
DECENTRALIZED INFORMATION

SHARING FOR DETECTION AND

PROTECTION AGAINST NETWORK

ATTACKS

BY GUANGSEN ZHANG

A dissertation submitted to the

Graduate School—New Brunswick

Rutgers, The State University of New Jersey

in partial fulfillment of the requirements

for the degree of

Doctor of Philosophy

Graduate Program in Electrical and Computer Engineering

Written under the direction of

Professor Manish Parashar

and approved by

New Brunswick, New Jersey

January, 2006

ABSTRACT OF THE DISSERTATION

Decentralized Information Sharing for Detection

and Protection against Network Attacks

by Guangsen Zhang

Dissertation Director: Professor Manish Parashar

Over the last two decades the computing infrastructure has grown dramatically

in size, functionality and complexity, and has become an integral part of our lives.

However, its pervasiveness and increased visibility have also made it vulnerable

and a target of malicious attacks. Current attacks such as distributed denial

of service (DDoS) and Internet worms are highly distributed, well coordinated,

offensive assaults on services, hosts, and the infrastructure of the Internet, and

can have disastrous effects including financial losses and disruption of essential

service. As a result, protecting the computing infrastructure from such attacks

has become a critical issue that needs to be urgently addressed.

In this thesis, we investigate techniques for decentralized cooperative attack

detection and countermeasures. Our objective is to enable early and accurate de-

tection of and reaction to attacks in the network. The key underlying concept is

the use of scalable decentralized epidemic algorithms for information sharing and

achieving quasi-global knowledge of network attacks. Our proposed distributed

ii

framework for network infrastructure protection builds on a self-managing, ro-

bust and resilient peer-to-peer overlay composed of local detection and protection

agents that are placed at “strategic” locations in the Internet such as a domain

gateway. These agents non-intrusively monitor the immediate network around

them for possible attacks. Locally detected network anomalies are used to gener-

ate attack alert messages, which are disseminated across the network using gossip

mechanisms. A decentralized cooperative detection algorithm is used to aggregate

these alert messages to estimate a quasi-global view of the anomalous network

behavior, and to detect and react to attacks, both early and effectively.

This thesis first presents a conceptual model that defines the relationships

between the level of knowledge in the distributed system and attack detection

accuracy. The analysis presented demonstrates the feasibility and effectiveness

of gossip based communication mechanisms for cooperative attack detection. A

prototype simulation of the framework and its key concepts are presented and

applied to detect and defend against DDoS attacks and Internet worms. Results

using this simulation demonstrate that the proposed approach is feasible and

effective against network attacks.

iii

Acknowledgements

First and foremost, I thank Professor Manish Parashar, my advisor, for his guid-

ance, patience, and encouragement during this research. I am very thankful to

Professor Ivan Marsic, Professor Hoang Pham, Professor Wade Trappe, and Pro-

fessor Yanyong Zhang for being on my thesis committee and for their advice and

suggestions regarding the thesis and beyond.

I owe much gratitude to my parents for their unconditional support and love.

I am especially grateful to my dear wife, Xiaokun Wang, for her love at all times.

She is always emotionally supportive.

Moreover, I would like to thank my colleagues at The Applied Software Sys-

tems Laboratory (TASSL) and other friends at Rutgers for their friendship and

help, which makes my study at Rutgers enjoyable and fruitful. I am also thankful

to staff at the Center for Advanced Information Processing (CAIP) and Depart-

ment of Electrical & Computer Engineering for their assistance and support.

iv

Dedication

To my Parents, my Wife and my Daughter

v

Table of Contents

Abstract . ii

Acknowledgements . iv

Dedication . v

List of Tables . x

List of Figures . xi

1. Introduction . 1

1.1. Motivation . 1

1.2. Cooperative Network Defense . 3

1.3. Research Objectives . 4

1.4. Organization of Thesis . 6

2. Background and Related Work . 7

2.1. Network Attacks . 7

2.2. Distributed Denial of Service: Background and Related Work . . 8

2.2.1. DDoS Attack Strategy . 9

2.2.2. DDoS Attack Classification 11

2.2.3. DDoS Attacks Tools . 12

Agent based DDoS tools 12

IRC-based DDoS attack tools 14

2.2.4. DDoS Characteristics and Challenges 15

2.2.5. A Taxonomy of the DDoS Detection and Defense 16

vi

Proactive Mechanisms . 16

Reactive Mechanisms . 18

Tolerance Mechanisms . 20

Post Attack Analysis . 22

2.3. Internet Worms: Background and Related Work 23

2.3.1. Internet Worms . 24

Code-Red . 24

Nimda . 25

SQL-Snake . 25

SQL-Sapphire . 26

2.3.2. Scan Methods Used by Internet Worms 26

Selective Random Scan . 26

Routable Scan . 27

Divide Conquer Scan . 27

2.3.3. Worm Defense Classification 28

Prevention . 28

Treatment . 29

Containment . 29

2.3.4. Worm Containment Related Projects 30

2.4. Cooperative Defense Mechanism: Challenges, Requirements and

Related Work . 32

2.5. Gossip Based Mechanism for Decentralized Information Sharing . 34

Information Dissemination Model 36

2.6. Overlay Networks . 37

2.7. Summary . 38

3. Decentralized Information Sharing 39

vii

3.1. Knowledge Requirement for Attack Detection 39

3.2. Levels of Knowledge and Attack Detection Capability 41

3.3. Attack Detection Using Gossip Based Communication Mechanism 42

3.4. Latency of the Network Attack Information Aggregation Using

Gossip Mechanisms . 43

3.5. Quasi Global Knowledge about the Network Attacks 46

3.6. Summary . 47

4. A Framework for Decentralized Cooperative Detection and Pro-

tection for Network Attacks . 50

4.1. Decentralized Information Sharing Overlay Framework 51

4.2. Local Network Attack Detection 53

4.3. Attack Information Sharing . 54

4.4. Analysis of Cooperative Defense Framework 57

4.4.1. Advantage of Cooperative and Information Sharing 58

4.4.2. Defense Infrastructure Overhead 59

4.4.3. Miscellaneous Infrastructure Issues 60

4.4.4. Limitations of the Approach 61

4.5. Summary . 62

5. Cooperative DDoS Defense . 63

5.1. Cooperative DDoS Defense System Modules 63

5.1.1. Traffic Measurement Module 64

5.1.2. Traffic Models . 66

5.1.3. Attack Detection Module 67

5.1.4. Message Dissemination Module 70

5.1.5. Attack Defense Module . 72

5.2. Simulation Results: DDoS Case Study 73

viii

5.2.1. Performance Metrics . 73

5.2.2. Results . 74

5.3. Summary . 79

6. Cooperative Internet Worm Containment 80

6.1. Worm Model Analysis . 80

6.2. Mathematical Models for Virus/Worm Propagation 81

6.3. Cooperative worm Defense Approach 83

6.3.1. Architecture . 84

6.4. Automatic Worm Signature Generation and Aggregation 85

6.5. Simulation Results: Internet Worm Case Study 86

6.5.1. Simulated Worm Spreading Experiments 86

6.5.2. Experimental Results . 87

6.6. Summary . 90

7. Conclusion and Future Work . 91

7.1. Conclusion . 91

7.2. Research Contributions . 92

7.3. Future Directions . 93

References . 95

Curriculum Vita . 102

ix

List of Tables

3.1. Relation between attack detection and knowledge 49

5.1. Detection Information Alert . 71

5.2. Cooperative defense performance for different directional gossip

probabilities . 77

x

List of Figures

2.1. Distributed denial of service attack 10

2.2. Taxonomy of DDoS Detection and Defense 16

3.1. Push-pull anti-entropy aggregation protocol 43

3.2. Convergence speed of aggregations 48

3.3. Probability density of attack durations 48

4.1. Detection overlay architecture . 52

4.2. A conceptual architecture for individual detection node 54

4.3. Gossip protocol for cooperation 55

4.4. The flow chart for the gossip based coordination algorithm 57

4.5. Gossip strategy illustration . 58

5.1. Traffic measurement module . 65

5.2. A state diagram for the attack detection module 68

5.3. Traffic control module architecture 72

5.4. Simulated network topology . 75

5.5. User packet rates for legitimate traffic under different test conditions 76

5.6. Reduction in false detection rates with increased deployment . . . 77

5.7. Overhead of information sharing using gossip 78

6.1. System architecture . 84

6.2. Infection progress of worms . 88

6.3. Global threshold effects . 89

6.4. Benefit of cooperative defense . 89

xi

1

Chapter 1

Introduction

1.1 Motivation

As the Internet grows in size and complexity, its increased visibility and its diver-

sity have attracted a variety of highly damaging attacks. These attacks can have

catastrophic affects, including stolen or corrupted data, huge financial losses and

even disruption of essential services. For example, large scale epidemics caused by

the unleashing of recent Internet worms, such as Code Red [10], have resulted in

millions of host computer infections and over 2 billion dollars in financial loss [31].

In recent years, Internet attacks have been appearing with alarmingly regularity.

Given their profound impact, protecting the computing infrastructure from such

attacks has become a critical issue that needs to be urgently addressed. To ad-

dress these problems, a viable and efficient network attack detection technique

should meet the following requirements:

• Accurate attack detection. Attack detection should be as accurate as possi-

ble. False positives can lead to inappropriate responses that cause denial of

service to legitimate users. False negatives result in attacks going unnoticed.

• Efficiency. When an attack is detected, the system should engage in a re-

sponse that significantly reduces the effectiveness of the attack, regardless of

the attack characteristics. Further, the response should be quick, automatic

and effective in as many domains on the attack path as possible.

• Intelligence. Attack response should employ intelligent packet filtering and

2

discard mechanisms to reduce the downstream impact of the flood, while

preserving and routing non-attack packets.

• High security. An attack defense system must ensure that it cannot be

misused to degrade or deny service to legitimate clients. It also must be

resistant to attempts by attackers to bypass or to disable it.

Recent years have seen a large amount of research in local attack detection

and defense mechanisms. Most of them can be classified as either signature

based (misuse detection) or abnormal behavior based (anomaly detection) mecha-

nisms. Misuse detection techniques perform pattern matching against a database

of known attack signatures. Anomaly detection techniques establish statistical

profiles of network traffic and flag any traffic deviating from the profile as anoma-

lous. Although these local detection techniques have been widely used to detect

attacks, protecting networks from intrusions and attacks remains a significant

challenge for a number of reasons. First, and perhaps the foremost, is the easy

access to new attack tools and the Internet’s basic vulnerability to widespread

intrusions. These attacks have no common attack signatures and a sophisticated

or experienced attacker may change attack patterns frequently, misuse detection

techniques will not be effective. Second, modern network attacks frequently span

multiple sites that are not under a central adminstration, and experienced intrud-

ers can often launch simultaneous sessions to attack a system or set of systems.

The high variability common in network packet traffic limits the effectiveness of

anomaly detection techniques. Third, current Internet firewall or Intrusion De-

tection Systems (IDS) are located at the edges of the local network and have to

detect attacks using only partial information about the observed attack.

3

1.2 Cooperative Network Defense

Local detection mechanisms can have a high rate of false positives (legitimate

connections that are misclassified as an attack). In general, current IDS that

are located at the local network can not be used to efficiently and accurately

detect distributed or coordinated attacks. Instead, various isolated IDS should

cooperate and share information about networks to defense against those attacks.

Recently, researchers have used data sharing mechanism to improve the accuracy

and effectiveness of network detection systems in their work. The design of an

effective cooperative attack detection and defense systems that can successfully

detect and stop attacks presents significant challenges, while at the same time

preserving current performance guarantees to legitimate traffic. Key requirements

of such system include:

• Resilience. Since all networks are prone to system failures, congestion and

attacks, the protection infrastructure must be resilient to temporary net-

work instabilities. Furthermore, it is crucial that the detection and defense

infrastructure remain available in the face of attacks such as worm out-

breaks, denial of service attacks and other Internet catastrophes.

• Decentralization. A decentralized architecture provides for greater flexibility

and eliminates single points of failure.

• Cooperative attack detection and response. Cooperation among multiple

domains in attack detection and response offers several benefits. However,

the communications required for cooperation and information sharing must

not result in significant network loads.

• Low performance cost. Resource requirements of the detection and protec-

tion system must not degrade the performance of the deploying network.

4

Currently, most existing distributed intrusion detection systems process data

centrally, despite distributed data collection [64]. This limits their scalability and

fault tolerance, and as a result, they still can not efficiently and accurately defend

against network attack. To circumvent these shortcomings, hierarchical designs

have been introduced [64]. Systems such as Emerald [59] and NetSTAT [74] have

a layered structure where attacking events are filtered and preprocessed before

they are forwarded to higher levels of the control hierarchy. However, these sys-

tems still use dedicated nodes that act as central points of control. As a result,

the systems remain vulnerable to faults and have limited scalability. Recently,

cooperative mechanisms have been designed to specifically defend against DDoS

attacks and Internet worms. Cossack [54] addresses cooperative DDoS detec-

tion and Netbait [14] provides a structured overlay for sharing Internet worm

information. Although such techniques have improved DDoS and Internet worm

detection capability over local attack detection techniques, they don’t meet most

of the requirements of an efficient defense systems as we discussed above. For

example, they are not scalable and resilient to network congestions.

1.3 Research Objectives

In this thesis, we present a decentralized cooperative attack detection and coun-

termeasure infrastructure that addresses the addresses the requirement outlined

above. The object of this research is not to investigate specific network attack

detection techniques. Our work complements current available network attack de-

tection techniques by integrating them into a decentralized, scalable and resilient

cooperative framework. Attack detection nodes are deployed at strategic points

(e.g. hosts, routers, gateways) potentially sensitive to attack behavior. These

nodes collaborate and exchange information in a peer-to-peer fashion without a

5

centralized coordinator. Primary innovation is to enable early and accurate detec-

tion of and reaction to attacks in the network based on a quasi-global view of the

overall network behavior which can be practically achieved in a real distributed

system. Key components of this research are:

• Conceptual Model. How well an attack detection framework can detect an

attack will depend on the amount of knowledge about the system that can

be acquired. We conceptually analyze the attack detection accuracy we

can achieve through information sharing in real distributed systems where

gathering complete knowledge is unfeasible.

• Gossip Based Communication Mechanism. Given the large scale of the In-

ternet and critical nature of many of its applications, we need a resilient and

scalable communication mechanism to exchange attack information. We de-

sign directional gossip mechanisms to fulfill this purpose, while reducing the

overhead of information sharing.

• Distributed Coordination Algorithm. Instead of detecting attacks at central

point of control, each detection node detects the network attacks individu-

ally. By using a distributed coordination algorithm, the detection nodes in

the countermeasure framework can more accurately and collectively detect

and react to network attacks.

• Detection Overlay. This distributed decentralized framework presented is

built as a peer-to-peer overlay network on top of the Internet and enables

isolated local network detection agents at diverse locations to securely share

intrusion information. The overlay design facilitates scalable information

sharing, manages system heterogeneity participation and is resilient to fail-

ure.

• Case Study. To demonstrate the feasibility and effectiveness of the proposed

6

decentralized attack detection framework, we use it to detect DDoS attacks

and Internet worms as case studies. Simulation results demonstrate that

the proposed mechanism can efficiently detect and protect against these

attacks.

Designing an effective and feasible framework for distributed attack coun-

termeasure is a challenging task that involves many algorithms and engineer-

ing design issues. In this thesis, we will formalize a conceptual model for this

framework, investigate algorithms for the individual detection nodes to acquire

quasi-global knowledge about attacks, and discuss design issues for the detec-

tion overlay. Other issues investigated include the design of individual detection

nodes, attack countermeasures and the communication mechanisms among them.

The performance and effectiveness of the designed system is evaluated using sim-

ulation.

1.4 Organization of Thesis

The rest of the thesis is organized as follows. Chapter 2 gives an overview of

network attacks, discusses related work on DDoS and Internet worm countermea-

sures, and introduces background information on gossip mechanism and overlay

network. Chapter 3 provides a conceptual model for the proposed distributed

decentralized attack detection framework. Chapter 4 explains the distributed de-

centralized network attack detection framework in detail. Chapter 5 describes

use of the framework for detecting DDoS attacks. Chapter 6 describes the use of

framework to detect Internet worms. Chapter 7 concludes this thesis and outlines

future research directions.

7

Chapter 2

Background and Related Work

In this thesis, we design a distributed decentralized information sharing frame-

work to defend against network attacks. To motivate our cooperative approach,

in this chapter we first analyze the issues and limitations of current available

network detection approaches. Specifically, we focus our discussion on two kind

of network attacks: Distributed Denial of Service and Internet worms. Then the

challenges and requirements of a viable cooperative network defense approach are

presented. Finally, we provide some background information about concepts and

technologies that are used by the cooperative attack detection and countermea-

sure infrastructure developed in the thesis.

2.1 Network Attacks

Network attacks are primarily a result of software vulnerability, protocol vulnera-

bility or infrastructure vulnerability. Software vulnerabilities are due to the buggy

implementation of the network software (e.g., DNS Bind, HTTP Apache, Telnet,

SMTP etc.) [36]. Protocol vulnerability is the exploitation of logical loopholes in

protocol state models. Infrastructure vulnerabilities are caused by exploiting the

inter dependencies among network components to attack network resources that

provide critical services. In this thesis, we discuss two types of network attacks to

demonstrate the feasibility and efficiency of our decentralized information sharing

framework:

• Denial of Service (DoS) Attacks. DoS attacks aim at consuming all the

8

available network resources such that no more capacity is left to carry the

normal traffic and thus normal service is denied. Distributed Denial of

Service (DDoS) is a distributed version of DoS where many compromised

hosts participate in the attack in a coordinated manner.

• Internet Worm Attacks. In Internet worm attacks, the attackers first probe

network information and system resources to identify known vulnerabilities

that can be exploited later. Internet worms are launched from inside the

machine and replicate themselves aggressively on different machines. A

worm is a program that self-propagates across a network exploiting security

or policy flaws in widely used services.

As these network attacks are highly coordinated and widely distributed across

the global Internet, effective attack detection and protection strategies should be

similarly distributed and cooperative. The key challenge is scalably and effectively

collecting network attack information to enable accurate and timely detection and

protection. In this research, we present a conceptual framework and prototype

implementation of a decentralized cooperative detection and protection system

that provides this capability. Furthermore, we demonstrate how this mechanism

can be used to protect network infrastructure against DDoS attacks and Internet

worms.

2.2 Distributed Denial of Service: Background and Re-

lated Work

Distributed denial of service attacks (DDoS) pose a great threat to the Internet.

A recent DDoS attack occurred on October 20, 2002 against the 13 root servers

that provide the Domain Name System (DNS) service to Internet users around

the world. Although the attack only lasted for an hour and the effects were hardly

9

noticeable to the average Internet user, it caused 7 of the 13 root servers to shut

down demonstrating the vulnerability of the Internet to DDoS attacks [31]. As

one of the most difficult problems in network security, DDoS attacks have be-

come a serious threat to the availability of Internet Services. Distributed denial

of service attacks occur when numerous subverted machines (zombies) generate a

large volume of coordinated traffic toward a target, overwhelming its resources.

DDoS attacks are advanced methods of attacking a network system to make it

unavailable to legitimate network users. An example is presented in Figure 2.1.

The handler is a host running applications that can be used to initiate attacks by

sending commands to agents. The agent is a host that runs processes responsible

for receiving and carrying out commands issued by the handler. The communi-

cation between the attacker and handler and between the handler and the agents

is called the control traffic, while the communication between the agents and the

victim is called the flooding traffic. DDoS attacks are becoming an increasing

threat to the Internet due to the easy availability of user friendly attack tools,

which help to coordinate and execute a large scale DDoS attack. Even an unso-

phisticated individual can launch a devastating attack with the help of these tools.

Available tools (e.g., Trinoo, TFN, TFN2K, Shaft, and Stacheldraht) have been

used in DDoS attacks against well-known commercial web sites, such as Yahoo,

Amazon and Ebay [20]. Furthermore, attackers need not fear punishment as it is

extremely difficult to trace back the attack and locate even the agent machines,

let alone the attacker who infected them.

2.2.1 DDoS Attack Strategy

The mechanism of DDoS attacks works as follows: the master sends control pack-

ets to previously compromised slaves, instructing them to target a specified vic-

tim. The slaves then generate and send high volume streams of messages to the

10

Internet

Attacker

Handler

Handler

Handler

Agent

Agent

Agent

Agent

Agent

Victim

Congested

Figure 2.1: Distributed denial of service attack

victim using fake or randomized source addresses, so that the victim cannot lo-

cate the attackers. There are several steps in preparing and conducting a DDoS

attack:

• Selection of agents. The attacker chooses the agents that will perform the

attack. These machines need to have some vulnerability that the attacker

can use to gain access to them [20]. They should also have abundant re-

sources that will enable them to generate powerful attack streams. At the

beginning this process was performed manually, but it is currently auto-

mated using scanning tools.

• Compromise. The attacker exploits the security holes and vulnerabilities of

the agent machines and plants the attack code. Furthermore the attacker

tries to protect the code from discovery and deactivation. Self-propagating

tools such as the Ramen worm [79] and Code Red [10] have automated

this phase. The owners and users of the agent systems typically have no

knowledge that their system has been compromised and that they will be

taking part in a DDoS attack. When participating in a DDoS attack, each

agent program uses only a small amount of resources (both in terms of

11

memory and bandwidth), so that the users of computers experience minimal

change in performance.

• Communication. The attacker communicates with any number of handlers

to identify which agents are up and running, when to schedule attacks,

or when to upgrade agents. Depending on how the attacker configures

the DDoS attack network, agents can be instructed to communicate with

a single handler or multiple handlers. The communication between the

attacker and the handler and between the handler and agents can be via

TCP, UDP, or ICMP protocols.

• Attack. In this step, the attacker commands the onset of the attack. The

victim, the duration of the attack, as well as special features of the attack

such as the type, length, TTL, port numbers etc., can be adjusted. The

large variability of the properties of attack packets can be beneficial to the

attacker, enabling them to avoid detection. IP spoofing is used to mask the

source address, and packet type, header fields (all except the destination IP

address) and communication channel can all be changed during the attack.

2.2.2 DDoS Attack Classification

There are two main classes of DDoS attacks: bandwidth depletion and resource

depletion attacks. A bandwidth depletion attack is designed to flood the victim

network with unwanted traffic that prevents legitimate traffic from reaching the

victim. It leverages the power of many distributed machines to make a very large

number of legitimate requests for a service from a single host. Since these requests

are legitimate, the victim cannot refuse to service them, nor can it recognize them

as part of the attack before it is too late and its resources are exhausted.

Protocol implementations may have bugs that allow a few malformed packets

to severely degrade server or network performance. A resource depletion attack is

12

an attack that is designed to exploit such vulnerabilities at the victim. This type

of attack targets a server or process at the victim making it unable to process

legitimate requests for service [13]. The victim can frequently prevent these

attacks by implementing various patches to fix the vulnerability, or by filtering

malformed packets.

In this thesis we will use the term DDoS attack to refer to packet flooding

attacks and not to logical DDoS attacks that exploit certain OS or application

vulnerabilities.

2.2.3 DDoS Attacks Tools

There are several known DDoS attack tools. The architecture of these tools is

very similar and in fact some tools have been constructed as minor modifications

of other tools. In this section, we present the functionality of some of these tools.

For presentation purposes we divide them in agent-based and IRC-based DDoS

tools.

Agent based DDoS tools

• Trinoo [21] is a simple tool used to launch coordinated UDP flood attacks

against one or many IP addresses. The attack uses constant-size UDP pack-

ets to target random ports on the victim machine. The handler uses UDP

or TCP to communicate with the agents. This channel can be encrypted

and password protected as well. Trinoo does not spoof source addresses

although it can easily be extended to include this capability.

• Tribe Flood Network (TFN) [24] can generate UDP and ICMP echo re-

quest floods, TCP SYN floods and ICMP directed broadcast (e.g., Smurf).

It can spoof source IP addresses and also randomize the target ports.

Communication between handlers and agents occurs exclusively through

13

ICMP ECHO REPLY packets.

• Stacheldraht [23] combines features of Trinoo (handler/agent architec-

ture) with those of the original TFN (ICMP/TCP/UDP flood and Smurf

style attacks). It adds encryption to the communication channels between

the attacker and Stacheldraht handlers. Communication is performed using

TCP and ICMP packets. Stacheldraht allows automated update of agents

using rpc and using a stolen account at some site as a cache. New program

versions will have more features and different signatures to avoid detection.

• TFN2K [11] is the variant of TFN that includes features designed specif-

ically to make TFN2K traffic difficult to recognize and filter. Targets are

attacked using UDP, TCP SYN, ICMP ECHO flood or Smurf attack, and

the attack type can be varied during the attack. Commands are sent from

the handler to the agent via TCP, UDP, ICMP, or all three at random. The

command packets may be interspersed with any number of decoy packets

sent to random IP addresses to avoid detection. In networks that employ

ingress filtering as described in [30], TFN2K can forge packets that appear

to come from neighboring machines. All communication between handlers

and agents is encrypted and base-64 encoded.

• The mstream [22] tool uses spoofed TCP packets with the ACK flag set

to attack the target. Communication is not encrypted and is performed

using TCP and UDP packets. Access to the handler is password protected.

This program has a feature not found in other DDoS tools. It informs all

connected users of access, successful or not, to the handler (s) by competing

parties.

• Shaft [19] uses TCP, ICMP or UDP flood to perform the attack, and it

can deploy all three styles simultaneously. UDP is used for communication

14

between handlers and agents, and messages are not encrypted. Shaft ran-

domizes the source IP address and the source port in packets. The size of

packets remains fixed during the attack. A new feature is the ability to

switch the handler’s IP address and port during the attack.

• The Code Red [10] worm is a self-propagating malicious code that exploits

a known vulnerability in Microsoft IIS servers for propagation. It achieves

a synchronized attack by pre-programming the onset and abort time of the

attack, attack method and target addresses (i.e., no handler/agent archi-

tecture is involved).

IRC-based DDoS attack tools

IRC-based DDoS attack tools were developed after agent handler attack tools.

As a result, many IRC-based tools are more sophisticated and include typical

features that can be found in many agent handler attack tools.

• Trinity v3 [34] besides the up to now well-known UDP, TCP SYN, TCP

ACK, TCP NUL packet floods, introduces TCP fragment floods, TCP RST

packet floods, TCP random flag packet floods, and TCP established floods,

while randomizing all 32 bits of the source IP address. It also generates

TCP flood packets with random control flags set, and supports a wider set

of TCP based attacks .

• Knight is an IRC-based DDoS attack tool. It is very lightweight and pow-

erful and was first reported in July 2001 [9]. The Knight DDoS attack tool

provides SYN attacks, UDP Flood attacks, and an urgent pointer flooder.

It is designed to run on the Windows operating systems and has features

such as an automatic updater using http or ftp, a checksum generator. The

Knight tool is typically installed by using a Trojan horse program called

Back Orifice.

15

2.2.4 DDoS Characteristics and Challenges

There are several features of DDoS attacks that hinder their successful detection

and defense:

• DDoS attacks generate a large volume flow to overwhelm the target host.

The victim can not protect itself even if it detects this event. So the detec-

tion and defense of DDoS should ideally be near the source of the attack or

somewhere in the network.

• It is difficult to distinguish attack packets from legitimate packets. Attack

packets can be identical to legitimate packets, since the attacker only needs

volume, not content, to inflict damage. Furthermore, the volume of packets

from individual sources can be low enough to escape notice by local admin-

istrators. Thus, a detection system based on single site will have either high

false positive or high false negative rates.

• Most DDoS attacks use spoofed IP source addresses. This is done primarily

to disguise agent machines, but it can also be used as a means to perpetrate

reflector attacks (an indirect attack where intermediary nodes are innocently

used as attack launchers). Due to the large scale of a DDoS attack, it is

impossible to locate agent machines [13].

• DDoS traffic generated by available tools often has identifying characteris-

tics, making the detection based on statistics analysis possible. However,

given the inherently busty nature of Internet, detecting DDoS attacks is

error prone.

• DDoS attack code and automated tools for propagation and deployment

can be easily downloaded from the Internet. Thus, even novice attackers

can launch powerful attacks.

16

2.2.5 A Taxonomy of the DDoS Detection and Defense

 Requires new router capability.

 Pushback

 Center Track

 Drops legitimate packets

 High false detection rate

 High false detection rate

 MULTOPS

 Cannot be used for general DDoS

 Per-flow filtering

 Ingress/Egress Filtering

 Drops legitimate packet

 Max-min Fair Server Centric Throttling

 Drop legitimate packets

Issues

Tolerance Mechanism

 High overhead

 History Based IP Filtering

 D-WARD

Reactive Mechanism

 Secure Overlay Service

Proactive Mechanism

 Router based Packet Filtering

 Trace back

Related Efforts

 Efficient for DoS, infeasible for large

scale DDoS Attacks

Post Attack Analysis

Detection

Classification

Figure 2.2: Taxonomy of DDoS Detection and Defense

The increase in DDoS attacks in the Internet has resulted in many DDoS detec-

tion and defense mechanisms. These mechanisms can be classified as: Proactive

Mechanism, Reactive Mechanism, Tolerance Mechanism and Post Attack Analy-

sis, as listed in Table 2.2

Proactive Mechanisms

The motivation for proactive defense mechanisms is based on the observation

that it is hard to detect DDoS attacks. So instead of detecting the attacks using

signatures (attack pattern) or anomaly behavior, these approaches try to improve

the reliability of the global Internet infrastructure by adding extra functionality

to Internet components to prevent attacks and vulnerability exploitation. The

primary goal is to make the infrastructure immune to the attacks and to continue

to provide service to normal users under extreme conditions.

Angelos et al. [16] propose Secure Overlay Services that prevent denial-of-

service attacks on critical servers by routing requests from previously authenti-

cated clients to the servers via an overlay network. Unlike reactive DDoS defense

17

approaches, which go into effect when the attacks were detected, this approach

is proactive. There are two key ideas behind this approach. First, it distributes

the filtering function of the target host across the overlay network, so that the

filtering service itself is hard to attack. Second, it introduces randomness and

anonymity into the path to the target host, which makes it hard to attack the

vulnerability of the routing infrastructure. The assumption behind this approach

is that the nodes of the overlay have trust relationships with each other and the

attacker does not know all the information about the overlay infrastructure. This

work uses the Chord structured peer-to-peer overlay [69]. However, due to the

assumptions made, this mechanism can not be used for general DDoS attacks.

Filtering [29] mechanisms use the characterization provided by a detection

mechanism to filter out the attack stream completely. In ingress filtering, routers

check a packet for its source IP address and block packets that come from an

address beyond the routers’ possible ingress address range. This requires a router

to accumulate sufficient knowledge to distinguish between legitimate and illegiti-

mate addresses. As a result, this approach is most feasible in customer networks

or at the border of Internet service providers (ISP) where address ownership is

relatively unambiguous. Packet flow filtering is an effective means to counterat-

tack DDoS flows. However, since filtering is rendered per-flow, routers must have

sufficient computational power to process large number of flows simultaneously.

The router-based packet filtering (RPF) [56] approach, proposed by Park and

Lee, essentially extends the ingress packet filtering function to the Internet core.

This approach employs a number of distributed packet filters to examine whether

each received packet comes from a correct link according to inscribed source and

destination addresses, and BGP routing information. A packet is considered as an

attack packet if it is received from an unexpected link and is therefore dropped.

However, note that the dropped packet may still be legitimate due to a recent

route change. Moreover, the effectiveness of the approach is quite sensitive to the

18

underlying Internet topology.

Reactive Mechanisms

These mechanisms typically deploy third-party Intrusion Detection Systems (IDS)

to obtain attack information and take action based on this information. Conse-

quently their usefulness depends on the capability of the IDS systems. Different

strategies are used based on the assumptions made by the IDS systems. If the

IDS system can detect the DDoS attack packets accurately, filtering mechanism

are used, which can filter out the attack stream completely, even at the source

network. If the IDS can not detect the attack stream accurately, rate limiting is

used. This mechanism imposes a rate limit on the stream that is characterized

as malicious by the IDS.

Tao Peng et al. [57] observed that during DDoS attacks, the IP addresses

of the attack packets seldom appears during normal situation. They proposed a

mechanism called History-based IP Filtering (HIF) at the edge router to admit the

incoming packets based on a pre-built IP address database, which is built using

the previous connection history. The key issue in this approach is building an

accurate IP address database (IAD), and filtering the incoming packets according

to this IAD. In the approach, legitimate requests whose IP addresses are not in

IAD will be refused and the mechanism itself is brittle to DDoS attack.

Attacking DDoS at the source is proposed by J. Mirkovic et al. [47]. The

proposed system is located at the source network router (either LAN or bor-

der router) autonomously detects and suppresses DDoS flows originating at this

network. This system observes the outgoing and incoming traffic and gathers

lightweight statistics on the flows, classified by destination. These statistics, along

with built-in traffic models, define legitimate traffic patterns. Any discrepancy

between observed traffic and a legitimate traffic pattern for a given destination

is considered to be the signal of a potential DDoS attack. For example, TCP

19

traffic is monitored and compared to a TCP congestion control model. A TCP

stream that is observed violating the behavior of the model is marked as an attack

and is subsequently throttled by the edge network’s egress router. The amount

of throttling is proportional to the flow’s deviation from the expected behavior.

Similar approaches are applied to other transport protocols. The source router

decides to throttle all traffic to the suspected target of the attack and at the

same time attempts to separate attacking flows from legitimate flows and identify

the attacking machines. This approach has the benefit of preventing malicious

flows from entering the network and consuming resources. As DDoS attack flows

are not sufficiently aggregate at the source network, this approach has high false

positive rates.

Thomer M. Gil et al. propose MULTOPS [32], a heuristic and data struc-

ture that network devices can use to detect DDoS attacks. It is based on the

assumption that during normal operations on the Internet, the packet rate of

traffic going in one direction is proportional to the packet rate of traffic going in

the opposite direction. So, a significant disproportional difference between the

packets in these two directions indicates an attack. Each network device main-

tains a multi-level tree, monitoring certain traffic characteristics and storing data

in nodes corresponding to subnet prefixes. The tree expands and contracts within

a fixed memory budget. An attack is detected by abnormal packet ratio values

and offending flows are rate limited. MULTOPS uses only the aggregate packet

ratio to model normal flows. Non-TCP flows in a system using MULTOPS can

either be misclassified as attack flows, or recognized as special and rate limited

to a fixed value. In the first approach, legitimate flows may be harmed, while in

the second approach, sufficiently distributed attacks can successfully make use of

the allowed transfer rate.

CenterTrack [70] is an architecture proposed by R. Stone, which creates an

overlay network of IP tunnels by linking all edge routers to central tracking

20

routers, and all suspicious traffic is rerouted from edge routers to these track-

ing routers. When a DoS attack is detected using available attack detection

system, routers at the edge of the backbone network are instructed to reroute

packets that are addressed to the attack target. The tracking routers can then

identify the ingress points of the main attack traffic flows. Edge routers do not

have to support input debugging. On the other hand, there is a high storage and

processing overhead at the edge routers because they have to log packets in order

to identify the attack traffic.

In the MIB variable correlation method [8], network management information

is used to detect DDoS attacks. SNMP is a network management protocol that

stores information about network devices in a local database called Management

Information Base (MIB). Local SNMP agents periodically update variables in

MIB. Network administrators can view MIB variables for the traffic sent to local

network devices. The assumption is that some MIB variables may indicate attacks

if these variables from receiver machines and from sender machines are correlated

on a sequential time line. For example, in ICMP ping flood, attackers send

out ICMP Echo requests with IP variable “ipOutRequest” in MIB, and later

the receivers will reply with an ICMP Echo in which the same set of variables

contains “icmpInEchos”. The detection algorithm queries the values of several

specific MIB variables from local network devices periodically and correlates the

relationship of these values. The purpose of the correlation is to reduce false

positives in identifying attack traffic. This method is effective for a local test bed

and controlled traffic load, however it needs to be evaluated for realistic traffic

environments.

Tolerance Mechanisms

Observing that it is hard to distinguish DDoS attack packets from legitimate

ones, researchers have proposed attack tolerance mechanisms. These approaches

21

are based on rate control to enforce fairness in bandwidth allocation and thus

minimizes the damage caused by DDoS attacks.

Pushback [37, 45] augments routers with the capability to detect and control

flows that create congestion using a Pushback daemon. The routers monitor

the packets dropped due to queue restrictions and send them to the Pushback

daemon. The Pushback daemon determines whether there is an indication of any

attacks by running a detection algorithm. A rate limit is then imposed on the

suspicious aggregate traffics. If the router can not control the aggregate itself,

it then asks upstream routers to rate-limit or drop the traffic identified as part

of DDoS attack. Pushback requires augmentation of routers to perform input

debugging. The approach also requires cooperation of different administrative

domains.

Throttling [80] is a mitigation approach against DDoS attacks, which prevents

servers (web servers in particular) from going down. This approach uses max-min

fair server-centric router throttles and involves a server under stress installing rate

throttles at a subset of its upstream routers. On installing such throttles, all the

traffic passing through the router to the source is rate limited to the throttle rate.

This scheme can distribute the total capacity of the server in a max-min fair way

among the routers servicing it. This means that only aggressive flows that do not

respect their rate shares are punished and not the other flows. This method is

still in the experimental stage, however, similar techniques to throttling are being

implemented by network operators. The difficulty with implementing throttling

is that it is still hard to decipher legitimate traffic from malicious traffic. In the

process of throttling, legitimate traffic may sometimes be dropped or delayed and

malicious traffic may be allowed to pass to the servers.

22

Post Attack Analysis

The purpose of post attack analysis is to either look for attack patterns that will

be used by an IDS, or to identify attackers using packet tracing. Since the source

addresses of flooding packets are faked, various traceback techniques have been

proposed to find out the origin of a flooding source. The goal of packet tracing is

to trace Internet traffic back to the true source (not spoofed IP address).

Traceback [78, 67, 65, 55, 4, 17] uses router-generated trace back messages

to reconstruct the attack paths. Source traceback does not directly address the

DDoS problem. It serves as a post attack analysis mechanism against DoS.

Packet-based marking is the typical traceback method. Packet-based marking

normally comprises of two complementary components: a marking procedure exe-

cuted by routers in the network and a path reconstruction procedure implemented

by the victim. The routers augment IP packets with address marks en-route. The

victims can then use information embedded in the IP packets to trace the attack

back to the actual source. As attackers change their strategy frequently, analyz-

ing huge amount of traffic logs is time consuming and often useless in detecting

new attacks.

Trace back mechanism can help to identify zombies in some situations, how-

ever, it is impractical for defending against DDoS attacks for the following rea-

sons. First, during a DDoS attack, the attacker will control thousands of zombies

(numbers will increase in the future) to launch an attack. As a result, identifying

these zombies is expensive and infeasible. Second, since different network admin-

istrators control different section of the global Internet, it would be difficult to

determine who would be responsible for providing trace back information. Fi-

nally, even if the attacks sources can be successfully traced, stopping them from

sending attack packets is another very difficulty task, especially when they are

scattered across various autonomous systems(AS).

23

All the traceback approaches have serious deployment and operational chal-

lenges. A sufficient number of routers need to support traceback before it can

be effective. Attackers can generate false traceback messages too and some form

of authentication of traceback messages is necessary. The victim of a bandwidth

attack might not receive significant traceback messages as they may be dropped

by overloaded edge routers. In addition, if an attack is very distributed, there

may not be enough traceback information to find the attackers.

The mechanisms described so far can be used to protect Internet from par-

ticular DDoS attacks. However, given the dynamic nature of Internet as well

as the diversity patterns of DDoS attacks, single deployment of these detection

systems can not detect general DDoS attacks with high accuracy. To improve the

defense efficiency, we need a paradigm shift. Instead of building detection sys-

tems that operate in isolation, we present a distributed framework of detection

nodes where heterogeneous systems can plug in and cooperate to achieve a better

overall protection. Our work complements current available DDoS mechanisms.

2.3 Internet Worms: Background and Related Work

Internet Worms are another major network attacks against Internet. In addition

to their primary objective of replicating and propagating themselves, Internet

worms can also achieve DDoS attacks by flooding a selected target. David Moore

and et. al. provide a nice introduction about Internet worms in their paper [52].

We used some of their material to provide background information about Inter-

net worms. The term “worm” was fist discussed in 1982 by Shoch and Hupp

of Xerox PARC [61]. Inspired by the “tapeworm” program described in John

Brunner’s 1972 novel, “The Shock wave Rider”, Schoch and Hupp used the term

to describe a collection of benign programs that propagated through a local area

24

network performing system maintenance functions on each workstation they en-

countered. The security implications of self-replicating code were not explored

by researchers until 1984, when Fred Cohen described the initial academic exper-

iments with computer viruses in his 1984 paper “Computer Viruses - Theory and

Experiments” [15]. However, the Internet worm of 1988 was the first well-known

replicating program that self-propagated across a network by exploiting security

vulnerabilities in host software. This program, which infected several thousand

hosts and disrupted Internet wide communication due to its high growth rate, is

the modern archetype for contemporary Internet worms [26]. In this section, we

provide background information on the major Internet worms released over the

last few years.

2.3.1 Internet Worms

Code-Red

On June 18th, 2001, a serious Windows IIS vulnerability was discovered. After

almost one month, the first version of Code Red worm that exploited this vulner-

ability emerged on July 13th, 2001. Due to a code error in its random number

generator, it did not propagate well. The truly virulent strain of the worm (Code

Red version 2) began to spread around 10:00 UTC on July 19th, 2001. This

new worm had implemented the correct random number generator. It generated

100 threads. Each of the first 99 threads randomly chose one IP address and

tried to set up connection on port 80 with the target machine. If the system

was an English version of Windows 2000, the 100th worm thread would deface

the infected systems web site, otherwise the thread was also used to infect other

systems. If the connection was successful, the worm would send a copy of itself to

the victim web server to compromise it and continue to find another web server.

If the victim was not a web server or the connection could not be setup, the worm

25

thread would randomly generate another IP address to probe. The timeout of the

Code Red connection request was programmed to be 21 seconds. Code Red could

exploit only Windows 2000 with IIS server installed(it could not infect Windows

NT because the jump address in the code is invalid under NT).

Code Red has inspired studies of computer worms. Moore and Shannon have

published an empirical analysis of Code-Red’s growth, repair, and geography

distribution based on observed scan probes to a dedicated class A network [50].

One important aspect of an Internet worm’s replication algorithm is how it selects

target machines to infect. In the case of Code Red v1, target machines are

selected using a random IP address. Due to its use of a static seed in its pseudo

random number generator [50], Code Red v1 actually selected target IP addresses

in precisely the same sequence at all infected machines. Code Red v2, released

shortly thereafter, corrected this by using a better seed and subsequently achieved

much greater infection rates. Besides Code Red variants, there is another class

of worms which use more sophisticated machinery for selecting potential victims.

These are briefly described below:

Nimda

Nimda, uses the following strategy to select victims. 50% of the time an address

with the same first two octets is chosen, 25% of the time an address with the

same first octet is chosen, and 25% of the time, a random address is chosen.

Worms which have affinity for “nearby” nodes, both geographically and in IP

address space, have the potential to achieve much higher infection rates due to

the performance benefits of network locality.

SQL-Snake

The SQL-Snake was detected on May 20th 2002. This worm scanned for open

MS-SQL 7 Servers running on port 1433 by default and exploits machines that

26

have the default SA (Admin) account without an associated password. The worm

scans for IPs of the form A.B.C.D randomly in the following IP ranges where: A

= random number not equal to 10,127,172 or 192, B = 0-255, C = 1-255 and D

= 1-254. The primary function of the worm is to email passwords and related

system information to ixltd@postone.com [7].

SQL-Sapphire

The SQL-Sapphire worm, also known as SQL-Slammer, was released in January

2003, and wreaked significant havoc on the networking infrastructures in under

ten minutes. The worm works by generating pseudo-random IP addresses to try

to infect with its payload. The worm distinguished itself from its predecessors

by its small payload size (single UDP packet of 404 bytes) that enabled a rapid

propagation rate in spite of a small susceptible population (75000) [49].

2.3.2 Scan Methods Used by Internet Worms

Probing is the first task performed by worms to find vulnerable hosts. Depending

on how worms choose their destinations from a given address space, scan methods

can be classified as random scan, routable scan, hitlist scan and divide-conquer

scan. In this section, we present a selection of scan methods used by Internet

worms.

Selective Random Scan

Instead of scanning the whole IP address space at random, selective random scan

attempts to select a set of addresses that are more likely to belong to existing

machines can be selected as the target address space. The selected address list can

be obtained from the global or the local routing tables. Care needs to be taken

to ensure that unallocated or reserved address blocks in the IP address space

27

are not selected for scanning. Worms can avoid using addresses within these

address blocks. Information about such address blocks can be found in several

ways. For example, the Bogon list [71] contains around 32 address blocks and

the addresses in these blocks should never appear in the public network. IANA’s

IPv4 address allocation map [1] is a similar list that shows the 8 address blocks

which have been allocated. The Slapper [12] (or Apache, OpenSSL) worm made

use of these lists to spread rapidly. Worms using the selective random scan need

to carry information about the selected target addresses, which can be hundreds

of bytes. Carrying more information enlarges the worm’s code size and slows

down its infection process.

Routable Scan

In addition to the reduced scanning address space, if a worm also knows which

of the addresses are routable or are in use, then it can spread faster and more

effectively and can avoid detection. This type of scanning technique, where unas-

signed IP addresses that are not routable on the Internet are removed from the

worm’s database, is called routable scan. One problem with this type of scan

method is that the size of the worm has to be increased as it needs to carry a

routable IP address database. This leads to a long infection time resulting in a

slow down of worm propagation.

Divide Conquer Scan

In the divide and conquer scan, instead of scanning the complete database, an

infected host divides its address database among its victims. For example, after

machine A infects machine B, machine A will divide its routable addresses into

half and transmit one half to machine B. Machine B can then scan half of routable

address database. Using Divide-Conquer scan, the code size of the worm can be

further reduced, as each victim will scan a smaller address space. In addition, the

28

scan traffic generated by the victims is also reduced and more difficult to detect.

One weak point of the Divide-Conquer scan is its “single point of failure”. During

worm propagation, if one infected machine is turned off or crashes, its part of the

database will be lost. The earlier this happens, the larger the impact. Several

solutions have been used to overcome this problem. One possible solution is the

generation of a hitlist, where a worm infects a large number of hosts before passing

on the database. Another solution is the use of a generation counter. Each time

the worm program is transferred to a new victim a counter is incremented. The

worm program decides to split the database based on the value of the counter. A

third possible solution is to randomly decide on whether to pass on the database

or not.

2.3.3 Worm Defense Classification

In response to recent Internet worm attacks, researchers have proposed different

defense mechanisms. According to the methods used to stop the propagation

of the worm, these mechanisms essentially can be classified into three classes:

Prevention, treatment and containment.

Prevention

Prevention technologies are those that reduce the size of the vulnerable popula-

tion, thereby limiting the spread of a worm outbreak. In the Internet context, the

vulnerability of the population is a function of the software engineering practices

that produce security vulnerabilities as well as the social and economic conditions

that ensure the homogeneity of the software base. For example, a single vulnera-

bility in a popular software system can translate into millions of vulnerable hosts.

While there is an important research agenda, initiated in [66], to increase the

security and heterogeneity of software systems on the Internet, widespread soft-

ware vulnerabilities will persist for the foreseeable future. Therefore, pro-active

29

prevention measures alone are unlikely to be sufficient to counter the worm threat.

Treatment

Treatment technologies, as exemplified by the disinfection tools found in commer-

cial virus detectors and the system update features in popular operating systems,

are an important part of any long-term strategy against Internet pathogens. By

deploying such measures on hosts in response to a worm outbreak, it is possible

to reduce the vulnerable population (by eliminating the vulnerability exploited

by the worm) and reduce the rate of infection (by removing the worm itself from

infected hosts). However, for practical reasons, these solutions are unlikely to

provide short-term relief during an acute outbreak. The time required to de-

sign, develop and test a security update is limited by human time scales, which

is usually measured in days and far too slow to have significant impact on an

actively spreading Internet worm. Worse, if the installation of such updates is

not automated, the response time can be substantially longer. For example, dur-

ing the Code-Red epidemic, it took sixteen days for most hosts to eliminate the

underlying vulnerability and thousands had not patched their systems six weeks

later [51]. Finally, creating a central authority for developing, distributing, and

automatically installing security updates across hundreds of thousands of orga-

nizations will require a level of trust and coordination that does not currently

exist [53].

Containment

Finally, containment technologies, as exemplified by firewalls, content filters, and

automated routing blacklists, can be used to block infectious communication be-

tween infected and uninfected hosts [14, 81]. In principal, this approach can

quickly reduce, or even stop, the spread of infection, thereby mitigating the overall

threat and providing additional time for more heavy-weight treatment measures to

30

be developed and deployed. During the Code-Red epidemic, ad-hoc containment

mechanisms were the primary means used to protect individual networks (e.g., by

blocking inbound access to TCP port 80, or content filtering based on Code-Red

specific signatures), or isolating infected hosts (e.g., by blocking the hosts out-

bound access to TCP port 80). These solutions were implemented manually using

existing routers, firewalls, and proxy servers. While these limited quarantines did

not halt the spread of the worm, they provided limited protection to portions of

the Internet.

There are strong reasons to believe that containment is the most viable of

these strategies. First, there is hope that containment can be completely auto-

mated, since detecting and characterizing a worm - required before any filtering

or blocking can be deployed - is far easier than understanding the worm itself for

the vulnerability being exploited, let alone creating software to patch the prob-

lem. Second, since containment can potentially be deployed in the network it is

possible to implement a solution without requiring universal deployment on every

Internet host.

2.3.4 Worm Containment Related Projects

The Early Bird System at UCSD [63] uses a content sifting approach to detect

content prevalence and use scaled bitmaps to estimate address dispersion. Sensors

are used to sift through traffic on configurable address space zones and report sig-

natures. An aggregator coordinates real time updates from the sensors, coalesces

related signatures, and activates network/host level blocking services.

Autograph at Carnegie Mellon University [41] automatically generates sig-

natures from worms propagating with TCP transport. The system analyzes the

prevalence of partial flow payloads and produces signatures that exhibit high true

positives and low false positives. The system shares port-scan reports among dis-

tributed monitors.

31

Fast Scan Detection at Berkeley ICSI [77] is a scan detection and worm sup-

pression algorithm based on the Threshold Random Walk (TRW) for both hard-

ware and software implementations. The project enhances containment through

collaboration among containment devices.

Network Worm Vaccine at Columbia [62] is a reactive mechanism to patch

vulnerable software using a collection of sensors that detect and capture potential

worm infection vectors based on a set of heuristics to test the resistance of patched

application against these infection vectors.

The Shield project at Microsoft [76] installs vulnerability specific and exploit

generic network filters in end systems. These filters examine the incoming or out-

going traffic of vulnerable applications, and drops or corrects traffic that exploits

vulnerabilities. The system is resilient to polymorphic or metamorphic variations

of exploits.

Although these projects have presented efficient worm defense mechanisms,

most of them use the local information only to identify the Internet worm attacks.

As the Internet worms propagate across multiple geographically distributed do-

mains, local detection based mechanism can not obtain a complete view of the

extent and nature of Internet worm epidemics. We leverage the fact that worms

typically replicate themselves through remote system exploits which have well-

known network signatures that are easily detected by modern intrusion detection

systems (IDSs). We use a set of geographically distributed machines to collect

probe information using local IDSs then share that information by building an

efficient distributed overlay.

32

2.4 Cooperative Defense Mechanism: Challenges, Require-

ments and Related Work

As we discussed in Section 2.2 and Section 2.3, network attacks such as DDoS

attacks and Internet worms are large scale network attacks that are distributed

across the dynamic and heterogeneous Internet. To effectively defend against such

cooperative malicious behavior, we need a cooperative mechanism. Isolated local

defense systems using various attack detection techniques should cooperate with

each other to share their view of network attacks. In this research, we investigate a

decentralized information sharing framework which can be used to defend against

large scale attacks such as DDoS and Internet worms. According to the discussion

in the previous sections, key challenges and requirements include:

• Reliable and scalable attack information sharing. When the network infras-

tructure is under the attack of DDoS or Internet worms, network links are

usually congested and failures are common. The cooperative information

sharing mechanism should be scalable and reliable to network link failures.

• Decentralized attack defense. As DDoS and Internet worms are large scale

attacks distributed across the whole Internet, the cooperative defense sys-

tems should detect and defend against them in a decentralized manner.

• Attack and signature identification with short delay. As discussed in Sec-

tion 2.3, some aggressive worms propagate quickly to compromise large

amount of hosts on the Internet. The individual detection nodes of a coop-

erative defense system should respond in a quick and timely manner.

Several researchers have started investigating cooperative network defense sys-

tems. Systems closely related to this research are discussed below.

DIDS [64] is a distributed intrusion detection system consisting of host man-

agers and LAN managers that are responsible for distributed data monitoring

33

and sending notable events to the director. The centralized director then ana-

lyzes these events to determine the security state of the system as a whole. The

centralized director is clearly the bottleneck to the distributive approach of DIDS.

Furthermore as there is only one level in the hierarchy with all host and LAN

managers reporting to a single director, DIDS thus lacks scalability and has a

single point of failure.

Emerald [59] is a system targeted towards the exchange of security incident

related information between different domains or large networks. It consists of

a layered architecture that provides a certain abstraction, and requires the ad-

justment of parameters relevant to the trust relationships between cooperative

parties. The hierarchical information sharing architecture limits its scalability.

Dshield [25] is a platform that allows firewall users to share intrusion detection

information. Users contribute intrusion detection information by running client

programs that collect local firewall log files and submit them to the DShield team

via email or a web-based interface. Contributed log files are stored in a centralized

database which can then be queried to determine if a particular machine has been

compromised and to help produce summary reports of various Internet worm

epidemics. The system collects information in a centralized database and can not

respond to attacks in real time.

NetBait [14] is a distributed system that provides detailed information about

network intrusions. It collects data from geographically located machines, which

use traditional intrusion detection systems (such as Snort [60]) to discover worm

attacks. The goal of NetBait is to provide accurate information to identify infected

hosts and expedite the process of worm containment and cleanup.

The cooperative mechanisms listed above can not be used to efficiently defend

against large scale network attacks such as DDoS and Internet worms. Despite

collecting network attack information from distributed sites, these systems process

information and detect attacks at a centralized node. As a result, these systems

34

are not scalable and resilient. The framework presented in this thesis seeks to

address the problems with these approaches. In the following sections, we provide

some background information about underlying concepts and technologies.

2.5 Gossip Based Mechanism for Decentralized Informa-

tion Sharing

To design an effective distributed decentralized network attack detection frame-

work in a large distributed environment, a scalable and resilient information com-

munication and sharing mechanism is necessary. This mechanism should be easy

to deploy, robust, and highly resilient to failures. Gossip based mechanisms have

been proposed as a potentially effective solution for this purpose.

Gossip based mechanism build upon epidemic algorithms, which mimic the

spread of a contagious disease. One may consider dissemination of information in

a network to be similar to the spread of a rumor or of an infectious disease in a

society, which have been extensively studied by applied mathematicians. Once it

has started, an epidemic is hard to eradicate: it only takes a few people to spread

a disease, directly or indirectly, to the community at large. An epidemic is also

highly resilient in that even if many infected people die before they transmit the

contagion or they are immunized, the epidemic continues to propagate through

the population. It is possible to adjust the parameters of an epidemic algorithm to

achieve high reliability despite process crashes and disconnections, packet losses,

and a dynamic network topology.

Epidemic algorithms have been applied to solving several practical problems

like database replication, failure detection and resource monitoring. A large body

of theoretical work is also available due to the general importance of understand-

ing epidemics and its close relation to random graph theory. Alan Demers et

al. [18] have designed an epidemic algorithm for spreading updates of database

35

that is replicated at many sites in a large, heterogeneous, slightly unreliable and

slowly changing network. Compared with a deterministic algorithm, this random-

ized algorithm is very simple and requires few guarantees from the underlying

communication system, yet it ensures that the effect of every update is eventu-

ally reflected in all replicas. Implementations of this algorithm demonstrate that

it can solve long standing problems of high traffic and database inconsistency.

Robbert van Renesse et al. [73] have presented a failure detection service based

on a gossip protocol. The service provides accurate failure detection with known

probability of a false detection, and is resilient to both transient message loss

and permanent network partitions, as well as host failures. The service uses two

separate protocols that automatically take advantage of the underlying network

topology, and scale well in terms of the number of members. Astrolabe [72] is an

information management service developed at Cornell University. By combining

gossip based communication mechanisms with an explicit hierarchy at the nodes of

a distributed applications, Astrolabe collects large-scale system state, permitting

rapid updates and providing on-the-fly attribute aggregation. These approaches

have been observed to scale well and self-organize, which are key requirements of

a large scale, highly dynamic, distributed applications.

The power of gossip is that information reaches its destination by following a

diversity of paths. In effect, every process is a potential source of data for every

other process, and over time the number of possible routes by which information

from process p might travel to process q increases exponentially. For example,

suppose that process p has detected an event of interest, after t time units, O(2t)

processes will know that event [72]. When a system comes under attack, an

adversary may manage to corrupt a few messages or disrupt a region of the

network. However, if any connectivity remains at all, the gossip exchange of data

will eventually prevail, and data stored within the infrastructure will reach all

sites in the system. Thus, gossip protocols are relatively tolerant of denial of

36

service attacks.

Given these features of the gossip based communication mechanism, it is po-

tentially valuable to be used in the decentralized network attack detection frame-

work for information sharing that is investigated in this research. In this thesis,

we will theoretically discuss the detection capability that can be achieved using

this mechanism. We then design a framework using the mechanism to achieve ef-

fective and accurate cooperative attack detection. The section below will provide

mathematics foundation of this mechanism. Several mathematics models exist

for epidemic, our discussion is based on the infect forever model [28].

Information Dissemination Model

The epidemic algorithm we used in this thesis is similar to the infect forever model,

in which infected individuals remain infectious throughout. A quantity of interest

is the number Zr of individuals infected prior to round r. Two key measures of

the “success” of an epidemic dissemination are proportion of infected processes

defines as Yr = Zr/n and the latency for a rumor to reach other processes defined

as number of rounds R necessary to infect the entire system. In this research we

use the analysis result of [28] as follows:

• The number Zr of individuals infected prior to round r, assuming that

infectious individuals try to contaminate f other members in each round,

the approximate formula for the first measure - the expected fraction of

infected members after r rounds is:

Yr ≈ 1

1 + ne−fr
.

Thus, the ratio of infected individuals to uninfected individuals increases

exponentially on average, by a factor of ef in each round.

• The latency for a rumor, R, to reach every process, assuming that each

infectious process tries to contaminate f other processes in each round,

37

Boris Pittel [58] showed that this number R satisfies:

R = logf+1(n) +
1

f
log(n) + O(1).

Thus the epidemic spreads quickly, taking at most a logarithmic number of

steps to reach every process.

2.6 Overlay Networks

An overlay network is an isolated virtual network deployed over an existing net-

work [6]. It is composed of individual nodes (e.g. hosts, routers, gateways), and

tunnels. Tunnels are paths in the base network, and links in the overlay network.

Individual nodes can participate in more than one overlay at the same time or in

a single overlay in multiple ways. As a result, wherever there is a physical path

in the underlying network, there can exist a link in the overlay network. Having

multiple available links increases the flexibility of the network, and a more flexi-

ble network is less likely to be susceptible to attacks. Furthermore, by building

a large-scale, self-organizing and resilient overlay network on top of the Internet,

the peer nodes of the overlay network can deliver attack information with speed

and reliability [42]. As overlay networks provide multi path routing other than

the underlying physical network routing, they are highly resilient to disruption

and posses the ability to deliver messages even during large scale failures and

network partitions.

Overlay networks have been widely used in peer-to-peer data sharing and

content distribution applications, which are used by millions of users and represent

a large fraction of the traffic in the Internet. There are two basic types of overlays:

unstructured and structured.

Unstructured overlays, in which peers are connected in an uncontrolled fash-

ion, do not impose any constraints on the node graph. For example, each node can

38

choose any other node to be its neighbor in the overlay. One example application

of unstructured overlay is Gnutella [2].

Structured overlays, in which peers are organized in a controlled manner, im-

pose constraints on the node graph. Structured overlay networks provide location-

independent routing mechanism as the basic component, on top of which high

level services can be built. One such example is Chord [69].

In this thesis, we build an unstructured overlay network consisting of net-

work attack detection nodes across the whole Internet. This overlay is used and

maintained to provide an effective network attack countermeasure infrastructure.

2.7 Summary

Network attacks have already become a major threat to the stability of the Inter-

net. As current attacks are highly distributed, isolated attack detection systems

can not detect them efficiently and accurately. In this chapter, we discussed

the characteristic of the DDoS attacks and Internet worms, currently used ap-

proaches to address these attacks, and the limitations of these approaches which

prevent them from efficiently and effectively detecting and defending against these

attacks. A distributed and decentralized attack detection and protection frame-

work requires a resilient and scalable communication mechanism to share attack

information. We introduced the gossip based communication mechanism, which

has significant advantages for this purpose. Finally, the overlay network technol-

ogy used to build this framework was discussed. In Chapter 3, we will discuss

the conceptual model underlying the proposed detecting and defense framework.

39

Chapter 3

Decentralized Information Sharing

As we discussed in Chapter 1, in order to scale with exploding network sizes, it is

imperative that attack detections are distributed and cooperative. In this thesis,

we investigate a distributed decentralized attack detection framework. A critical

issue is acquiring sufficient knowledge about the network attacks. Therefore, a

conceptual model that defines the relationships between the level of knowledge

in the cooperative detection framework and attack detection capability that can

be achieved, is necessary and helpful. In this chapter, we describe such a decen-

tralized information sharing model for a cooperative network defense overlay that

aims to detect a wide range of network attacks ranging from distributed denial

of service attacks to large scale Internet worms. We first define the knowledge

requirements for cooperative attack detection. We then describe the relationship

between the level of knowledge and associated attack detection capability. We

then discuss the nature of the attack detection capability that can be achieved

with knowledge acquired using a gossip based communication mechanism. Fi-

nally, we discuss aggregation latencies when using gossip based communication

mechanisms to achieve the knowledge for cooperative attack detection purpose.

3.1 Knowledge Requirement for Attack Detection

The key requirement for a decentralized distributed cooperative attack detection

framework is the capability to acquire sufficient knowledge about the distributed

40

attacks. If all the nodes in this distributed framework have common knowl-

edge [33] about the network attack behaviors, which means that every detection

node knows the overall network attack behavior, and it also knows that all other

nodes have same knowledge about the network attack behaviors as itself, then net-

work attacks can be perfectly detected. However, to achieve common knowledge,

distributed detection nodes should coordinate using synchronized and reliable

communication, which is not possible in a practical distributed system. Instead

of achieving perfect common knowledge, we investigate the level of knowledge

that can be practically achieved given different communication and coordination

mechanisms, and the associated attack detection capability that can be achieved

given these different levels of knowledge. Therefore, a formal definition of knowl-

edge hierarchy will give us a basis for discussing these relations. In this section,

we define these levels of knowledge.

In a decentralized distributed intrusion detection system, each detection node

i will only have a partial view of the system. We assume that this view is correct

and can be trusted. This partial view is a fact represented as pi. We define

the overall knowledge as p ≡ ∧i∈Gpi, where G represent all the attack detection

nodes. Based on the discussions in [33], the different levels of knowledge in the

system can be defined as the follows:

• Local Knowledge. Each detection node i only has its own observation, i.e.,

pi. In this case, the knowledge is partial and therefore the detection based

on this knowledge will be error prone.

• Distributed Knowledge. Each detection node not only has its own obser-

vation pi, it also has some knowledge pj, where j 6= i. However, there is

knowledge pk which is not known to i, (k ∈ G and k 6= i 6= j).

• Quasi-global Knowledge. Every detection node has knowledge p, but this is

the knowledge about the system from t seconds before. If the attacks take

41

a time longer than t, this Quasi-global knowledge can be used by network

defense system to make decisions to efficiently defend against these attacks.

• Global Knowledge. Every detection node has knowledge p.

• Common Knowledge. Every detection node has knowledge p, and this node

also knows that other nodes have the knowledge p, know that other nodes

know other nodes know the knowledge p.

3.2 Levels of Knowledge and Attack Detection Capability

In Table 3.1, we list the relationships between attack detection capabilities that

can be achieved and knowledge level attainable using different communication

mechanisms. In a distributed decentralized attack detection system, initially,

each individual detection node only has local knowledge about network behav-

iors. As a result, such systems will let a large number of distributed network

attacks to pass unnoticed. Using only unreliable communication mechanism be-

tween these detection nodes, system can achieve distributed knowledge. In this

case, each detection node only gets a partial view of the distributed attacks, and

therefore, the attack detection has high false rates. Using asynchronous, reliable

communication mechanism, system can achieve quasi-global knowledge. With this

knowledge, every detection node can acquire sufficient information about attacks

and as a result, the attacks can be detected effectively. However, there is a delay

between the time an attack occurs and the time it is detected. Better attack de-

tection capability requiring higher levels of knowledge in the knowledge hierarchy.

To acquire global knowledge, we need to build a synchronous framework. Such a

framework will incur significant cost but it can achieve a better attack detection.

Ideally, if the system can achieve common knowledge, then all the network at-

tacks could be perfectly detected. However, it has been shown that this can not

be achieved in real distributed systems [33].

42

From the discussion above, we see that the capability of the decentralized

cooperative network attack defense framework depends on the communication

mechanism used to acquire the knowledge about network attacks. When the net-

work is under attacks, such as DDoS or Internet worms, the network bandwidth is

critical resource. The communication mechanism selected for this defense frame-

work should introduce minimum overhead while providing sufficient information

to enable attack detection.

3.3 Attack Detection Using Gossip Based Communication

Mechanism

Observing from the Table 3.1, we see that effective attack detection and defense

still can be achieved with quasi-global knowledge (Refer Table 3.1). Asynchronous

communication mechanisms can be used to achieve this with low overhead. There-

fore, it is feasible and efficient to design a distributed decentralized attack de-

tection framework to achieve quasi-global knowledge. The key is to select the

appropriate communication mechanism. As both the DDoS attacks and Internet

worms only need a short time to achieve significant damage to the network in-

frastructure, the delay δ in acquiring quasi-global knowledge should be less than

the short duration of these network attacks.

Based on the discussion in Section 2.5, gossip based communication mech-

anism is resilient and scalable, which makes it suitable for information sharing

purpose in large scale and failure prone systems.

43

3.4 Latency of the Network Attack Information Aggrega-

tion Using Gossip Mechanisms

In addition to scalability and resilience, another key requirement for a coop-

erative network defense infrastructure is fast abnormal behavior detection and

defense. If the communication mechanism used to share information requires a

long time for every defense node to acquire knowledge about the network attack

behavior, the attacks may have already caused significant damage to the network

infrastructure before that nodes can initiate a defense. In this Section, we inves-

tigate the aggregation speed when using gossip based communication mechanism

to collect network attack information. The gossip based attack information ag-

gregation mechanism(discussed in more detail in Chapter 4) is quite similar to

that of broadcasting by means of the push-pull anti-entropy epidemic protocol

presented in [18]. Our analysis is based on a modified and generalized push-pull

anti-entropy protocol.

/
/ the active process of the protocol on node ni

do
 forever

wait(getWaitingTime())

nj = selectRandomNeighbor()

// perform elementary aggregation step

send xi to nj

receive xj from nj

xi = aggregate(xi ; xj)

// reply on node nj

receiveApproximation(xi; ni)

send xj to ni

xj = aggregate(xj ; xi)

Figure 3.1: Push-pull anti-entropy aggregation protocol

In the push-pull anti-entropy gossip model, every node participating in group

44

communication either periodically sends its own information to its neighbors or

queries its neighbors to acquire up to date information. Let us assume that

each network defense node ni maintains a neighbor list, which is a random and

uniform sample of the whole overlay network. This node has a numeric attribute

ai, representing confidence with which the detection node suspects an attack.

Aggregation is performed over the set of these values. Node ni also stores an

approximation xi of the aggregate. The algorithm for the push-pull anti-entropy

gossip is illustrated in Figure 3.1. We introduce the following notations:

µi = µαi
=

1

N

∑
αi,k

δ2
i = δ2

αi
=

1

N

∑
(αi,k − µi)

2

Here, µi is the target value of the protocol in round i, k is the index of the

node, αi is the information to be aggregated, N is the number of nodes in the

attack information sharing overlay network, and δ2
i is a variance. Without loss of

generality we will assume that the common expected value of the elements of α0 is

zero. The purpose of this assumption is to simplify our expressions. In particular,

for any vector α, if the elements of α are independent random variables with zero

expected value then

E(δ2
α) =

1

N

∑
E(α2

k)

Furthermore, the elementary variance reduction step in which both selected

elements are replaced by their average does not change the sum of the elements

in the vector, so µi ≡ µ0 for all cycles i = 1, 2, This property is very important

because it guarantees that the algorithm does not introduce any errors into the

approximation. This means that from now on we can focus on variance. Clearly, if

the expected value of δ2
i tends to zero with i tending to infinity, then the variance

of all vector elements will tend to zero as well, so the correct average µi will be

45

approximated locally with arbitrary accuracy by each node. As proved in [3], the

expected value of variance reduction during one cycle is given by

E(δ2
i+1) ≈ E(2−φ)

1

N

∑
E(α2

i,k) = E(2−φ)E(δ2
i)

where

E(2−φ) =
1

2
√

e

The formulae above tell us that the gossip based information sharing mech-

anism will converge exponentially toward global knowledge of network attack

behavior distributed across the network. In a real deployment of this communi-

cation mechanism, we need to tune some parameters to make the gossip based

communication mechanism both efficient and low cost. If the attacks are aggres-

sive and propagate very quickly, the information aggregation interval should be

very short. Furthermore, for a short aggregation interval, the mechanism will

occupy a bigger portion of network bandwidth than for a longer information ag-

gregation interval. In a real design, we should select these parameters to balance

the speed of the information aggregation convergence and the cost of the com-

munication. Chapter 5 and Chapter 6 have detailed discussion about how these

parameters are selected to defend against DDoS and Internet worms. The analysis

described in this section is based on the assumption that the underlying overlay

is “sufficiently random”. More formally, this means that the neighbor selected

by a node when initiating communication is a uniform random sample among its

peers. The discussion of impact of the generic overlay network topology on the

aggregation scheme is presented in [3]. It shows that the aggregation scheme

have same performance with proper selected parameters.

46

3.5 Quasi Global Knowledge about the Network Attacks

Since common knowledge cannot be attained in practical distributed systems, it

is natural to ask what states of knowledge can be obtained by the gossip based

communication mechanism. From the previous Section, the messages sent out

using gossip based communication mechanism are not guaranteed to be received

by all the network defense nodes of the overlay network. There are variables ε(i)

and pi, where i is the number of the gossip, such that all the defense nodes get

the knowledge of the network attacks between t0 and t0 + ε(i) time units with

the probability pi. As it is hard to compute the pi, let’s consider the variable

qi, which denotes the probability that one overlay node does not get the global

network attack information in round i. Then we have q0 = 1 − 1/N . Here, we

express qi+1 as a function of qi. Clearly, a defense node will not know the global

network attack information in round i + 1 if the following is true:

1. It did not know it in round i.

2. The neighbor node it chose did not know it either.

Formally, we can get the following equation:

qi+1 = qiqi(1− 1

N
)N(1−qi)

As (1− 1
N

)N(1−qi) < 1, from this equation it follows that

qi+1 < q2
i < q2i+1

0 = (1− 1

N
)2i+1

This result suggests that qi decreases super-exponentially.

Thus we can consider the state of knowledge of the cooperative defense overlay

where the message m is broadcast using the gossip based communication mech-

anism. The communication mechanism will guarantee that every messages will

47

eventually reach all the defense nodes. In each round of the gossip based aggre-

gation of the network attack information, an individual defense nodes knows that

every other defense node either has already received the global network attack

information or will eventually get the global network attack information. Further,

in the time interval ε(i), all the overlay defense nodes will get the global network

attack behavior with probability pi. In Figure 3.2, we illustrate the speed of con-

vergence of the gossip based aggregation mechanism for different N, the number

of overlay nodes. The X axis is the number of gossip round and the Y axis is the

probability qi = 1−pi. For an overlay network of size 10000 nodes, it takes around

15 rounds for the mechanism to converge. For example, if we select the interval

between two rounds as 10 seconds, then we need about 2.5 minutes for all the

nodes to get the attack information. The interval between two gossip rounds can

be tuned to balance the performance costs and defence efficiency. According to

David Moore’s work [53], as shown in Figure 3.3, most attacks are longer than 5

minutes in duration. As a result, given appropriate parameters, the gossip based

mechanism can be effective against network attacks.

3.6 Summary

In this chapter we presented a conceptual model for decentralized information

sharing for a cooperative network defense framework. We discussed the knowl-

edge requirement for such a framework to efficiently defend against DDoS attacks

and Internet worms. Based on the analysis of the relationship between the knowl-

edge level and associative attack detection capability, gossip based communication

mechanism can be used to achieve proper knowledge level for efficient attack de-

tection. Finally, we discussed the latency of the gossip based communication

mechanism and defined the knowledge achieved using this mechanism.

48

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N=100
N=200 N=500

N=1000 N=10000

P
ro

ba
bi

lit
y

Number of Round

Figure 3.2: Convergence speed of aggregations

Figure 3.3: Probability density of attack durations

49

Table 3.1: Relation between attack detection and knowledge

Hierarchy of knowledge Type of detection that can be
achieved

Detection accuracy
and cost

Common Knowledge Using synchronized, timely, coor-
dinated communication between
individual detection nodes, the
system can know all the informa-
tion about attacks. As a result,
the system can achieve perfect de-
tection and defense.

Perfect detection, but
it is impossible in real
system.

Global Knowledge Using synchronized, but not coor-
dinated communication between
individual detection nodes, every
detection node still has all the in-
formation about attacks. How-
ever as they are not coordinated,
attacks are not detected simulta-
neously.

High detection accu-
racy, high cost on in-
formation collection.

Quasi-Global Knowledge Using asynchronous communi-
cation between every detection
node, the system still can ac-
quire the full information about
attacks. However, the delay δ in
acquiring quasi-global knowledge
should be less than the durations
of the attacks.

Effective detection,
communication cost is
acceptable if system
well designed with
proper parameters.

Distributed Knowledge Using unreliable communication
mechanism between detection
nodes, every detection node
can only get partial view of the
distributed attacks. As a result,
the detection has a high false
detection rate.

High false detection
rate, communication
cost depends on the
system design.

Local Knowledge Based on local observations of
the network attack behaviors thus
has high false rate when used
to detect distributed network at-
tacks,

Can not effectively de-
tect distributed net-
work attacks.

50

Chapter 4

A Framework for Decentralized Cooperative

Detection and Protection for Network Attacks

Based on the conceptual model discussed in Chapter 3, it is feasible to build a

cooperative defense systems to defend against network attacks. In this chapter,

we present a design of such a distributed decentralized detection and protection

framework that meets the requirement discussed in Section 2.4. In this frame-

work, a number of local detection nodes are placed at “strategic” locations in

the Internet, and they non-intrusively monitor and analyze the passing traffic

for possible attacks. The attack detection mechanism using this framework in-

cludes two key stages. In the first stage, each local detection node detects traffic

anomalies using various intrusion detection mechanisms. Due to the dynamic

and distributed nature of Internet attacks, detections based on these mechanisms

alone will have high false detection rates. In the second phase, we enhance the

accuracy of the detection by using gossip based communication mechanism to

share information among individual detection nodes. To enhance the security

and reliability of information sharing, our system is built on an overlay network

composed of local detection nodes, which are routers with attack detection and

attack packets filtering functionality.

We discuss different aspects of this framework in detail in the following sec-

tions. In Section 4.1, we describe the components of this framework. The pro-

cedure to detect attacks using this framework is discussed in Section ??. A

detail discussion about the local detection and information sharing mechanism

is presented in Section 4.2 and Section 4.3. The advantages and concerns of the

51

presented framework are discussed in Section 4.4. The uses of the framework

for defending against DDoS and Internet worms are presented in Chapter 5 and

Chapter 6.

4.1 Decentralized Information Sharing Overlay Framework

As discussed in Section 2.6, overlay networks have been shown to be highly re-

silient to disruption, and possess the ability to deliver messages even during large

scale failures and network partitions [6]. Therefore, our decentralized cooperative

detection framework is designed as an overlay. The detection overlay is a dy-

namic infrastructure composed of a diverse collection of nodes located at critical

locations that can monitor network attacks and collect meaningful information to

detect network attacks locally. The framework then enables information sharing

aimed at improving attack detection capability for all participants. The overall

architecture is illustrated in the Figure 4.1. The key functionalities of a detection

node in the overlay include:

• Local Network Attack Detection: Each overlay node monitors the immedi-

ate network around it for possible attacks. Alert messages are generated

when abnormal network behaviors are detected.

• Information Sharing and Global Detection: Alert messages are disseminated

using a gossip protocol based on the epidemic algorithm across the Internet.

Each overlay node aggregates these alert messages to make a global decision

on the occurrence of network attacks.

• Cooperative Defense. Finally, overlay nodes cooperate with each other to

defend against confirmed network attacks.

In our approach, the individual detection nodes of the detection framework

coordinate with each other to provide the information necessary to detect and

52

Victim

Global Network

Detection Overlay

Autonomous

System

Autonomous

System

Autonomous

System

Autonomous

System

Autonomous

System

Figure 4.1: Detection overlay architecture

respond to an attack. This can improve the accuracy and speed of detection of

network attacks. Here, we assume that each local detection system is trusted.

The operations at the individual detection nodes are described below:

• The local detection node detects attacks using various mechanism. To de-

tect DDoS attacks, it keeps traffic statistics for high-traffic destinations

using sample-and-hold algorithms. If the traffic statistics deviate from the

normal profile, the local node will raise an alarm to report attacks. To de-

tect Internet worms, the local detection node can either use a database of

worm signatures or monitor packets toward unused IP addresses to identify

malicious packet flows.

• When each individual node detects a possible network attack, it will share

this information with other nodes using a gossip mechanism. The informa-

tion shared can be either the confidence that certain target machines are

53

under DDoS attack, or the signatures identified as Internet worm attacks.

According to the discussion in Chapter 3, the presented gossip information

sharing mechanism will converge exponentially. After this time period, each

node will acquire sufficient information about the network attacks and will

know that other nodes have the same information, and can make decisions

about the attacks.

• When an individual node confirms the network attack, it will deploy coun-

termeasures to prevent continuance of the attack, and communicate with

other peers about the attack. The peers then perform similar actions in re-

sponse. The process continues until the attack traffic is effectively blocked.

Our approach can be combined with available mitigating or rate limit technologies

to eliminate the attack before it does significant damage.

4.2 Local Network Attack Detection

There are several techniques for local network attack detection, such as misuse

detection, statistical anomaly detection, information retrieval, data mining and

inductive learning. The internals of an individual local detection node can be

fairly complex, but conceptually it can be structured into six components, as

shown in the Figure 4.2. The traffic measurement module is responsible for mea-

suring local traffic. Next, the local detection mechanism will use this data to

detect any local anomaly. This local decision will be sent to the cooperative

detection engine, which will combine this local decision with the decisions from

neighboring nodes using the message dissemination module, to make a global de-

tection decision. Finally, the detection decision module will inform the attack

defense module to take action to defend against the attack.

When the local detection node detects a network attack, it will generate an

54

Attack Detection

Attack Defense

Local Attack

Detection

Local Traffic

Measurement

Message Dissemination

Detection Decision

Cooperative Detection

Engine

Individual Detection Node

Local Traffic

Neighboring Detection

Nodes

Figure 4.2: A conceptual architecture for individual detection node

alert message in the form of a tuple (conf, dest), where the conf is the confidence

of the detection node about this alert message, and dest is the target of the at-

tack. This message will be aggregated using the decentralized attack information

sharing mechanism.

4.3 Attack Information Sharing

A key requirement for network attack detection is low false positive rates, cal-

culated as the percentage of normalcy variations detected as anomalies, and low

positive rate, calculated as the percentage of anomalies detected as normalcies. In

our approach, there are two factors that will affect system performance: the over-

head of the information sharing mechanism, and the level of knowledge acquired

about the network attack. Communication bandwidth is often a scarce resource

during the network attack, so the attack information sharing should involve only

a small number of messages. In particular, any protocol collecting all local data

at a single node will create communication bottlenecks or a message implosion at

that node. According to the discussion in Chapter 3, gossip based protocols are

55

resilient and scalable while providing sufficient information for attack detection.

We use gossip based communication for the information sharing purpose. The

structure of the gossip protocol running at each node n is shown in Figure 4.3.

when (node n builds a new (conf, dest) pair)

{

while (node n believes that not enough of its

neighbors have received the (const, dest) pair)

{

m =a neighbor node of p;

send (conf, dest) pair to m;

}

}

Figure 4.3: Gossip protocol for cooperation

Compared to multicast or broadcast protocols, the gossip protocol has a

smaller overheads. However, it requires a longer time for each node to get the mes-

sage. While reducing message dissemination overhead, we still want to maintain

the speedy information delivery provided by multicast or broadcast. A possible

variant is directional gossip [43]. Directional gossip is primarily aimed at reducing

the communication overhead of traditional gossip protocols. Here we present a

modified directional gossip strategy, which can efficiently defend against DDoS

attacks. The application of this strategy to defend against Internet worms will be

presented in Chapter 6 in detail. We assume that the individual node knows its

immediate neighbors in the overlay network. Our gossiping protocol is as follows:

An individual node sends the (conf, dest) pair to the node on its path to the

destination target node with probability 1. It forwards the (conf, dest) pair to

all other nodes at random with probability p.

At anytime t, each node i maintains a list of (confk, destk) pairs. The algo-

rithm is described below:

56

1. Every node in the overlay network runs the aggregation protocol and makes

a global decision in the period Tg.

(a) Let (confr,k, destr,k) be all pairs sent to node i in round t, where t ≤ N

(N is total number of rounds in the period Tg, k is the index of node

and r is the gossip round).

(b) Let dt,i =
Σrconfr,k

m
, where m is the number of messages received and

dt,i is the aggregated information.

2. Query the routing table, find out the next hop to destt,i, send the pair

(dt,i, destt,i) to that node with probability 1. Send the pair to other neighbors

with probability p.

3. At round N, Compare dN,i with Thresholdi. If dN,i > Thresholdi, then

destN,i is under attack. Otherwise, set dN,i =new local detection confidence

value. Begin new round of attack information aggregation.

The algorithm is illustrated in the flowchart in Figure 4.4.

The algorithm described so far is based on the assumption that all nodes syn-

chronize on aggregation. This assumption cannot be satisfied given the dynamic

and heterogeneous nature of Internet. In [3], it has been discussed that even the

nodes are not synchronized on aggregation, the algorithm still can work efficiently.

The advantage of the strategy is illustrated in Figure 4.5. Suppose node X

and node Y suspect that the destination host A is under attack, and both of

them use node Z to forward packets to destination A. Obviously, it is better to

send the (conf, dest) pair with a higher priority to Z than to other neighbors. The

rationale behind this scheme is as follows. Sending the detection information with

higher probability to critical nodes allows them to make decision early, allowing

the network attacks to be mitigated earlier.

57

Collect (conf,

dest) pairs at

T
g

Aggregate the

collected

information

Attack?

Attack

Defense

Yes

Gossip the

(conf,dest) pair to

peers in overlay.

No

Figure 4.4: The flow chart for the gossip based coordination algorithm

For each destination (we monitor detections of sampled big flow only) with

conf > 0, each individual node in the overlay network sends the (conf, dest) pair

to its neighbors. On receiving such a message, the neighbors discard duplicates,

compute the aggregate (Aggr) of the conf values received per destination, and

forward non-duplicate values to their neighbors. If, for any destination, Aggr ex-

ceeds a pre-defined threshold, the individual node concludes that the destination

is under attack. This cooperation stage helps reduce errors in the identification

of attacks.

4.4 Analysis of Cooperative Defense Framework

In this section, we discuss both the advantage of this framework and related

issues.

58

A
 Victim

X
 Y

Z

A
 Victim

X
 Y

A
A
 Victim

X
 Y

Z

Figure 4.5: Gossip strategy illustration

4.4.1 Advantage of Cooperative and Information Sharing

In addition to improving the accuracy of countermeasure against network attacks,

cooperation among overlay nodes have the following advantages:

- Accurate Detection. As discussed in Chapter 3, each detection node can only

partially observe network attacks. As a result, detection based on this infor-

mation has a high false positive rate, and legitimate traffic will be affected.

The presented cooperative framework can improve a detection node’s knowl-

edge about the attacks and thus enable accurate attack detection.

- Quick Response. Any detection node that observes network attacks can immedi-

ately inform other nodes in the framework, which can then take appropriate

actions.

- Optimization. Reducing the bandwidth consumption due to the attack traffic

is our basic approach to network flooding attacks. Different attack traffic

may have different targets with different paths and accordingly, have dif-

ferent potential bandwidth consumption. Generally speaking, the attack

59

traffic with a longer path will consume more bandwidth and cause more

damage than the traffic with a shorter path. Hence, it is beneficial for the

overlay nodes to process more packets with longer remaining paths to their

destination, as compared to ones with shorter remaining.

- Distributed Load. A detection node can either rate limit or filter the attack

traffic based on aggregated information. With this approach, the load of

defending against attacks is distributed among the nodes of the cooperative

defense framework.

4.4.2 Defense Infrastructure Overhead

Defenses mitigate the impact of the attack traffic on the network but may impose

an additional overhead on the networks that implements them. The additional

overhead includes computational overhead imposed by attack detection and at-

tack response enforcement, storage requirement to save logs for attack detection,

and communications overhead used to send control messages to distributed loca-

tions in a network. These overheads are described below.

First, attack responses may impose a computational overhead on network

devices. Once filtering rules are enforced to examine network packets, a per-

packet delay will be incurred for executing the filtering rules. Minimizing the per-

packet delay is a packet classification problem in router performance optimization.

Although most commercial routers are optimized for routing, the per packet delay

of matching filtering rules depends on the number of filtering rules, the number of

characteristics used to identify attacks, and the update frequencies of the filtering

rules.

Second, attack detection algorithms impose a storage requirement for saving

60

network information to determine attack characteristics. This storage require-

ment is usually very large for monitoring high speed network links. Current tech-

nology can scale up to 10Gbps link speed without losing much information on IP

packets. To reduce the storage requirement and to catch network packets from

high throughput routers, sampling and processing of packet data dynamically will

be needed.

Third, gossip messages to coordinate attack detection among the proposed

detection framework are an additional overhead to network transmission. If com-

munication occurs between network routers, it is important to know if such com-

munication will result in abnormal behavior at the routers. Since most commercial

routers are optimized for routing, it is not certain if additional communications

among routers will impose additional delay at routers or not. Future work will

explore how communication overhead impacts system performance. For example,

a DDoS flood could overwhelm systems and limit the use of in-band control pro-

tocols to detect and respond to the trouble [54]. This is a limitation of distributed

cooperative detection technology, and lends credence to more local intelligence for

throttling attacks. However, given that distributed cooperative detection is used,

gossip based communication mechanisms provides reduced overhead.

To accurately measure the cost of cooperative mechanism as have discussed so

far, we need a test bed in the Internet scale. Currently, researchers have proposed

to build such a test bed in the expense of tens of millions of dollars [35]. We will

leave this as future work when a test bed is available.

4.4.3 Miscellaneous Infrastructure Issues

Trust Trust is an important issue in such a system, more so in the absence of a

centralized trusted authority to provide digital certificates. The usual decentral-

ized alternate to central CA is the web-of-trust model, where certifying happens

among peers rather than from a central authority. We believe, the overlay nodes

61

can build trust relationships based on this model. Ideally, every overlay nodes

should digitally sign their messages sent to other nodes in a manner that allows

other nodes to validate the authenticity of the sending nodes. Current available

technologies should suffice for this purpose.

Multiple wrong decisions There is a possibility that multiple nodes of the

cooperative defense overlay will make wrong decisions at same time. As a result,

the cooperative defense will drop legitimate packets. However, given the state of

art available local detection techniques, the false rate pi of each detection node

will be a very small value [75]. The probability q that multi nodes make wrong

decisions at same time can be approximated as p1 ∗ p2 ∗pn, which is a very

small value.

Attack against the infrastructure Another issue that must be addressed is

how to protect the communications of the detection nodes when the links are

completely saturated during a DDoS attack or Internet worm propagation. In

the event of standard packet flood attacks, it is certainly possible that some

set of nodes could be effectively removed from the infrastructure. Yet, if any

connectivity remains at all, the gossip exchange of data will eventually prevail,

and data stored within the infrastructure will reach all sites in the system. Also,

the distributed and coordinated nature of the infrastructure makes it robust to

the removal of nodes through failures or attacks. Thus, the infrastructure is

relatively tolerant to attacks. In the case that a compromised overlay node sends

large amounts of data to flood other overlay nodes, the overlay node can apply

filters to incoming data such that data sent by any nodes or set of nodes can not

exceed a specified threshold.

4.4.4 Limitations of the Approach

The approach of detecting DDoS attacks and Internet worms in a distributed

manner based on traffic anomalies has its own limitations. On one hand, there

62

are a set of theoretical issues related to the detection algorithms, such as the

choices of local and global thresholds, traffic modeling, and admitting multilevel

local detection results. On the other hand, since the large scale distributed coop-

erative mechanism induces a certain amount of delay to reach a global detection

decision, this defense infrastructure is not very useful for DDoS attacks of very

short durations. For example, as discussed in a recent study [53], the infrastruc-

ture should target to handle DDoS attacks longer than 5 minutes, which is around

75 percent of all the attacks measured.

4.5 Summary

In this chapter we presented the framework of the decentralized information shar-

ing framework. We first described the architecture of the framework and the

internal components of each overlay node. Then we introduced the procedure

of using this framework to detect and defend against attacks. The gossip based

information aggregation protocol used by this procedure to acquire quasi-global

view of network attack behavior was discussed in detail. Finally, we analyzed the

advantages and limitations of this framework.

63

Chapter 5

Cooperative DDoS Defense

During a distributed denial of service (DDoS) attack, traffic transmits across

the Internet towards the victim and the victim can easily detect the attack by

observing its degraded service. However, it is too late to defend against DDoS

attacks near the victim as the victim resources would be heavily loaded and

would not be able to react to the DDoS attacks. The attacks should ideally be

stopped as close to the sources as possible, saving network resources and reducing

congestion. However, there are no common characteristics of DDoS streams that

can be used to detect and filter them near the source. Our strategy is to defend

the DDoS attacks in the intermediate network. We make the assumption that in

the intermediate network, the aggregated attack flows toward the victim consume

more bandwidth than aggregated normal flows to the victim. As the aggregate

does not cause congestion in the network, and it is hard to detect the DDoS

attacks in a single domain, we propose that by sharing information across domains

distributed in the network, we can detect the DDoS attacks early. Based on the

framework discussed in Chapter 4, we present a DDoS defense mechanism in this

chapter.

5.1 Cooperative DDoS Defense System Modules

We assume that the Internet is a set of Autonomous Systems (AS) as discussed

in Chapter 4. Individual detection nodes are located at the egress routers of

the Autonomous System, and collect meaningful information and detect DDoS

64

attacks locally. These detection nodes form an overlay and the overlay is used to

share the detection information using the gossip protocol. The functions of each

individual DDoS detection node is discussed below.

5.1.1 Traffic Measurement Module

The traffic measurement module monitors all traffic passing through the detection

nodes. Each packet is classified as incoming or outgoing based on its arriving

interface. Information in the packet header is then used to update statistics on

current flows. Periodically, statistics are compared with a model of normal traffic,

and flows are characterized as being normal, transient or attack flows. Normal

flows are those flows whose parameters match those of the model and that have

not been recently classified as attack flows. Attack flows are those flows whose

parameters are outside of the model boundaries. Transient flows are those whose

parameters match those of the model but that have been recently classified as

attack flows.

During normal operation, the traffic measurement module keeps packet rate

statistics for different flows grouped by address prefix. It constructs an address

prefix tree data structure, which allows for quick aggregation of flow information.

To keep the tree from growing in an unbounded manner, periodic garbage col-

lection is performed when the tree attempts to grow beyond a certain size. The

traffic measurement module supports hundreds of simultaneous packet flows by

dynamically building an aggregation tree based on flow information. The archi-

tecture of the traffic measurement module is shown in Figure 5.1.

A disproportional increase in the relative frequency of a particular packet

attribute value is an indication that the attacking packets also share the same

value for that particular attribute. The greater the disproportional increase, the

stronger the indication. The more “abnormal” attribute values a packet possesses,

65

Bidirectional Traffic Flow

Traffic

Sampling

Sampling Rules

Trafiic Flow Statistics

Address Prefix Tree

Traffic Measurement

Figure 5.1: Traffic measurement module

the higher the probability that the packet is an attack packet. For example, if it

is found that the suspicious packet flows contain an abnormally high percentage

of (1) UDP packets, (2) packets of size S, (3) packets with TTL value T, then

UDP packets of size S and TTL value T destined to the DDoS victim should be

treated as prime suspects and given lower priority during selective packet filtering

when there is an overload.

Candidate packet attributes considered for traffic profiling include: the marginal

distributions of the fraction of recently arrived packets having various (1) IP

protocol-type values, (2) packet size, (3) server port numbers, (4) source/destination

IP prefixes, (5) Time-to-Live (TTL) values, (6) IP/TCP header length and (7)

TCP flag patterns. We are also interested in the fraction of packets which (8) use

66

IP fragmentation and (9) bear incorrect IP/TCP/UDP checksums. It is worth-

while to consider the joint distribution of the fraction of packets having various

combinations of (10) packet-size and protocol type, (11) server port number and

protocol-type, as well as (12) source IP prefix.

5.1.2 Traffic Models

Internet traffic models have been developed for attack detection in several projects.

The discussions below are based on the work in [36, 47, 46].

TCP normal traffic model. There are two special characteristics in TCP

semantics. One is that a TCP flow experiences a three-stage hand shake during

flow establishment. An unresponsive attack flow with a spoofed source, although

marked as a TCP flow, cannot establish a real TCP flow. The reason is that

its source is unlikely to get the SYN-ACK packet from the receiver, which is

sent to the spoofed source rather than the real source. Unfortunately, it will

be very difficult for the detection node to monitor the three stage connection

establishment for individual flows. The other special point in TCP semantics is

that during a TCP session, the data flow from the source to destination host is

controlled by the constant flow of acknowledgement in the reverse direction. Our

TCP flow model defines TCPrto - the maximum allowed ratio of the number of

packets sent and received in the aggregate TCP flow. The flow is classified as an

attack flow if the packet ratio is above the threshold; otherwise, it is considered

a compliant flow.

ICMP normal traffic model. The ICMP protocol specifies many different

message types. During normal operation the “timestamp,” “information request,”

and “echo,” messages should be paired with corresponding replies. Using this

observation, the normal ICMP flow model defines ICMPratio - the maximum

allowed ratio of the number of echo, time stamp, and information request and

reply packets sent and received in the aggregate flow to the peer. The frequency

67

of other ICMP messages, such as “destination unreachable,” “source quench,”

“redirect,” etc., is expected to be small and a predefined rate limit can be used

to control this portion of the traffic.

UDP normal traffic model. The UDP protocol is used for unreliable mes-

sage delivery and in general does not require any reverse packets for its proper

operation. Many applications that communicate through UDP packets generate

a relatively constant packet rate, but the maximum rate depends heavily on the

application. On the other hand, UDP traffic usually occupies a small percentage

of overall network traffic and is conducted via a few connections. We use this

observation to define the UDP flow model as a set of thresholds: nconn - an upper

bound on the number of allowed connections per destination, pconn- a low bound

on the number of allowed packets per connection, and UDPrate- a maximum al-

lowed sending rate per connection. The model classifies a flow as an attack when

at least one of these thresholds has been breached. The first two thresholds help

identify a UDP attack through spoofed connections, while the third identifies a

UDP attack through a few very aggressive, non-spoofed connections. An attacker

can still get enough traffic past the thresholds to perpetrate an attack if she/he

chooses to spoof a small number of addresses consistently and distributes the

attack sufficiently so that each source network sees only a small portion of the

traffic.

5.1.3 Attack Detection Module

The objective of the detection module is to detect the onset of an attack and iden-

tify the victim by monitoring traffic statistics. Every detection node maintains

a local and global view of intrusion and attack activity. The local view consid-

ers activity in the node’s own network. The detection nodes periodically receive

summaries from their peers, which are then used to create a global view. Each

detection nodes can employ its own strategy for data aggregation to create local

68

and global views. Figure 5.2 shows the state diagram for the attack detection

module.

 Normal
 Suspected

Under Attack

A
ttack C

onfired
A
tta

ck
 D

on
e

Not Attack

Attack Alert

Figure 5.2: A state diagram for the attack detection module

To enable local abnormal behavior detection, we need to define the data that

routers will collect using a statistical measurement method. As the high-traffic

destinations are most likely to be under attack, it is reasonable to keep traffic

statistics only for those high traffic flows that have the same destination IP ad-

dresses. We can use a sample-and-hold [27, 5] algorithm to let the egress routers

keep track of destinations whose traffic occupies greater than a fraction r of the

capacity C of the outgoing link. We call these destinations popular and destina-

tions not in this list as unpopular.

Traffic profiles at each router are essentially a set of metrics {Mi} for the traffic

to popular destinations. An effective choice of such metrics is key to characterizing

traffic streams. However, computing arbitrary fingerprints might require excessive

memory and computation. Several metrics have been proposed by the research

community. Some of them are:

69

• The fraction of new source IP addresses.

• The ratio of traffic between the two directions.

• An approximation of the flow-length distribution of traffic to the destina-

tion.

Based on these metrics, there are different abnormal behavior based detection

approaches, such as those described in [36, 32]. In this thesis, we use CUSUM to

detect abnormal behavior [75]. Let Xn represent one of these metrics during time

interval ∆n. The main idea is that, during an attack, for the random sequence Xn,

there is a step change in the mean value E(Xn). The non-parametric CUSUM is

asymptotically optimal for such Change Point Detection problems. This general

approach is based on the model presented in Wang et al. [75] for attack detection

using CUSUM. One of the assumption for the nonparametric CUSUM algorithm is

that the mean value of the random sequence is negative during normal conditions,

and becomes positive when a change occurs. In general, E(Xn) = c ¿ 1. We

choose a parameter γ that is the upper bound of c, i.e., γ > c. Thus without

loss of any statistical feature, Xn is transformed into another random sequence

Yn with negative mean b during normal operation, i.e., Yn = Xn − γ. When an

attack happens, Yn will suddenly become large and positive. Suppose, during an

attack, the increase in the mean of E(Yn) can be lower bounded by h. Our change

detection is based on the observation that h À c.

We use the recursive version of the non-parametric CUSUM algorithm [75],

which is as follows:

zn = (zn−1 + Yn)+,

z0 = 0, (5.1)

where (zn−1 + Yn)+ is equal to (zn−1 + Yn) if (zn−1 + Yn) > 0 and 0 otherwise.

zn represents the continuous increment of Yn. A large zn is a strong indication of

70

an attack.

Let dN(.) be the decision at time n: ‘0’ for normal operation and ‘1’ for attack.

The decision function can be described as follows:

dN(zn) =





0 if zn ≤ N ;

1 if zn ≥ N .

Here N represent the threshold for local attack detection. Let conf denote

the confidence with which the individual detection node suspects an attack. We

set conf =
∑

i δ(Mi) ∗ dN(Mi). δ assigns “weights” to a metric, depending on

the extent to which the metric contributes to errors (false positive or negatives):

δ(Mi) ∝ 1
err(Mi)

where err(Mi) is the sum of the false positive and negative rates

for Mi. The appropriate δ can be configured from measurements.

When a local detection node detects an attack, it will sends the (conf, dest)

pair to its neighbor nodes in the overlay network infrastructure for correlation

purpose.

Each overlay node independently consolidates and analyzes its local detection

results with attack alerts received from other overlay nodes to make a global

decision. The most straight forward way to merge information from multiple site

is through a simple addition or average across the whole domain. While this

approach provides a simple means for organizing and summarizing data, it also

has the risk of inaccuracy. We currently performs aggregation through computing

average of attack information, and will design advanced mechanisms with better

performance in the future research.

5.1.4 Message Dissemination Module

This module exchanges attack information with other overlay nodes using the

gossip mechanism. In terms of the communication protocols and intrusion de-

tection language specification, possible candidates are the Intrusion Detection

71

Exchange Protocol and Intrusion Detection Message Exchange Format. To foster

inter-operability and maximize extensibility, we represent messages using XML.

There are three kind of messages: alert, heartbeat, and cancel. The alert

message is shown in Table 5.1.

Table 5.1: Detection Information Alert

Alert Identifier
Destination address prefix
Confidence Level
Timestamp
Attack traffic signature

Each alert message has a Alert Identifier, which is used to let other overlay

nodes to know the sender of this alert. The Destination address prefix represents

the targets that are under DDoS attack. The Confidence Level denote the confi-

dence with which the detection nodes suspect an attack. The Timestamp is used

to denote the generation time of this alert, so other nodes can discard a message

when it has expired. Finally, the Attack traffic signature is a list of attributes of

the attack traffic.

In the system, the overlay detection nodes periodically exchange heartbeat

message with other nodes. Based on these heartbeat message, the overlay node

will adapt their gossip strategy to improve the message dissemination perfor-

mance. One example of such strategy is changing the gossip interval according

to the network bandwidth usage.

The cancel message is used to inform other overlay detection nodes that the

Alert message has expired. Each detection node will evaluate a current attack

status based on this message.

72

5.1.5 Attack Defense Module

Attack detection itself is not the final goal of the defense system. Once a DDoS

attack is detected, the next step is to distinguish the attacking packets from the

legitimate ones amongst the suspicious traffic. Our approach is to perform online

profiling of the suspicious traffic and compare the findings with the nominal traffic

profile of the victim. The viability of this approach is based on the premise that

there are some traffic characteristics that are inherently stable during normal

network operation of a target network, in the absence of DDoS attacks. The

objective is to maximize friendly traffic throughput while reducing attack traffic

as much as possible [38].

The architecture of control module is shown in Figure 5.3.

TCP Classifier

UDP Classifier

ICMP Classifier

Input Queue

Attack Flow

Normal Flow

Suspicious Flow

Filter Rule

Output Queue

Figure 5.3: Traffic control module architecture

According to the confidence of the attack signature, the traffic with the iden-

tified attack signature(Ai) will be rate-limited according to the formula below:

rateout(Ai) = ratein(Ai) ∗ λ(confi)

Where λ(confi) < 1 is a factor defined by the confidence level of the attack

signature identified.

73

5.2 Simulation Results: DDoS Case Study

To further examine system performance, under detailed network models, we con-

duct experiments using the Emulab testbed. The objective of the emulation is

to illustrate that our approach can effectively defend against DDoS attack with

high accuracy and reasonable overheads.

5.2.1 Performance Metrics

In our model, we assume that it is not easy to distinguish DDoS attack traffic from

legitimate traffic. Therefore, our rate limiting mechanism will block legitimate

traffic as well. To evaluate performance of the proposed defense mechanism, we

adopt the following measurement:

• Measure the legitimate traffic drop rate and the malicious traffic drop rate

under different patterns of DDoS attacks. Since the algorithm dynamically

adjusts rate limiting to the suspicious traffic based on the aggregated infor-

mation, a legitimate user should be adequately served.

• Measure the affect of deployment ratio (the ratio of overlay defense nodes

to all the network routers) of defense nodes on the effectiveness of the co-

operative defense framework. One advantage of distributed cooperative

defense mechanism lies in the fact that with partial converge or deploy-

ment a synergistic defense effect can be achieved. Since not every router

or gateway in the Internet will be a defense node, the cooperative defense

mechanism is designed to be effective in partial deployment. This feature

is supported by an overlay network topology in which only nodes that have

established direct peering relationship are aware of each other. The system

provides a significant level of defense for potential targets with only a few

defense nodes deployed, and becomes more effective as more defense nodes

are added, protecting a larger community.

74

• Measure the reliability and scalability of gossip mechanism. We analyze

message dissemination convergence rates and the overhead introduced by

this distributed cooperation mechanism.

5.2.2 Results

We implemented our distributed cooperative defense mechanism in a Linux router

and tested it with live traffic in the Emulab testbed. As mentioned earlier, we

rely on existing intrusion detection systems to detect attacks at each individ-

ual detection node. In our experiment, we use Snort [60] for this purpose. We

also implemented the gossip based communication mechanism within the Linux

router, which dynamically adjusts the rate limiting parameters according to the

information aggregated from detection nodes in the peer to peer defense overlay

network.

We use a simple HTTP client-server as the simulated application. Further

we use the GT-ITM topology generator to generate the Internet topology. GT-

ITM can generate a random transit-stub graph based on input parameters. This

graph closely resembles the Internet topology. Figure 5.4 shows the experimen-

tal topology with 100 nodes. The attack is simulated using a given number of

compromised nodes in different sub networks. Detection agents are deployed at

selected nodes and execute the algorithm described in Section 4. The commu-

nication agents use gossip to share information. In these experiments, there are

10 attackers, each of them sends out 1.3Mbps UDP traffic to the victim. The

legitimate user makes request with traffic rates chosen randomly and uniformly

from the range [2Kbps, 6Kbps]. If a request successfully arrives at the server, the

server will return the requested document after a random processing time, chosen

according to collected empirical distributions [44].

In the first set of experiments, we performed test runs for normal use, under

attack without response, and under attack with distributed cooperative response.

75

34 33

32

31

30

29

28

99

27

9

98

26

8

97

25

7

96

24

6

95

23

5

94

22

4

93

21

3

92

20

19

2

91

18

1

89

90

17

0

88

16

87

15

86

14

85

13

84

12

83

11

82

10

81

79

80

78

77

76

75

74

73

72

71

69
70

68

67

66

65

64

63

62

61
59

60

58

5756

55

54

53

52
51

49

50

48

47

46

45

44

43

42

41

40

39
38

37

36

35

Figure 5.4: Simulated network topology

In each case, we measured the packets rate of a selected client at the HTTP server.

Figure 5.5 shows the result from the experiment. The X axis represents time

intervals in seconds; the Y axis represents the number of packets received at the

server. The attack starts 50 seconds after the start of legitimate traffic and last for

500 seconds. Compared with the packet rate of normal run, the selected legitimate

client’s packet rate at the server drop dramatically under attack without response.

For the experiment with cooperative defense mechanism enabled, we can notice a

gradual increase in the legitimate packet rate. The ramp-up behavior is due to the

false detection at local defense node. As a result, some legitimate traffic will be

76

dropped by the rate limiting mechanism as well. As the algorithm converges, each

defense node get more precise information about the global attack information

and thus can more accurately rate-limit attack traffic.

0

1000

2000

3000

4000

5000

6000

7000

0

2
5

5
0

7
5

1
0

0

1
2

5

1
5

0

1
7

5

2
0

0

2
2

5

2
5

0

2
7

5

3
0

0

3
2

5

3
5

0

3
7

5

4
0

0

4
2

5

4
5

0

4
7

5

Time(second)

P
a

c
k

e
t

R
a

te

normal client request

under attack with response

under attack without response

Figure 5.5: User packet rates for legitimate traffic under different test conditions

In the second set of experiments, we investigate the benefit of an increased

deployment of defense nodes. Figure 5.6 plots the average number of false alarm

rates, which decrease gradually as more nodes join the peer to peer defense over-

lay network. By adding sufficient nodes to the defense overlay, attack traffic is

dropped efficiently and the amount of the attack packets that reach the victim

server decreases. The decrease of legitimate packet drop rate stabilizes when the

deployment ratio is great then 20% in this experiment. This is because, as we add

more routers as local defense nodes into the cooperative defense network, more of

them will be on the path from the attack traffic source to the victim destination.

As a result, sharing attack information among them will not increase the overall

knowledge about the network attack very much.

In the third set of experiments, we vary the parameters of the gossip mecha-

nism to investigate the relationship between the overhead of information sharing

77

0

10

20

30

40

50

60

70

80

90

0

5

1
0

1
5

2
0

2
5

3
0

3
5

4
0

4
5

5
0

Deployment Ratio(%)

L
e

g
it

im
a
te

 T
ra

ff
ic

 D
ro

p
 R

a
te

(%
)

Figure 5.6: Reduction in false detection rates with increased deployment

and defense efficiency. Let p represent the probability that each detection node

in the detection overlay network sends the local attack information to its neigh-

bor nodes. We vary the gossip probability p between 0.2, 0.4, 0.6, 0.8, 1.0. The

performance of the approach for different gossip probabilities p used are shown in

Table 5.2. The false positive rate measures the percentage of legitimate packets

dropped by the rate limiting mechanism, and the false negative rate measures the

percentage of attack traffic that passes the defense node.

Table 5.2: Cooperative defense performance for different directional gossip prob-
abilities

Gossip Prob. False Positive False Negative

0.2 12.12% 5.2%
0.4 10.03% 4.13%
0.6 8.32% 4.32%
0.8 8.15% 3.56%
1.0 7.67% 3.12%

As we can see from the simulation results, our algorithm can detect and defend

against DDoS attacks with high accuracy. With p = 0.4, we have low false positive

and low false negative packet drop rate respectively. The false positive rate is

78

relatively higher than the false negative rate. This is because we adopt a high

initial drop rate when the local defense node detects an attack and as a result

legitimate packets will be dropped in the case of a false detection.

Defenses mitigate the impact of the attack traffic at the victim network but

may impose an additional overhead on the networks that implements them. We

measure the overhead introduced by distributed cooperative information sharing

in this experiment as well. Figure 5.7 shows the per-node overhead with different

number of nodes in the system. The number of bytes per second processed by

each node for cooperative defense purposes do not increase significantly as we

add more nodes to the defense overlay. As a result, the gossip based information

sharing mechanism is scalable and can be used in larger networks. When the

gossip probability increases, the overhead will increases as well. This parameter

can be tuned to adapt to different applications to achieve the best performance.

Overhead

0

50

100

150

200

250

300

350

400

450

500

10
 20
 30
 40
 50
 60
 70
 80
 90
 100

Number of gossip nodes

O
v
e
rh

e
a
d

 p
e
r-

n
o

d
e
(b

p
s
)

p=0.2

p=0.4

p=0.6

p=0.8

p=1.0

Figure 5.7: Overhead of information sharing using gossip

79

5.3 Summary

In this chapter we presented the use of the decentralized information sharing

framework to defend against DDoS attacks. The specific DDoS detection and

defense modules within the framework were described in detail. The traffic mea-

surement module maintains track of statistics about the traffic passing through

the detection nodes. The traffic detection module then identifies the attack traf-

fics using this information. The message dissemination module shares this infor-

mation using the algorithm discussed in Chapter 4. Finally, the attack defense

module either filters or rate limits identified attack traffics using the aggregated

information. We implemented and evaluated the cooperative defense using emu-

lator. The evaluation demonstrates that it is effective against DDoS attacks.

80

Chapter 6

Cooperative Internet Worm Containment

Internet worms are another critical threat to the Internet. They generally use

various scanning methods to probe the vulnerabilities of Internet services and

propagate themselves rapidly. Unfortunately, many existing defense mechanisms,

which employ local detection to detect infections, hold out little hope in contain-

ing novel and fast worms. These mechanisms will have high false alarm rates.

A false alarm, whether malicious or unintended, can trigger an effective denial

of service attack by the response mechanism itself. In this Chapter, we present

a decentralized solution in which firewalls at various access networks exchange

information amongst themselves to defend against worm attacks using the frame-

work discussed in Chapter 4. In this chapter, we first analyze the mathematical

models of worm propagation. We then discuss a worm defense framework that

monitors malicious worm activities and defends against them. Finally, we evalu-

ate the framework using simulation.

6.1 Worm Model Analysis

Distributed response mechanisms require some degree of trust between the auto-

mated agents cooperating in the response. In the best of times there are at most

an insignificant minority of nodes in the Internet that any given node expects to

be trustworthy; during a virus attack it is unreasonable to trust any particular

node. Thus any proposed defense mechanism must be robust in the face of in-

accurate information from some of its peers. These observations expose several

81

significant problems that must be dealt with. Any node that responds to a poten-

tial virus carries a cost: a node has finite resources and therefore can only actively

engage a limited number of viruses at a time. Further, filtering packets containing

potential threats carries the possibility of false positives: legitimate traffic may

be blocked. In the absence of cost, the best response to a potential virus attack

is to flood the network as rapidly as possible, causing as many cooperative agents

to respond at once.

6.2 Mathematical Models for Virus/Worm Propagation

Computer worms are similar to biological viruses in their self-replicating and prop-

agation behaviors. Thus the mathematical techniques developed for the study of

biological infectious diseases can be adapted to the study of computer viruses and

worm propagation. For simple worm mitigation strategies, mathematical mod-

els with closed form solutions are possible. Considerable work has been done

on models for worm propagation in the absence of any coherent mitigation mea-

sures; some of these will be described below. Both of these models will be used

as theoretical foundation for our simulation.

1. Stanifords Virus Propagation Model S. Staniford, et al. in their pa-

per [68] analyze the Code Red worm by developing a quantitative model of

its propagation. Their model is as follows:

• N : Initial total # of vulnerable hosts

• a : proportion of infected hosts

• K : # of hosts that each infected host can find and compromise

Since the infection ability of a worm is proportional to the density of the

target hosts, the successful infection in time dt is K(1− a)dt. There are Na

82

worms in total, thus, the rate at which infected hosts increase during the

time period dt is

Nda = (Na)K(1− a)dt.

Dividing by N,

da

dt
= aK(1− a)

resulting in:

a =
eK(t−T)

1 + eK(t−T)

where T is a constant that fixes the time position of the incident (the time

that worm starts propagation). This equation produces the S-curve growth

behavior typically seen in population growth models with limited environ-

mental carrying capacity.

2. Kephart’s virus infection model [40]

J. Kephart and S. White created another mathematical model by represent-

ing an individual system as a node in a graph. Directed edges from a given

node j to other nodes represent the set of individuals that can be infected by

j. We briefly introduce this model here, and refer to the original paper [40]

for details.

• i : The proportion of infected hosts

• b : The expected number of nodes neighboring a node

• β : The infection rate of the virus

• δ : The cure rate of each node

J. Kephart et. al. derived a deterministic differential equation describing

the time evolution of i(t):

di

dt
= βbi(1− i)− δ

83

Note that if the second term, which describes the cure rate of a host, is

taken out, this becomes the same as Staniford’s model.

These functions have the characteristics that, for small values of time t, the

incidence grows exponentially until a majority of individuals are infected. At

this point the incidence slows exponentially, reaching zero as all individuals are

infected.

6.3 Cooperative worm Defense Approach

In Chapter 4, we discussed that the gossip based information sharing framework

can be used to efficiently defend against network attacks. Based on this frame-

work, in this Section, we present a dynamic infrastructure for worm detecting

and defense, which composed of a diverse collection of nodes located at ingress

or egress routers of local network. The objective of this framework is to share

information to improve worm defense capability for all participants. When the

Internet is under a worm attack, the network links will be congested. To quickly

and scalably share information in such a situation before the worm can com-

promise a significant amount of hosts, the system must overcome the challenges

discussed in Section 2.4.

The discussion in Chapter 3 has analytically shown that our decentralized co-

operative information sharing framework can collect quasi-global knowledge about

the network attacks within acceptable delay. Further the gossip based informa-

tion sharing mechanism is resilient and scalable. As a result, the framework can

be used to efficiently defend against network attacks. The internal architecture

of individual detection node is described in detail in Section 4.2. We have given a

detailed discussion of the functionality of each module within the detection node

in Chapter 5. For Internet worm detection, the modules within each detection

node have similar functionality except that they need to be customized to address

84

requirements of Internet worms. In the following sections, we will describe how

this framework can be used to defend against Internet worms.

6.3.1 Architecture

Recent seminal work by Autograph [41] suggests that it is promising to automat-

ically generate worm signatures by analyzing the prevalence of payload contents

and their dispersion. However, monitoring traffic towards a single network is often

not enough to identify a worm attack. The traffic pattern could appear normal

during a worm attack because the worm has not yet infected the network or will

not infect it at all. Therefore, we have to monitor the network behavior at as

many places as possible in order to reduce false alarms. Multiple vantage points

offer more information, and exchange of observed information will improve obser-

vation accuracy. Our goal is to quickly get global information about worm attack

signatures on large enterprize networks or the Internet, while ensuring that the

false alarm probability is as low as possible. We have discussed the framework for

decentralized cooperative detection and protection for network attacks in Chap-

ter 4, which can be used to fulfill this purpose. In this chapter, we present how

this framework can be customized to defend against Internet worms.

Internet

Ingress/Egress

 Router

Ingress/Egress

 Router

Ingress/Egress

 Router

Ingress/Egress

 Router

Local Network

Local Network

Local Network

Local Network

Peer Defense

 Node

Peer Defense

 Node

Peer Defense

 Node

Peer Defense

 Node

Figure 6.1: System architecture

85

As shown in Figure 6.1, our defense system is composed of peer defense nodes

that are located at the border routers (ingress routers or egress routers) of the

Internet. These nodes use available Intrusion Detection Systems (IDS) to get the

local information of worm behavior of their own local network. This information

includes the blacklist of the compromised nodes in the local network and worm

signatures dynamically generated by local IDS. In addition to the local view of

worm activity, each individual detection node also maintains a global view of the

attack.

6.4 Automatic Worm Signature Generation and Aggrega-

tion

Various worm signature generation mechanisms can be used in our cooperative

worm containment framework. In this thesis, we present how the Rabin footprint

algorithm in Autograph [41] works within the framework. Each overlay node

uses this algorithm to compute the content blocks in packet payloads. Then, it

updates the local prevalence L(i,j) for each content block j, where i is the index

of overlay node. Once L(i,j) is greater than a local prevalence threshold and the

address dispersion is greater than a local address dispersion threshold, the overlay

defense nodes begin to filter or rate limit the traffic with this signature.

As presented in Chapter 4, gossip based aggregation protocol is used to ag-

gregate information within the cooperative defense framework. To defend against

Internet worms, we use a gossip strategy to get the aggregated prevalence of

the content block, which is identified by each individual overlay node using Ra-

bin footprint algorithm [41] . At any time t, each node i maintains a list of

(contentk, countk) pairs, where contentk represents the signature identified by

the signature generation mechanism and countk represents the prevalence of the

signature. Here the k is the index for the content blocks. Our gossiping protocol

86

is described as the following:

1. Let (contentt−1,k, countt−1,k) be all pairs sent to node i in round t-1 (i is the

index of node).

2. Let dt,i = Σrcountt−1,k represent the sum of the prevalence values of the

signature contentk received by node i at round t for one particular content

block k.

3. Compare dt,i with Thresholdi. If dt,i > Thresholdi, then contentk is iden-

tified as a worm signature.

4. Choose target targett(i) from the neighbors of i uniformly at random.

5. Send the pair (contentk,
1
2
dt,i) to targett(i) and i(itself).

6.5 Simulation Results: Internet Worm Case Study

As a first step, we examine the effectiveness of this gossip based cooperative

defense system on a Code-Red style worm. While future worms are likely to be

more severe, we argue that any containment system must at least mitigate a worm

of this magnitude.

6.5.1 Simulated Worm Spreading Experiments

To demonstrate the ability of the cooperative defense framework to defend against

Internet worms, we evaluated our system with a large scale simulation using a

method similar to that used by Zou et. al. [82]. We simulated the worm

propagation under the defense of cooperative defense mechanism using a stand

alone simulator in Windows environment. The worm propagation model used

in this simulation is an extension of the model described in Section 6.2. We

simplify the Internet topology by considering it as a flat network. As discussed

87

in [50], more than 359,000 Code Red infected hosts were observed on July 19th,

2001 by CAIDA. In our simulation we set up 360,000 vulnerable hosts and 1500

local networks. One node of the selected local networks will be set as node of

the cooperative defense overlay. When the number of worm signature received

exceeds a certain threshold, the worm signature is confirmed and defense overlay

nodes begin to filter the packets with this worm signature. Each vulnerable host

stays in one of three states at any time: susceptible, infectious, or immunize. A

host is in the “immunize” state when it is immunized, no matter whether it is

previous infected or susceptible. At the beginning of simulation, several hosts are

initially in “infectious” state and the others are all in “susceptible” state. And

the defense node has two states: monitoring or alerted.

Each defense node at the edge network can watch both traffic coming in from

the ISP network and traffic going out from the local network. The defense node

has two states: monitoring and alerted. In the monitoring states, it counts the

number of worm infection probes observed and aggregates this information with

other defense nodes to acquire the global worm probe behavior, the total number

of worm probes. As we have discussed in Section 4, using the Rabin footprint

algorithm [41], we can compute the worm signatures given enough number of

worm probes have been analyzed (when the total number of worm probed greater

than a threshold). When the overlay node has acquired signatures of the worms, it

changes its state from “monitoring” to “alerted”. In our experiment, the threshold

of worm probes to change state of the overlay node is an adjustable parameter.

6.5.2 Experimental Results

Figure 6.2 shows the progress of infections for simulated worms with and without

cooperative defense mechanism enabled. We use the infection progress model of

Code Red worm as discussed in [82] for our simulation. In this experiment, 60%

of the vulnerable edge networks (900 networks out of 1500) are deployed with the

88

cooperative defense overlay nodes. The impact of different number of cooperative

nodes on defense accuracy has been discussed in [81], so we just use this specific

case to demonstrate the feasibility of our approach. The global worm signature

count threshold is 100.

0

50000

100000

150000

200000

250000

300000

350000

400000

2

4
4

8
6

1
2
8

1
7
0

2
1
2

2
5
4

2
9
6

3
3
8

3
8
0

4
2
2

4
6
4

5
0
6

5
4
8

5
9
0

6
3
2

6
7
4

7
1
6

7
5
8

8
0
0

worm propagation under

containment

worm propagation

Time t(minutes)

N
u
m

b
e
r

o
f
in

fe
c
te

d

n
o
d
e
s

Figure 6.2: Infection progress of worms

Figure 6.3 shows the propagation when the cooperative defense overlay nodes

share worm signature using different gossip intervals. We set the gossip interval

to be 0.1, 0.2, 1, 10 minutes respectively. When the gossip frequency is increased,

the number of infected hosts will decrease as expected. Increasing the gossip fre-

quency of the worm information sharing will increase the communication overhead

as well. As discussed in [39], the gossip based information sharing mechanism

is scalable and resilient with proper selected parameters. However, we can find

even when we aggregate information using gossip interval of 10 minutes, the con-

tainment effect against worm propagation is still acceptable.

Figure 6.4 shows the propagation of worm when independent containment

nodes and cooperative overlay defense nodes are deployed. For both cases, we

assume the individual nodes need to collect 100 worm signatures with the same

89

0

50000

100000

150000

200000

250000

300000

350000

1
 56
 111
 166
 221
 276
 331
 386
 441
 496
 551
 606
 661
 716
 771

Time t(minutes)

N
u

m
b

e
r

o
f

in
fe

c
te

d
 h

o
s
ts

Gossip interval 0.1 minutes

Gossip interval 0.2 minutes

Gossip interval 1 minutes

Gossip interval 10 minutes

Figure 6.3: Global threshold effects

pattern before it filter the packets with that worm signature. For independent

containment nodes, the worm propagation behavior is not constrained while com-

pared with the situation without any containment. By contrast, for cooperative

overlay defense nodes, the worm propagation behavior is largely constrained.

0

50000

100000

150000

200000

250000

300000

350000

400000

1
 52
 103
 154
 205
 256
 307
 358
 409
 460
 511
 562
 613
 664
 715
 766

Time t(minutes)

N
u

m
b

e
r

o
f

in
fe

c
te

d
 h

o
s
ts

Cooperative defense

Independent defense

Without cotainment

Figure 6.4: Benefit of cooperative defense

90

6.6 Summary

In this chapter we presented the use of the decentralized information sharing

framework to defend against Internet worms. As the internal architecture and

individual modules of each detection node has been discussed in Chapter 4 and

Chapter 5, we focus our discussion on the customizing of the framework to defend

against Internet worms. A prototype simulation of the framework and its key

concept was presented and applied to detect and defend against Code Red worms.

Results using the simulation demonstrate that the proposed approach is feasible

and effective against worms.

91

Chapter 7

Conclusion and Future Work

7.1 Conclusion

Distributed denial of service and Internet worms are major threats to the global

network, which cannot be addressed through isolated actions of sparsely deployed

defense nodes. Instead, various defense systems must organize into a frame-

work and inter-operate, exchanging information and services, and acting together,

against the threat [48, 54]. In this dissertation, we designed a decentralized coop-

erative defense mechanism to protect the network infrastructure against network

attacks. The protection infrastructure is a overlay network composed of indi-

vidual network attack detection and defense nodes that are deployed at critical

points of the global network infrastructure. Each overlay node monitors the local

network attack behavior and uses a gossip based overlay infrastructure to aggre-

gate attack information. Our design is distributed and decentralized, where each

defense node collects the global network attack information independently and

makes decisions on its own. As a result, the mechanism is resilient and scalable.

As the aggregated information provides quasi global view of the network attacks,

our mechanism can more effectively and efficiently defend against network at-

tacks than isolated approach as long as the length of the attack is greater than

the information aggregation delay. We have presented a conceptual model that

defines the relationships between the level of knowledge in the distributed system

and attack detection accuracy. The analysis presented demonstrates the feasibil-

ity of gossip based communication mechanisms for cooperative attack detection.

92

A prototype simulation of the framework and its key concepts is presented and

applied to detect and defend against DDoS attacks and Internet worms. Results

using this simulation demonstrate that the proposed approach is effective against

network attacks.

7.2 Research Contributions

The main contributions of this thesis are as follows:

• We defined the knowledge about the network attacks in distributed system

and conceptually analyzed the attack detection accuracy we can achieve

through information sharing in real distributed systems.

• We presented a framework that builds on a self-managing, robust and re-

silient peer-to-peer overlay. This framework composed of local detection

and protection agents that are placed at “strategic” locations in the In-

ternet such as a domain gateway. These agents non-intrusively monitor

the immediate network around them for possible attacks. By correlating

the detection information of each individual nodes, our scheme can greatly

improve the accuracy of the detection.

• We designed gossip based communication mechanism to share information

about attacks within the proposed framework. This mechanism is scalable

and resilient to failure.

• To demonstrate the feasibility and effectiveness of the proposed decentral-

ized attack detection framework, we used it to detect DDoS attacks and

Internet worms as case studies. Simulation results demonstrated that the

proposed mechanism can efficiently detect and protect against these attacks.

93

7.3 Future Directions

There continues to exist many insecure areas in the Internet today that can be

compromised to launch large scale network attacks. This situation will perhaps

last for a long while, if not forever. Coupled with the fact that attack mecha-

nisms and tools continue to improve and evolve, more effective detect and filter

approaches must be developed in addition to the use of ingress packet filtering

and other existing defense mechanisms and procedures.

Future work will fold in more topology information and vulnerability infor-

mation gleamed from automated scanning and mapping tools. When the nodes

know more topology information of the global Internet, they can use more intel-

ligent gossip strategies to reduce the information sharing overhead while trying

to detect attacks. Armed with these more sophisticated methods, our approach

can detect attacks more efficiently. We are investigating several important ques-

tions that still need to be addressed. These include the consensus algorithm and

optimal gossip periods. We also plan to validate this scheme by running them on

real attack data sets.

Furthermore, a relatively homogeneous software base coupled with high speed

Internet connections facilitates the widespread of Internet worms. The increasing

outbreaks of Internet worms pose an immediate risk to the overall security of

the Internet. When the most recent Sapphire/Slammer worm began spreading

throughout the Internet, it doubled in size every 8.5 seconds. It infected more

than 90 percent of vulnerable hosts within 10 minutes. Each infected machine

was compromised, and could be used as a flooding source in a massive DDoS

attacks later on. So far, the Internet worms have been mostly nuisances, e.g., the

analysis of the Sapphire/Slammer worm revealed no intent to harm its infected

hosts. However, in the future the Internet worms coupled with DDoS attacks will

be move virulent, and thus, result in a chaos in the Internet. How to detect and

94

contain such fast spread of Internet worms in real time is an open issue.

95

References

[1] Internet protocol v4 address space. http://www.iana.org/assignments/ipv4-
address-space/.

[2] The gnutella 0.4 protocol specification, 2000.
http://dss.clip2.com/GnutellaProtocol04.pdf.

[3] Gossip-based aggregation in large dynamic networks. (3):219252, August
2005.

[4] Micah Adler. Tradeoffs in probabilistic packet marking for IP traceback. In
Proceedings of the thiry-fourth annual ACM symposium on Theory of Com-
puting, pages 407–418, Montreal, Quebec, Canada, 2002.

[5] Aditya Akella, Ashwin Bharambe, Mike Reiter, and Srinivasan Seshan. De-
tecting DDoS attacks on ISP networks. In ACM SIGMOD Workshop on
Management and Processing of Data Streams, pages 20–23, San Diego, CA,
2003.

[6] David Andersen, Hari Balakrishnan, Frans Kaashoek, and Robert Morris.
Resilient overlay networks. In Proceedings of 18th ACM Symposium on Op-
erating Systems Principles, pages 131–145, Banff, Canada, October 2001.

[7] George Bakos. Sqlsnake code analysis, 2002.
http://www.incidents.org/diary/diary.php?-id=157.

[8] Joao B. D. Cabrera, Lundy Lewis, Xinzhou Qin, Wenke Lee, Ravi K. Pras-
anth, B. Ravichandran, and Raman K. Mehra. Proactive detection of dis-
tributed denial of service attacks using mib traffic variables, a feasibility
study. In IEEE IFIP International Symposium on Integrated Network Man-
agement, pages 609 – 622, Seattle, WA, June 2001.

[9] CERT Coordination Center. Cert advisory ca-2001- 20 continuing threats to
home users, 2001. http://www.cert.org/advisories/CA-2001-20. html.

[10] CERT Coordination Center. Cert advisory ca-2001-19 code red
worm exploiting buffer overflow in iis indexing service dll, 2001.
http://www.cert.org/advisories/CA-2001-19.html.

[11] ”CERT Coordination Center”. Cert advisory ca-1999-17 denial-of-service
tools, 2004. http://www.cert.org/advisories/CA-1999-17.html.

96

[12] Internet Storm Center. Openssl vulnerabilities, Sept. 2002.
http://isc.incidents.org/analysis.html?id=167.

[13] Rocky K. C. Chang. Defending against flooding-based, distributed denial-of-
service attacks: A tutorial. IEEE Communications Magazine, 40(10):42–51,
2002.

[14] Brent Chun, Jason Lee, and Hakim Weatherspoon. Netbait: a distributed
worm detection service, 2003.

[15] Fred Cohen. Computer viruses theory and experiments. 6:2235, 1987.

[16] Keromytis Angelos D., Misra Vishal, and Rubenstein Daniel. Using overlays
to improve network security. In Proceedings of the ITCom Conference, spe-
cial track on Scalability and Traffic Control in IP Networks, pages 245–254,
Boston, MA, August 2002.

[17] Drew Dean, Matt Franklin, and Adam Stubblefield. An algebraic approach
to IP traceback. Information and System Security, 5(2):119–137, 2002.

[18] Alan Demers, Dan Greene, Carl Hauser, Wes Irish, and John Larson. Epi-
demic algorithms for replicated database maintenance. In Proceedings of the
sixth annual ACM Symposium on Principles of distributed computing, pages
1–12, Vancouver, British Columbia, Canada, August 1987.

[19] Sven Dietrich, Neil Long, and Dave Dittrich. An analysis of the ”shaft”
distributed denial of service tool, 2004.

[20] Dave Dittrich. Distributed denial of service (DDoS) attacks/tools, 2004.
http://staff.washington.edu/dittrich/misc/ddos/.

[21] Dave Dittrich. The DoS project’s ’trinoo’ distributed denial of service attack
tool, 2004. http://staff.washington.edu/dittrich/misc/trinoo.analysis.

[22] Dave Dittrich. The ’mstream’ distributed denial of service attack tool, 2004.
http://staff.washington.edu/dittrich/misc/mstream.analysis.txt.

[23] Dave Dittrich. The ’stacheldraht’ distributed denial of service attack tool,
2004. http://staff.washington.edu/dittrich/misc/stacheldraht.analysis.txt.

[24] Dave Dittrich. The ’tribe flood network’ distributed denial of service attack
tool, 2004. http://staff.washington.edu/dittrich/misc/tfn.analysis.txt.

[25] DShield.org. Distributed intrusion detection system, 2000.
http://www.dshield.org, November.

[26] Mark W. Eichin and Jon A. A. Rochlis. With microscope and tweezers: An
analysis of the internet virus of november 1988. In Proceedings of the 1989
IEEE Computer Society Symposium on Security and Privacy, Oakland, Ohio,
1989.

97

[27] Cristian Estan and George Varghese. New directions in traffic measurement
and accounting. In Proceedings of SIGCOMM 2002, pages 270–313, Pitts-
burgh, PA, USA, 2002.

[28] Patrick T. Eugster, Rachid Guerraoui, Anne-Marie Kermarrec, and Laurent
Massoulieacute. Epidemic information dissemination in distributed systems.
IEEE Computer, 37(50):60–67, 2004.

[29] Peter Ferguson and Dave Senie. Network ingress filtering: Defeating denial
of service attacks which employIPsource address spoofing, 2000.

[30] Peter Ferguson and Dave Senie. Network ingress filtering: Defeating denial
of service attacks which employ IP source address spoofing, 2002. IETF RFC
2827.

[31] Associated Press for Fox News. Powerful attack cripples internet, 2002.

[32] Thomer M. Gil and Massimiliano Poletto. Multops: a data-structure for
bandwidth attack detection. In Proceedings of 10th Usenix Security Sympo-
sium, pages 23–28, Washington, D.C., USA, August 2001.

[33] Joseph Y. Halpern and Yoram Moses. Knowledge and common knowledge
in a distributed environment. In Symposium on Principles of Distributed
Computing, pages 50–61, 1984.

[34] Brain Hancock. Trinity v3, a DDoS tool, hits the streets. Computers Secu-
rity, 19(7), 2000.

[35] Wes Hardaker, Darrell Kindred, Ron Ostrenga, Dan Sterne, and Roshan
Thomas. Justification and requirements for a national ddos defense technol-
ogy evaluation facility, 2005. http://www.isi.edu/deter/docs.

[36] Salim Hariri, Tushneem Dharmagadda, Modukuri Ramkishore, Guangzhi
Qu, and C.S Raghavendra. Vulnerability analysis of faults/attacks in net-
work centric systems. In Proceedings of Parallel and Distributed Computing
Systems, pages 256–261, Reno, Nevada, USA, 2003.

[37] John Ioannidis and Steven M. Bellovin. Implementing pushback: Router-
based defense against DDoS attacks. In Proceedings of Network and Dis-
tributed System Security Symposium, NDSS ’02, pages 100–108, Reston, VA,
USA, February 2002.

[38] John Ioannidis and Steven M. Bellovin. Implementing pushback: Router-
based defense against DDoS attacks. In Proceedings of Network and Dis-
tributed System Security Symposium, NDSS ’02, pages 100–108, Reston, VA,
USA, February 2002.

98

[39] David Kempe, Alin Dobra, and Johannes Gehrke. Computing aggregate
information using gossip. In in Proceedings of the 44th Annual IEEE Sym-
posium on Foundations of Computer Science, Cambridge, MA, October 2003.

[40] Jeffrey O. Kephart and Steve R. White. Directed-graph epidemiological
models of computer viruses. In Procedings of the 1991 IEEE Computer So-
ciety Symposium on Research in Security and Privacy, Oakland,California,
1991.

[41] Hyang-Ah Kim and Brad Karp. Autograph: Toward automated distributed
worm signature detection. In Proceedings of USENIX Security Symposium,
2004.

[42] Jun Li, Peter Reiher, and Gerald Popek. Resilient self-organizing overlay
networks for security update delivery. IEEE Journal on Selected Areas in
Communications, special issue on Service Overlay Networks, 22(1), January
2004.

[43] MengJang Lin and Keith Marzullo. Directional gossip: gossip in a wide
area network. In Proceedings of Dependable Computing - Third European
Dependable Computing Conference, pages 364–379, Berlin, Germany, 1999.

[44] Bruce A. Mah. An empirical model of HTTP network traffic. In Proceedings
of the IEEE INFOCOM, pages 592–600, 1997.

[45] Ratul Mahajan, Steve Bellovin, Sally Floyd, John Ioannidis, Vern Pax-
son, and Scott Shenker. Aggregate-based congestion control, 2003.
http://citeseer.nj.nec.com/530614.html.

[46] Allison Mankin, Dan Massey, Chie Lung Wu, S. Felix Wu, and Lixia Zhang.
On design and evaluation of intention-driven icmp traceback. In 10th Inter-
national Conference on Computer Communications and Networks, Arizona,
October 2001.

[47] Jelena Mirkovic, Gregory Prier, and Peter Reiher. Attacking DDoS at the
source. In Proceedings of ICNP 2002, pages 312–321, Paris, France, Novem-
ber 2002.

[48] Jelena Mirkovic, Gregory Prier, and Peter Reiher. Alliance formation for
DDoS defense. In Proceedings of the New Security Paradigms Workshop,
ACM SIGSAC, pages 11–18, Ascona, Switzerland, August 2003.

[49] David Moore, Vern Paxson, Stefan Savage, Colleen Shannon, Stuart Stani-
ford, and Nicholas Weaver. The spread of the sapphire/slammer worm, 2003.
http://www.caida.org/outreach/papers/2003/sapphire/sapphire.html.

[50] David Moore, Colleen Shannon, and Jeffery Brown. Code-red: a case study
on the spread and victims of an internet worm. In Proceedings of the Internet
Measurement Workshop (IMW), 2002.

99

[51] David Moore, Colleen Shannon, and Jeffery Brown. Code-red: a case study
on the spread and victims of an internet worm. In ACM/USENIX Internet
Measurement Workshop, France, November, 2002.

[52] David Moore, Colleen Shannon, Geoffrey M. Voelker, and Stefan Savage.
Internet quarantine: Requirements for containing self-propagating code. In
INFOCOM, 2003.

[53] David Moore, Geoffrey Voelker, and Stefan Savage. Inferring internet denial
of service activity. In Proceedings of the USENIX Security Symposium, pages
9–22, Washington, DC, USA, August 2001.

[54] Christos Papadopoulos, Robert Lindell, John Mehringer, Alefiya Hussain,
and Ramesh Govindan. Cossack: Coordinated suppression of simultaneous
attacks. In DARPA Information Survivability Conference and Exposition,
volume 1, pages 2–13, Washington, DC, April 2003.

[55] Kihong Park and Heejo Lee. On the effectiveness of probabilistic packet
marking for IP traceback under denial of service attack. In Proceedings of
IEEE INFOCOM, pages 338–347, Anchorage, Alaska, USA, 2001.

[56] Kihong Park and Heejo Lee. On the effectiveness of route-based packet
filtering for distributed DoS attack preventation in power-law internets. In
Proceedings of ACM SIGCOMM, pages 15–26, San Diego, CA, USA, August
2001.

[57] Tao Peng, Christopher Leckie, and Kotagiri Ramamohanarao. Protection
from distributed denial of service attack using history-based IP filtering.
In Proceedings of IEEE International Conference on Communications, vol-
ume 1, pages 482–486, Anchorage, Alaska, USA, May 2003.

[58] Boris Pittel. On spreading a rumor. SIAM Journal on Applied Mathematics,
47(1):213–223, February 1987.

[59] Phillip A. Porras and Peter G. Neumann. EMERALD: Event monitoring
enabling responses to anomalous live disturbances. In Proc. 20th NIST-
NCSC National Information Systems Security Conference, pages 353–365,
1997.

[60] Martin Roesch. The snort network intrusion detection system, 2002.
http://www.snort.org.

[61] John Shoch and Jon Hupp. The ”worm” programs - early experience with a
distributed computation. 25(3), March 1982.

[62] Stelios Sidiroglou and Angelos D. Keromytis. Countering network worms
through automatic patch generation. In IEEE Security and Privacy, 2005.

100

[63] Sumeet Singh, Cristian Estan, George Varghese, and Stefan Savage. Au-
tomated worm fingerprinting. In Proceedings of the USENIX Symposium
on Operating System Design and Implementation, San Francisco, December
2004.

[64] Steven R. Snapp, James Brentano, Gihan V. Dias, Terrance L. Goan, L. Todd
Heberlein, Che lin Ho, Karl N. Levitt, Biswanath Mukherjee, Stephen E.
Smaha, Tim Grance, Daniel M. Teal, and Doug Mansur. DIDS (distributed
intrusion detection system) - motivation, architecture, and an early proto-
type. In Proceedings of the 14th National Computer Security Conference,
pages 167–176, Washington, DC, 1991.

[65] Alex C. Snoeren, Craig Partridge, Luis A. Sanchez, Christine E. Jones, Fab-
rice Tchakountio, Stephan T. Kent, and W. Timothy Strayer. Hash-based
IP traceback. In Proceedings of Sigcomm, pages 3–14, San Diego, California,
United States, August 2001.

[66] Anil Somayaji, Steven Hofmeyr, and Stephanie Forrest. Principles of a com-
puter immune system. In Meeting on New Security Paradigms, 23-26 Sept.
1997, Langdale, UK, pages 75–82. New York, NY, USA : ACM, 1998.

[67] Dawn Xiaodong Song and Adrian Perrig. Advanced and authenticated mark-
ing schemes for IP traceback. In Proceedings of IEEE Infocomm, volume 2,
pages 878–886, Anchorage, Alaska, USA, 2001.

[68] Stuart Staniford, Vern Paxson, and Nicholas Weaver. How to 0wn the inter-
net in your spare time. In To Appear in the Proceedings of the 11th USENIX
Security Symposium (Security ’02), 2002.

[69] Ion Stoica, Robert Morris, David Karger, Frans Kaashoek, and Hari Balakr-
ishnan. Chord: A scalable Peer-To-Peer lookup service for internet applica-
tions. IEEE Transactions on Networking, 11(1):17–32, February 2003.

[70] Robert Stone. Centertrack: An IP overlay network for tracking DoS floods.
In Proceedings of the 9th USENIX Security Symposium, pages 199–212, Den-
ver, CO, August 2000.

[71] Rob Thomas. Bogon list v1.5, 07 Aug 2002.
http://www.cymru.com/Documents/bogon-list.html.

[72] Robbert van Renesse, Kenneth Birman, and Werner Vogels. Astrolabe:
A robust and scalable technology for distributed system monitoring, man-
agement, and data mining. ACM Transactions on Computer Systems,
21(2):164–206, May 2003.

[73] Robbert van Renesse, Yaron Minsky, and Mark Hayden. A gossip-based
failure detection service. In Proceedings of Middleware ’98, the IFIP Inter-
national Conference on Distributed Systems Platforms and Open Distributed
Processing, pages 55–70, England, September 1998.

101

[74] Giovanni Vigna and Richard A. Kemmerer. Netstat: A network-based in-
trusion detection system. Journal of Computer Security, 7(1), 1999.

[75] Haining Wang and Danlu Zhang Kang G. Shin. Detecting syn flooding
attacks. In Proceedings of IEEE Infocom, pages 1530–1539.

[76] Helen J. Wang, Chuanxiong Guo, Daniel R. Simon, and Alf Zugenmaier.
Shield: Vulnerability-driven network filters for preventing known vulnerabil-
ity exploits. In Proceedings of ACM SIGCOMM, Portland, Oregon, August
2004.

[77] Nicholas Weaver, Stuart Staniford, and Vern Paxson. Very fast containment
of scanning worms. In Proceedings of the 13th USENIX Security Symposium,
San Diego, USA, August 2004.

[78] Stefan Savageand David Wetherall, Anna Karlin, and Tom Anderson. Practi-
cal network support for IP traceback. In Proceedings of the ACM SIGCOMM
Conference, pages 295–306, Stockholm, Sweden, August 2000.

[79] The Ramen Worm. Ciac information bulletin, 2001.
http://www.ciac.org/ciac/bulletins/l-040.shtml.

[80] David K. Y. Yau, John C. S. Lui, and Feng Liang. Defending against dis-
tributed denial of service attacks with max-min fair server centric router
throttles. In Proceedings of the Tenth IEEE International Workshop on
Quality of Service, pages 35–44, Miami Beach, FL, 2002.

[81] Vinod Yegneswaran, Paul Barford, and Somesh Jha. Global intrusion de-
tection in the DOMINO overlay system. In The 11th Annual Network and
Distributed System Security Symposium (NDSS), Feburary 2004.

[82] Cliff Changchun Zou, Weibo Gong, and Don Towsley. Code red worm propa-
gation modeling and analysis. In In Proceedings of the 9th ACM Conference
on Computer and Communications Security, pages 138–147, November 2002.

102

Curriculum Vita

Guangsen Zhang

2006 PhD, Electrical & Computer Engineering, Rutgers University, USA.

2003 MS, Electrical & Computer Engineering, Rutgers University,USA.

1997 MEng, Information Engineering, Beijing University os Posts and Telecom-
munication, PRC

1994 BEng, Information Science and Technology, Xian Jiaotong University,
PRC

2001-2005 Graduate Research Assistant, The Applied Software Systems Lab,
Center for Advance Information Processing, Rutgers University, USA

2001-2001 Senior Software Engineer, Agilent China Software Design Center, Ag-
ilent Technologies, PRC

1998-2001 Staff R&D Engineer, Bell Labs China, Lucent Technologies, PRC

1997-1998 Staff R&D Engineer , Putian Telecom, PRC

1994-1997 Research Assistant, The Applied Communication Systems Lab, Bei-
jing University of Posts and Telecommunication, PRC

Publications

G. Zhang and M. Parashar, “Dynamic Context-aware Access Control
for Grid Applications”, Proceedings of the 4th International Workshop
on Grid Computing (Grid 2003), Phoenix, AZ, USA, November 2003.

G. Zhang and M. Parashar, “Context-aware Dynamic Access Control
for Pervasive Computing”, 2004 Communication Networks and Dis-
tributed Systems Modeling and Simulation Conference (CNDS’04), San
Diego, CA, USA, January 2004.

103

G. Zhang and M. Parashar, “Environment Sensitive Access Manage-
ment for Pervasive Grid Applications”, Cluster Computing: The Jour-
nal of Networks, Software Tools, and Applications, Kluwer Academic
Publishers, Vol. 9, No. 2, 2006.

M. Parashar, H. Liu, Z. Li, V. Matossian, C. Schmidt, G. Zhang and S.
Hariri, “AutoMate: Enabling Autonomic Grid Applications”, Cluster
Computing: The Journal of Networks, Software Tools, and Applica-
tions, Special Issue on Autonomic Computing, Kluwer Academic Pub-
lishers, Vol. 9, No. 1, 2006.

G. Zhang and M. Parashar, “Cooperative Defense against Network
Attacks”, Proceedings of the 3rd International Workshop on Security
In Information Systems (WOSIS 2005), 7th International conference
on Enterprise Information Systems (ICEIS 2005), Miami, FL, USA,
May 2005.

G. Zhang and M. Parashar, ”Cooperative Defense against DDoS At-
tacks”, Proceedings of the 2005 International Conference on Security
Management (SAM 2005), Las Vegas, NV, USA, CSREA Press, June
2005.

G. Zhang and M. Parashar, ”Cooperative Defense against DDoS At-
tacks”, Journal of Research and Practice in Information Technology
(JRPIT), Australian Computer Society Inc., Vol. 38, No. 1, February
2006.

M. Agarwal, V. Bhat, Z. Li, H. Liu, B. Khargharia, V. Matossian, V.
Putty, C. Schmidt, G. Zhang, S. Hariri and M. Parashar,“AutoMate:
Enabling Autonomic Applications on the Grid”, Proceedings of the Au-
tonomic Computing Workshop, 5th Annual International Active Mid-
dleware Services Workshop (AMS2003), June 2003.

