

Optimizing Web Servers Using Page Rank Prefetching for Clustered

Accesses

Victor Safronov and Manish Parashar
Department of Electrical and Computer Engineering

Rutgers, The State University of New Jersey
94 Brett Road, Piscataway, NJ 08854-8058
Tel: (732) 445-5388 Fax: (732) 445-0593

Email: {safronov,parashar}@ece.rutgers.edu

Manuscript # WWWJ16-01 (Revised)

ii

ABSTRACT

This paper presents a Page Rank based prefetching technique for accesses to web page clusters.

The approach uses the link structure of a requested page to determine the �most important�

linked pages and to identify the page(s) to be prefetched. The underlying premise of our

approach is that in the case of cluster accesses, the next pages requested by users of the web

server are typically based on the current and previous pages requested. Furthermore, if the

requested pages have a lot of links to some �important� page, that page has a higher probability

of being the next one requested. An experimental evaluation of the prefetching mechanism is

presented using real server logs. The results show that the Page-Rank based scheme does better

than random prefetching for clustered accesses, with hit rates of 90% in some cases.

Keywords:

Web prefetching, Page Rank, Web Server, HTTP Server, Page Clusters.

1

1. Introduction

It is indisputable that the recent explosion of the World Wide Web has transformed not only

the disciplines of computer-related sciences and engineering but also the lifestyles of people and

economies of countries. The single most important piece of software that enables any kind of

Web activity is the Web server. Since its inception the Web server has always taken a form of a

daemon process. It accepts an HTTP request, interprets it and serves a file back. While CGI and

Servlets extend on these capabilities, file serving remains a key function of the Web server. As

Web service becomes increasingly popular, network congestion and server overloading have

become significant problems. Great efforts are being made to address these problems and

improve Web performance.

Web caching is recognized as one of the effective techniques to alleviate the server

bottleneck and reduce network traffic, thereby reducing network latency. The basic idea is to

cache recent requested pages at the server so that they do not have to be fetched again. Regular

caching however, only deals with previously requested files, i.e. by definition, new files will

never be in the cache. Web prefetching, which can be considered as �active� caching, builds on

regular Web caching and helps to overcome its inherent limitation. It attempts to guess what the

next requested page will be. For regular HTML file accesses, prefetching techniques try to

predict the next set of files/pages that will be requested, and use this information to prefetch the

files/pages into the server cache. This greatly speeds up access to those files, and improves the

users� experience. To be effective however, the prefetching techniques must be able to

reasonably predict (with minimum computational overheads) subsequent web accesses.

2

In this paper, we present a Web prefetching mechanism for clustered accesses based on Page

Rank. Clustered accesses are access to closely related pages. For example access to the pages of

a single company or research group or to pages associated with the chapters of a book. Clustered

accesses are very common and accounted for over 70% of the accesses in the server logs that we

studied. These included logs from the University of California, Berkeley Computer Science

Division (for year 2000) and Rutgers University Center for Advanced Information Processing

(for year 2000). Page Rank uses link information in a set of pages to determine which pages are

most pointed to and, therefore, are most important relative to the set. This approach has been

successfully used by the GOOGLE [10] search engine to rank pages (or clusters of pages) that

match a query. In the prefetching mechanism presented, we examine requested pages and

compute Page Rank for the pages pointed by the requested page. We then use this information to

determine the page(s) to be prefetched. Note that the most pointed to page may not have been

requested before. Therefore, the approach we describe here is prefetching and not simple

caching. This paper makes the following contributions:

! It introduces the concept of Web page clusters and presents heuristics for identifying

clusters.

! It defines a Page Rank based mechanism to predict accesses to page in web-page

clusters. The predictions are used to drive a web-page prefetching mechanism that

prefetches pages into the server cache to improve access times.

! It designs, implements and evaluates a distributed cluster-based architecture for the

Page Rank prefetching server. The architecture provides good scalability and further

improves server speed.

3

The rest of this paper is organized as follows. Section 2 describes web prefetching and

presents related work. Section 3 introduces Page Rank and describes the Page Rank based

prefetching approach. Section 3 also presents the algorithm, analyzes its complexity. Section 4

presents an experimental evaluation of the approach. Section 5 presents conclusions and future

work.

2. Web Page Prefetching � Overview and Related Work

2.1 Overview
If the World Wide Web is to be approached from a client-server view then, as the name

suggests, Web server is the server part of the scheme and a browser is the client. In a typical

interaction a user will request a file from a server either by clicking on a link or typing the

request in manually. The browser translates it into an HTTP request, connects to the proper

server, sends the request and waits for a reply. Meanwhile the Web server has been waiting for

requests. It accepts the connection from the client, parses the HTTP request and extracts the

name of the file. The server then gets the file from its cache or from its disk, formats an HTTP

reply that satisfies the request and sends it to the browser. The browser then closes the

connection.

Access to disk is much slower than access to memory. Just as in the case of OS file

systems, caching techniques are used in Web servers to reduce disk accesses. One difference is

that Web server file accesses are read-only due to the nature of the application. In this context the

cache is a collection of files that logically belong on the disk but are kept in memory to optimize

performance.

Web prefetching builds on web caching to improve the file access time at web servers.

The memory hierarchy made possible by the caches helps to improve HTML page access time

by significantly lowering average memory/disk access time. However, cache misses can reduce

4

the effectiveness of the cache and increase this average time. Prefetching attempts to transfer

data to the cache before it is asked for, thus lowering the cache misses even further. Prefetching

techniques can only be useful if they can predict accesses with reasonable accuracy and if they

do not represent a significant computational load at the server. Note that prefetching files that

will not be requested not only wastes useful space in the cache but also results in wasted

bandwidth and computational resources.

In this paper we address prefetching rather than caching. Caching assumes a page has been

requested at least once, while prefetching tries to guess which page a user will request in the

future. We chose server side prefetching for the following reasons. The cost of a miss in the case

of client-side prefetching is much larger than that for server-side prefetching. As explained in

Section 2.2.1, client side misses can almost double the load and bandwidth requirements at the

server in the worst-case, and can actually result in the deterioration of the users� experience. In

the case of server side prefetching, misses only result in wasted cache space at the server, and

there is a good chance that another user may eventually request that page anyway. The algorithm

presented in this paper makes decisions about which pages to prefetch based on the access

popularity of the pages. This access popularity can be best determined on the server side. Server

side access time is becoming a significant part of the overall web access time and time saved on

the server side can be important. This is evident while accessing a very busy server or when

using a fast connection. Finally, our algorithm does not preclude caching on a proxy or on the

client side and can be used to complement it.

2.2 Related Work
Existing prefetching approaches can be classified as client-side, proxy-based or server-side.

Table 1 summarizes the main features, advantages and disadvantages of each of these

approaches.

5

 Architecture Advantages Disadvantages

Client-side • Effectively is
part of the
browser.

• Devoted entirely
to one user.

• Can be very fast

• Can cache

requests from
multiple servers.

• Requires
browser code
modification or
plug-in.

• Can increase

server load and
demand
bandwidth
without user
benefit.

Proxy • Sits in the
middle between
the server and
the browser.

• Usually devoted
to a group of
users with
similar interests.

• Can cache

requests from
multiple servers.

• Can be built into

a hierarchy.

• Can increase
server load and
demand
bandwidth
without user
benefit.

• Cache

coherency
protocol may
become very
complicated.
Additional
messaging is
required.

Server-side • Part of the
server.

• No increase in
bandwidth
demand.

• Simple cache

coherency
protocol.

• Known and

limited number
of potential
pages to cache.

• Increase in
server
complexity.

• No easy way to

track user
patterns/docume
nt popularity
across multiple
servers.

Table 1. Summary of prefetching approaches

6

2.2.1 Client-side prefetching

In the client-side prefetching approach, the client determines pages to be prefetched and

request them from the server. Client-side prefetching is presented by Jiang et al in [4]. A key

drawback of this approach is that it typically requires modifications to the client browser code or

use of a plug-in, which may be impractical. Furthermore, it may double the required bandwidth,

actually resulting in deteriorated performance. For example, in the worst-case, the prefetcher will

repeatedly request files that the user never wants to see. Therefore, the number of requests to the

server will double without any benefit to the user. Finally, maintaining cache coherency in the

client-side prefetching approaches is expensive. Cache coherency deals with the following issue.

If a file in cache has changed on the server the new version of the file needs to be presented to

the user instead of the stale cached version. This requires checking with the server on the state of

the file(s) in the cache (possibly through a special protocol). As a result there is an increased

complexity on the client and the server side, as well as increased traffic between the two.

2.2.2 Proxy prefetching

The proxy-based prefetching approach uses an intermediate cache between the server and a

client [6]. This proxy can request files to be prefetched from the server, or the server can push

some files to the proxy. Both of these schemes increase the required bandwidth. Furthermore,

like client-side schemes, maintaining cache coherency in proxy-based schemes is expensive.

This overhead gets even more significant when multiple levels of proxy caches are employed.

One advantage of client and proxy side prefetching is that they separate the HTTP server part

from the caching part thus allowing greater geographic and IP proximity to the client. For

example, placing a proxy cache next to or inside of an organization�s subnet means that the data

a user requests will have far fewer IP hops. These schemes are also better suited for user-pattern

7

tracking algorithms. In particular, the client-side mechanism is dedicated to a particular user and

spends all its time trying to follow what the user might want. By the same token a proxy cache

dedicated to a particular organization will do a good job following that organization�s

preferences. Another advantage is that requests from multiple servers can be cached.

2.2.3 Server-side prefetching

In server-side approaches, the entire prefetching mechanism resides on the Web server itself.

These approaches avoid the problems mentioned above. There is no increase in the bandwidth, as

no files that haven�t been requested will be sent to the client. Furthermore, maintaining cache

coherency in this case is straightforward. Proxy-based caches and client-side prefetching

mechanisms require additional messaging and protocols between the cache and the HTTP server

for cache coherency. This overhead can become significant in terms of wasted bandwidth. In the

case of server side schemes there is no complicated protocol and no extra messaging outside the

server. As the file system is either local or mounted, in this case, all the messaging is within the

server and does not require external bandwidth. Furthermore, the OS file system guarantees

access to the latest copy of a file, and provides efficient and easy to use mechanisms to check file

attributes such as creation and modification times and dates. This assists in maintaining cache

coherency. Another advantage of the server side schemes is that, while client side schemes make

decisions on which files to prefetch based on the particular user�s preferences, the server side

prefetching makes decisions based on the document popularity, and more than one client can

benefit from it.

A server-side prefetching approach based on analyzing server logs and predicting user

actions on the server side is presented by Su et al in [8]. Tracking users on a server, however, is

quickly becoming impractical due to the widespread use of web proxies. The proxy either

8

presents one IP address to the server for a large group of users, or it cycles through some set of

IP addresses according to its load-balancing scheme. Both cases render a single user identity

moot.

The work presented by Zukerman et al in [9] uses Artificial Intelligence-related techniques to

predict user requests. They implement a learning algorithm, such as a variation of Markov

chains, and use a previous access log in order to train it. This approach also relies on tracking

user patterns. Furthermore, it does not handle newly introduced pages or old pages that have

changed substantially. Finally, this approach requires a rather long sequence of clicks from a user

to learn his/her access patterns.

The Page Rank based prefetching technique presented in this paper is a server-side approach

and uses the information about the link structure of the pages and the current and past user

accesses to drive prefetching. The approach is effective for access to web page clusters, is

computationally efficient and scalable, and can immediately sense and react to changes in the

link structure of web pages. Furthermore, the underlying algorithm uses relatively simple matrix

operations and is easily parallelizable, making it suitable for clustered server environments.

3. Page Rank-Based Web Prefetching

 3.1 Background
Serving files to a requesting client had been implemented long before the advent of the

Web. Applications such as file servers and networked file systems are well known. However, it

has been recognized that serving Web requests presents a unique set of challenges. General Web

files (or pages) are text files containing HTML [11] syntax, and tend to be relatively small in

size. A key feature of HTML is the ability to embed links to other web pages. As a result, there is

a good chance that each web page that a user views contains links to other web pages. Unless the

user is not interested in the subject or does not want to surf further he or she is likely to click on

9

one of the links and request another file from a server. From this point of view each page can be

represented by a node in a directed graph and each URL link in that page is an arc to another

node. Attempts have been made to try to utilize this special structure of HTML files for various

purposes, particularly searching. One application based entirely on the link structure is the Page

Rank technique utilized by the GOOGLE [10] search engine.

3.2 Page Rank Algorithm
The Page Rank technique [1][2] provides a ranking of web pages based on the premise that

pages pointed to the most must be the most important ones. In this technique, the importance of a

page is defined recursively, that is, a page is important if important pages link to it. To calculate

the actual rank of the page a stochastic matrix is constructed as follows:

1. Each page i corresponds to row i and column i of the matrix.

2. If page j has n successors (links), then the ijth entry is 1/n if page i is one of those n

successors of page j, 0 otherwise

The prefetching scheme presented in the paper addresses server side prefetching and so is

applied to pages on the server of interest. Note that in this context the server is any collection of

entities serving related Web pages and may actually be a stand-alone machine or cluster of

machines. While, with the proper protocols and communication infrastructure we can put any

number of the traditionally defined Web servers under the �single server� umbrella for our

purposes, we do need to limit our universe. If we considered every link we could end up

processing the entire Web graph. This is not necessary for our prefetching application where we

need to make a decision which pages on the local server to prefetch.

Once the matrix has been populated, Page Rank calculation is performed. This essentially

consists of a principal Eigenvector calculation [3]. Some additional modifications are required in

order to avoid a few Web graph quirks. Web pages that have no outward links or those that only

10

link to themselves have to be specially dealt with. One solution to these problems is to �tax� each

page some fraction of its current importance instead of applying the matrix directly. The taxed

importance is distributed equally among all pages. The overall algorithm is presented below.

To illustrate the Page Rank algorithm used for prefetching, consider the web page graph

shown in Figure 1. This graph shows a cluster of three pages, A, M and N; A is linked to N and

M, N is linked to A and to itself, M is linked only to itself.

Figure 1. Example Graph of a Cluster

In this case, the equation to be solved to compute the Page Rank is as follows:

As can be seen from the graph N links to A and to itself. Hence the first column (column of

node N) has ½�s in rows corresponding to N and A. M links only to itself. Therefore second
















+
































=

















2.0
2.0
2.0

002/1
2/110
2/102/1

a
m
n

a
m
n

N

A M

11

column has 1 in M�s row. By the same token A has links to M and A producing corresponding

arrangement in its column.

The solution of this equation is computed iteratively until it converges. Convergence here

means the difference between the norm of the current resulting vector and that from the previous

iteration is less than a small threshold (∆). Notation
1

R shows the first norm of vector R. The

first norm (1-norm) is defined as follows. ∑
=

=
n

i
ir

1
1

R . It is used to describe the size of the

vector.

Therefore, if M is the matrix and R is the [n, m, a] vector, the following algorithm is

executed.

The number of iterations for the solution to converge in our experiments was typically less

than 20. For the above example, the solution of the equation is n = 7/11; m = 21/11; a = 5/11 -

i.e. M is the most important page.

3.3 Page Rank-Based Prefetching
The Page Rank-based prefetching approach uses the link structure of requested pages to

determine the �most important� linked pages and to identify the page(s) to be prefetched. The

underlying premise of the approach is that the next pages requested by users of the web server

are typically based on the current and previous pages requested. Furthermore, if the requested

pages have a lot of links to some �important� page, that page has a higher probability of being

requests;
ofnumber by therank spage'each Multiply

; R - Rprevious WHILE
];1[2.0RMR

R;Rprevious
DO

11
∆>

×+×=
=

12

the next one requested. The relative importance of pages is calculated using the Page Rank

method as described above. The important pages identified are then prefetched into the cache to

speed up users� access to them. For each page requested, the Page Rank algorithm performs the

following operations.

1. The URL is scanned to see if it belongs to a cluster. If it does, as soon as the contents of

that page are retrieved, they are used to populate or update that cluster�s matrix.

2. As soon as the matrix update operation is complete, the Page Rank calculations are

performed to determine the most important pages among those requested or pointed to in

the cluster.

3. A configurable number of these pages are then prefetched into the cache. It is also

important to note that if the matrix and/or cache cannot hold all the pages, Page Rank is

used as a replacement mechanism, i.e. those pages with the lowest rank get replaced with

new ones.

 3.3.1 Web Page Clusters

Since any random page on the server does not necessarily link to other pages on the same

server we define the concept of web page clusters. Clusters are groups of pages that are tightly

interlinked. The Page rank scheme excels in prefetching pages in these clusters. A separate Page

Rank calculation is performed for each cluster. As soon as the server determines that a requested

page belongs to a cluster, it is scheduled for the Page Rank calculation. In our implementation

we heuristically define any Web directory with 200 or more files under it as a candidate cluster.

We find the node closest to the root having this property but exclude the root itself. The

justification is that there is a greater chance that these files are related and are interlinked, and

their hierarchies are sufficiently wide and deep. A more sophisticated approach would be to run a

13

spider that crawls all the pages on the server and discovers the clusters based on some optimal

criteria of the width and depth of the page linkage graph.

While GOOGLE uses the Page Rank technique for Web searching, we use it for prefetching

i.e., it is not used as a �spider� scouting the whole of the Web. We apply the ranking calculations

described above only to pages on a single server. Furthermore, we only apply it for pages that are

part of a defined cluster. Finally, prefetching calculations are real time by nature. As soon as new

cluster access is processed the ranking calculations are performed to determine how the graph of

requested pages has changed and which new pages need to be prefetched as a result of those

changes. In other words, instead of building a static graph of the Web as in the original

application, we build a dynamic graph of user accessed pages in a particular cluster on the server

and use Page Rank to determine which pages will be asked for next.

3.4 Computational Complexity of the Page Rank Prefetching Algorithm

The prefetching mechanism has to be invoked for each access at the server. Consequently, it

is imperative that the underlying algorithm be efficient. A complexity analysis of the algorithm is

presented in this section. The main part of the Page Rank algorithm consists of populating the

matrix and then calculating its principal eigenvector. These are two consecutive operations:

1. Matrix population (simplified)

• For each newly requested page, find all the pages it links to and all the pages that link

to it. A length n array is used to help keep track of pages in memory. Let n be the

number of links on a page. Our observations show that it is rare for a page to have

more than 20 links to pages on the same server.

• Find all pages that the new page links to. This requires a full array scan. For each

array element, all the links on the new page need to be checked. Our observations

14

show that it is rare for a page to have more than 20 links to pages on the same server.

We can safely make an assumption that n is the maximum number of links on a page.

Then the worst case performance is O(n2).

• Find all the pages that link to the new page. This again requires a full array scan

consisting of a scanning of the links on the current page and comparing them to the

link to the new page. Making the same assumption, that n is the maximum number of

links on a page, we have a worst case performance of O(n2).

• The 2 operations above are consecutive and can be combined into one with the same

O(n2) complexity. Furthermore, ordering the array wouldn�t change the worst-case

performance.

• Recalculate the matrix values. This as an O(n2) complexity as well.

2. Matrix multiplication.

• Iterative matrix-vector multiplication and addition. This typically converges in less

than 20 iterations.

• The cost of multiplying a n x m matrix by a m x p matrix is O(nmp). We have n x n

by n x 1 therefore our multiplication algorithm�s cost is O(n2).

As a result we have the overall complexity of the Page Rank prefetching algorithm as O(n2).

Note that for n=200 a single-threaded implementation processed 90 requests per minute on

an 850 MHz PIII with 256 MB RAM running Windows 2000. This is equivalent to serving a

month worth of requests in less than 5 hours.

Hardware costs, and memory costs in particular, have been decreasing rapidly. It is not

uncommon for a large company with substantial Web presence (such as Schwabb) to have a

dedicated Web server farm of multiprocessor machines with more than 1GB or RAM each. Even

15

desktop PCs come with 256 RAM standard at this point. If the computer resources are really an

issue it should be possible, in theory, to optimize the algorithm using various sparse matrix

techniques.

3.5 Design and Implementation of a Cluster Based Prefetching Server.

Figure 2. Server Architecture.
3.5.1 Design Issues

3.5.1.1 Parallelism

A key motivation for implementing the server on a cluster of machines was to exploit the

inherent parallelism in the Page Rank prefetching algorithm and maintain server scalability. Page

Rank computations for different page clusters can be performed in parallel each on its own

dedicated machine. Furthermore, the associated matrix computations can also be parallelized.

This introduces a new level of parallelization that is not bounded by the number of page clusters.

 R

P

P

P

C

C

C

C
lie

nt
s

HTTP
�

�

�
�

16

Both levels of parallelization can be employed simultaneously to achieve maximum performance

gain.

The distributed server achieves almost perfect scalability as processing for each cluster is

performed independently. The overall runtime in this case is the maximum of the computation

times for the cluster plus some communication overheads. A single server would have processed

the requests sequentially resulting in an overall runtime equal to the sum of the computation

times for each cluster.

3.5.1.2 Matrix size

Our experiment showed that a matrix size n = 200 resulted in the most appropriate balance

between speed and effectiveness of prefetching. Matrices of size less than 10 produce results that

were fast but were not useful for prefetching. On the other hand, running with a matrix size of

1000 took an unacceptably long time on an 850MHz PIII with 256 MB RAM running Windows

2000. A matrix size of 200 gave good prefetching predictions and had a reasonable

computational cost.

3.5.1.3 Cache organization

Similarly, we empirically found that the most appropriate fraction of pages in the cache that

should be prefetched is 0.25. Values that were too high wasted cache space while values that are

too low wasted computational effort. For example, we found that prefetching a fraction of the

pages 0.5 and higher did little to increase the hit rate but caused a lot of files that were never

used to reside in the cache only to be replaced later. On the other hand, values less than 0.1

produced a marked decrease in the hit rate.

3.5.2 Implementation overview

17

We have implemented a prototype server with Page Rank prefetching. The server was built

on a cluster and performed all the basic functions required, but didn�t include any extra

optimizations such as any optimizations for the matrix multiplication algorithm. It additionally

maintained runtime statistics (i.e. hit rate). The architecture of the server is shown in Figure 2.

The main components of the server are the Router (R), and the HTTP handler (C) and Prefetcher

(P) pairs. Each component was implemented as a separate process. The P-C pairs were identical

and were implemented on separate nodes of the cluster. The Router ran on a dedicated machine.

The Router was simple and efficient. It accepted an incoming HTTP request, determined which

cluster it belonged to, and handed it off to a P-C pair for Page Rank computations. The message

trace diagram is illustrated in Figure 3. Both the Router and the Prefetcher are multithreaded for

further efficiency. The internal structure and a few details of operations for each component are

given below.

3.5.2.1 HTTP handler (Basic Server)

This component performs the functions of a regular HTTP server with caching and custom

prefetching. It could be used as stand-alone simple Web server. The HTTP handler operates as

follows. When it receives an HTTP request it parses it to get the file name and checks if the file

is in the cache. If so it verifies it�s the file�s freshness using a simple timestamp check. If the file

is not in the cache or is stale it�s fetched from the disk. The handler then formats a proper HTTP

reply and sends it to the requesting object (prefetcher in our case). Also, when the HTTP handler

receives a prefetch request from the Prefetcher it will get the files from the disk and puts them

into its cache. The cache is implemented as a user-level memory cache indexed by the filenames.

3.5.2.2 Prefetcher

18

Prefetcher is the component in charge of making a decision about which files need to be

prefetched. As it passes the response to the client back to the Router it parses it and creates a list

of �href� links to local pages in the page. It should be noted that the HTML parser has to be very

forgiving. Special provisions have to be made to accept anchors with or without quotes and other

attributes. Very few pages were found to follow strict HTML syntax since browsers tend to

overlook many HTML syntax errors. The parser also converts relative paths into absolute ones

for ease and uniformity of processing. The resulting list of links, including the link to the current

page, is fed into the Page Ranker component. Page Ranker returns a list of new highest-ranking

pages. This list is then sent to the HTTP handler to be prefetched into its cache.

The Page Rank prefetcher calculates the pages to be prefetched on the fly allowing the server

to respond very quickly to any change in access pattern popularity. The server prefetches pages

that are not yet accessed and registers changes in the page�s contents as soon as the page is

accessed again. In other words, the Prefetcher maintains a running rank of pages on the server

based on the pages accessed so far.

19

Figure 3. Internal Message Trace Diagram

4. Experimental Evaluation

We used server logs from the University of California, Berkeley Computer Science

Division (for year 2000) (www.cs.berkeley.edu) and Rutgers University Center for Advanced

Information Processing (for year 2000) (www.caip.rutgers.edu) to experimentally evaluate the

Page Rank-based perfecting mechanism. In particular, we chose September 2000 log as a

representative one for our experiment. The experiment consisted of identifying the access

clusters in the logs and extracting requests to these clusters. The accesses were then used to drive

the evaluation, which consisted of measuring the hit rate for accesses at server with the Page

Rank-based prefetching scheme versus a random prefetching scheme.

Router Prefetcher Basic Server

HTTP page request

page request forward

reply page

HTTP reply

prefetch request

http://www.caip.rutgers.edu/

20

To simulate client requests we implemented a simple driver. The driver read server access log,

sent an HTTP request corresponding to the original access and waited for the response. This

operation is easily parallelizable. We only needed to break the log file into multiple pieces and

start the drivers simultaneously for each piece. This simulated multiple clients with repeatable

behavior. While the primary objective of our experiment was not to find out how many clients

the server could handle multiple clients did speed up the experiment as well as demonstrated our

server�s scalability.

The objective of this paper is to introduce a new prefetching scheme. We consider server

caching to be a subset of prefetching and so do not separate the two. Instead we make a

comparison to a random prefetching scheme (also with server caching). In this way we compare

two prefetching schemes rather than comparing prefetching and caching. It has also been shown

in previous research that on the Web the maximum hit rate achievable by any caching algorithm

is just 40% to 50% [7] [4]. Our prefetching scheme exceeds this result by a good margin.

4.1 Hit Rate
We defined hit rate as follows. Let H be the number of user requests that were found in cache

at the time of the request. Let M be the number of user requests that were not found in the

prefetch cache. Then the total number of requests is H + M and the hit rate is defined as

Using our heuristic, we found 28 clusters on the Berkeley server, constituting about 70%

of all the files on the server. So these clusters are quite common. We extracted requests for

each cluster and used them to evaluate our prefetching scheme. The results are as follows.

Hit rates per cluster range from 0 to 95%. In all, 61% of all the clusters gave hit rates greater

%100×
+

=
MH

HRateHit

21

than 30% (i.e. greater than random). Requests to those clusters constitute about 15% of all

the requests in the log. Figure 4 shows the cluster access for the Berkeley log. Only the

clusters with hit rate greater than 10% and with more than a 100 accesses are plotted.

In Figures 4 and 5 each point on the X-axis represents a cluster in the order of initial

access. Left Y-axis represents the % hit rate (for the bars) while right Y-axis represents a %

of all files on the server that files in a given cluster constitute (for the line). I.e. in Figure 5

cluster 8 achieves 90% hit rate while files in the 8th cluster are about 8% of all the files on the

server.

0
10
20
30
40
50
60
70
80
90

100

1 2 3 4 5 6 7 8 9 1011121314151617
0

2

4

6

8

10

12

% hit rate
% all files

Figure 4. Berkeley Clusters and Accesses

In case of the CAIP server log for November 2000 we found the following. There are 12

clusters as defined by our heuristic. Files in those clusters constitute 49% of all the files on the

server. Requests to those files constitute 39% of all the server requests.

22

Figure 5 shows the cluster accesses for the CAIP log. As can be seen from the chart the hit

rate varies from 20% all the way to 95% with only one cluster having the hit rate less than 30%.

One half of all the clusters have hit rate greater than 70% and one quarter reach or exceed 90%.

This again shows that cluster pages are common, that they account for a substantial number of

requests, and that the Page Rank scheme does very well prefetching these type accesses.

0
10
20
30
40
50
60
70
80
90

100

1 2 3 4 5 6 7 8 9 10 11 12
0

2

4

6

8

10

12

% hit rate
% all files

Figure 5. CAIP Clusters and Accesses

It should be noted that the heuristic we employed is a temporary solution to finding the

clusters. It should be relatively straightforward to develop a spider that will crawl all the pages

on the server and discover clusters. Threshold of connectivity for the cluster definition is a

subject of future research. We predict that having defined the clusters in a more systematic way

will increase hit rate even further. It may also discover more clusters and files belonging to

clusters.

23

We also note that the Page Rank prefetcher did not do well for non-clustered request. In this

case the hit rate was about 17%. The random prefetcher resulted in a hit rate of about 30%. This

is expected as the Page Rank prefetcher is based on the premise that page link information

determines accesses, which is true for clustered accessed but typically not true for random

accesses.

4.2 Server scalability
We ran the scalability part of the experiment on a cluster of identical SUN workstations with

120MB RAM each. Running with 12 machines in a cluster reduced the overall running time by a

factor of 8. Figure 8 demonstrates the scalability results for the CAIP server logs. It demonstrates

an almost perfect scalability up to the number of file clusters on the server. This experiment

shows that the distributed architecture implemented works very well with the prefetching

scheme.

scalability

1

3

6
8

12

0

10

20

30

40

50

60

0 5 10 15

machines

re
q/
m
in

scalability

Figure 6. Scalability

24

5. Conclusions and Future Work

In this paper we presented the Page Rank-based prefetching mechanism for clustered web

page accesses. In this approach, we rank the pages linked to a requested page and use the rank to

determine the pages to be prefetched. We also presented an experimental evaluation of the

presented prefetching mechanism using server logs from the University of California, Berkeley

Computer Science Division (for year 2000) and Rutgers University Center for Advanced

Information Processing (for year 2000). The results show that the Page Rank prefetching does

better than random prefetching for clustered accesses, with hit rates 90% hit rate in some cases.

We have also shown that these clusters are quite common on both servers we explored. They

constitute about 50% and 70% of all the files on the server. Accesses to pages in the clusters are

about 15% and 40% of all the accesses.

We are currently building a spider for discovering page clusters. This work is also investigating

the appropriate depth and breadth thresholds for cluster identification. We are investigating the

type of web sites that can benefit from the Page Rank prefetching approach. Finally, we are

implementing a distributed version of the prefetcher. This version will have its matrix calculation

parallelized. It can be efficiently deployed in a cluster environment.

References:

[1]. S. Brin and L. Page. The anatomy of a large-scale hypertextual web search engine. In
Proceedings of the Seventh World Wide Web Conference, Apr. 1998.

[2]. S. Brin and L. Page. The PageRank Citation Ranking: Bringing Order to the Web. January
29, 1998.

[3]. S.D. Conte and C. de Boor. Elementary Numerical Analysis, an Algorithmic Approach.
McGraw-Hill 1980.

[4]. G. Huston, Telstra. Web Caching. The Internet Protocol Journal, vol 2, num 3. September
1999.

25

[5]. Z. Jiang and L. Kleinrock. An Adaptive Network Prefetch Scheme. IEEE Journal on Selected
Areas in Communications 1998.

[6]. T. M. Kroeger, D. D. E. Long, and J. C. Mogul. Exploring the bounds of Web latency
reduction from caching and prefetching. In Proc. of the 1st USENIX Symposium On Internet
Technologies and Systems, pages 13�22, Dec. 1997.

[7]. N. Niclausse, Z. Liu, and P. Nain. A new efficient caching policy for the world wide web. In
Proceedings of Workshop on Internet Server Performance (WISP'98), Madison, WI, June
1998

[8]. Z. Su, Q. Yang, Ye Lu Zhang. WhatNext: A Prediction System for Web Requests using N-
gram Sequence Models. Web Information Systems Engineering, pp 214-221, 2000.

[9]. I. Zukerman, W. Albrecht and A. Nicholson. Predicting user's request on the WWW. UM99 -
- Proceedings of the Seventh International Conference on User Modeling, 1999.

[10]. The GOOGLE Search Engine. http://www.google.com.
[11]. HTML http://www.w3.org/MarkUp/.

http://www.google.com/
http://www.w3.org/MarkUp/

	Architecture

