
 

A STUDY OF SOFTWARE METRICS 

 

BY HILDA B. KLASKY 

 

A thesis submitted to the 

Graduate School-New Brunswick 

Rutgers, The State University of New Jersey 

in partial fulfillment of the requirements 

for the degree of 

Master of Science 

Graduate Program in Electrical and Computer Engineering 

Written under the direction of 

Professor Manish Parashar 

and approved by 

 

________________________ 

________________________ 

________________________ 

 

New Brunswick, New Jersey 

May, 2003 

 
 



 

 ii 

ABSTRACT OF THE THESIS 
 

A STUDY SOFTWARE METRICS 

 

by Hilda B. Klasky 

 

Thesis Director: Professor Manish Parashar 

 

 

Software Engineering is defined in the IEEE Standard 610.12, as “The application of a 

systematic, disciplined, quantifiable approach to the development, operation, and 

maintenance of software; that is, the application of engineering to software.” Metrics are 

used by the software industry to quantify the development, operation and maintenance of 

software. The practice of applying software metrics to a software process and to a 

software product is a complex task that requires study and discipline and which brings 

knowledge of the status of the process and / or product of software in regards to the goals 

to achieve. 

This thesis presents a study and implementation of different software metrics. We apply 

these metrics to a sample project, and evaluate the results. We find that that there are 

specific metrics for different stages of the software development cycle. When used 

properly, i.e., when a company uses the best software metric during each development 

phase, the quality of the software will dramatically increase. Therefore, we highly 

recommend using software metrics during all stages of the development process. 



 

 iii 

Acknowledgements  
 

 

It has been a privilege for me to study at the Department of Electrical and Computer 

Engineering at Rutgers University where students and professors are always eager to 

learn new things and to make constant improvements. I am especially grateful to 

Professor Manish Parashar for his constructive criticisms, patience and valuable 

comments and suggestions to my work. So, I would like to thank Professor Deborah 

Silver, Professor Ivan Marsic and Mrs. Barbara Sirman for their observations and 

remarks to improve my thesis. 

There have been many people that have supported my carrier during my student time. I 

would like to thank Professor Ravi Samtaney, Professor Michael M. Bushnell, Professor 

Stanley Dunn and Mrs. Barbara Klimkiewicz. I would like to thank the management 

support and the learning experience that I have received at work from Shawn Wang, and 

K.C. Lee. 

I have been very lucky to have the continuing support and encouragement from my 

family especially from my husband Scott, my parents Gregorio and Victoria, my brothers 

and sisters: Aida, Gustavo, Delia, Sandra, Eva, Nora and Jaime and my Parents in Law 

Charles and Mary. To all them many thanks. 

 

 

 



 

 iv 

Dedication 
 

 

 

 

 

 

 

To my husband Scott with love and respect. 

 

 

 

 



 

 v 

 

Table of Contents 
 
ABSTRACT OF THE THESIS .......................................................................................... ii 

Acknowledgements............................................................................................................ iii 

Dedication .......................................................................................................................... iv 

Table of Contents................................................................................................................ v 

List of Tables ................................................................................................................... viii 

List of Figures .................................................................................................................... ix 

List of Equations ................................................................................................................. x 

Chapter 1 Introduction ........................................................................................................ 1 

1.1 Overview................................................................................................................... 1 

1.2 Problem Statement .................................................................................................... 2 

1.3 Contribution of the Thesis ........................................................................................ 3 

1.4 Organization of the Thesis ........................................................................................ 4 

Chapter 2 Related Work...................................................................................................... 5 

2.1 Classification of Software Metrics............................................................................ 5 

2.2 Examples of Software Metrics Systems ................................................................... 7 

2.2.1 Software Measurement Laboratory.................................................................... 7 

2.2.2 ZD-MIS.............................................................................................................. 8 

2.2.3 Power Software.................................................................................................. 8 

2.2.4 Charismatek Software Metrics........................................................................... 8 

2.2.5 QSM................................................................................................................... 9 

2.2.6 Other Quality Models ........................................................................................ 9 



 

 vi 

2.3 Summary................................................................................................................. 10 

Chapter 3 A Software Metrics Framework....................................................................... 11 

3.1 Characteristics of the Software Metrics System ..................................................... 11 

3.2 Requirements .......................................................................................................... 12 

3.3 Design ..................................................................................................................... 15 

3.3.1 Cyclomatic Complexity – v (G)....................................................................... 15 

3.3.2 Functions Points (FP): ..................................................................................... 18 

3.3.3 Information Flow ............................................................................................. 22 

3.3.4 The Bang Metric .............................................................................................. 23 

3.4 Coding..................................................................................................................... 24 

3.4.1 Estimation of Number of Defects .................................................................... 24 

3.4.2 Lines of Code................................................................................................... 26 

3.4.3 Product Metrics of Halstead............................................................................. 27 

3.5 Testing / Maintenance............................................................................................. 28 

3.5.1 Defect Metrics.................................................................................................. 29 

3.5.2 Software Reliability ......................................................................................... 29 

3.5.3 Estimation of Number Test Cases.................................................................... 31 

3.6 Other ....................................................................................................................... 32 

3.6.1 COCOMO II .................................................................................................... 32 

3.6.2 Statistical Model .............................................................................................. 35 

3.6.3 Halstead Metric for Effort................................................................................ 36 

3.7 Discussion ............................................................................................................... 37 

Chapter 4 Implementation and Evaluation ....................................................................... 39 



 

 vii 

4.1 Hardware and Software Requirements ................................................................... 39 

4.2 How To Run The Program...................................................................................... 39 

4.3 Development Experience ........................................................................................ 40 

4.4 Main Classes of the Software Metrics System ....................................................... 40 

4.4.1 Classes Implemented ....................................................................................... 40 

4.5 Software Metrics Obtained ..................................................................................... 44 

Chapter 5 Conclusions and Future Work.......................................................................... 46 

References......................................................................................................................... 48 

 



 

 viii 

List of Tables 

 
Table 1 Software Metrics Related Work ............................................................................ 7 

Table 2 Software Metrics Classes Implemented............................................................... 41 

Table 3 Java Swing GUI Classes and other Tools implemented ...................................... 42 

 



 

 ix

List of Figures 
 

Figure 1 Rational Unified Process ...................................................................................... 6 

Figure 2 Requirement Metrics .......................................................................................... 14 

Figure 3 Cyclomatic Complexity...................................................................................... 17 

Figure 4 Unadjusted Function Points................................................................................ 18 

Figure 5 FP Reliability Questions Part I ........................................................................... 19 

Figure 6 FP Reliability Questions Part II.......................................................................... 20 

Figure 7 Adjusted Function Points ................................................................................... 21 

Figure 8 Information Flow................................................................................................ 22 

Figure 9 Estimating the Potential Number of Defects ...................................................... 25 

Figure 10 Lines of Code (LOC)........................................................................................ 26 

Figure 11 Reliability Metrics ............................................................................................ 30 

Figure 12 Estimating Number of Test Cases .................................................................... 32 

Figure 13 COCOMO II Effort .......................................................................................... 33 

Figure 14 Statistical Model Effort .................................................................................... 36 

Figure 15 Software Metrics Design Diagram ................................................................... 43 

 

 

 

 

 

 



 

 x

List of Equations 
 
Equation 1 Specificity of Requirements ........................................................................... 12 

Equation 2 Completeness of Functional Requirements .................................................... 13 

Equation 3 Degree to which the Requirements Have Been Validated ............................. 14 

Equation 4 Cyclomatic Complexity.................................................................................. 15 

Equation 5 Cyclomatic Complexity for Binary Decision Nodes...................................... 16 

Equation 6 Function Points............................................................................................... 20 

Equation 7 Information Flow............................................................................................ 23 

Equation 8 Potential Number of Defects .......................................................................... 25 

Equation 9 Halstead's Program Vocabulary ..................................................................... 27 

Equation 10 Halstead's Program Length........................................................................... 28 

Equation 11 Halstead's Program Volume ......................................................................... 28 

Equation 12 Software Availability Metric........................................................................ 30 

Equation 13 Software Reliability Growth Logarithmic Model ........................................ 31 

Equation 14 Number of Test Cases .................................................................................. 31 

Equation 15 COMOMO II Effort ..................................................................................... 34 

Equation 16 COCOMO II Factor of Economies and Diseconomies ................................ 34 

Equation 17 Statistical Model ........................................................................................... 35 

Equation 18 Nominal Programming Productivity ............................................................ 35 

Equation 19 Halstead's Effort Metric................................................................................ 36 

Equation 20 Halstead's Program Level ............................................................................. 37 

Equation 21 Halstead's Potential Volume......................................................................... 37 

 



 

 

1 

Chapter 1 Introduction 

This chapter presents an overview of the thesis, it describes the problem statement and 

continues with the contribution of this thesis, at the end, it presents the organization of 

the thesis. 

1.1 Overview 

Software Engineering like all other engineering professions has metrics. Software 

Engineering, as defined in IEEE Standard 610.12, is: “The application of a systematic, 

disciplined, quantifiable approach to the development, operation, and maintenance of 

software; that is, the application of engineering to software”.  

Metrics are used by the software industry to quantify the development, operation and 

maintenance of software. They give us knowledge of the status of an attribute of the 

software and help us to evaluate it in an objective way. The practice of applying software 

metrics to a software process and to a software product is a complex task that requires 

study and discipline, and which brings knowledge of the status of the process and / or 

product of software in regards to the goals to achieve. 

By evaluating an attribute of the software, we can know its status. From there, we can 

then identify and classify what its situation is; which helps us to find opportunities of 

improvements in the software. This also helps us to latter make plans for modifications 

that need to be implemented in the future. In addition, to save the values obtained as 

history for further reference. 

There is a broad range of software metrics. The software metrics depend on what 

software’s attributes we want to quantify or qualify. Generally, software metrics are 



 

 

2 

organized into two main different classes: metrics for the software process and metrics 

for the software product.  

Metrics for the software process are related to the effort it takes to complete the project, 

the resources to spend on it, and the methodology to follow. For example: the time that 

will take to complete it, the people needed to develop it, the overall cost in money, and 

the methodology to follow.  

Many types of attributes of software can be measured. The metric which one applies 

depends on the nature of the software product. For example, for the requirements, we 

might want to know how many requirements a project has, its specificity (lack of 

ambiguity) and completeness (if it covers all the functions needed). For the software 

product of a program, we might want to know the number of lines of code, its 

complexity, the functionality it covers, the number of potential defects (‘bugs’) it will 

have, and the number of test cases to verify that all requirements have been implemented. 

We also could measure the reliability of the software once delivered. 

The Software Engineering community hasn’t agreed on a set of metrics universally 

accepted by the field. Therefore, many people have come up with different ways to 

measure the different attributes of software; yet, a lot of controversy has developed based 

on all these metrics. The Software Engineering community has still a long way to go in 

order to achieve a unified set of metrics to evaluate the software process and software 

products. 

1.2 Problem Statement 

Despite the fact that the Software Engineering field doesn’t have a unified set of metrics 

that the community has agreed to use, it is advised to use them. Often during the software 



 

 

3 

process, the members of the development team do not know if what they are doing is 

correct and they need a guide that could help them orientate further improvement and to 

objectively know if the improvement is being achieved. Software metrics are tools that 

help to track software improvement. 

Most large companies dedicated to develop software, use metrics in a consistent way. 

Many companies have created their own standards of software measurement; so, the way 

that metrics are applied usually varies form one company to another one. Nevertheless, as 

they are used in a consistently way through different projects, the software groups get 

many benefits from them. 

What to measure in regards of software process or product depends on the nature of the 

project, but in all cases, the customer satisfaction is the goal and measures should be 

taken to achieve that goal not only at delivery, but through the entire development 

process. 

1.3 Contribution of the Thesis 

There is no unique metric which works in the entire development phases. Keeping several 

metrics on one system helps to have a handy solution that can be used on different 

aspects of the software development process. The project developed in this thesis 

provides a solution for this need by implementing metrics that could be applied on 

several aspects of the Rational Unified Process. The Rational Unified Process is a 

Software Engineering Process that captures many of the best practices in modern 

software development in a form that is suitable for a wide range of projects and 

organizations.  

The metrics covered in this thesis are the following: 



 

 

4 

• For the Requirements workflow, the Specificity and Completeness of 

Requirements 

•  For the Design: Cyclomatic Complexity, Function Points, Information Flow and 

the Bang Metric. 

•  For the Implementation: the Estimation of Number of Defects, the Lines of Code 

(LOC) and the Halstead Metrics. 

•  For the Test and Deployment: the Number of Defects is again mentioned, a 

metric to estimate the Reliability of the software and the estimation of the 

Number of Test Cases. 

We have included metrics that support the workflows which estimate effort: they are the 

effort according to COCOMO II, the effort according to the Statistical Model and the 

effort according Halstead Metrics. 

1.4 Organization of the Thesis  

This thesis is organized into five chapters. Chapter 1 is the introductory chapter where the 

problem statement is described. Chapter 2 presents a classification of software metrics 

and the related work in software industry. Chapter 3 describes the system developed in 

this thesis. Chapter 4 describes the implementation and evaluation of this system taking 

metrics of it. Finally, Chapter 5 lists a number of improvements that can be done to this 

work. 



 

 

5 

Chapter 2 Related Work 

This chapter presents a classification of software metrics and summarizes the work that 

some companies and organizations have performed in this regard. 

2.1 Classification of Software Metrics  

Software Metrics are standards to determine the size of an attribute of a software product 

and a way to evaluate it. They can also be applied to the software process. Several books 

present different classification of software metrics, most of them agree on the following 

[26]:  

a) Software product metrics: These metrics measure the software product at any stage of 

its development. They are often classified according with the size, complexity, quality 

and data dependency.  

b) Software process metrics: These metrics measure the process in regards to the time 

that the project will take, cost, methodology followed and how the experience of the team 

members can affect these values. They can be classified as empirical, statistical, theory 

base and composite models.  

This research project focuses on presenting software metrics as they could be applied on 

the different phases of the Rational Unified Process of Software Development. 

The Rational Unified Process is a Software Engineering Process that captures many of 

the best practices in modern software development in a form that is suitable for a wide 

range of projects and organizations. The Rational Unified Process can be applied for 

small development teams as well as for large software teams. More over, the Rational 

Unified Process is a guide for how to effectively use the Unified Modeling Language 



 

 

6 

(UML). The UML is an industry-standard language that allows software organizations to 

clearly communicate requirements, architectures and designs [27]. 

 

 

Figure 1 Rational Unified Process 

 

The Rational Unified Process is shown in Figure 1. In the Rational Unified Process, we 

can distinguish two dimensions, one on the horizontal axis and another one on the 

vertical axis. The horizontal axis represents time and shows the dynamic aspect of the 

process expressed in terms of cycles, phases, iterations, and milestones. Those are the 

Inception phase, the Elaboration phase, the Construction phase and the Transition phase. 

Each phase ends with a well-defined major milestone. The vertical axis represents the 

static aspect of the process. A process describes who is doing what, how, and when. In 

the Rational Unified Process, the Workers are the ‘who’, the Activities are the ‘how’, the 

Artifacts are the ‘what’ and the workflows describe the ‘when’. 



 

 

7 

2.2 Examples of Software Metrics Systems 

Many people have had the idea of concentrating software metrics that could be used 

during the software process, even though not all software metrics have been organized in 

the same manner. This section presents some examples of software metrics sets that 

present and implement different software metrics.  

 

 Company/Organization Brief Comments 
1. SMLab Software Measurement Laboratory at the 

University of Magdeburg, Germany 
2. ZD-MIS Zuse /Drabe Measure-Information System 

private company. 
3. Power Software Private company. 
4. Charismatek Software Metrics Private company. 
5. QSM Quantitative Software Management is a 

private company. 
6. CMM Capability Maturity Model of Software of 

Software Engineering Institute at Carnegie 
Mellon University. 

7. ISO 9000 International Organization for 
Standardization. 

8. Total Metrics Consulting services. 
9. David Consulting Group Consulting services. 

Table 1 Software Metrics Related Work 

 

2.2.1 Software Measurement Laboratory 

There is a very extensive and comprehensive presentation of software metrics and tools at 

http://irb.cs.uni-magdeburg.de/sw-eng/us/index.shtml posted by The Software 

Measurement Laboratory (SMLab) at the University of Magdeburg, Germany. The 

SMLab's team Members led by Prof. Reiner R. Dumke. The SMLab’s team has done a 

very good job concentrating different useful community activities related to software 

metrics; those go from forums, conferences and workshops, to articles and applets for 



 

 

8 

metrics tools. They present a wide range of tools and topics related to software metrics 

and have created a large community of participants that comprises members all around 

the world. 

2.2.2 ZD-MIS  

ZD-MIS stands for Zuse / Drabe Measure-Information-System, http://home.t-

online.de/home/horst.zuse/zdmis.html, which provides a 'comprehensive software test 

framework'. The project was initiated by Horst Zuse and Karin Drave. It comprises a 

large set of software metrics and a book with the fundamentals. This project is currently 

offered as a product that can be purchased. 

2.2.3 Power Software 

Power Software is a company (http://www.powersoftware.com/) that provides different 

tools of software metrics. The tools that Power Software provides go from counting lines 

of code to Cyclomatic Complexity, Halstead product metrics, and Object Oriented 

metrics. The company also provides tools to measure the effort and project management 

metrics. 

2.2.4 Charismatek Software Metrics 

Charismatek is a company (http://www.charismatek.com.au/) that provides Metrics 

Software Tools and consulting services, they have developed a Function Point Tool: 

‘WORKBENCHTM’ which has been receiving good ratings by a user satisfaction survey. 

This company also has other software programs to aid in the software management 

process.  



 

 

9 

2.2.5 QSM 

Quantitative Software Management (QSM) can be found at http://www.qsm.com/. QSM 

also specializes on developing software metric tools for project management and they 

have developed SLIM-Metrics and SLIM-Data Manager software tools that graphically 

allow users to see resources spent and estimation of quality for the project. Both have a 

database system integrated to track changes and see the history of the project across the 

time. 

2.2.6 Other Quality Models 

There are other Quality Models provided by different organizations that give guidelines 

of software product/process improvement. One notable work is the Capability Maturity 

Model of Software (CMM) of the Software Engineering Institute (SEI) at Carnegie 

Mellon University) (www.sei.cmu.edu). The CMM suggests a software company 

evolution improvement that goes from an Initial Level of software development process, 

in which there is no organization; to an Optimizing Level, in which there is a 

continuously improving process. In the Optimizing level, the software development 

process and products are constantly monitored and the results are predictable.  

Another important work is the International Organization for Standardization, which has 

a standard for quality management systems (http://www.iso.ch/iso/en/iso9000-14000/). 

Many companies follow does standards to achieve certifications.   

Other companies that provide documents and consult services for software metrics 

application and improvement are: Total Metrics provides consultancy services to improve 

software metrics practices (http://www.totalmetrics.com/) and the David Consulting 



 

 

10 

Group (http://www.davidconsultinggroup.com/) which also has a large set of articles 

written and a vast experience in software metrics implementation. 

2.3 Summary 

This chapter has presented a classification of software metrics. Software Metrics give us 

knowledge of the status of an attribute of the software and help us to evaluate this 

software attribute in an objective way. Software Metrics also helps us to latter make plans 

for modifications that need to be implemented in the future. In addition, to save the 

values obtained as history for further reference. What motivates this study of Software 

Metrics is to develop a software metrics framework that has a set of metrics that could be 

used as a stand alone metric as needed, or as part of the pipeline of the phases through all 

the development process. In the next chapter, we will see how one can use software 

metrics in the early stages of development in order to improve the software product.  



 

 

11 

Chapter 3 A Software Metrics Framework 
 

In this chapter, we will describe a series of metrics that are implemented in this thesis, 

and give a mathematical definition of these metrics. Several programs, with Graphic User 

Interfaces (GUI), have been created to calculate these metrics. These programs can be 

used as a stand-alone system to determine the quality or quantity of the software attribute 

measured. We conclude this chapter with a discussion of the metrics, which we have 

implemented, and the relationship of the metrics in the different phases of the software 

development cycle. 

3.1 Characteristics of the Software Metrics System 

The study of software metrics developed on this thesis includes an implementation of 

those metrics, which can be applied through the Rational Unified Process of Software 

Development. The core workflows covered in this thesis are the following: 

Requirements, Design, Coding, Testing, and Maintenance. We have also included 

another set of metrics to evaluate some aspects of the software process metrics such as 

effort and productivity. 

We wrote programs for the following metrics:  

• Specificity and Completeness of Requirements.  

• Cyclomatic Complexity, Function Points, Information Flow, and the Bang metric.  

• The estimation of Number of Defects, the Lines of Code (LOC) and the Halstead 

metrics.  



 

 

12 

• A metric to estimate the Reliability of the software and the estimation of the 

number of Test Cases. 

We have also implemented other metrics that estimate effort: they are the effort 

according to COCOMO II [5], the effort according to the Statistical Model [30] and 

the effort according Halstead’s metrics [13]. In the following sections a brief 

overview of the metrics implemented for each workflow is given. 

3.2 Requirements 

This section presents software metrics that measure specificity and completeness of the 

requirements. As the name states, these metrics should be used during the inception 

phase, which was defined in chapter 2. They can also be used during the elaboration and 

construction phases when the business model is being analyzed. 

The quality of software requirements specification [30] can be measured by determining 

two values. The first value is the specificity of the requirement. By specificity, we mean 

the lack of ambiguity. We use: ‘Q1’ to refer to the specificity of the requirements.  The 

second value is the completeness. By completeness, we mean how well they cover all 

functions to be implemented. We use ‘Q2’ to refer to this completeness. Note that this 

value doesn’t include non-functional requirements. To include the non-functional 

requirements we use another value denoted by ‘Q3’, which will be explained below, as 

described by Davis [7]. Figure 2 shows the implementation of the requirement metrics. 

To determine the specificity (lack of ambiguity) of requirements we use equation 1. 

nr
nui

Q =1  

Equation 1 Specificity of Requirements 



 

 

13 

Where: 

Q1 ≡ Specificity of requirements. 

nui ≡ number of requirements for which all reviewers had identical interpretations. 

nr ≡  Total number of requirements, it is given by: 

nf  ≡ number of functional requirements 

nnf  ≡ number of non-functional requirements 

nr  = nf + nnf 

The optimal value of Q1 is one, thus, if our requirements are not ambiguous, we need to 

get a value closer to one. The lower the value, the more ambiguous the requirements are; 

and this will bring problems in the latter phases. Therefore, the requirements need to be 

constantly reviewed and discussed by all team members until they all understand the 

requirements and agree to adhere to these requirements. 

The completeness of functional requirements is given by equation 2: 

nsni
nu
*

2 =Q  

Equation 2 Completeness of Functional Requirements 

Where:  

Q2 = completeness of functional requirements only. This ratio measures the percentage 

of necessary functions that have been specified for a system, but doesn’t address 

nonfunctional requirements. 

nu  ≡ number of unique functional requirements, 

ni ≡ number of inputs (all data inputs) defined or implied by the specification document. 

ns ≡ number of scenarios and states in the specification. 



 

 

14 

We also need to consider the degree to which requirements have been validated. Equation 

3 presents this value. 

nnvnc
nc
+

='3Q  

Equation 3 Degree to which the Requirements Have Been Validated 

Where: 

Q3’ ≡ degree to which the requirements have been validated. 

nc ≡ number of requirements that have been validated as corrected. 

nnv ≡ number or requirements that have not yet been validated 

 

Figure 2 Requirement Metrics 



 

 

15 

3.3 Design 

This section presents software metrics which can be used during the design phase: 

McCabe’s Cyclomatic number, Information Flow (fan in/out), Function Points and the 

Bang metric by Tom DeMarco.  

3.3.1 Cyclomatic Complexity – v (G) 

The software metric known as Cyclomatic Complexity was proposed by McCabe [22]. 

McCabe suggest seeing the program as a graph, and then finding out the number of 

different paths through it. One example of this graph is called a control graph. Our 

implementation is shown in Figure 3. 

When programs become very large in length and complexity, the number of paths cannot 

be counted in a short period of time. Therefore, McCabe suggests counting the number of 

basic paths (all paths composed of basic paths). This is known as the “Cyclomatic 

Number”; which is the number of basic paths [30] from one point on the graph to 

another, and we refer to the Cyclomatic Number by v(G). This is shown in equation 4, 

 

PNEGv 2)( +−=  

Equation 4 Cyclomatic Complexity 

Where:  

v (G) ≡ Cyclomatic Complexity 

E ≡ number of edges  

N ≡ number of nodes  

P ≡ number of connected components or parts 



 

 

16 

We do not have to construct a program control graph to compute v (G) for programs 

containing only binary decision nodes. We can just count the number of predicates 

(binary nodes), and add one to this, as shown in equation 5. 

 

1)( += pGv  

Equation 5 Cyclomatic Complexity for Binary Decision Nodes 

Where: 

v (G) ≡  Cyclomatic Complexity 

 p ≡  number of binary nodes or predicates. 

McCabe’s rules for counting edges and nodes: 

• if / while statements: The action depends on a binary node containing a 

conjunction or disjunction of conditions. Each condition counts as one binary 

decision node. For example, in the following sentence, we see that there are two 

binary decision nodes: ‘if (count < m || count = MAX) then...’ 

• do / for statements: iteration statements count as one binary decision node. 

• case / switch statement: Either n or n-1 nodes ( n= number of alternatives in the 

statement). Depends on language semantics of the language and the form of the 

statement. Examples: C switch statement contributes either n or n-1. Ada case 

statement contributes n-1. 



 

 

17 

 

Figure 3 Cyclomatic Complexity 

 

Cyclomatic complexity can help in the following situations: 

a) Identify software that may need inspection or redesign. We need to redesign all 

modules with v (G) > 10. 

b) Allocate resources for evaluation and test: Test all modules with v (G) > 5 first. 

c) Define test cases (basis path test case design): Define one test case for each 

independent path. 

Industry experience shows that Cyclomatic Complexity is more helpful for defining test 

cases (c), but doesn’t help that much on identifying software that may need inspection or 



 

 

18 

redesign (a) and allocating resources for evaluation and test (b) as McCabe suggests. [31] 

Studies [32] have also found that the ideal v (G) = 7, which proves to be easier to 

understand for novices and experts. 

3.3.2 Functions Points (FP):  

This metric was developed by Albrecht [1]. It focuses on measuring the functionality of 

the software product according to the following parameters: user inputs, user outputs, 

user inquiries number of files and the number of external interfaces.  

 

 

Figure 4 Unadjusted Function Points 



 

 

19 

Once the parameters are counted, a complexity (simple, average and complex) value is 

associated to each parameter.  Figure 4 shows the implementation provided for 

unadjusted FP. A complexity adjustment value is added to the previous count (see Figure 

7). This value is obtained from the response to 14 questions related to reliability of the 

software product. The implementation of the reliability questions is shown in figure 5 and 

Figure 6. Equation 6 presents the estimation of Function Points. 

 

 

Figure 5 FP Reliability Questions Part I 

 



 

 

20 

∑+= ]*01.065.0[* FitotalcountFP  

Equation 6 Function Points 

Where: 

FP = Total number of adjusted function points 

count total ≡ the sum of all user inputs, outputs, inquiries, files and external interfaces to 

which have been applied the weighting factor. 

Fi ≡ a complexity adjustment value from the response to the 14 reliability questions. 

 

 

Figure 6 FP Reliability Questions Part II 

 



 

 

21 

The FP metric is difficult to use because one must identify all of the parameters of the 

software product.  Somehow, this is subjective, and different organizations could 

interpret the definitions differently. Moreover, interpretations could be different from one 

project to another in the same organization, and this could be different from one software 

release to another. 

 

 

Figure 7 Adjusted Function Points 

 



 

 

22 

3.3.3 Information Flow 

Information Flow is a metric to measure the complexity of a software module. This 

metric was first proposed by Kafura and Henry [19]. The technique suggests identifying 

the number of calls to a module (i.e. the flows of local information entering: fan-in) and 

identifying the number of calls from a module (i.e. the flows of local information leaving: 

fan-out). Figure 8 shows the implementation of Information Flow. 

 

 

Figure 8 Information Flow 

 

The complexity in Information Flow metric is determined by equation 7.  



 

 

23 

[ ] [ ] 2** outfaninfanlengthprocedurec −−=  

Equation 7 Information Flow 

Where: 

c ≡complexity of the module 

procedure length ≡ a length of the module, this value could be given in LOC or by using 

v(G) ≡Cyclomatic Complexity. 

fan-in  ≡The number of calls to the module. 

fan-out ≡ The number of calls from the module. 

3.3.4 The Bang Metric  

The Bang metric was first described by DeMarco [9, 10]. This metric can attempt to 

measure the size of the project based on the functionality of the system detected during 

the time of design. The diagrams generated during the design give the functional entities 

to count. The design diagrams to consider for the Bang metric are: data dictionary, entity 

relationship, data flow and state transition. Other design diagrams such as the Business 

Model, Use Cases, Sequence and Collaboration diagrams of the Unified Modeling 

Language (UML) can also be used to find the functional entities. The Bang metric can 

also be combined with other measures to estimate the cost of the project.  

To estimate the Bang metric, we classify the project in three major categories: function 

strong, data strong, or hybrid. We first divide the number of relationships between the 

numbers of functional primitives. If the ratio is less than 0.7 then the system is function 

strong. If the ratio is greater than 1.5 then the system is data strong. Otherwise, the 

system is hybrid. 



 

 

24 

For Function strong systems, we first need to identify each primitive from the design 

diagrams. Then for each primitive, we identify how many tokens each primitive contains. 

We assign a corrected Functional Primitive Increment (CFPI) value according to the 

number of data tokens. At the same time, the primitive will be identified with one class, 

out of 16 classes. Each primate will also be assigned a value for the increment. 

Afterward, the CFPI is multiplied by the increment and the resulting value is assigned to 

the Bang value. This process is repeated for each primitive and the values added all 

together to compute the final Bang for Function strong systems. 

For Hybrid and Data strong systems, we first identify the number of objects. Then, for 

each object, we count the number of relationships and then record the Corrected Object 

Increment (COBI) accordingly. The resulting value will be added to the values of each 

object and the total will be assigned to the final Bang computation for Hybrid and Data 

strong systems. 

3.4 Coding 

This section presents the software metrics appropriate to use during the implementation 

phase of the software design. The metrics presented in this section are: Defect Metrics, 

Lines of Code (LOC), and the Halstead product metric. 

3.4.1 Estimation of Number of Defects 

During the1998 IFPUG conference, Capers Jones [16] gave a rule of the thumb to get an 

estimation of the number of defects based on the Function Points of the system. This rule 

is defined by equation 8. 



 

 

25 

25.1FPDefectsofNumberPotential =  

Equation 8 Potential Number of Defects 

Where: 

FP ≡ Function Points  

Equation 8 is based on the counting rules specified in the Function Point Counting 

Practices Manual 4.0[16] (http://www.ifpug.org/) and it is currently in effect. Figure 9 

shows the implementation of this metric. 

 

 

Figure 9 Estimating the Potential Number of Defects 

 



 

 

26 

3.4.2 Lines of Code 

The Lines Of Code (LOC) metric specifies the number of lines that the code has. The 

comments and blank lines are ignored during this measurement. The LOC metric is often 

presented on thousands of lines of code (KLOC) or source lines of code (SLOC). 

LOC is often used during the testing and maintenance phases, not only to specify the size 

of the software product but also it is used in conjunction with other metrics to analyze 

other aspects of its quality and cost. Figure 10 shows the implementation of LOC. 

 

 

Figure 10 Lines of Code (LOC) 

 



 

 

27 

Several LOC tools are enhanced to recognize the number of lines of code that have been 

modified or deleted from one version to another. Usually, modified lines of code are 

taken into account to verify software quality, comparing the number of defects found to 

the modified lines of code.  

Other LOC tools are also used to recognize the lines of code generated by software tools.  

Often these lines of code are not taken into account in final count from the quality point 

of view since they tend to overflow the number. However, those lines of code are taken 

into account from the developer’s performance measurement point of view.  

3.4.3 Product Metrics of Halstead 

Halstead [13] was the first to write a scientific formulation of software metrics. Halstead 

stated that any software program could be measured by counting the number of operators 

and operands, and from them, he defined a series of formulas to calculate the vocabulary, 

the length and the volume of the software program. Halstead extends this analysis to also 

determine effort and time. 

a) Program Vocabulary: is the number of unique operators plus the number of unique 

operands as defined by equation 9. 

21 nnn +=  

Equation 9 Halstead's Program Vocabulary 

 Where: 

n ≡ program vocabulary 

n1 ≡ number of unique operators 

n2 ≡ number of unique operands 



 

 

28 

b) Program Length: the length N is defined as the total usage of ‘all’ operators 

appearing in the implementation plus the total usage of ‘all’ operands appearing in the 

implementation. This definition defined by equation 10. 

21 NNN +=  

Equation 10 Halstead's Program Length 

Where: 

N ≡ program length 

N1 ≡ ‘all’ operators appearing in the implementation 

N2 ≡ ‘all’ operands appearing in the implementation 

c) Program Volume: Here volume refers to size of the program and it is defined as the 

Program Length times the Logarithm base 2 of the Program Vocabulary. This definition 

is defined by equation 11. 

nNV 2log=  

Equation 11 Halstead's Program Volume 

Where: 

V ≡ program volume 

N ≡ program length (see equation 10) 

n ≡ program vocabulary (see equation 9) 

3.5 Testing / Maintenance 

This section presents software metrics appropriate to use during the testing/maintenance 

phase of the software. The metrics mentioned follow: Defect Metrics, that consist on the 



 

 

29 

number of design changes, the number of errors detected during system testing, and the 

number of code changes required; and the Reliability metrics. 

3.5.1 Defect Metrics 

Defect metrics help to follow up the number of defects found in order to have a record of 

the number of design changes, the number of errors detected by code inspections, the 

number of errors detected during integration testing, the number of code changes 

required, and the number of enhancements suggested to the system. Defect metrics’ 

records from past projects can be saved as history for further reference. Those records 

can be used latter during the development process or in new projects. Companies usually 

keep track of the defects on database systems specially designed for this purpose. 

3.5.2 Software Reliability 

Software reliability metrics use statistical methods applied to information obtained during 

the development or maintenance phases of software. In this way, it can estimate and 

predict the reliability of the software product. Figure 11 shows how the software 

reliability behaves during the different development phases. 

Availability metrics [24] are also related to the reliability of the system. Sometimes, there 

is confusion in regards to the software availability and the software reliability; a 

definition of both terms is given below. 

Software availability: The period of time in which software works satisfactorily. 

Software reliability: The probability that a system will not fail in a period of time. 

To calculate Software Availability, we need data for the failure time/rates and for the 

restoration time/rates. Therefore, the Availability is defined by equation 12. 



 

 

30 

lityunavailabityAvailabili −= 1  

Equation 12 Software Availability Metric 

Note: unavailability here refers to both hardware and software. 

To calculate Software Reliability, we need to collect data from the system in regards to 

the failures experienced during operation in a period of time. A software failure is 

represented with by λ; where λ represents the failure rate per unit time (per hour, month, 

etc.). λ(τ)  is a function of the average total number of failures until time t, denoted by 

µ(τ) .The failure rate decreases as the number of bugs is fixed and no new bugs are 

discovered. 

 

Figure 11 Reliability Metrics 

We used the Software Reliability Growth (SRG) Logarithmic Model developed by Musa 

[24]. In this model, the function Lambda (t) is defined by equation 13.  



 

 

31 

( ) )(
0 exp* btt −= λλ  

Equation 13 Software Reliability Growth Logarithmic Model 

Where: 

bE *0=λ   

E ≡ the number of defects in the software at t = 0 (i.e., at the time of delivery/start of 

operation) 

b is the Mean Time To Failure (MTTF) which is given by: 
pt

b
1

=  

tp ≡ the time constant, is the time at which 0.63*E defects will have been discovered.  

3.5.3 Estimation of Number Test Cases  

On 1998, in the IFPUG conference Capers Jones [16] gave a rule of the thumb to 

estimate the number of test cases based on the number Function Points of the system. 

Figure 12 shows the implementation of this metric. This rule is described by equation 14. 

 
2.1FPcasestestofNumber =  

Equation 14 Number of Test Cases 

Where: 

FP = Function Points. 

The formula is based on the counting rules specified in the Function Point Counting 

Practices Manual 4.0 [16], [http://www.ifpug.org/]. Equation 14 for estimating the 

potential number of software defects is currently in effect.  

 



 

 

32 

 

Figure 12 Estimating Number of Test Cases 

3.6 Other 

This section presents software metrics that could help to know the quality of the system 

during all phases of the project in regards to the Effort, Time and Cost of it: 

3.6.1 COCOMO II 

COCOMO II is the new version of the Constructive Cost Model for software effort, cost 

and schedule estimation (COCOMO) [5]. COCOMO II adds the capability of estimating 

the cost of business software, OO software, software created via evolutionary or spiral 



 

 

33 

model and other new trends (for example commercial off the shelf applications –COTS) 

[4]. 

 

Figure 13 COCOMO II Effort 

The market sectors, which benefit the most from COCOMO II, are: 1) the ‘Application 

Generators’ (Microsoft, Lotus, Novell, Borland, etc.), 2) the ‘Application Composition’ 

sector that focuses on developing applications which are too specific to be handled by 

prepackaged solutions, and 3) the ‘Systems Integration’ sector, which works with large 

scale, highly embedded systems (for example: EDS and Andersen Consulting, etc.). 

The COCOMO II model for the Application Composition sector is based on Object 

Points. Object Points count the number of screens and then it will report back on the 



 

 

34 

application a weighted which can be three levels of complexity: simple, medium and 

difficult. Figure 13 shows this implementation. 

The COCOMO II model for the Application Generator and System Integrator sectors is 

based on the Application Composition model (for the early prototyping phase), and  on 

the Early Design (analysis of different architectures) model and finally on the Post-

Architecture model (development and maintenance phase). 

In COCOMO II metric, the effort is expressed in Person Months (PM). Person Months 

(also known as man-months) is a measure that determines the amount of time one person 

spends working in the software development project for a month. 

The number of PM is different from the time the project will take to complete. For 

example, a project may be estimated to have 10 PM but have a schedule of two months. 

Equation 15 defines the COCOMOII effort metric.  

( ) BKLOCAE *=  

Equation 15 COMOMO II Effort 

Where: 

E ≡Effort 

A ≡ A constant with value 2.45 

KLOC ≡Thousands of Lines of Code 

B ≡ factor of economies or diseconomies (costs increases), given by equation 16. 

( ) ( )∑+= SFiB *01.001.1  

Equation 16 COCOMO II Factor of Economies and Diseconomies 

Where: 



 

 

35 

?  SFi is the weight of the following Scale Factors (SF): Precedentedness (how new is the 

program to the development group), Development Flexibility, Architecture/Risk 

Resolution, Team Cohesion, and Process Maturity (CMM KPA’s). 

3.6.2 Statistical Model 

Another approach to determine software effort has been provided by C. E. Walston and 

C.P. Felix of IBM [30]. They used equation 17 to define the effort in its statistical model. 

bLaE *=  

Equation 17 Statistical Model 

Where: 

E ≡ Effort 

a ≡ a constant with value: 5.2 

L ≡ Length in KLOC 

b ≡ a constant with value: 0.91 

Walston and Felix also calculated the Nominal programming productivity in LOC per 

person-month as defined by equation 18. 

E
L

P =  

Equation 18 Nominal Programming Productivity 

Where  

P ≡ Nominal programming productivity in LOC per person-month 

L ≡ Length in KLOC 

E ≡ Effort from equation 17. 

The implementation of this metric is shown in figure 14. 



 

 

36 

 

 

Figure 14 Statistical Model Effort 

 

3.6.3 Halstead Metric for Effort 

Halstead has proposed an effort metric to determine the effort and time which is given by 

equations (19), (11), (20) and (21): 

L
V

E =  

Equation 19 Halstead's Effort Metric 

Where: 



 

 

37 

E ≡ Effort in mental discriminations needed to implement the program. 

nNV 2log=  (See equation 11) 

Where: 

V ≡program volume 

N ≡program length (see equation 10) 

n ≡program vocabulary (see equation 9) 

V
V

L
*

=  

Equation 20 Halstead's Program Level 

Where  

L ≡program Level 

V*≡ potential volume given by equation 21. 

( ) ( )**
2

*** 21log*21 nnNNV ++=  

Equation 21 Halstead's Potential Volume 

 

Halstead’s metrics include one of the most complete sets of mathematical combinations 

of software metrics and even though most people recognizes that they are interesting not 

many companies follow them due that is hard to convince people about change solely on 

the basis of these numbers [12]. 

3.7 Discussion 

In this chapter, we have presented the following metrics:  

• Specificity and Completeness of Requirements,  



 

 

38 

• Cyclomatic Complexity, Function Points, Information Flow and The Bang Metric,  

• An Estimation of the Number of Defects, The Lines of Code (LOC), The Halstead 

Metrics,  

• The Reliability metric, An Estimation of the Number of Test Cases,  

• The Estimation of Effort According to COCOMO II, The Effort According to the 

Statistical Model, The Effort According to Halstead’s Metrics. 

We have seen the importance of properly defining the requirements.  If the metrics are 

properly defined, we can avoid problems that will be more expensive to correct during 

the latter phases of development. Function Points can be used to estimate the potential 

number of defects and the number of test cases to be written to test the software. LOC 

can also give us an estimation of the Function Point according to the language used. It is 

useful to validate a value such as the effort, with different metrics to see how close are of 

each other. 



 

 

39 

Chapter 4 Implementation and Evaluation 

Chapter 4 provides an experimental evaluation of the software metrics implemented in 

this study. The chapter begins with the hardware and software requirements, which are 

needed to run the program. Then, the design of the system is outlined. The design is 

followed by the software metrics values obtained by applying the software metrics to the 

program development of this study. 

4.1 Hardware and Software Requirements 

The Software Metrics framework has been tested and run on machines with the following 

software and hardware requirements: 

• Minimal hardware Requirements 

Processor: X86 Processor (Pentium II) 

RAM: 256 MB  

Hard Drive: 4 GB free 

• Software Requirements: 

Windows 2000 Professional Service Pack 3 

Java(TM) 2 Runtime Environment, Standard Edition (build 1.4.1_02-b06) 

 IMPORTANT NOTE: Older versions of java don’t work to run this software. 

4.2 How To Run The Program 

This section provides instructions about how to run the program. First, the jar file needs 

to be saved in a directory on the local hard drive. Then type in the following command in 



 

 

40 

the command line (assumed that you are positioned on the current directory where you 

have saved the jar file): 

java  –jar  SoftwareMetrics.jar 

NOTE: The system could take 10 to 20 seconds to display on the screen. 

4.3 Development Experience 

The software was developed as follows. All metrics were developed first as their own 

classes. Then, the GUI was developed by using JBuilder 8.0 Enterprise Trial. The code of 

the metrics is completely independent from the GUI and other GUI could be used to 

visualize the results. The reason why we chose JBuilder for the GUI is to facilitate the 

work by dragging and dropping swing components in panels. This Java Swing GUI 

generator was helpful during the development of the system prototype. 

4.4 Main Classes of the Software Metrics System 

This section describes the design of the Software Metrics framework implemented on this 

thesis. First, a list of the main classes is presented. Then a diagram of the interaction of 

the classes is provided.  

4.4.1 Classes Implemented 

Table 2 presents a list of the classes implemented. On Table 2, the classes have been 

organized alphabetically. One java file and class has been implemented per metric. Some 

classes required the creation of private classes; those cases are identified when it is 

appropriate to mention them. The software metrics framework has the following main 

classes: 



 

 

41 

 

Class/File Name Brief Description 
Bang.java Implements the Bang metric. 
Fup Bang’s private class that consist of an 

array of Functional Primitives for 
function strong systems. 

OB Bang’s private class that consist of an 
array of objects for hybrid and data strong 
systems. 

CocomoII.java Implements the COCOMO II effort 
metric. 

Factor Private class of COCOMO II that is used 
to keep the weights of each factor to 
compute the effort. 

CycloComplex.java Implements the Cyclomatic Complexity 
metric. 

Defects.java Implements the potential number of 
defects. 

FP.java Implements the Function Points metric. 
Halstead.java Implements the Halstead’s metrics. 
Operator Halstead’s private class that consist of an 

array of operators. 
Operand Halstead’s private class that consist of an 

array of operands, they are used to get the 
vocabulary of the system. 

InfoFlow.java Implements the Information Flow metric. 
LOC.java Implements the counter of lines of code 

of a file. 
Reliability.java Implements the reliability metric. 
reqMetrics.java Implements the requirement metrics. 
Statistic.java Implements the statistic metric. 
TestCases.java Implements an estimation of the number 

of test cases. 

Table 2 Software Metrics Classes Implemented 

 

Table 3 shows, between other classes, the classes implemented for the Java Swing GUI. 

First, Table 3 lists the main class that calls all other classes, then the class that generates 

the frame, and then, the class that implements the about dialog. Finally, there is a class 



 

 

42 

that implements common functions. The tool class implements generic functions that are 

used by all other classes. 

 

Class/File Name Brief Description 
SoftwareMetricsClass.java Contains the main method. 
SoftwareMetricsFrame.java Implements the frame Java Swing GUI. 
SoftwareMetricsFrame_AboutBox.java Implements the about dialog. 
Tools.java Implements generic tools functions used 

by all classes. 

Table 3 Java Swing GUI Classes and other Tools implemented 

The diagram in figure 15 shows the interaction of the main classes implemented in the 

software metrics system developed on this thesis. Figure 15 depicts how classes are 

called from one to another one. Initially the SoftwareMetricsClass is invoked, it has the 

main method. Then the SoftwareMetricsFrame appears. The frame presents different 

tabs. There is one tab per workflow. The workflows are: Requirements, Design, Coding, 

Testing and Maintenance, and Other for the Effort Metrics. Each workflow has at the 

same time several tabs, one per metric implemented. Some classes have private classes, 

on those cases the private classes are indicated on the diagram. 



 

 

43 

SoftwareMetricsClass

Requirements Tab

reqMetricsClass

SoftwareMetricsFrame

Design Tab

CycloComplexClass

FPClass

InfoFlowClass

BangClass

OBClass

FUPClass

Coding Tab

DefectsClass

LOCClass

HalsteadClass

OperatorClass

OperanClass

Testing/Maint Tab

DefectsClass

ReliabilityClass

TestCasesClass

Other Tab

COCOMOIIClass

FactorClass

StatisticClass

HalsteadClass

AboutBoxClass

 

Figure 15 Software Metrics Design Diagram 

 

 
 



 

 

44 

4.5 Software Metrics Obtained 

For the Software Metrics project, to ensure the lack of ambiguity on the requirements it is 

important that all members that will be involved on it have the same interpretation of 

them. We are looking for a lack of ambiguity of one or close to one. See Figure 2. 

The Cyclomatic Complexity measure was applied to the CycloComplex.java class, this 

class has one if statement that counts as 1 binary decision nodes, (if it has or not binary 

decision nodes), so the Cyclomatic Complexity v (G) is 2. It is important to remember 

that it is recommended to re-design the modules with v (G) greater than 10. In this case, 

the complexity has a low value so it is good. (See Figure 3.) 

The LOC for the Software Metrics developed in this thesis is 5,147 LOC. The 

SoftwareMetricsFrame.java is the file that has the most lines of code (it has 3,847 LOC). 

These values exclude comment lines and blank lines (about 1800 commented and blank 

lines in this project). See Figure 10. 

Figure 4 shows the estimation of Unadjusted Function Points for this Software Metrics 

system. All inputs, outputs and inquiries are simple; so, they are considered as one value 

per metric implemented. Because the complexity adjustment values are minimal for this 

system, the number of Adjusted Function Points is: 72.8. For this project, the 14 

questions of reliability were not important, so no weight was assigned to them (see Figure 

5 and Figure 6). This gives us a total of 72.8 Adjusted Function Points (Figure 7), or 112 

Un-adjusted Function Points (Figure 4). 

We can validate if the number of Function Points is correct, by using the table of 

Function Points per LOC according with the language used 

(http://www.qsm.com/FPGearing.html). In the java programming language, there is an 



 

 

45 

average of 62 lines of code per Function Point which gives a value of 83 Function Points 

for this system that has 5,147 LOC. Counting other function points for the exit function 

and the About dialog would give a very close approximation. 

The Information Flow metric was applied to the InfoFlow.java class, this class has 44 

lines of code, it has 4 fan-in (calls in the module) and 2 fan-out (calls from the module) 

this gives a complexity value of 2816. See Figure 8. 

For 73 Function Points the potential number of defects is 213, see Figure 8. For 213 

defects on 6 months of development the reliability of the system is 1.51, see Figure 11. 

For 73 Function Points the number of test cases that need to be written and run is: 172. 

See Figure 12. 

The COCOMO II effort obtained is 18 man/months (see Figure 13). We can compare the 

same value with the Statistic metric, which gives a value of 22 man/months (see Figure 

14). The difference in the effort given by those two metrics show that the results are not 

conclusive. 

 



 

 

46 

Chapter 5 Conclusions and Future Work 

Software Metrics are tools that help us to qualify or quantify software attributes in an 

objective way. They can also be applied to the software development process. Software 

Metrics provide value to the software development process by giving information about 

the status of the project and product of software. Software Metrics also provide a way to 

know if the development goals are being achieved. Software Metrics from past projects 

can be used as reference on further projects. 

Software Metrics that are too complex or require many data entry parameters could be 

difficult to understand. When Software Metrics are too complex, the values obtained 

from them might be ambiguous, which could make the team members abandon the 

practice. 

Applying software metrics is good practice that can bring a lot of value to a project, but it 

requires time, work and money. By using software metrics in a consistent manner, 

software developers will see improvement in the software and on the use of the metrics. 

Lack of consistency while using software metrics could lead to ambiguous results. 

No unique metric works during all of the development phases. Using several metrics for 

one system helps to have a handy solution that can be used during different aspects of the 

process of software development. The project developed in this thesis provides a solution 

for this need by implementing metrics that can be applied on the several aspects of the 

Rational Unified Process.  

The metrics covered in this thesis are the following: For the Requirements workflow, the 

Specificity and Completeness of Requirements. For the Design: Cyclomatic Complexity, 

Function Points, Information Flow and the Bang Metric. For the Implementation: the 



 

 

47 

Estimation of Number of Defects, the Lines Of Code (LOC) and the Halstead Metrics. 

For the Test and Deployment: the Number of Defects is again mentioned, a metric to 

estimate the Reliability of the software and the estimation of the Number of Test Cases. 

We have included metrics that support the workflows which estimate effort: they are the 

effort according to COCOMO II, the effort according to the Statistical Model and the 

effort according Halstead Metrics. 

 

The toolkit developed in this work could be enhanced by providing a LOC counter that 

can work with several files. It could also be improved by parsing projects with multiple 

files, to use as input for the metrics implemented in this thesis. Other future work could 

include adding a database so a better history of the metrics of the system could be 

tracked. Finally, adding a metric that graphically shows the expected time when the 

system is supposed to be “bug” free or stable will be very helpful (statistics and 

probability curves). 

 



 

 

48 

References 
 

[1] Albrecht, A. J. and J. E. Gaffney. Jr. “Software Function, Source Lines of Code, 
and Development Effort Prediction: A Software Science Validation”, IEEE 
Trans. Software Eng. SE-9, 6, Nov. 1983, pp. 639-648. 

 
[2] Arthur, L. J. “Measuring Programmer Productivity and Software Quality”, New 

York, John Wiley, 1985. 
 

[3] Austin, Robert D., Lister, Timothy R., Demarco, T. “Measuring & Managing 
Performance in Organizations”, New York, Dorset House, June, 1996. 

 
[4] Boehm, B. W. “Software Engineering Economics”, Englewood Cliffs, New 

Jersey, Prentice-Hall, 1981. 
 

[5] USC-CSE, 1999, “COCOMO II Definition Manual”, Computer Science 
Department, University of Southern California, Center for Software Engineering, 
Los Angeles, CA, 1999. 

 
[6] Curtis, B., S. B. Sheppard, P. Milliman, M. A. Borst, and T. Love. “Measuring 

the Psychological Complexity of Software Maintenance tasks with the Halstead 
and McCabe Metrics”, IEEE Trans. Software Eng. SE-5, 2 (March 1979), pp. 
96-104. 

 
[7] Davis, A., et al. “Identifying and Measuring Quality in a Software Requirements 

Specification”, Proc. First Intl. Software Metrics Symposium, IEEE, Baltimore, 
MD, May 1993, pp. 141-152. 

 
[8]  Dekkers, C., “Function Points and Use Cases – Where's the Fit?” IT Metrics 

Strategies, January 1999, pp. 34-36. 
 

[9] DeMarco, T. “Controlling Software Projects: Management, Measurement & 
Estimation”, New York, Yourdon Press, 1982, pp. 184-192. 

 
[10] DeMarco, Tom and Boehm, Barry W. “Controlling Software Projects: 

Management, Measurement, and Estimates”, Prentice Hall PTR/Sun 
Microsystems Press, March 1998, pp. 80-91. 

 
[11] Florac, W.A., Carleton A.D. “Measuring the Software Process”, SEI Series in 

Software Engineering. Addison-Wesley. Second printing, Canada, November 
2001. 

 



 

 

49 

[12] Grady, Robert B. “Practical Software Metrics for Project Management and 
Process Improvement”, Hewlett-Packard Professional Books, Prentice Hall, New 
Jersey, 1992. 

 
[13] Halstead, M. H. “Elements of Software Science”, New York: Elsevier North-

Holland, 1977. 
 

[14] Henry, S., D. Kafura, and K. Harris. “On the Relationships Among Three 
Software Metrics”, Performance Eval. Rev. 10, 1 (Spring 1981), pp. 81-88. 

 
[15] Herron, D. “A Measure of Success”, Silicon India, July 1998, pp.1-5. 

 
[16] International Function Point Users Group Staff. “Function Point Counting 

Practices Manual”, International Function Point Users Group, Release 4.1.1, 
Princeton, NJ, 2001.  

 
[17] Jones, T. C. “Programming Productivity”, New York, McGraw-Hill, 1986. 

 
[18] Jones, C. “Software Assessments, Benchmarks, and Best Practices”, Addison-

Wesley, Boston MA, April 2000. 
 

[19] Kafura, D. and G. R. Reddy. “The Use of Software Complexity Metrics in 
Software Maintenance”, IEEE Trans. Software Eng. SE-13.3 (March 1987), pp. 
335-343. 

 
[20] Kemerer, C. F. “An Empirical Validation of Software Cost Estimation Models”, 

Comm. ACM 30, 5 (May 1987), pp. 416-429. 
 

[21] Kemerer, C.F. and Porter, B.S. “Improving the Reliability of Function Point 
Measurement: An Empirical Study”, IEEE Transactions on Software 
Engineering, Vol. SE-18, No. 11, Nov. 1992, pp. 1011-1024. 

 
[22] McCabe, T. J. “A Complexity Measure”, IEEE Trans. Software Eng. SE-2 (4) 

(Dec. 1976), pp. 308-320. 
 

[23] Mellis E. “Software Metrics. SEI Curriculum Module”, SEI-CM-12-1.1, 
Carnegie Mellon University, Software Engineering Institute, Pittsburgh, PA, 
December, 1998. 

 
[24] Musa, J. D., A. Iannino, and K. Okumoto, “Software Reliability: Measurement, 

Prediction, Application”, New York, McGraw-Hill, 1987. 
 

[25] Myers, G. J. “An Extension to the Cyclomatic Measure of Program Complexity”, 
ACM SIGPLAN Notices 12, 10 (Oct. 1977), pp. 61-64. 

 



 

 

50 

[26] Pressman, R. S. “Software Engineering A Practitioner’s Approach”, 5th Edition. 
New York, McGraw Hill, 2000. 

 
[27] Rational Software Staff. “Rational Unified Process. Best Practices for Software 

Development Teams”, Rational Software White Paper. TP026B, Rev 11/01, 
Rational Software, 2001. 

 
[28] Shepper, M. A. “Critique of Cyclomatic Complexity as a Software Metric”, 

Software Engineering Journal, vol. 3 (March 1988), pp. 30-36. 
 

[29] Stetter, F. “A Measure of Program Complexity”, Computer Languages 9, (3-4) 
(1984), pp. 203-208. 

 
[30] Walston, C. E. and C.P. Felix, “A Method of Programming Measurement and 

Estimation”, IBM Systems Journal, 16, (1), (1977), pp. 54-73. 
 

[31] Bail, W., and G. Vecellio. “Difficulties in Using Cyclomatic Complexity on Software 
with Error Handling”, The MITRE Corporation, Software Eng. Center, Bedford, 
MA, March 1998. [http://www.mitre.org/support/swee/html/60_bail/sld001.htm]. 

 
[32] Ashish, Woldeit O., Zeron, L. “Experiment for the Correlation Between 

Cyclomatic Complexity and Comprehension of Program”, Oregon State University, 
Corvallis, OR, 1998. [http://cs.oregonstate.edu/~ashish/FinalReport1.html] 

 
 
 
 
 
 

 


