A STUDY OF SOFTWARE METRICS

BY HILDA B. KLASKY

A thesis submitted to the
Graduate School-New Brunswick
Rutgers, The State University of New Jersey
in partial fulfillment of the requirements

for the degree of

Master of Science

Graduate Program in Electrical and Computer Engineering
Written under the direction of
Professor Manish Parashar

and approved by

New Brunswick, New Jersey

May, 2003

ABSTRACT OF THE THESIS

A STUDY SOFTWARE METRICS

by HildaB. Klasky

Thesis Director: Professor Manish Parashar

Software Engineering is defined in the IEEE Standard 610.12, as “The application of a
systematic, disciplined, quantifiable approach to the development, operation, and
maintenance of software; that is, the application of engineering to software.” Metrics are
used by the software industry to quantify the development, operation and maintenance of
software. The practice of applying software metrics to a software process and to a
software product is a complex task that requires study and discipline and which brings
knowledge of the status of the process and / or product of software in regards to the goals
to achieve.

This thesis presents a study and implementation of different software metrics. We apply
these metrics to a sample project, and evaluate the results. We find that that there are
specific metrics for different stages of the software development cycle. When used
properly, i.e., when a company uses the best software metric during each development
phase, the quality of the software will dramatically increase. Therefore, we highly

recommend using software metrics during all stages of the development process.

Acknowledgements

It has been a privilege for me to study at the Department of Electrical and Computer
Engineering at Rutgers University where students and professors are always eager to
learn new things and to make constant improvements. | am especialy grateful to
Professor Manish Parashar for his constructive criticisms, patience and valuable
comments and suggestions to my work. So, | would like to thank Professor Deborah
Silver, Professor Ilvan Marsic and Mrs. Barbara Sirman for their observations and
remarks to improve my thesis.

There have been many people that have supported my carrier during my student time. |
would like to thank Professor Ravi Samtaney, Professor Michael M. Bushnell, Professor
Stanley Dunn and Mrs. Barbara Klimkiewicz. 1 would like to thank the management
support and the learning experience that | have received at work from Shawn Wang, and
K.C. Lee.

| have been very lucky to have the continuing support and encouragement from my
family especially from my husband Scott, my parents Gregorio and Victoria, my brothers
and sisters: Aida, Gustavo, Delia, Sandra, Eva, Nora and Jaime and my Parents in Law

Charlesand Mary. To al them many thanks.

Dedication

To my husband Scott with love and respect.

Table of Contents

ABSTRACT OF THE THESISo ii
ACKNOWIEOGEIMENTS......ceiciicieee ettt e e e aeeste e e sre e seeneesneenseennens i
D2 s [[orz 1 o] o OSSPSR TP iv
TaDI€ Of CONLENES.......ceieeiietee e r e r e nn s \%
LISt Of TAIES ... e viii
IS o o 1= SRS IX
RS o = [7= 1o X
(@ gF= 0] (= 0t N 911 0o [FTox 1 o o S PPS 1
1.0 OVEIVIEIW ...ttt b e e r et nn e n et r e r e nenn e 1
1.2 Problem SEBIEMENT ..o 2
1.3 Contribution Of the TNESIScceiiiiceer e 3
1.4 Organization Of the TRESIS.......ucciieeeee et re e 4
Chapter 2 REIGEI WOTK........cceieeiieie ettt et sne e e e nne s 5
2.1 Classification of SOftWare MELIICS.........cceiiireierireiere e 5
2.2 Examples of Software MetriCS SYStEmSccvccvveereeiesieeseee e 7
2.2.1 Software Measurement LabOoratory..........c.covveeveereeieeseeseseeseeseeesessseesseseesnes 7
2.2.2ZD-NMIS..... e 8
2.2.3 POWES SOfIWEIE.......ceuecieeiireesiesiese et ene s 8
2.2.4 Charismatek SOftware MEtIiCS.........courveieririnreireseseeese e 8
2.2.5 QM LR re e neennee s 9
2.2.6 Other QUAIILY MOEISccueeeeeeceee et 9

2.3 SUMIMAIY ...ttt ettt st et se e e sse e s aee e beesae e e be e saeeebeeamseeseesaneeneesnneaseesnneenns 10

Chapter 3 A Software MetricsS Framework ..o 11
3.1 Characteristics of the Software MetricS System.........ccevvvveveenineneee e 11
3.2 REQUITEIMENES ...ttt sttt sttt sbe et e ese e sb e e s e e st e sbeetesneenreense e 12
GG D = [0 o I TSRS 15

3.3.1 Cyclomatic COMPIEXILY — V (G).eceerueerieeierieerieeie et 15
3.3.2 FUNCLIONS POINES (FP): ..ottt 18
3.3.31INFfOrmMation FIOWccuoiiiiiieeeeeeee s 22
3.3 4 ThEBaNG MELIIC ..cceeeieiieieeee ettt sttt 23
G 0o (1 oo TSSOSO 24
3.4.1 Estimation of Number of DEfECES.........cccovieiiiiriieeeeeee s 24
4.2 LINES Of COUB.......eieiieiete e 26
3.4.3 Product Metrics of HalStead.cccveiiiiiiieieeeee e 27
3.5 Testing / MaNTENANCE........cooieierieeieeee sttt ae et sre e 28
3.5. 1 DEFECE MELIICS. ...t 29
3.5.2 Software REli@Dilityccooeireeeee e 29
3.5.3 Estimation of NUMDEr TeSt Cases........ccccuererirerenieieeeee e 31

G SO 11 PSSR 32
3.6.1 COCOMO ..t r e 32
3.6.2 StALiStCAl MOE ..o s 35
3.6.3 Halstead Metric for EffOrt..........cocoeiiiiiieeeeee s 36
3.7 DISCUSSION....eeieeieeeeeeete sttt ettt e e b se b e sa e bt eseese e e e e e s e nseebenneebenneeneeneennas 37
Chapter 4 Implementation and EVAlUSLIONcccoviriiiieieeieeeseee s 39

Vi

4.1 Hardware and Software ReQUITEMENEScccoreeieriirrieseee e 39

4.2 HOW TO RUN THE PrOgram........ccooieiiiieiiesieeies et 39
4.3 Devel OPMENt EXPEITENCE........oieieeeieree ettt sttt s sseseesnee e 40
4.4 Main Classes of the Software MetricS SYyStemccccvvereniineenece e 40
4.4.1 Classes IMPIEMENLEccoiiiiieiie e e 40

4.5 Software Metrics OBtaiNedcoeiieieiiieee e 44
Chapter 5 Conclusions and FULUre WOrKcocoieeiiriiiieneecceeseee s 46
REFEIEINCES.......eeee et 48

Vil

List of Tables

Table 1 Software Metrics REIAEd WOTKccoveiiiiiie e 7
Table 2 Software Metrics Classes Implemented...........cccveeieeieecesiese e 41
Table 3 Java Swing GUI Classes and other Toolsimplemented............ccccceveeeveececeennens 42

viii

List of Figures

Figure 1 Rational Unified PrOCESS.......ccoiiiiiiieieeieeee et s e 6
Figure 2 ReqUIremMeNnt MELIICScooiiiiiierieeie et 14
Figure 3 CyclomatiC COMPIEXITY.......ccceiierieiieiiesieeie e e 17
Figure 4 Unadjusted FUNCLION POINES..........ccooiiiiiiiiie e 18
Figure 5 FP Reliability QUESLIONS Part |c.ooieiiiiiiieseeeesee s 19
Figure 6 FP Reliability QUEStiONS Part [1..........ccccooiiiiiiiiieieeeesee s 20
Figure 7 Adjusted FUNCLION POINEScccoiiiiiiieiee e 21
Figure 8 INfOrmMation FlOW..........cceoiiiiiiieeee e 22
Figure 9 Estimating the Potential Number of Defects..........ccooviiriininnieceeeeeee 25
Figure 10 LineS Of COUE (LOC)......ciiiiiiierieeie ittt 26
Figure 11 Reliability MEITCS......ccueeiieiiieieee ettt 30
Figure 12 Estimating NUMDer Of TSt CaSES.......covveiueriereeieeiesiee e 32
Figure 13 COCOMO I EFfOrtc.coiiiiiiieseeeeie sttt 33
Figure 14 Statistical Model EffOrtoooveriieeee s 36
Figure 15 Software Metrics DeSign Diagramccceeeereerieneeseeniesee e 43

List of Equations

Equation 1 Specificity of REQUIFEMENES........cceiieiiee e 12
Equation 2 Completeness of Functional Requirements..........ccccevveveeceeveeresieeseeseseeeens 13
Equation 3 Degree to which the Requirements Have Been Validatedc..cccccuveeeee. 14
Equation 4 CyclomatiC COMPIEXITY.......ccuereeiueiieiicie et 15
Equation 5 Cyclomatic Complexity for Binary Decision NOdES...........ccceveeveereerinrennne 16
Equation 6 FUNCLION POINES........c.ociiiice ettt nne e sns 20
Equation 7 INfOrmation FIOWccveceiieiice et 23
Equation 8 Potential NUMber of DEfECEScccuvieeiiceceeseeeeese e 25
Equation 9 Halstead's Program VOCaDUIArYccceoveeeieeiecieeseese e 27
Equation 10 Halstead's Program Length...........cceeoveoeieeiicce e 28
Equation 11 Halstead's Program VOIUME.........ccucvveveiiese e 28
Equation 12 Software Availability MEFIC......c.cccveiveeecee e 30
Equation 13 Software Reliability Growth Logarithmic Modelcccoevveieiicincnee. 31
Equation 14 NUMDEr Of TESE CASESceveerieeieeiesteeiesee e e sie et e e sae e nae e nae e enes 31
Equation 15 COMOMO [EffOrt ..ccuveceiiecece st 34
Equation 16 COCOMO Il Factor of Economies and DiSECONOMIES.........cccvevvereereernennne 34
Equation 17 Statistical MOccveieiieece e 35
Equation 18 Nominal Programming ProdUCLIVILYcccocueveeeneere s 35
Equation 19 Halstead's EffOrt MEIIC........cooveieeiecice e 36
Equation 20 Halstead's Program LEVEcuvoeeiicie i 37
Equation 21 Halstead's Potential VOIUME............ccoveieiiiieece e 37

Chapter 1 Introduction

This chapter presents an overview of the thesis, it describes the problem statement and
continues with the contribution of this thesis, at the end, it presents the organization of

the thesis.

1.1 Overview

Software Engineering like all other engineering professions has metrics. Software
Engineering, as defined in IEEE Standard 610.12, is. “The application of a systematic,
disciplined, quantifiable approach to the development, operation, and maintenance of
software; that is, the application of engineering to software”.

Metrics are used by the software industry to quantify the development, operation and
maintenance of software. They give us knowledge of the status of an attribute of the
software and help us to evaluate it in an objective way. The practice of applying software
metrics to a software process and to a software product is a complex task that requires
study and discipline, and which brings knowledge of the status of the process and / or
product of software in regards to the goals to achieve.

By evaluating an attribute of the software, we can know its status. From there, we can
then identify and classify what its situation is; which helps us to find opportunities of
improvements in the software. This also helps us to latter make plans for modifications
that need to be implemented in the future. In addition, to save the values obtained as
history for further reference.

There is a broad range of software metrics. The software metrics depend on what

software's attributes we want to quantify or qualify. Generally, software metrics are

organized into two main different classes. metrics for the software process and metrics
for the software product.

Metrics for the software process are related to the effort it takes to complete the project,
the resources to spend on it, and the methodology to follow. For example: the time that
will take to complete it, the people needed to develop it, the overall cost in money, and
the methodol ogy to follow.

Many types of attributes of software can be measured. The metric which one applies
depends on the nature of the software product. For example, for the requirements, we
might want to know how many requirements a project has, its specificity (lack of
ambiguity) and completeness (if it covers all the functions needed). For the software
product of a program, we might want to know the number of lines of code, its
complexity, the functionality it covers, the number of potential defects (‘bugs’) it will
have, and the number of test cases to verify that all requirements have been implemented.
We aso could measure the reliability of the software once delivered.

The Software Engineering community hasn’'t agreed on a set of metrics universaly
accepted by the field. Therefore, many people have come up with different ways to
measure the different attributes of software; yet, alot of controversy has developed based
on al these metrics. The Software Engineering community has still along way to go in
order to achieve a unified set of metrics to evaluate the software process and software

products.

1.2 Problem Statement

Despite the fact that the Software Engineering field doesn’t have a unified set of metrics

that the community has agreed to use, it is advised to use them. Often during the software

process, the members of the development team do not know if what they are doing is
correct and they need a guide that could help them orientate further improvement and to
objectively know if the improvement is being achieved. Software metrics are tools that
help to track software improvement.

Most large companies dedicated to develop software, use metrics in a consistent way.
Many companies have created their own standards of software measurement; so, the way
that metrics are applied usually varies form one company to another one. Nevertheless, as
they are used in a consistently way through different projects, the software groups get
many benefits from them.

What to measure in regards of software process or product depends on the nature of the
project, but in al cases, the customer satisfaction is the goal and measures should be
taken to achieve that goa not only at delivery, but through the entire development

process.

1.3 Contribution of the Thesis

There is no unigue metric which works in the entire devel opment phases. Keeping several
metrics on one system helps to have a handy solution that can be used on different
aspects of the software development process. The project developed in this thesis
provides a solution for this need by implementing metrics that could be applied on
several aspects of the Rational Unified Process. The Rational Unified Process is a
Software Engineering Process that captures many of the best practices in modern
software development in a form that is suitable for a wide range of projects and
organizations.

The metrics covered in this thesis are the following:

For the Requirements workflow, the Specificity and Completeness of
Requirements
For the Design: Cyclomatic Complexity, Function Points, Information Flow and
the Bang Metric.
For the Implementation: the Estimation of Number of Defects, the Lines of Code
(LOC) and the Halstead Metrics.
For the Test and Deployment: the Number of Defects is again mentioned, a
metric to estimate the Reliability of the software and the estimation of the
Number of Test Cases.
We have included metrics that support the workflows which estimate effort: they are the
effort according to COCOMO 11, the effort according to the Statistical Model and the

effort according Halstead Metrics.

1.4 Organization of the Thesis

Thisthesisis organized into five chapters. Chapter 1 isthe introductory chapter where the
problem statement is described. Chapter 2 presents a classification of software metrics
and the related work in software industry. Chapter 3 describes the system developed in
this thesis. Chapter 4 describes the implementation and evaluation of this system taking
metrics of it. Finally, Chapter 5 lists a number of improvements that can be done to this

work.

Chapter 2 Related Work

This chapter presents a classification of software metrics and summarizes the work that

some companies and organizations have performed in this regard.

2.1 Classification of Software Metrics

Software Metrics are standards to determine the size of an attribute of a software product
and away to evaluate it. They can also be applied to the software process. Several books
present different classification of software metrics, most of them agree on the following
[26]:

a) Software product metrics: These metrics measure the software product at any stage of
its development. They are often classified according with the size, complexity, quality
and data dependency.

b) Software process metrics: These metrics measure the process in regards to the time
that the project will take, cost, methodology followed and how the experience of the team
members can affect these values. They can be classified as empirical, statistical, theory
base and composite models.

This research project focuses on presenting software metrics as they could be applied on
the different phases of the Rational Unified Process of Software Development.

The Rational Unified Process is a Software Engineering Process that captures many of
the best practices in modern software development in a form that is suitable for a wide
range of projects and organizations. The Rational Unified Process can be applied for
small development teams as well as for large software teams. More over, the Rational

Unified Process is a guide for how to effectively use the Unified Modeling Language

(UML). The UML is an industry-standard language that allows software organizations to

clearly communicate requirements, architectures and designs [27].

Phases
Disciplines | | Inception|| Elaboration Construction Transition

Business Madeling
Requirements

Analysis & Design

Implementation
Test

Deployment

Configuration H . :
& Change Mgmt —t——— .
Project Management | s | . o o .

Environment | s —— = — |

Const || Const | Const || Tran || Tran
Initial || Elab #1 | | Flab #£3 o i o il r

Iterations

Figure 1 Rational Unified Process

The Rational Unified Process is shown in Figure 1. In the Rational Unified Process, we
can distinguish two dimensions, one on the horizontal axis and another one on the
vertical axis. The horizontal axis represents time and shows the dynamic aspect of the
process expressed in terms of cycles, phases, iterations, and milestones. Those are the
Inception phase, the Elaboration phase, the Construction phase and the Transition phase.
Each phase ends with a well-defined major milestone. The vertical axis represents the
static aspect of the process. A process describes who is doing what, how, and when. In
the Rational Unified Process, the Workers are the ‘who’, the Activities are the *how’, the

Artifacts are the ‘what’ and the workflows describe the ‘when'.

2.2 Examples of Software Metrics Systems

Many people have had the idea of concentrating software metrics that could be used
during the software process, even though not all software metrics have been organized in
the same manner. This section presents some examples of software metrics sets that

present and implement different software metrics.

Company/Or ganization Brief Comments

1 SMLab Software Measurement Laboratory at the
University of Magdeburg, Germany

2. ZD-MIS Zuse /Drabe Measure-Information System
private company.

3. Power Software Private company.

4, Charismatek Software Metrics Private company.

5 QsSM Quantitative Software Management is a
private company.

6. CMM Capability Maturity Model of Software of
Software Engineering Institute at Carnegie
Mellon University.

7. SO 9000 International Organization for
Standardization.

8. Total Metrics Consulting services.

9. David Consulting Group Consulting services.

Table 1 Software Metrics Related Work

2.2.1 Software M easurement L abor atory

Thereis avery extensive and comprehensive presentation of software metrics and tools at
http://irb.cs.uni-magdeburg.de/sw-eng/us/index.shtml posted by The Software
Measurement Laboratory (SMLab) at the University of Magdeburg, Germany. The
SMLab's team Members led by Prof. Reiner R. Dumke. The SMLab’'s team has done a
very good job concentrating different useful community activities related to software

metrics, those go from forums, conferences and workshops, to articles and applets for

metrics tools. They present a wide range of tools and topics related to software metrics
and have created a large community of participants that comprises members all around

the world.

2.2.2ZD-MIS

ZD-MIS stands for Zuse / Drabe Measure-Information-System, http://home.t-
online.de/home/horst.zuse/zdmis.html, which provides a '‘comprehensive software test
framework'. The project was initiated by Horst Zuse and Karin Drave. It comprises a
large set of software metrics and a book with the fundamentals. This project is currently

offered as a product that can be purchased.

2.2.3 Power Software

Power Software is a company (http://www.powersoftware.com/) that provides different

tools of software metrics. The tools that Power Software provides go from counting lines
of code to Cyclomatic Complexity, Halstead product metrics, and Object Oriented
metrics. The company aso provides tools to measure the effort and project management

metrics.

2.2.4 Charismatek Software Metrics

Charismatek is a company (http://www.charismatek.com.au/) that provides Metrics

Software Tools and consulting services, they have developed a Function Point Tool:
‘“WORKBENCH™" which has been receiving good ratings by a user satisfaction survey.
This company aso has other software programs to aid in the software management

process.

2.2.5QSM

Quantitative Software Management (QSM) can be found at http://www.gsm.com/. QSM
also specializes on developing software metric tools for project management and they
have developed SLIM-Metrics and SLIM-Data Manager software tools that graphically
allow users to see resources spent and estimation of quality for the project. Both have a
database system integrated to track changes and see the history of the project across the

time.

2.2.6 Other Quality Models

There are other Quality Models provided by different organizations that give guidelines
of software product/process improvement. One notable work is the Capability Maturity
Model of Software (CMM) of the Software Engineering Institute (SEI) at Carnegie

Melon University) (www.seli.cmu.edu). The CMM suggests a software company

evolution improvement that goes from an Initial Level of software development process,
in which there is no organization; to an Optimizing Level, in which there is a
continuously improving process. In the Optimizing level, the software development
process and products are constantly monitored and the results are predictable.

Another important work is the International Organization for Standardization, which has

a standard for quality management systems (http://www.iso.ch/iso/en/iso9000-14000/).

Many companies follow does standards to achieve certifications.
Other companies that provide documents and consult services for software metrics
application and improvement are: Total Metrics provides consultancy services to improve

software metrics practices (http://www.totalmetrics.com/) and the David Consulting

10

Group (http://www.davidconsultinggroup.com/) which aso has a large set of articles

written and a vast experience in software metrics implementation.

2.3 Summary

This chapter has presented a classification of software metrics. Software Metrics give us
knowledge of the status of an attribute of the software and help us to evauate this
software attribute in an objective way. Software Metrics also helps usto latter make plans
for modifications that need to be implemented in the future. In addition, to save the
values obtained as history for further reference. What motivates this study of Software
Metrics is to develop a software metrics framework that has a set of metrics that could be
used as a stand alone metric as needed, or as part of the pipeline of the phases through all
the development process. In the next chapter, we will see how one can use software

metricsin the early stages of development in order to improve the software product.

11

Chapter 3 A Software Metrics Framework

In this chapter, we will describe a series of metrics that are implemented in this thesis,
and give a mathematical definition of these metrics. Several programs, with Graphic User
Interfaces (GUI), have been created to calculate these metrics. These programs can be
used as a stand-alone system to determine the quality or quantity of the software attribute
measured. We conclude this chapter with a discussion of the metrics, which we have
implemented, and the relationship of the metrics in the different phases of the software

development cycle.

3.1 Characteristics of the Software Metrics System

The study of software metrics developed on this thesis includes an implementation of
those metrics, which can be applied through the Rational Unified Process of Software
Development. The core workflows covered in this thesis are the following:
Requirements, Design, Coding, Testing, and Maintenance. We have aso included
another set of metrics to evaluate some aspects of the software process metrics such as
effort and productivity.
We wrote programs for the following metrics:

Specificity and Completeness of Requirements.

Cyclomatic Complexity, Function Points, Information Flow, and the Bang metric.

The estimation of Number of Defects, the Lines of Code (LOC) and the Halstead

metrics.

12

A metric to estimate the Reliability of the software and the estimation of the
number of Test Cases.
We have aso implemented other metrics that estimate effort: they are the effort
according to COCOMO 11 [5], the effort according to the Statistical Model [30] and
the effort according Halstead’s metrics [13]. In the following sections a brief

overview of the metrics implemented for each workflow is given.

3.2 Requirements

This section presents software metrics that measure specificity and completeness of the
requirements. As the name states, these metrics should be used during the inception
phase, which was defined in chapter 2. They can aso be used during the elaboration and
construction phases when the business model is being analyzed.

The quality of software requirements specification [30] can be measured by determining
two values. The first value is the specificity of the requirement. By specificity, we mean
the lack of ambiguity. We use: ‘Q1’ to refer to the specificity of the requirements. The
second value is the completeness. By completeness, we mean how well they cover all
functions to be implemented. We use ‘Q2’ to refer to this completeness. Note that this
value doesn’'t include non-functional requirements. To include the non-functional
requirements we use another value denoted by ‘Q3’, which will be explained below, as
described by Davis [7]. Figure 2 shows the implementation of the requirement metrics.

To determine the specificity (lack of ambiguity) of requirements we use equation 1.

Q]_:M

nr

Equation 1 Specificity of Requirements

13

Where:

Q1° Specificity of requirements.

nui © number of requirements for which all reviewers had identical interpretations.

nr° Total number of requirements, it is given by:

nf © number of functional requirements

nnf © number of non-functional requirements

nr = nf + nnf

The optimal value of Q1 is one, thus, if our requirements are not ambiguous, we need to
get avalue closer to one. The lower the value, the more ambiguous the requirements are;
and this will bring problems in the latter phases. Therefore, the requirements need to be
constantly reviewed and discussed by all team members until they all understand the
requirements and agree to adhere to these requirements.

The completeness of functional requirementsis given by equation 2:

nu
Q2=—
ni* ns

Equation 2 Completeness of Functional Requirements
Where:

Q2 = completeness of functional requirements only. This ratio measures the percentage
of necessary functions that have been specified for a system, but doesn't address
nonfunctional requirements.

nu °© number of unique functional requirements,

ni © number of inputs (all datainputs) defined or implied by the specification document.

ns° number of scenarios and states in the specification.

14

We also need to consider the degree to which requirements have been validated. Equation

3 presents this value.

, nc
Q¥=——
nc + nnv

Equation 3 Degree to which the Requirements Have Been Validated
Where:

Q3 ° degree to which the requirements have been validated.
nc ® number of requirements that have been validated as corrected.

nnv © number or requirements that have not yet been validated

& Software Metrics |Z“Z'|E|
File Help
(Requirements
~Count
Functional: 10
Maon-Functional: |2
Total [z |
~Specificity
Mumber of requirements which all reviewers had identical interpretations: 1 |
~Completeness
Unique Functional Requiremernts: 10
Inputs Defined by the Specification: 10
States Specified: 1
Completenass of Functional Requirements !—1.IZI |
Requirements that have been validated as comect: 1
Requirements that have not yet been walidated: 1
Degree of which Requirements have been validated R

Figure 2 Requirement Metrics

15

3.3 Design

This section presents software metrics which can be used during the design phase:
McCabe's Cyclomatic number, Information Flow (fan in/out), Function Points and the

Bang metric by Tom DeMarco.

3.3.1 Cyclomatic Complexity —v (G)

The software metric known as Cyclomatic Complexity was proposed by McCabe [22].
McCabe suggest seeing the program as a graph, and then finding out the number of
different paths through it. One example of this graph is called a control graph. Our
implementation is shown in Figure 3.

When programs become very large in length and complexity, the number of paths cannot
be counted in a short period of time. Therefore, McCabe suggests counting the number of
basic paths (all paths composed of basic paths). This is known as the “Cyclomatic
Number”; which is the number of basic paths [30] from one point on the graph to

another, and we refer to the Cyclomatic Number by v(G). Thisis shown in equation 4,

V(G)=E- N+2P
Equation 4 Cyclomatic Complexity
Where:
v (G) ° Cyclomatic Complexity
E © number of edges
N © number of nodes

P° number of connected components or parts

16

We do not have to construct a program control graph to compute v (G) for programs

containing only binary decison nodes. We can just count the number of predicates

(binary nodes), and add one to this, as shown in equation 5.

v(G)=p+1

Equation 5 Cyclomatic Complexity for Binary Decision Nodes

v (G) °© Cyclomatic Complexity

p° number of binary nodes or predicates.

McCabe srulesfor counting edges and nodes:

if / while statements. The action depends on a binary node containing a
conjunction or digunction of conditions. Each condition counts as one binary
decision node. For example, in the following sentence, we see that there are two
binary decisionnodes: ‘i f (count < m|| count = MAX) then...’
do/ for statements: iteration statements count as one binary decision node.

case / switch statement: Either n or n-1 nodes (n= number of aternatives in the
statement). Depends on language semantics of the language and the form of the
statement. Examples: C switch statement contributes either n or n-1. Ada case

statement contributes n-1.

17

& Software Metrics |E“z||E|

File Help

5 | Design

f Cyclomatic Complexity |

(. Eirary Decition Modes: 1 |

Edges:]

Modes: [|

Connected Components:

Cyelamatic Complexity 2.0

[Opened Dihklasky'rutgersiSwietrics'SoftwareMetricsSoftwareMetrics'srcisoft...

Figure 3 Cyclomatic Complexity

Cyclomatic complexity can help in the following situations:
a) |dentify software that may need inspection or redesign. We need to redesign all
modules with v (G) > 10.
b) Allocate resources for evaluation and test: Test al modules with v (G) > 5 first.
c) Define test cases (basis path test case design): Define one test case for each
independent path.

Industry experience shows that Cyclomatic Complexity is more helpful for defining test

cases (c), but doesn’t help that much on identifying software that may need inspection or

18

redesign (a) and allocating resources for evaluation and test (b) as McCabe suggests. [31]
Studies [32] have also found that the ideal v (G) = 7, which proves to be easier to

understand for novices and experts.

3.3.2 Functions Points (FP):

This metric was developed by Albrecht [1]. It focuses on measuring the functionality of
the software product according to the following parameters. user inputs, user outputs,

user inquiries number of files and the number of external interfaces.

& Software Metrics

File Help
¢ | Function Points
Simple Forerage Complex

Inputs: 10
Outputs 10
Inquiries: 10
Files: 1
Extemnal Interfaces: 1

Unadjusted Function Paints 112.0

First Previous Next Last

Figure 4 Unadjusted Function Points

19

Once the parameters are counted, a complexity (simple, average and complex) value is
associated to each parameter. Figure 4 shows the implementation provided for
unadjusted FP. A complexity adjustment value is added to the previous count (see Figure
7). This value is obtained from the response to 14 questions related to reliability of the
software product. The implementation of the reliability questionsis shown in figure 5 and

Figure 6. Equation 6 presents the estimation of Function Points.

& Software Metrics I‘ZIIZEI
File Help

Function Points

1. Does the system require reliable backup and
recowvery’?

2. fra data communications required?

3. Are there distibuted processing functions?

4. |z performance crtical’?

5. Wil the system run in an existing, heavily utilized

operational enwvironment’s

fi. Does the system raquire on-line data entry?

T. Ooes the on-line data entry require the input
transaction to be built ower multiple screens or

MAEHNE

First Previous Next Last

Figure5 FP Reliability Questions Part |

20
FP = count total *[0.65+0.01* § Fi]
Equation 6 Function Points
Where:
FP = Total number of adjusted function points
count total © the sum of all user inputs, outputs, inquiries, files and external interfaces to
which have been applied the weighting factor.

Fi © acomplexity adjustment value from the response to the 14 reliability questions.

& Software tMetrics |Z“:'|E|
File Help

[Design

| Function Points

8. Are the master files updated on-line?

9. fre the inputs, outputs, files ore inquines complex?

10. I= the intemal processiong complex?

11. Is the code designed to be reusable?

12, Are conversion and installation included in the design™

13. Iz the =ystem designed for multiple installations in
different organizations’?

14. Iz the application designed to faciltate changs and
egse to use by the user?

JOLOUIE

First Previous Next Last

Figure 6 FP Reliability Questions Part I1

21

The FP metric is difficult to use because one must identify all of the parameters of the
software product. Somehow, this is subjective, and different organizations could
interpret the definitions differently. Moreover, interpretations could be different from one
project to another in the same organization, and this could be different from one software

rel ease to another.

& Software Metrics |E||z|E|
File Help

v | Function Points

Adjusted Function Points 728
First Previous Hext Last

Figure 7 Adjusted Function Points

22

3.3.3Information Flow

Information Flow is a metric to measure the complexity of a software module. This
metric was first proposed by Kafura and Henry [19]. The technique suggests identifying
the number of calls to a module (i.e. the flows of local information entering: fan-in) and
identifying the number of calls from amodule (i.e. the flows of local information leaving:

fan-out). Figure 8 shows the implementation of Information Flow.

& Software Metrics
File Help

| Information Flow

......

Length (LOCASG)) : 44

Fan-in: |4—

Fan-out: 2

Complexity 28160

[Opened Dihklasky'rutgersiSwietrics'SoftwareMetricsSoftwareMetrics'srcisoft...

Figure 8 Information Flow

The complexity in Information Flow metric is determined by equation 7.

23
c =[procedure length]* [fan - in* fan- out] 2
Equation 7 Information Flow
Where:
¢ ° complexity of the module
procedure length © alength of the module, this value could be given in LOC or by using
V(G) ° Cyclomatic Complexity.
fan-in ° The number of callsto the module.

fan-out © The number of calls from the module.

3.3.4TheBang Metric

The Bang metric was first described by DeMarco [9, 10]. This metric can attempt to
measure the size of the project based on the functionality of the system detected during
the time of design. The diagrams generated during the design give the functional entities
to count. The design diagrams to consider for the Bang metric are: data dictionary, entity
relationship, data flow and state transition. Other design diagrams such as the Business
Model, Use Cases, Sequence and Collaboration diagrams of the Unified Modeling
Language (UML) can also be used to find the functional entities. The Bang metric can
also be combined with other measures to estimate the cost of the project.

To estimate the Bang metric, we classify the project in three major categories. function
strong, data strong, or hybrid. We first divide the number of relationships between the
numbers of functional primitives. If the ratio is less than 0.7 then the system is function
strong. If the ratio is greater than 1.5 then the system is data strong. Otherwise, the

system is hybrid.

24

For Function strong systems, we first need to identify each primitive from the design
diagrams. Then for each primitive, we identify how many tokens each primitive contains.
We assign a corrected Functional Primitive Increment (CFPI) value according to the
number of data tokens. At the same time, the primitive will be identified with one class,
out of 16 classes. Each primate will aso be assigned a value for the increment.
Afterward, the CFPI is multiplied by the increment and the resulting value is assigned to
the Bang value. This process is repeated for each primitive and the values added all
together to compute the final Bang for Function strong systems.

For Hybrid and Data strong systems, we first identify the number of objects. Then, for
each object, we count the number of relationships and then record the Corrected Object
Increment (COBI) accordingly. The resulting value will be added to the values of each
object and the total will be assigned to the final Bang computation for Hybrid and Data

strong systems.

3.4 Coding

This section presents the software metrics appropriate to use during the implementation
phase of the software design. The metrics presented in this section are: Defect Metrics,

Lines of Code (LOC), and the Halstead product metric.

3.4.1 Estimation of Number of Defects

During the1998 IFPUG conference, Capers Jones [16] gave a rule of the thumb to get an
estimation of the number of defects based on the Function Points of the system. Thisrule

is defined by equation 8.

25

Potential Number of Defects= FP *#

Equation 8 Potential Number of Defects
Where:

FP° Function Points

Equation 8 is based on the counting rules specified in the Function Point Counting

Practices Manua 4.0[16] (http://www.ifpug.org/) and it is currently in effect. Figure 9

shows the implementation of this metric.

& Software Metrics IZIEIE

File Help

Function Points: 73

213379933

Figure 9 Estimating the Potential Number of Defects

26

3.4.2 Linesof Code

The Lines Of Code (LOC) metric specifies the number of lines that the code has. The
comments and blank lines are ignored during this measurement. The LOC metric is often
presented on thousands of lines of code (KLOC) or source lines of code (SLOC).

LOC is often used during the testing and maintenance phases, not only to specify the size
of the software product but also it is used in conjunction with other metrics to analyze

other aspects of its quality and cost. Figure 10 shows the implementation of LOC.

& Software Metrics
File Help

Select File
Total Lines: B850
Commented Lines: (755
Blank Lines: 1057
Lines of Code: 5147]

[Opened Dihklasky'rutgersiSwietrics'SoftwareMetricsSoftwareMetrics'srcisoft...

Figure 10 Linesof Code (LOC)

27

Several LOC tools are enhanced to recognize the number of lines of code that have been
modified or deleted from one version to another. Usually, modified lines of code are
taken into account to verify software quality, comparing the number of defects found to
the modified lines of code.

Other LOC tools are also used to recognize the lines of code generated by software tools.
Often these lines of code are not taken into account in final count from the quality point
of view since they tend to overflow the number. However, those lines of code are taken

into account from the developer’ s performance measurement point of view.

3.4.3 Product Metrics of Halstead

Halstead [13] was the first to write a scientific formulation of software metrics. Halstead
stated that any software program could be measured by counting the number of operators
and operands, and from them, he defined a series of formulas to calculate the vocabulary,
the length and the volume of the software program. Halstead extends this analysis to also
determine effort and time.
a) Program Vocabulary: is the number of unique operators plus the number of unigue
operands as defined by equation 9.
n=nl+n2

Equation 9 Halstead's Program Vocabulary
Where:
n° program vocabulary
nl° number of unique operators

n2° number of unique operands

28

b) Program Length: the length N is defined as the tota usage of ‘all’ operators
appearing in the implementation plus the total usage of ‘all’ operands appearing in the
implementation. This definition defined by equation 10.

N =NI1+N2

Equation 10 Halstead's Program L ength
Where:

N © program length

N1° *all’ operators appearing in the implementation

N2° ‘al’ operands appearing in the implementation

¢) Program Volume: Here volume refers to size of the program and it is defined as the
Program Length times the Logarithm base 2 of the Program Vocabulary. This definition

is defined by equation 11.

V =Nlog,n

Equation 11 Halstead's Program Volume
Where:

V © program volume
N © program length (see equation 10)

n° program vocabulary (see equation 9)

3.5 Testing/ Maintenance

This section presents software metrics appropriate to use during the testing/maintenance

phase of the software. The metrics mentioned follow: Defect Metrics, that consist on the

29

number of design changes, the number of errors detected during system testing, and the

number of code changes required; and the Reliability metrics.

3.5.1 Defect Metrics

Defect metrics help to follow up the number of defects found in order to have arecord of
the number of design changes, the number of errors detected by code inspections, the
number of errors detected during integration testing, the number of code changes
required, and the number of enhancements suggested to the system. Defect metrics
records from past projects can be saved as history for further reference. Those records
can be used latter during the development process or in new projects. Companies usually

keep track of the defects on database systems specially designed for this purpose.

3.5.2 Softwar e Reliability

Software reliability metrics use statistical methods applied to information obtained during
the development or maintenance phases of software. In this way, it can estimate and
predict the reliability of the software product. Figure 11 shows how the software
reliability behaves during the different development phases.

Availability metrics [24] are also related to the reliability of the system. Sometimes, there
is confusion in regards to the software availability and the software reliability; a
definition of both termsis given below.

Softwar e availability: The period of time in which software works satisfactorily.
Softwar ereliability: The probability that a system will not fail in a period of time.

To calculate Software Availability, we need data for the failure time/rates and for the

restoration time/rates. Therefore, the Availability is defined by equation 12.

30
Availability =1- unavailability
Equation 12 Software Availability Metric

Note: unavailability here refers to both hardware and software.

To calculate Software Reliability, we need to collect data from the system in regards to
the faillures experienced during operation in a period of time. A software failure is
represented with by | ; where | represents the failure rate per unit time (per hour, month,
etc.). | (t) isafunction of the average total number of failures until time t, denoted by
n(t) .The falure rate decreases as the number of bugs is fixed and no new bugs are
discovered.

Test{Debudg Useful Life Olosolescence

Failure Rate

Time
Figure 11 Reliability Metrics

We used the Software Reliability Growth (SRG) Logarithmic Model developed by Musa

[24]. In this model, the function Lambda (t) is defined by equation 13.

31
| (t)=1 ~expt™

Equation 13 Softwar e Reliability Growth Logarithmic Model
Where:

E © the number of defects in the software at t = O (i.e,, at the time of delivery/start of

operation)

b isthe Mean Time To Failure (MTTF) whichisgiven by: b :ti

p

t, © the time constant, is the time at which 0.63* E defects will have been discovered.

3.5.3 Estimation of Number Test Cases

On 1998, in the IFPUG conference Capers Jones [16] gave a rule of the thumb to
estimate the number of test cases based on the number Function Points of the system.

Figure 12 shows the implementation of this metric. Thisrule is described by equation 14.

Number of test cases = FP *?
Equation 14 Number of Test Cases
Where:
FP = Function Points.
The formula is based on the counting rules specified in the Function Point Counting
Practices Manual 4.0 [16], [http://www.ifpug.org/]. Equation 14 for estimating the

potential number of software defectsis currently in effect.

32

& Software Metrics |z||Z'|E|

File Help

gy | TestMaintenance | Other

¥ | Test Cases

Function Points: 73

i1?2.181 ara

Figure 12 Estimating Number of Test Cases

3.6 Other

This section presents software metrics that could help to know the quality of the system

during all phases of the project in regards to the Effort, Time and Cost of it:

3.6.1 COCOMO I

COCOMO Il isthe new version of the Constructive Cost Model for software effort, cost
and schedule estimation (COCOMO) [5]. COCOMO Il adds the capability of estimating

the cost of business software, OO software, software created via evolutionary or spiral

33

model and other new trends (for example commercial off the shelf applications —COTS)

[4].

& Software Metrics
File Help

Precedentedness: 1 -

Development Flexihility: 1 £
Architecture / Risk Resolution: 1 b
Team Cohesion: 1 =
Process Maturity: 1 -
KLOC: |5—

Effort 18.265032

[Opened Dihklasky'rutgersiSwietrics'SoftwareMetricsSoftwareMetrics'srcisoft...

Figure 13 COCOMO Il Effort

The market sectors, which benefit the most from COCOMO |1, are: 1) the ‘Application
Generators (Microsoft, Lotus, Novell, Borland, etc.), 2) the ‘Application Composition’
sector that focuses on developing applications which are too specific to be handled by
prepackaged solutions, and 3) the * Systems Integration’ sector, which works with large
scale, highly embedded systems (for example: EDS and Andersen Consulting, etc.).

The COCOMO Il model for the Application Composition sector is based on Object

Points. Object Points count the number of screens and then it will report back on the

34

application a weighted which can be three levels of complexity: simple, medium and
difficult. Figure 13 shows this implementation.
The COCOMO Il model for the Application Generator and System Integrator sectors is
based on the Application Composition model (for the early prototyping phase), and on
the Early Design (analysis of different architectures) model and finally on the Post-
Architecture model (development and maintenance phase).
In COCOMO Il metric, the effort is expressed in Person Months (PM). Person Months
(also known as man-months) is a measure that determines the amount of time one person
spends working in the software devel opment project for a month.
The number of PM is different from the time the project will take to complete. For
example, a project may be estimated to have 10 PM but have a schedule of two months.
Equation 15 defines the COCOMOI| effort metric.
E = A*(KLOC) ®

Equation 15 COMOMO || Effort
Where:
E ° Effort
A ° A constant with value 2.45
KLOC ° Thousands of Lines of Code

B © factor of economies or diseconomies (costs increases), given by equation 16.

B =1.01+(0.01)* (§ i)

Equation 16 COCOMO Il Factor of Economies and Diseconomies
Where:

35

? SFi isthe weight of the following Scale Factors (SF): Precedentedness (how new is the
progran to the development group), Development Flexibility, Architecture/Risk

Resolution, Team Cohesion, and Process Maturity (CMM KPA'’S).

3.6.2 Statistical M odel

Another approach to determine software effort has been provided by C. E. Walston and

C.P. Felix of IBM [30]. They used equation 17 to define the effort in its statistical model.
E=a*L"
Equation 17 Statistical Model
Where:
E° Effort
a° aconstant with value: 5.2
L ° Lengthin KLOC
b° aconstant with value: 0.91

Walston and Felix aso calculated the Nominal programming productivity in LOC per

person-month as defined by equation 18.

Equation 18 Nominal Programming Productivity
Where

P° Nominal programming productivity in LOC per person-month
L °© Lengthin KLOC
E ° Effort from equation 17.

The implementation of this metric is shown in figure 14.

36

& Software Metrics
File Help

Statistical Model

KLOC: 5 |
Effort 224934967 |
Nominal Programming Productivity 0222282

[Opened Dihklasky'rutgersiSwietrics'SoftwareMetricsSoftwareMetrics'srcisoft...

Figure 14 Statistical Model Effort

3.6.3 Halstead Metric for Effort

Halstead has proposed an effort metric to determine the effort and time which is given by

equations (19), (11), (20) and (21):

Equation 19 Halstead's Effort Metric
Where:

37

E © Effort in mental discriminations needed to implement the program.
V =Nlog, n (Seeequation 11)

Where:

V ° program volume

N © program length (see equation 10)

n © program vocabulary (see equation 9)

Equation 20 Halstead's Program L evel
Where

L °program Level
V*© potential volume given by equation 21.

v =(N1 +N2)*log, (nt" +n2’)

Equation 21 Halstead's Potential Volume

Halstead’ s metrics include one of the most complete sets of mathematical combinations
of software metrics and even though most people recognizes that they are interesting not
many companies follow them due that is hard to convince people about change solely on

the basis of these numbers[12].

3.7 Discussion

In this chapter, we have presented the following metrics:

Specificity and Completeness of Requirements,

38

Cyclomatic Complexity, Function Points, Information Flow and The Bang Metric,

An Estimation of the Number of Defects, The Lines of Code (LOC), The Halstead

Metrics,

The Reliability metric, An Estimation of the Number of Test Cases,

The Estimation of Effort According to COCOMO 11, The Effort According to the

Statistical Model, The Effort According to Halstead' s Metrics.
We have seen the importance of properly defining the requirements. If the metrics are
properly defined, we can avoid problems that will be more expensive to correct during
the latter phases of development. Function Points can be used to estimate the potential
number of defects and the number of test cases to be written to test the software. LOC
can also give us an estimation of the Function Point according to the language used. It is
useful to validate a value such as the effort, with different metrics to see how close are of

each other.

39

Chapter 4 Implementation and Evaluation

Chapter 4 provides an experimental evaluation of the software metrics implemented in
this study. The chapter begins with the hardware and software requirements, which are
needed to run the program. Then, the design of the system is outlined. The design is
followed by the software metrics values obtained by applying the software metrics to the

program development of this study.

4.1 Hardwar e and Softwar e Requirements

The Software Metrics framework has been tested and run on machines with the following
software and hardware requirements:

Minimal hardware Requirements

Processor: X86 Processor (Pentium 11)

RAM: 256 MB

Hard Drive: 4 GB free

Softwar e Requirements:

Windows 2000 Professional Service Pack 3

Java(TM) 2 Runtime Environment, Standard Edition (build 1.4.1_02-b06)

IMPORTANT NOTE: Older versions of javadon’'t work to run this software.

4.2 How To Run The Program

This section provides instructions about how to run the program. First, the jar file needs

to be saved in a directory on the local hard drive. Then type in the following command in

40

the command line (assumed that you are positioned on the current directory where you
have saved the jar file):
java —jar SoftwareMetrics.jar

NOTE: The system could take 10 to 20 seconds to display on the screen.

4.3 Development Experience

The software was developed as follows. All metrics were developed first as their own
classes. Then, the GUI was developed by using JBuilder 8.0 Enterprise Tria. The code of
the metrics is completely independent from the GUI and other GUI could be used to
visualize the results. The reason why we chose JBuilder for the GUI is to facilitate the
work by dragging and dropping swing components in panels. This Java Swing GUI

generator was helpful during the development of the system prototype.

4.4 Main Classes of the Software M etrics System

This section describes the design of the Software Metrics framework implemented on this
thesis. First, alist of the main classes is presented. Then a diagram of the interaction of

the classes is provided.

4.4.1 Classes | mplemented

Table 2 presents a list of the classes implemented. On Table 2, the classes have been
organized alphabetically. One javafile and class has been implemented per metric. Some
classes required the creation of private classes; those cases are identified when it is
appropriate to mention them. The software metrics framework has the following main

classes;

Class/File Name Brief Description

Bang.java Implements the Bang metric.

Fup Bang' s private class that consist of an
array of Functional Primitives for
function strong systems.

OB Bang's private class that consist of an

array of objects for hybrid and data strong
systems.

Cocomoll .java

Implements the COCOMO |1 effort
metric.

Factor

Private class of COCOMO |1 that isused
to keep the weights of each factor to
compute the effort.

CycloComplex.java

Implements the Cyclomatic Complexity
metric.

Defects.java Implements the potential number of
defects.

FP.java I mplements the Function Points metric.

Halstead.java Implements the Halstead’ s metrics.

Operator Halstead' s private class that consist of an
array of operators.

Operand Halstead' s private class that consist of an
array of operands, they are used to get the
vocabulary of the system.

InfoFlow.java Implements the Information Flow metric.

LOC.java Implements the counter of lines of code
of afile.

Reliability.java Implements the reliability metric.

regMetrics.java I mplements the requirement metrics.

Statistic.java Implements the statistic metric.

TestCases.java Implements an estimation of the number

of test cases.

Table 2 Software Metrics Classes | mplemented

41

Table 3 shows, between other classes, the classes implemented for the Java Swing GUI.

First, Table 3 liststhe main class that calls al other classes, then the class that generates

the frame, and then, the class that implements the about dialog. Finally, thereis aclass

42

that implements common functions. The tool class implements generic functions that are

used by all other classes.

Class/File Name Brief Description
SoftwareM etricsClass.java Contains the main method.
SoftwareM etricsFrame.java Implements the frame Java Swing GUI .
SoftwareM etricsFrame_AboutBox.java | Implements the about dial og.
Toolsjava Implements generic tools functions used
by al classes.

Table 3 Java Swing GUI Classes and other Toolsimplemented

The diagram in figure 15 shows the interaction of the main classes implemented in the
software metrics system developed on this thesis. Figure 15 depicts how classes are
called from one to another one. Initially the SoftwareMetricsClass is invoked, it has the
main method. Then the SoftwareMetricsFrame appears. The frame presents different
tabs. There is one tab per workflow. The workflows are: Requirements, Design, Coding,
Testing and Maintenance, and Other for the Effort Metrics. Each workflow has at the
same time several tabs, one per metric implemented. Some classes have private classes,

on those cases the private classes are indicated on the diagram.

SoftwareMetricsClass

SoftwareMetricsFrame

Requirements Tab

reqMetricsClass

Design Tab

Testing/Maint Tab

DefectsClass

ReliabilityClass

CycloComplexClass

TestCasesClass

FPClass

Other Tab

InfoFlowClass

BangClass

COCOMOIIClass

OBClass

L FactorClass

FUPClass

StatisticClass

Coding Tab

HalsteadClass

DefectsClass

AboutBoxClass

LOCClass

HalsteadClass

OperatorClass

OperanClass

Figure 15 Software Metrics Design Diagram

43

4.5 Software Metrics Obtained

For the Software Metrics project, to ensure the lack of ambiguity on the requirementsit is
important that all members that will be involved on it have the same interpretation of
them. We are looking for alack of ambiguity of one or close to one. See Figure 2.

The Cyclomatic Complexity measure was applied to the CycloComplex.java class, this
class has one if statement that counts as 1 binary decision nodes, (if it has or not binary
decision nodes), so the Cyclomatic Complexity v (G) is 2. It is important to remember
that it is recommended to re-design the modules with v (G) greater than 10. In this case,
the complexity hasalow value so it is good. (See Figure 3.)

The LOC for the Software Metrics developed in this thesis is 5,147 LOC. The
SoftwareMetricsFrame.javais the file that has the most lines of code (it has 3,847 LOC).
These values exclude comment lines and blank lines (about 1800 commented and blank
linesin this project). See Figure 10.

Figure 4 shows the estimation of Unadjusted Function Points for this Software Metrics
system. All inputs, outputs and inquiries are simple; so, they are considered as one value
per metric implemented. Because the complexity adjustment values are minimal for this
system, the number of Adjusted Function Points is. 72.8. For this project, the 14
guestions of reliability were not important, so no weight was assigned to them (see Figure
5 and Figure 6). This gives us atotal of 72.8 Adjusted Function Points (Figure 7), or 112
Un-adjusted Function Points (Figure 4).

We can validate if the number of Function Points is correct, by using the table of
Function Points per LOC according with the language used

(http://www.gsm.com/FPGearing.html). In the java programming language, there is an

45

average of 62 lines of code per Function Point which gives avalue of 83 Function Points
for this system that has 5,147 LOC. Counting other function points for the exit function
and the About dialog would give a very close approximation.

The Information Flow metric was applied to the InfoFlow.java class, this class has 44
lines of code, it has 4 fan-in (calls in the module) and 2 fan-out (calls from the module)
this gives a complexity value of 2816. See Figure 8.

For 73 Function Points the potential number of defects is 213, see Figure 8. For 213
defects on 6 months of development the reliability of the system is 1.51, see Figure 11.
For 73 Function Points the number of test cases that need to be written and run is: 172.
See Figure 12.

The COCOMO 11 effort obtained is 18 man/months (see Figure 13). We can compare the
same value with the Statistic metric, which gives a value of 22 man/months (see Figure
14). The difference in the effort given by those two metrics show that the results are not

conclusive.

46

Chapter 5 Conclusions and Future Work

Software Metrics are tools that help us to qualify or quantify software attributes in an
objective way. They can also be applied to the software development process. Software
Metrics provide value to the software development process by giving information about
the status of the project and product of software. Software Metrics also provide a way to
know if the development goals are being achieved. Software Metrics from past projects
can be used as reference on further projects.

Software Metrics that are too complex or require many data entry parameters could be
difficult to understand. When Software Metrics are too complex, the values obtained
from them might be ambiguous, which could make the team members abandon the
practice.

Applying software metrics is good practice that can bring alot of value to a project, but it
requires time, work and money. By using software metrics in a consistent manner,
software developers will see improvement in the software and on the use of the metrics.
Lack of consistency while using software metrics could lead to ambiguous results.

No unique metric works during all of the development phases. Using several metrics for
one system helps to have a handy solution that can be used during different aspects of the
process of software development. The project developed in this thesis provides a solution
for this need by implementing metrics that can be applied on the several aspects of the
Rational Unified Process.

The metrics covered in this thesis are the following: For the Requirements workflow, the
Specificity and Completeness of Requirements. For the Design: Cyclomatic Complexity,

Function Points, Information Flow and the Bang Metric. For the Implementation: the

a7

Estimation of Number of Defects, the Lines Of Code (LOC) and the Halstead Metrics.
For the Test and Deployment: the Number of Defects is again mentioned, a metric to
estimate the Reliability of the software and the estimation of the Number of Test Cases.
We have included metrics that support the workflows which estimate effort: they are the
effort according to COCOMO I, the effort according to the Statistical Model and the

effort according Halstead Metrics.

The toolkit developed in this work could be enhanced by providing a LOC counter that
can work with severa files. It could also be improved by parsing projects with multiple
files, to use as input for the metrics implemented in this thesis. Other future work could
include adding a database so a better history of the metrics of the system could be
tracked. Finaly, adding a metric that graphicaly shows the expected time when the
system is supposed to be “bug” free or stable will be very helpful (statistics and

probability curves).

48

References

[1] Albrecht, A. J. and J. E. Gaffney. Jr. “ Software Function, Source Lines of Code,
and Development Effort Prediction: A Software Science Validation”, |EEE
Trans. Software Eng. SE-9, 6, Nov. 1983, pp. 639-648.

[2] Arthur, L. J. “Measuring Programmer Productivity and Software Quality” , New
Y ork, John Wiley, 1985.

[3] Austin, Robert D., Lister, Timothy R., Demarco, T. “Measuring & Managing
Performance in Organizations’ , New Y ork, Dorset House, June, 1996.

[4] Boehm, B. W. “Software Engineering Economics’, Englewood Cliffs, New
Jersey, Prentice-Hall, 1981.

[5] USC-CSE, 1999, “COCOMO Il Definition Manual”, Computer Science
Department, University of Southern California, Center for Software Engineering,
Los Angeles, CA, 1999.

[6] Curtis, B., S. B. Sheppard, P. Milliman, M. A. Borst, and T. Love. “Measuring
the Psychological Complexity of Software Maintenance tasks with the Halstead
and McCabe Metrics’, IEEE Trans. Software Eng. SE-5, 2 (March 1979), pp.
96-104.

[7] Davis, A., et al. “Identifying and Measuring Quality in a Software Requirements
Soecification”, Proc. First Intl. Software Metrics Symposium, |EEE, Baltimore,
MD, May 1993, pp. 141-152.

[8] Dekkers, C., “Function Points and Use Cases — Where's the Fit?” IT Metrics
Strategies, January 1999, pp. 34-36.

[9] DeMarco, T. “Controlling Software Projects. Management, Measurement &
Estimation” , New Y ork, Y ourdon Press, 1982, pp. 184-192.

[10] DeMarco, Tom and Boehm, Barry W. “Controlling Software Projects:
Management, Measurement, and Estimates’, Prentice Hal PTR/Sun
Microsystems Press, March 1998, pp. 80-91.

[11] Florac, W.A., Carleton A.D. “Measuring the Software Process’, SEI Series in
Software Engineering. Addison-Wesley. Second printing, Canada, November
2001.

49

[12] Grady, Robert B. “Practical Software Metrics for Project Management and
Process Improvement” , Hewlett-Packard Professional Books, Prentice Hall, New
Jersey, 1992.

[13] Halstead, M. H. “Elements of Software Science”, New York: Elsevier North-
Holland, 1977.

[14] Henry, S., D. Kafura, and K. Harris. “On the Relationships Among Three
Software Metrics’ , Performance Eval. Rev. 10, 1 (Spring 1981), pp. 81-88.

[15] Herron, D. “A Measure of Success’, Silicon India, July 1998, pp.1-5.

[16] International Function Point Users Group Staff. “Function Point Counting
Practices Manual”, International Function Point Users Group, Release 4.1.1,
Princeton, NJ, 2001.

[17] Jones, T. C. “Programming Productivity” , New Y ork, McGraw-Hill, 1986.

[18] Jones, C. “Software Assessments, Benchmarks, and Best Practices’, Addison-
Wesley, Boston MA, April 2000.

[19] Kafura, D. and G. R. Reddy. “The Use of Software Complexity Metrics in
Software Maintenance” , IEEE Trans. Software Eng. SE-13.3 (March 1987), pp.
335-343.

[20] Kemerer, C. F. “An Empirical Validation of Software Cost Estimation Models’,
Comm. ACM 30, 5 (May 1987), pp. 416-429.

[21] Kemerer, C.F. and Porter, B.S. “Improving the Reliability of Function Point
Measurement: An Empirical Sudy’, IEEE Transactions on Software
Engineering, Vol. SE-18, No. 11, Nov. 1992, pp. 1011-1024.

[22] McCabe, T. J. “A Complexity Measure” , IEEE Trans. Software Eng. SE-2 (4)
(Dec. 1976), pp. 308-320.

[23] Mellis E. “Software Metrics. SEI Curriculum Module”, SEI-CM-12-1.1,
Carnegie Mellon University, Software Engineering Institute, Pittsburgh, PA,
December, 1998.

[24] Musa, J. D., A. lannino, and K. Okumoto, “ Software Reliability: Measurement,
Prediction, Application” , New Y ork, McGraw-Hill, 1987.

[25] Myers, G. J. “An Extension to the Cyclomatic Measure of Program Complexity” ,
ACM SIGPLAN Notices 12, 10 (Oct. 1977), pp. 61-64.

50

[26] Pressman, R. S. * Software Engineering A Practitioner’s Approach” , 5" Edition.
New Y ork, McGraw Hill, 2000.

[27] Rational Software Staff. “Rational Unified Process. Best Practices for Software
Development Teams’, Rational Software White Paper. TP026B, Rev 11/01,
Rational Software, 2001.

[28] Shepper, M. A. “Critique of Cyclomatic Complexity as a Software Metric”,
Software Engineering Journal, vol. 3 (March 1988), pp. 30-36.

[29] Stetter, F. “A Measure of Program Complexity”, Computer Languages 9, (3-4)
(1984), pp. 203-208.

[30] Walston, C. E. and C.P. Felix, “A Method of Programming Measurement and
Estimation” , IBM Systems Journal, 16, (1), (1977), pp. 54-73.

[31] Bail, W., and G. Vecdllio. “Difficulties in Using Cyclomatic Complexity on Software
with Error Handling”, The MITRE Corporation, Software Eng. Center, Bedford,
MA, March 1998. [http://www.mitre.org/support/swee/html/60_bail/sld001.htm].

[32] Ashish, Woldeit O., Zeron, L. “Experiment for the Correlation Between
Cyclomatic Complexity and Comprehension of Program”, Oregon State University,
Corvallis, OR, 1998. [http://cs.oregonstate.edu/~ashish/Final Report1.htmi]

