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ABSTRACT

The growing ubiquity of sophisticated sensor/actuator devices with embedded computing and

communications capabilities, and the emergence of pervasive information and computational

Grids require a middleware infrastructure that: (a) is scalable and self-managing, (b) is based

on content rather than names and/or addresses, (¢) supports asynchronous and decoupled inter-

actions rather than forcing synchronizations, and (d) provides some interaction guarantees. In

this paper we propose Associative Rendezvous (AR) as a paradigm for content-based decoupled

interactions for pervasive applications. In this paper we also present Meteor, a content-based

middleware infrastructure to support AR interactions. The design, implementation, and evalu-

ation of Meteor are presented.
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1. Introduction

The growing ubiquity of sophisticated sensor/actuator devices with embedded computing and
communications capabilities [1], and the emergence of pervasive information and computational
Grids [2] are enabling new generations of applications based on seamless access, aggregation,
and interactions [3]. For example, one can conceive of a fire management application where
computational models use streaming information from sensors embedded in the building along
with real time and predicted weather information (temperature, wind speed and direction,
humidity) and archived history data to predict the spread of the fire and to guide firefighters,
warning of potential threats (blowback if a door is opened) and indicating most effective options.
This information can also be used to control actuators in the building to manage the fire and
reduce damage.

Other examples include scientific/engineering applications that symbiotically and oppor-
tunistically combine computations, experiments, observations, and real-time data to manage
and optimize its objectives (e.g. oil production, weather prediction) [3], pervasive applications
that leverage the pervasive/ubiquitous information Grid to continuously manage, adapt, and
optimize our living context (e.g. your clock estimates drive time to your next appointment based
on current traffic/weather and warns you appropriately), crisis management applications that
use pervasive conventional and unconventional information for crisis prevention and response,
medical applications that use in-vivo and in-vitro sensors and actuators for patient management,
ad hoc distributed control systems for automated highway systems, manufacturing system or
unmanned airborne vehicles, and business applications that use anytime-anywhere information
access to optimize profits.

The defining characteristic of these applications is their ability to leverage the pervasive
Grid infrastructure to continuously manage, adapt, and optimize themselves to meet their ob-
jectives. However, these applications and the underlying pervasive environment are inherently
large, distributed, complex, heterogeneous and dynamic. As a result, supporting these ap-
plications requires a middleware infrastructure that: (a) is scalable and self-managing, (b) is
based on content rather than names and/or addresses, (c) supports asynchronous and decoupled

interactions rather than forcing synchronizations, and (d) provides some interaction guarantees.
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In this paper we propose Associative Rendezvous (AR) ' as a paradigm for content-based
decoupled interactions for pervasive applications. AR extends the conventional name/identifier-
based rendezvous [5, 6] in two ways. First it uses flexible combinations of keywords (i.e.
keywords, partial keywords, wildcards, ranges) from a semantic information space, instead of
opaque identifiers that have to be globally synchronized. Second, it enables the reactive behav-
iors at rendezvous points to be embedded in the message or message request. AR differs from
emerging publish/subscribe paradigms in that individual interests (subscriptions) are not used
for routing and do not have to be synchronized - they can be locally modified at a rendezvous
node at anytime. In this paper we also present Meteor, a content-based middleware infras-
tructure to support AR interactions. The design, implementation and evaluation of Meteor is
presented.

The rest of this paper is organized as follows. Section 2 presents the Associative Rendezvous
interaction paradigm and its semantics. Section 3 presents the design and implementation of
Meteor. Section 4 presents an experimental evaluation of Meteor. Sections 5 presents related

work. Section 6 concludes this paper.

IThe term associative to describe content-based interactions was introduced in [4]
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2. Associative Rendezvous

Associative Rendezvous (AR) is a paradigm for content-based decoupled interactions with pro-
grammable reactive behaviors. Rendezvous-based interactions [5] provide a mechanism for de-
coupling senders and receivers. Senders send messages to a rendezvous point without knowledge
of which or where the receivers are. Similarly, receivers receive messages from a rendezvous point
without knowledge of which or where the senders are. Note that senders and receivers may be
decoupled in both space and time [5]. Such decoupled asynchronous interactions are naturally
suited for large, distributed and highly dynamic systems such as pervasive Grid environments.

In conventional rendezvous interactions, rendezvous points are defined by opaque identi-
fiers [6] that have to be globally synchronized before they can be used. This limits both, the
scalability as well as the dynamism of the system. Associative interactions [4, 7] use semantic
content-based resolution, used by the naming service, to enable interactions. In associative
interactions participating clients locally maintain and export “profiles” consisting of attributes
specifying credentials, context, state, interests, capabilities, etc. Messages are similarly en-
hanced to include ”semantic-selectors”. The semantic-selector is a prepositional expression over
all possible attributes and specifies the profile(s) that are to receive the message. Thus the no-
tion of a static client or client group name used by conventional interactions is subsumed by the
selector which descriptively names dynamic sets of clients of arbitrary cardinality. Associative
interactions only require the existence of globally known information spaces (ontologies), and
eliminates the need for expensive synchronization and complex tracking protocols in pervasive
Grid environments.

AR extends the conventional name/identifier-based rendezvous in two ways. First, it uses
flexible combinations of keywords (i.e, keyword, partial keyword, wildcards, ranges) from a
semantic information space, instead of opaque identifiers (names, addresses) that have to be
globally known. Interactions are based on content described by keywords, such as the type of
data a sensor produces (temperature or humidity) and/or its location, the type of functionality
a service provides and/or its QoS guarantees, and the capability and/or the cost of a resource.
Second, it enables the reactive behaviors at the rendezvous points to be encapsulated within

messages increasing flexibility and expressibility, and enabling multiple interaction semantics
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(e.g. broadcast, multicast, notification, publisher/subscriber, mobility, etc.).

2.1 The Semantics of Associative Rendezvous Interactions

The AR interaction model consists of three elements: Messages, Associative Selection, and

Reactive Behaviors.

2.1.1 AR Messages.

An AR message is defined as the triplet: (header, action, data). The data field may be empty
or may contain the message payload. The header includes a semantic profile in addition to
the credentials of the sender, a message context and the TTL (time-to-live) of the message.
The profile is a set of attributes and/or attribute-value pairs, and defines the recipients of the
message. The attribute fields must be keywords from a defined information space while the
values field may be a keyword, partial keyword, wildcard, or range from the same space. At
the rendezvous point, a profile is classified as a data profile or an interest profile depending
on the action field of the message. A sample data profile used by a sensor to publish data
is shown in Figure 2.1 (a), and a matching interest profile is shown in Figure 2.1 (b). Note
that the number or order of the attribute/attribute-value pairs in a profile are not restricted.
However our current prototype requires that the maximum possible attribute/attribute-value
pairs must be predefined. The action field of the AR message defines the reactive behavior at

the rendezvous point and is described in Section 2.1.3.

(temperature=110) (temperature>80)
(unit=Fahrenheit) (unit=Fa*)
(error<=0.01) (error<=0.1)
(alarm) (alarm)

(@) (b)

Figure 2.1: Sample message profiles: (a) a data profile for a sensor; (b) an interest profile for a
client.

The AR interaction model defines a single symmetric post primitive. To send a message,
the sender composes a message by appropriately defining the header, action and data fields,
and invokes the post primitive. The post primitives resolve the profile of the message and
deliver the message to relevant rendezvous points. The profile resolution guarantees that all the
rendezvous points that match the profile will be identified. However, the actual delivery relies
on existing transport protocols. A receive operation is similar except that the action field is

defined appropriately and the data field is empty.
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AR: Associative Rendezvous

1) @
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(2) post(<p;, *>, notify_data(C2) ) .
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(8) post (<p,, p;>, delete_data(C1))
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(7) retrieve(C2, data) (9) post(<p,, *>, delete_interest(C2))
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(6) post(<p,, *>, retrieve(C2))

(©) (d)

Figure 2.2: An illustrative example.

2.1.2 Associative Selection

Profiles are represented using a hierarchical schema that can be efficiently stored and evaluated
by the selection engine [8, 4]. A profile p represents a path in the hierarchical schema, [eg A...ex],
where A can be a parent-child (“/”) operator (i.e. at adjacent levels) or an ancestor-descendant
(“//”) operators (i.e. separated by more than one level). Within a level, the profile defines a
propositional expression where A represents propositional operators, such as A and V, between
elements at the same level. Note that the propositional expression at a level must evaluate to
TRUE for the evaluation to continue to the next level. The elements in the profile can be an
attribute, e;(a;), or an attribute-value pair e;(k;,v;), where e; is a keyword and v; may be a
keyword, partial keyword, wildcard or range. The singleton attribute a; evaluates to true if and
only if p contains the simple attribute a;. The attribute-pair (a;, u;) evaluates to true with
respect to a profile p, if and only if p contains an attribute a; and the corresponding value v;
satisfy u;. For example, the profile (a) is associatively selected by the profile (b) in Figure 2.1,
since (1) both have matched singleton attribute temperature, (2) for attribute degree, 100 > 80,
which satisfies the binary relation, (3) for attribute unit, Fahrenheit matches wildcard Fax, (4)
error< (.01 satisfies the request error<0.1.

A key characteristic of the selection process is that it does not differentiate between interest

and data profiles. This allows all messages to be symmetric where data profiles can trigger
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the reactive behaviors associated with interest messages and vice versa. The matching system
combines selective information dissemination with reactive behaviors. Further, both data and

interest message are persistent with their persistence defined by the TTL field.

Actions Semantics

store store data profile and data;

match message profile with existing interest profile;
execute action if match.

retrieve match message profile with existing data profiles;

send data corresponding to each matching data profile to the sender.
notify_data match message profile with existing data/interest profiles;
notify_interest | notify sender if there is at least one match.
delete_data match message profile with existing data/interest profiles;

delete_interest | remove all matching data profiles and data from the system in case
of delete_data;

remove all matching interest profiles from the system in case of
delete_interest.

Table 2.1: Basic reactive behaviors.

2.1.3 Reactive Behaviors.

The action field of the message defines the reactive behavior at the rendezvous point. Basic
reactive behaviors currently defined include store, retrieve, notify, and delete as shown in Ta-
ble 2.1. The notify and delete actions are explicitly invoked on a data or an interest profile. The
store action stores data and data profile at the rendezvous point. It also causes the message
profile to be matched against existing interest profiles and associated actions to be executed
in case of a positive match. The retrieve action retrieves data corresponding to each match-
ing data profile. The notify action matches the message profile against existing interest/data
profile, and notifies the sender if there is at least one positive match. Finally, the delete action
deletes all matching interest/data profiles. Note that the actions will only be executed if the
message header contains an appropriate credential. Also note that each message is stored at
the rendezvous for a period corresponding to the TTL defined in its header. In case of multiple

matches, the profiles matching are processed in random order.

2.2 Illustrative Examples

The operation of the model is illustrated in Figure 2.2. In Figure 2.2(a), client C1 first requests
notification of interest with profile < pl,p2 >. Client C2 then requests notification of data

corresponding to its interest profile < pl,* >. This causes a notification to be sent to C1. C1
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now posts data with data profile < pl,p2 > (Figure 2.2(b)). Since this data profile matches
C2’s interest profile, a notification is sent to C2. C2 now requests data with interest profile
< pl,* > (Figure 2.2(c)). This matches Cl’s data profile and the corresponding data is sent
to C2. The example assumes that the TTL for data and interest profiles have not expired. Cl1
and C2 now delete the data and interest respectively (Figure 2.2(d)).

Note the symmetric behavior of the post operator. As seen in Figure 2.2(a), a client can
subscribe to both interests and data. This is particularly useful for sensor networks where an
energy constrained sensor may want to produce data when there is an interest for its data,

allowing it to use power and bandwidth more effectively.

D1
retrieve (D1, data)
ost (<p,, *, ¥>, retrieve(D1))

post (<p,, p,, p3>, store, data) retrieve (D2, data)
——— - D2
post (<p,, p,, p3>, retrieve(D2))

post (<p,, p,, *>, retrieve(D3))
retrieve (D3, data) .

D3

S1

Figure 2.3: One-to-many interactions using Associative Rendezvous.

AR can be used to realize different interaction semantics such as one-to-many, one-to-some,
one-to-all while appropriately setting data and interest profiles. Further, as these profiles are
defined locally by a client, no synchronization is required to achieve these interaction semantics.

Figure 2.3 illustrates a one-to-many (e.g. multicast) interaction using AR.
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3. Meteor: A Content-based Middleware Infrastructure
for Decoupled Interactions

Meteor is a content-based middleware infrastructure for decoupled interactions in pervasive
Grid environments based on the Associative Redendezvous model. It is essentially a dynamic
P2P network of Rendezvous Peers (RP). To use Meteor, applications must have access to at
least one RP and can post messages to this RP. A schematic overview of the Meteor stack is
presented in Figure 3.1. It consists of 3 key components: (1) a self-organizing overlay, (2) a
content-based routing infrastructure (Squid), and (3) the Associative Rendezvous Messaging

Substrate (ARMS). These components are described below.

Application

ssolciative Rendezvous Mes‘saging

Co{ltent—based Routing (S:uid) '
dverlay network (e.g. Chord) '

| \

\_ | P2P substrate (JXTA) ﬁ

Figure 3.1: A schematic overview of the Meteor stack.

Meteor stack

3.1 The Overlay Network Layer - Chord

The Meteor overlay network is composed of RP nodes, which may be access points or mes-
sage forwarding nodes in ad-hoc sensor networks and servers or end-user computers in wired
networks. RP nodes can join or leave the network at any time.

The current Meteor overlay network uses Chord [9]. Peer nodes in the Chord overlay form
a ring topology. Every node in the Chord overlay is assigned a unique identifier ranging from 0
to 2™-1 using consistent hashing [10]. The identifiers are arranged as a circle modulo 2. Each
node maintains information about (at most) m neighbors, called fingers, in a finger table. The
finger table is used for efficient routing and enables data lookup with O(log N) cost [9], where

N is the number of nodes in the system. The finger table is constructed when a node joins
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the overlay, and it is updated any time a node joins or leaves the system. The cost of a node
join/leave is O(log?N). An example of an overlay network with 5 nodes and an identifier space

from 0 to 2*-1 is shown in Figure 3.2.

Finger table
1 5+1 s | 4 at%mde 5
542 8
5| 5+4 10
5+8 0
10 finger = the successor of (this node
3 identifier + 2"~ ") mod 2™, 1 <= i <=m

Figure 3.2: Example of the overlay network. Each node stores the keys that map to the segment
of the curve between itself and the predecessor node.

Advantages of Chord include its guaranteed performance, logarithmic in number of messages,
and its ease of implementation. Drawbacks include the cost of node join and leave operations
(i.e. key reallocation) and the fact that constant periodic messages are required to maintain
the ring (i.e. update propagation).

The overlay network layer of the Meteor stack provides a simple abstraction to the layers
above, consisting of a single operation: lookup(identifier). Given an identifier, this operation
locates the node that is responsible for it, i.e, the node with an identifier that is the closest
identifier greater than or equal to the queried identifier. Application names can be mapped to

identifiers using hashing mechanisms, and then mapped to nodes in the overlay network.

3.2 Content-based Routing with Squid

Squid builds on top of the Chord overlay to enable flexible content-based routing. As men-
tioned above, the lookup operator provided by the Chord overlay requires an exact identifier.
Squid effectively maps complex queries consisting of keyword tuples (multiple keywords, par-
tial keywords, wildcards, and ranges) onto clusters of identifiers, and guarantees that all peers
responsible for identifiers in these clusters will be found with bounded costs in terms of number
of messages and the number of intermediate RP nodes involved.

Keywords can be common words or values of globally defined attributes, depending on the
nature of the application that uses Squid. These keywords form a multidimensional keyword
space; keyword tuples represent points in this space and the keywords are the coordinates. In
Figure 3.3 (a) the keyword tuple (2, 1) is a point in a 2-dimensional space. A keyword tuple
is defined as a list of d keywords, wildcards and/or ranges, where d is the dimensionality of

* Xk

the keyword space. For example (computer, network), (computer, net*) and (comp*, *) are
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all valid keyword tuples in a 2-dimensional space. A keyword tuple containing ranges can be
(256 - 512MB, *, 10Mbps - *) and specifies a computational resource with memory between
256 and 512 MB, any CPU frequency and at least 10Mbps base bandwidth. If the keyword
tuple contains only complete keywords, it is called simple, and if it contains partial keywords,
wildcards and/or ranges it is called complez.

The key innovation of Squid is the use of a locality preserving and dimension reducing
indexing scheme, based on the Hilbert Space Filling Curve (SFC), which effectively maps the
multidimensional information space to the peer identifier space. An SFC [11, 12, 13] is a
continuous mapping from a d-dimensional space to a 1-dimensional space, generated recursively.
Figure 3.3 (b) shows an example of Hilbert SFC, in a 2-dimensional space. Additional details
about the use of Hilbert SFC in Squid can be found in [14].

Content-based routing in Squid is achieved as follows: SFCs are used to generate the 1-
dimensional index space from the multi-dimensional keyword space. Applying the Hilbert map-
ping to this multi-dimensional space, each profile consisting of a simple keyword tuple can be
mapped to a point on the SFC. Further, any complex keyword tuple can be mapped to regions in
the keyword space and the corresponding clusters (segments of the curve) in the SFC (see Figure
3.4 (a)). The 1-dimensional index space generated corresponds to the 1-dimensional identifier
space used by the Chord overlay. Thus, using this mapping RP nodes corresponding to any
simple or complex keyword tuple can be located. The Squid layer of the Meteor stack provides
a simple abstraction to the layer above consisting of a single operation: deliver(keyword tuple,
data), where data is the message payload provided by the messaging layer above. The routing

process is described below.

) >
4 54 0
g Elmlmlmlm 51
I yword tuple = [ ||~ [[{[H]]
)2 anismdbun il 13
)4 el JLE
)4 — gl —
A ey
1FT m@nldm 40
N > O 19+163 32
2 () Temperature () Temperature ©

Figure 3.3: Routing using a simple keyword tuple in Squid: (a) the simple keyword tuple (2, 1)
is viewed as a point in a multidimensional space; (b) the keyword tuple is mapped to the index
7, using Hilbert SFC; (c) the data will be routed in the overlay (an overlay with 5 RP nodes
and an identifier space from 0 to 26-1) at RP node 13, the successor of the index 7.

WINLAB Proprietary 11



Routing using simple keyword tuples.

The routing process for a simple keyword tuple is illustrated in Figure 3.3. It consists of two
steps: first, the SFC-mapping is used to construct the index of the destination RP node from
the simple keyword tuple, and then, the overlay network lookup mechanism is used to route to

the appropriate RP node in the overlay.

Routing using complex keyword tuples.

The complex keyword tuple identifies a region in the keyword space, which in turn corresponds
to clusters of points in the index space. For example, in Figure 3.4 (a), the complex keyword
tuple (2-3, 1-5) representing data read by a sensor (temperature between 2 and 3 units and

humidity between 1 and 5 units) identifies 2 clusters with 6 and 4 points respectively.

>
= 0
%A (& Complex ,»==0O¢
Z HA Fil keyword 51 4°
Z N yWor g
5 7| tuple ! /ﬂ » I
= ! %~ Destination
—_ [} [}
- ] ] nodes
= l‘ ]
1 I 40 Q /
o > ‘N._- _4‘
23 Temperature 32

(a

Rl

(b)

Figure 3.4: Routing using complex keyword tuple (2-3, 1-5): (a) the keyword tuple defines a
rectangular region in the 2-dimensional keyword space consisting of 2 clusters (2 segments on
the SFC curve); (b) the clusters (the solid part of the circle) correspond to destination RP
nodes 13 and 32, which are routed to.

Thus a complex keyword tuple is mapped by the Hilbert SFC to clusters of SFC indices and
correspondingly, multiple destination identifiers. Once the clusters associated with the complex
keyword tuple are identified, a straightforward approach consists of using the overlay lookup
mechanism to route individually to each RP node. Figure 3.4 illustrates this process. However,
as the originating RP node cannot know how the clusters are distributed in the overlay network,
the above approach can lead to inefficiencies and redundant messages, especially when there
are a large number of clusters. The routing process can be optimized by using the recursive
nature of the SFC to distribute the list of clusters to be routed. This optimization is presented

in detail in [14].

3.3 Associative Rendezvous Messaging Substrate

The matching engine component is essentially responsible for matching profiles. An incoming

message profiles is matched against existing interest and/or data profiles depending on the
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<message id="Xxxxxx">
<header>
<credentials FireFighterld = "xxxxxx"/>
<profile maxNumAttributes="8">
<temperature operator=">=", value="80">
<unit value="Fa*"/>
<error operator="<="value="0.1"/>
</temperature>
<wind>
<degree value="*"/>
<direction value="""/>
</wind>
<alarm/>
</profile>
<ttl>600000</ttl>
<header>

<action>
retrieve(123. 34. 56. 78 : 9999)

</action>

</message>

Figure 3.5: Sample XML message with interest profile.

desired reactive behavior. If the result of the match is positive, then the action field of the

incoming message is executed first and then the action field of the matched profile is evaluated.

<message id="xXxxxxx">
<header>
<credentials sensorlD = "xxxxxx"/>
<profile maxNumAttributes="8">
<temperature value="110">
<unit value="Fahrenheit"/>
<error operator="<=" value="0.01"/>
<wind>
<speed value="20MPH'/>
<direction value="northwest"/>
</wind>
<alarm/>
</profile>
<ttl>200000</ttl>
<header>

<action>store</action>
<payload>
<location>
Rutgers.CoreBuilding.Room832
</location>
<alarm>
<status>caution</status>
</alarm>

</payload>
</message>

Figure 3.6: Sample XML message with data profile.

The ARMS layer implements the Associative Rendezvous interaction model. At each RP,
ARMS consists of two components: the profile manager and the matching engine. The profile
manager manages locally stored profiles. Profiles are implemented as XML files. Sample XML
messages with interest and data profiles are illustrated in Figure 3.5 and Figure 3.6 respectively.
The managers monitors message credentials and contexts and ensures that related constraints

are satisfied. For example, a client cannot retrieve data that it is not authorized to. Similarly,

WINLAB Proprietary 13



a client cannot delete a profile it is not authorized to. The profile manager is also responsible
for garbage collection. It maintains a local timer and purges interest and data profiles when
their TTL fields have expired. Finally, the profile manager executes the action corresponding

to a positive match.

3.4 Implementation Overview

The current implementation of Meteor builds on Project JXTA (http://www.jxta.org), a general-
purpose peer-to-peer framework. JXTA defines concepts, protocols, and a network architecture.
JXTA concepts include peers, peergroups, advertisements, modules, pipes, rendezvous and se-
curity. JXTA defines protocols for : (1) discovering peers (Peer Discovery Protocol, PDP),
(2) binding virtual end-to-end communication channels between peers (Pipe Binding Protocol,
PBP), (3) resolving queries (Peer Resolver Protocol, PRP), (4) obtaining information on a par-
ticular peer, such as its available memory or CPU load (Peer Information Protocol, PIP) (5)
propagating messages in a peergroup (Rendezvous protocol, RVP), (6) determining and rout-
ing from a source to a destination using available transmission protocols (Endpoint Routing
Protocol, ERP). The JXTA architecture builds on three layers, a core layer, for essential com-
mon functionalities, a service layer, for additional pluggable/unpluggable behaviours, and an
application layer for end-to-end high-level control.

The overlay network, Squid and the ARMS layers of the Meteor stack are implemented as
event-driven JXTA services. Each layer registers itself as a listener for specific messages, and
gets notified when a corresponding event is raised.

Since Meteor is designed as an overlay network of redezvous peers, it is incrementally de-
ployable. A joining RP uses the Chord overlay protocol and becomes responsible for an interval
in the identifier space. In this way, the addition of a new rendezvous node is transparent to the
end-hosts.

The overall operation of the Meteor overlay consists of two phases: bootstrap and running.
During the bootstrap phase (or join phase) messages are exchanged between a joining RP and
the rest of the group. During this phase, the RP attempts to discover an already existing RP
in the system and construct its routing table. The joining RP sends a discovery message to
the group. If the message unanswered after a set duration (in the order of seconds), the RP
assumes that it is the first in the system. If a RP responds to the message, the joining RP
queries this bootstrapping RP according to the Chord join protocol and updates routing tables

to reflect the join.
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The running phase consists of a stabilization and a user mode. In stabilization mode, a
RP responds to queries issued by other RPs in the system. The purpose of the stabilization
mode is to ensure routing tables are up to date, and to verify that other RPs in the system
have not failed or left the system. In user mode, RPs paritcipates in interactions as part of
the Squid and ARMS layers. The ARMS matching engine at each RP is based on MySQL
(http://www.mysql.com), a lightweight SQL database. Finally, message credentials are not

currently implemented.
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4. Experimental Evaluation

Meteor was experimentally evaluated using a prototype deployment on a Linux cluster consisting
of 64 1.6 GHz Pentium IV machines and an 100 Mbps Ethernet interconnect. Each of the 64
nodes acted as a RP and ran the complete Meteor stack. Profiles at each RP were locally stored
in a MySQL database. The overheads at each layer of the stack were measured. Further, we
used simulations of up to 5000 RPs and 10° unique profiles to evaluate the scalability of the

content-based routine layer. The experiments are presented below.

4.1 Overlay Network Layer

This experiment measured the latency for peer lookup in the overlay network as a function of
the size of the system. To get an accurate measurement of the latencies, a single peer was run
on each node of the cluster and each peer sent messages to a randomly selected destination peer.
Each message required an overlay lookup operation. Average times are plotted in Figure 4.1
(a). The graph shows that the average elapsed time is not affected by the linear growth of the
size of the system, validating the scalability of the overlay network lookup operation and the

Chord routing algorithm.

4.2 Content-based Routing Layer

This experiment measured the overhead of routing using complex keyword tuples. Three sets
of keyword tuples were used, the first containing wildcards, the second containing ranges, and
the third containing both wildcards and ranges. The routing overheads at the Squid layer were
measured at each RP and averaged. The results are plotted in Figure 4.1 (b). The measured
overhead includes times for cluster refinments and subcluster lookup. As Figure 4.1 (b) shows,
the overhead grows slowly and at a much smaller rate than the system size. This demonstrates
that Squid can effectively scale to large numbers of peers while maintaining acceptable routing
times. As expected, the routing times are high for queries with wildcards as they involve a
larger number of clusters and correspondingly larger number of peers.

To evaluate the scalability of the content-based routing layer we simulated Squid with up
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to 5000 peers where each peer is an RP, and up to 10® unique profiles. In the simulations,
the number of profiles stored in the system increases with the number of RP peers. We used
complex keyword tuples to test the routing scalability: keyword tuples with partial keywords
and wildcards, and keyword tuples containing ranges. Figure 4.2 shows results for a 3D keyword
space. The number of nodes that process the query is a small fraction of the total nodes, and it
increases at a slower rate than the size of the system. For wildcard queries, the average number
of processing nodes is below 11%, and the number of nodes that found matches is below 6%.
These percentages decrease as the system size increases, demonstrating the scalability of the
system. As Figure 4.2 shows, range queries are more efficient than wildcard queries, which is
expected, as query optimization and pruning are more effective for range queries. Additional

simulation results can be found in [14].

4.3 Associative Rendezvous Messaging Substrate

This experiment measured the matching overhead at each RP node. The reaction action type for
all messages in this experiment was 'notification’. Only the overhead of querying the database
and of constructing the notification message was considered. The notification delivery was done
outside of the Meteor stack and was not measured. The experiment was conducted for profiles
containing sets of complex keywords tuples containing wildcards and/or ranges. The number of
profiles in the database was varied. The results are plotted in Figure 4.1 (¢). The results were
grouped based on the results of the matching expressed as a percentage of the total number of
stored profiles, and averaged. As seen in Figure 4.1 (c¢), for a moderate-size database (up to
10* profiles) the overhead incurred is very low. The overhead increases substantially when 10°
profiles are stored locally, as could have been expected given the memory and data access times
required by such a large number of items. However, we believe that even 10 profiles seems

greater than needed for an RP.
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(Squid); (c) Matching overhead at a single RP (ARMS).
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5. Related Work

Content based decoupled interactions has been addressed by publish-subscribe-notify (PSN)
models [5]. PSN based systems include Sienna [15] and Gryphon [16]. The associative ren-
dezvous model differs from PSN systems in that individual interests (subscriptions) are not used
for routing and do not have to be synchronized - they can be locally modified at a rendezvous
node at anytime. While PSN systems provide flexible matching capabilities, scalability remains
a concern in these systems.

i3 [6] provides a similar rendezvous-based abstraction and has influenced this work. However,
an i3 identifier is opaque and must be globally known. Associative rendezvous uses semantic
identifiers that are more expressive and only require the existence of agreed on information
spaces (ontologies). Besides, its dynamic binding semantics enables profiles to be added, deleted
or changed on-the-fly.

The associative broadcast [4] paradigm has also influenced this effort. The key difference
between this model and associative rendezvous is that the binding of profiles takes place at
intermediate nodes instead of the broadcast medium. As a result associative broadcast only
supports transient interactions. Further, its scalability over wide areas is a concern.

Unlike other rendezvous-based models [17], associative rendezvous enables programmable
reactive behaviors at rendezvous points using the action field within a message. Further, interac-
tions in the associative rendezvous model are symmetric allowing participants to simultaneously
be producers and consumers. Finally, Grid messaging systems such as the Narada Broker [18]

focus on persistence and reliable message delivery rather than content-based interactions.
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6. Summary and Conclusions

As the scale, complexity, heterogeneity and dynamism of pervasive Grid environments increase,
interaction paradigms based on static names (addresses, identifiers) and on synchronous or
strictly coupled interactions are quickly becoming insufficient. This has lead researchers to con-
sider alternative paradigms that are decoupled and content based. In this paper, we presented
Associative Rendezvous, a content-based decoupled interaction abstraction model for pervasive
Grid environments. AR extends conventional name/identifier-based rendezvous in two ways.
First, it uses flexible combinations of keywords (i.e. keywords, partial keywords, wildcards,
ranges) from a semantic information space instead of opaque identifiers that have to be glob-
ally known. Second, it enables the reactive behavior at rendezvous points to be defined by
the message. Messages and interactions are symmetric allowing participants to simultaneously
be producers and consumers. For example, a sensor may produce data only when there is an
interest for its data, allowing it to conserve energy and bandwidth.

In this paper we also presented the design, implementation and evaluation of Meteor, a
content based interaction infrastructure based on AR. Initial evaluation results demonstrate its
scalability and effectiveness as a paradigm for pervasive Grid environments. We are currently
working on a wider deployment of Meteor. We are also investigating alternate overlay network

topologies.
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