of the date annotated scroll bar. This stack
of documents is created by the query to the database based on the user enlisted
conditions. The stream interface retrieves records arranged going from present to past
and adds a condition limiting the number of records extracted from the database. This is
under the assumption that the user is interested in the current information more than the
past. But once the user scrolls towards the end of the active record set, the stream view

zooms in to the past. At a certain point there is only one active set of records. Hence new

39

records fulfilling the same condition but ranging in time from the lower limit of the
current set of active records and to further in the past are extracted. Some over lap is
maintained between the current and the old working sets of the records. Similarly when
the scroll bar is moved to a location in time currently higher than the active set, the new

set (earlier set) is reloaded.

)

LifeStream

ap Global Update DermoTransport2d MR

.ﬁ.@ Log OfFf DermoTransport2d AMR

Reis Fi Log In DemoTransport2d AMR

Descipr]

The clig Date % ip Global Update DemoTransport2d AMR
DemoT

De=cipr|

The clig Date @ Wiew Response DemoTransport2dAmMR

Oescipn

'Ft_e"":_i'” Date i:lq*: Slobal Update DemoTransportzd MR
nele

Descipr]
TextDis) O=te

Object
|nterf g|0escipriion

Iterations : 12 al
FinelLewel : 2
-
Ol rwien

i L 1

2003-04-25
05:21:00

2003-04-25

Figure 12a: - The view of the lifestream before the activation of zoom in feature

[

LifeStream

g Viewr Response

DemoTransport2d AMR

40

I [=] E3

Date aa Slobal Update OeroTransport2dAMR
De=cipr
TexdDiz) Date Dp Global Update DemoTransportZ2d AR
Object
InterF a|PEs=ipr
Iteration Date .ﬁ@ Log Off DernoTransport2d AMR
FinelLe
De=cipr
Iteration) Date f‘h Lag In DemoTransportZd AMR
FinelLe
Descipr
The clig Date g “iew Response DemoTransport2dAMA
DemoT "
Desai
==l 2003-04-18
The clid Date
16:05:34

Descipriion

TexdDisplay

F
Object |0 : 2-0 Transport Application NODEE O OBJE 0 ﬁ
InterFaceMame ; AMEParameters >

o
Clwerwiew

2003-04-25

Figure 12b : - The stream view after the activation of the zoom in feature

This feature is an attempt to keep in check the memory and time constraints imposed

by the nature of the tool. The figure 12 depicts the tool. Figure 12a shows the initial

stream view of the user. Figure 12b shows the activation of the zoom in feature. The

scroll bar is now extended to incorporate more records. But only one working set of

records is maintained. The overlap in the two sets of records maintained here are 50.

41

Chapter 6
Implementation and Evaluation of Interaction Streams in

DISCOVER

6.1 Implementation

The interaction stream tool has been designed to be used with DISCOVER. Hence to
incorporate the tool into the working model of DISCOVER, the established framework
and implementation environments have been used. The current framework of the system

has been described in chapter 3.

6.1.1 Stream Retrieval Implementation

This section describes the mechanisms and the interfaces that have been built in the client

to generate the streams.
e Interaction Stream Interface
The Client to stream communication uses a channel denoted as the stream channel.
This is an independent channel established between the client and the pool of
resources. As described earlier in chapter 5, the client implements a
InteractionStreamlInterface. This interface includes methods for authentication of the
client to the database resources. This interface provides the only means to the client
access the personal stream. This interface also includes methods to generate queries
for the conditions stated, querying the databases to generate the streams. This

interface is further inherited by two modules namely substreams and User Streams.

42

The substreams interface deals with generating the complex conditions for the user
query provided by the values of the keys selected from the substreams user interface.
Database access support has also been provided at the client side. These requests are
not sent via the server because the primary purpose of the server is to maintain
interaction between the client and the application. This task does not fall into that
category because it is a review of the work done. A stream of the review work is not

created even though the streams are accessed via the client portal.

e Stream User Interfaces

Using java swing creates the user interfaces. We chose this in order to allow easy
resizing of the application windows. These user interfaces contain methods to convert
the textual data into visual representation. Some other methods comprise of the
enabling of scrolling through the stream, selection and complete description of
particular record, zoom in to the past and present. The Interaction Stream UI and

SubStream Ul inherit these stream user interfaces.

6.1.2 Stream Logging Implementation

This section describes the modules created to enable logging of the events to create the
stream. As discussed earlier, the server is comprised of servlets performing their
designated tasks. The interaction and steering servlet is responsible for handling all the
requests and commands sent by the user. There is yet another servlet employed to take
care of the interaction needs. An interface called the stream interface has been created to
make this task possible. This stream interface is inherited by the servlets. The interface

consists of methods to insert the records into the database. This interface also consists of

43

methods to enable authentication of the client to the databases in order to access the
correct streams. The database handler built in the server makes the database
communication possible. This interface provides other methods such as method to add
records to the buffer, method to insert all the records from the buffer into the database for

delayed group insertion.

6.1.3 Database design

The original database resources are built on the relational database MYSQL. Hence we
decided to carry create the streams in this database. The figure 13 presented below, lists
the tables that are present in the databases.
The tables comprising the databases are:-
1. Users
This table contains the user information such as the name of the user, user id, and
password. This table is used to authenticate the user when the user logs in to the
system. The status filed indicated if the user is currently available on the portal or
not.
2. ACL
This purpose of this table is to authenticate if the user is registered for the
application and check the privilege level of the user for the particular application.
It contains fields UserID , Application Name, Privilege and Status.
3. Applications
The records of this table contain the applications that are currently running on the
discover server. Hence when the user logs in to the system, a query on this table

and on acl is made and the list of active applications for which the user is

44

registered is passed to the portal. The various fields comprising the table are

Application Name, Application ID (assigned by server), Server ID and Status.

ACL Appli.cati'ons
User ID Application
Application 0 App ID
Privilege —|__Server ID
Status Status '
Connect Time
I Connect Time

o0
o0
Users
User ID
1 | User Name |,
Password
Session ID
Status
ApplicationLifestream
Time
ClientIDStream 1 User
Time App ID
! App Name Event
App ID Description
Event
Description

Figure 13 — Structure of Database

4. ClientIDStream
Every user of the system has his own Stream. The name of the table is a
combination of the userID and Stream. It contains the logs that comprise the

stream. The fields include, Time — the primary key, Application Name,

45

Application ID , event — these are divided into eight categories and Description —

containing the description of the event.

5. ApplicationStream
This table contains the stream of the application. Access to this table is provided

only to the owner of the application.

6.1.4 Applications Used

DISCOVER system has been used to provide interaction capabilities to a number of
applications. The tools developed have been tested by the running some of these
applications on the framework. A list of the applications used for this purpose are
presented below
1. Reservoir Simulation - GrACE[9] has been integrated with IPARS (Integrated
Parallel Accurate Reservoir Simulator) [[26], [10]] to provide a problem solving
environment for parallel adaptive porous media and reservoir simulations. This
tool is developed to model the behavior of fluids in permeable geologic
formations such as petroleum and natural gas reservoirs and ground water
aquifers. Deployment and management of IPARS instances uses services

provided by DISCOVER [10] and Globus[4].

6.2 Evaluation

Experiments were conducted to test the overheads of incorporating Interactions streams
into the DISCOVER system. The experiments ranged from calculating the overheads of

time and memory to form and retrieve the streams.

46

6.2.1 Experiment 1

This experiment aims at quantifying the overheads introduced by the addition of the
logging interactions at the server end. The experiment consisted of calculating the time
required to empty the buffer into the database. The overheads for this experiment are
plotted in the graph in figure 4. The peaks in the graph represent the time taken to
perform the group logging from the buffer. There are intervals of time where no record is
logged to the database. An overhead of 6.05ms on an average is introduced per

interaction at the server.

Time taken for multi-values insertions at the server

100

80

40 4

B O Y

1 20 40 g0 80 100

Time Taken for ingzrtian [ms]

-20

Mumber of records in stream

Figure 14:- Graph depicting time overhead incurred for Interaction Streams

47

6.2.2 Experiment 2

This experiment calculates the memory used for the storage of records in the interaction
streams. The graph in Figure 5 shows a linear increase in the memory used with the
increase in the number of records. On an average a record consumes 220 bytes of
memory. As the entire information can be contained in such small records, the streams

can store a large number of records before it runs out of memory.

Memaory used at the server database for storage of interaction streams
400000 4
350000 4
300000 4
280000 4
200000 4

180000 -

Memary used |Bytes)

00000 -

GO000 -

l:l T T T T T T T 1
0 200 400 g00 200 1000 1201 1400 1600

Mumber of record 2 in Stream

Figure 15:-. Graph depicting Memory usage for storage of Streams

6.2.3 Experiment 3

This experiment is used to estimate the time overheads in the representation of the
Interaction Streams. The experiment consisted of calculating the time required to load the
active set of records from a user interaction stream fulfilling the conditions. The values of
access times are plotted against the total number on records contained in the stream. The

values from the graph in Figure 6 show that the access times of these records are limited

48

in a time range based on the sizes of the records retrieved. These times do not increase
with increase size of the stream because only a subset of the information is retrieved at
any give point.

Time Taken to form Interaction Stream requested by user

35 1

30

20

] A
AT M dl
s/ AN L

Time Taken |miliseconds)

u] 200 400 EO0 00 1000 1200 1400 1600
Mumber of Interactions in stream

Figure 16:- Graph depicting time overhead incurred for extraction of records from Interaction Streams

49

Chapter 7

Conclusion and Future Work

The system presented here is an attempt to increase the usability of the DISCOVER. The
provision of multi-application support and the integration of a visualization tool called
Collaboration Streams are they key contributions of the thesis. The designed tools are
based on the requirements gathered and issues faced from the collaborators working
groups in the current DISCOVER system. The key challenges faced were to increase the
usability of the system by providing session logging and retrieval support and visual

representation of the data gathered.

This thesis presented the design and implementation of a tool used for session logging and
retrieval that aids in the visualization and review of the collaborative environment. It further
explains the incorporation of this tool into DISCOVER - a web based computational
collaboratory. It further explains the solutions to the challenges faced, like data storage, data
retrieval, data representation, scalability, and privilege checks, ease of use and memory usage.
The client supporting multiple application interaction has been designed and developed. These

contributions have contributed towards making the system more usable.

The revised client with the tool and the multi-application support is now available and
provides the scientists with the ease of being connected to multiple applications and the
capability to review their work in the collaboratory with the help of the intensive logging

and retrieval resources built into the system.

50

This was achieved by the development of the Interaction Streams interface. This interface
encapsulates methods for authentication of the client to the database resources and
provides a means for the client to access his personal stream. It also provides methods to

generate queries for the conditions stated, querying the databases to generate the streams.

One of the most important issues arising from the development of this tool is data
storage. An immense amount of data is produced as a result of the stream logging, the
data resources would saturate. Efforts need to be put in to counter this limitation.
Techniques like selective data logging can be put into place. The logging can be made
more intelligent by identifying each object and supporting querying on the values of these
objects. A study can also be performed to measure the usability of the tool in the system

and the issues faced by the usage of this tool.

We hope that the future work will address the issues faced and help build an efficient

easy to use scientific collaboratory.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

51

References

DISCOVER (Distributed Interactive Steering and Collaborative Visualization
EnviRonment), http://www.discoverportal.org.

“DISCOVER: An Environment for Web-based Interaction and Steering of High-
Performance Scientific Applications,” V. Mann, V. Matossian, R. Muralidhar, and

M. Parashar, Concurrency and Computation: Practice and Experience, John Wiley
and Sons, Vol. 13, Issue 8-9, pp 737 — 754, 2001.

Fertig, S., Freeman, E., and Gelernter, D. Lifestreams: An Alternative to the
Desktop Metaphor. In ACM SIGCHI Conference on Human Factors in Computing
Systems Conference Companion (CHI'96), pp. 410 - 411, ACM Press, 1996.

Eric T. Freeman and Scott J. Fertig. Lifestreams: Organizing Your Electronic Life.
AAAI Fall Symposium; Al Applications in Knowledge Navigation and Retrieval,
1995.

Freeman, E. and Gelernter, D. Lifestreams: A Storage Model for Personal Data,
ACM SIGMOD Bulletin, (March, 1996).

Matthew Bianco, An Interface for the Visualization and Manipulation of
Asynchronous Collaborative Work within the DISCIPLE System, Department of
Electrical and Computer Engineering, Rutgers University, January 2000.

“DARPA Project Summary: The DISCIPLE System, Rutgers University” 1997
http://www.caip.rutgers.edu/disciple/

Gelernter, David. “ScopeWare — Information Management Systems” Mirror
Worlds Technologies 1998. http://www.mirrorworlds.com/horizons/index.html

Manish Parashar. Grid Adaptive Computational Engine.
http://www.caip.rutgers.edu/TASSL/Projects/GrACE.

Rajeev Muralidhar - A Distributed object framework for the interactive steering of
high performance applications. Department of Electrical and Computer
Engineering, Rutgers University, October 2000.

Vijay Mann - Middleware Architecture for Integrated Computational
Collaboratories. Department of Electrical and Computer Engineering, Rutgers
University, October 2001.

http://www.caip.rutgers.edu/TASSL/Projects/GrACE

52

[12] Java Servlet API Specification, http://java.sun.com/products/serviet/2.2/.
[13] Usability First — Online guide to usability resources http://usabilityfirst.com
[14] Apache Web Server, http://httpd.apache.org

[15] Apache Jserv Servlet Engine, http://java.apache.org

[16] Groove Networks : http://www.groove.net
[17] NetMeeting http://www.microsoft.com/netmeeting.

[18] S. Subramanian, G.R. Malan, H.S. Shim, J.H.Lee, P. Knoop, T. Weymouth, F.
Jahanian,A. Prakash, and J. Hardin, .The UARC web-based collaboratory: Software
architecture and experiences., [EEE Internet Computing, Vol.3, No.2, pp.46-54,
1999. See also: http://intel.si.umich.edu/sparc/.

[19] Cactus Computational Collaboratory. http://www.cactuscode.org.

[20] M. Russell, G. Allen, G. Daues, I. Foster, T. Goodale, E. Seidel, J.Novotny, J.
Shalf, W. Suen, and G. von Laszewski, .The Astrophysics Simulation
Simulation Collaboratory: A Science Portal Enabling Community Software
Development.. Proceedings of Tenth IEEE International Symposium on High
Performance Distributed Computing, August 2001.

http://java.apache.org/
http://www.microsoft.com/netmeeting

	New Brunswick, New Jersey
	1.1 Objective
	1.2 Background
	1.3 Problem Statement
	1.4 Contribution to the Thesis
	1.5 Organization of the Thesis
	2.1 Requirements of Collaborative Portals
	Figure 1: Entities and their interactions in collaborative environment

	2.2 Related Work
	Design of a groupware system has been a field of continuous research. It requires a complete understanding of its prospective users. This section describes a few systems that present personal workspace (desktop) and shared workspace organization metaph
	2.2.1 Lifestream

	DISCOVER – Computational Collaboratory for Intera
	3.1 The Client
	Interaction Streams in DISCOVER
	4.2 Application Stream
	Design of Interaction Streams in DISCOVER
	5.2 Communication Model with the Interaction Stream Tool
	Implementation and Evaluation of Interaction Streams in DISCOVER
	6.1 Implementation

