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ABSTRACT  

 

This paper presents a Page Rank based prefetching technique for accesses to web page clusters. 

The approach uses the link structure of a requested page to determine the �most important� 

linked pages and to identify the page(s) to be prefetched. The underlying premise of our 

approach is that in the case of cluster accesses, the next pages requested by users of the web 

server are typically based on the current and previous pages requested. Furthermore, if the 

requested pages have a lot of links to some �important� page, that page has a higher probability 

of being the next one requested. An experimental evaluation of the prefetching mechanism is 

presented using real server logs. The results show that the Page-Rank based scheme does better 

than random prefetching for clustered accesses, with hit rates of 90% in some cases. 
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1. Introduction 

 
It is indisputable that the recent explosion of the World Wide Web has transformed not only 

the disciplines of computer-related sciences and engineering but also the lifestyles of people and 

economies of countries. The single most important piece of software that enables any kind of 

Web activity is the Web server. Since its inception the Web server has always taken a form of a 

daemon process. It accepts an HTTP request, interprets it and serves a file back. While CGI and 

Servlets extend on these capabilities, file serving remains a key function of the Web server. As 

Web service becomes increasingly popular, network congestion and server overloading have 

become significant problems. Great efforts are being made to address these problems and 

improve Web performance.  

Web caching is recognized as one of the effective techniques to alleviate the server 

bottleneck and reduce network traffic, thereby reducing network latency. The basic idea is to 

cache recent requested pages at the server so that they do not have to be fetched again. Regular 

caching however, only deals with previously requested files, i.e. by definition, new files will 

never be in the cache. Web prefetching, which can be considered as �active� caching, builds on 

regular Web caching and helps to overcome its inherent limitation. It attempts to guess what the 

next requested page will be. For regular HTML file accesses, prefetching techniques try to 

predict the next set of files/pages that will be requested, and use this information to prefetch the 

files/pages into the server cache. This greatly speeds up access to those files, and improves the 

users� experience. To be effective however, the prefetching techniques must be able to 

reasonably predict (with minimum computational overheads) subsequent web accesses. 
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In this paper, we present a Web prefetching mechanism for clustered accesses based on Page 

Rank.  Clustered accesses are access to closely related pages. For example access to the pages of 

a single company or research group or to pages associated with the chapters of a book. Clustered 

accesses are very common and accounted for over 70% of the accesses in the server logs that we 

studied. These included logs from the University of California, Berkeley Computer Science 

Division (for year 2000) and Rutgers University Center for Advanced Information Processing 

(for year 2000). Page Rank uses link information in a set of pages to determine which pages are 

most pointed to and, therefore, are most important relative to the set. This approach has been 

successfully used by the GOOGLE [10] search engine to rank pages (or clusters of pages) that 

match a query. In the prefetching mechanism presented, we examine requested pages and 

compute Page Rank for the pages pointed by the requested page. We then use this information to 

determine the page(s) to be prefetched. Note that the most pointed to page may not have been 

requested before. Therefore, the approach we describe here is prefetching and not simple 

caching. This paper makes the following contributions: 

! It introduces the concept of Web page clusters and presents heuristics for identifying 

clusters. 

! It defines a Page Rank based mechanism to predict accesses to page in web-page 

clusters. The predictions are used to drive a web-page prefetching mechanism that 

prefetches pages into the server cache to improve access times.  

! It designs, implements and evaluates a distributed cluster-based architecture for the 

Page Rank prefetching server. The architecture provides good scalability and further 

improves server speed. 
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The rest of this paper is organized as follows. Section 2 describes web prefetching and 

presents related work. Section 3 introduces Page Rank and describes the Page Rank based 

prefetching approach. Section 3 also presents the algorithm, analyzes its complexity. Section 4 

presents an experimental evaluation of the approach. Section 5 presents conclusions and future 

work. 

2. Web Page Prefetching � Overview and Related Work 

2.1 Overview 
If the World Wide Web is to be approached from a client-server view then, as the name 

suggests, Web server is the server part of the scheme and a browser is the client. In a typical 

interaction a user will request a file from a server either by clicking on a link or typing the 

request in manually. The browser translates it into an HTTP request, connects to the proper 

server, sends the request and waits for a reply. Meanwhile the Web server has been waiting for 

requests. It accepts the connection from the client, parses the HTTP request and extracts the 

name of the file. The server then gets the file from its cache or from its disk, formats an HTTP 

reply that satisfies the request and sends it to the browser. The browser then closes the 

connection. 

Access to disk is much slower than access to memory. Just as in the case of OS file 

systems, caching techniques are used in Web servers to reduce disk accesses. One difference is 

that Web server file accesses are read-only due to the nature of the application. In this context the 

cache is a collection of files that logically belong on the disk but are kept in memory to optimize 

performance. 

Web prefetching builds on web caching to improve the file access time at web servers. 

The memory hierarchy made possible by the caches helps to improve HTML page access time 

by significantly lowering average memory/disk access time. However, cache misses can reduce 
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the effectiveness of the cache and increase this average time. Prefetching attempts to transfer 

data to the cache before it is asked for, thus lowering the cache misses even further. Prefetching 

techniques can only be useful if they can predict accesses with reasonable accuracy and if they 

do not represent a significant computational load at the server. Note that prefetching files that 

will not be requested not only wastes useful space in the cache but also results in wasted 

bandwidth and computational resources. 

In this paper we address prefetching rather than caching. Caching assumes a page has been 

requested at least once, while prefetching tries to guess which page a user will request in the 

future. We chose server side prefetching for the following reasons. The cost of a miss in the case 

of client-side prefetching is much larger than that for server-side prefetching. As explained in 

Section 2.2.1, client side misses can almost double the load and bandwidth requirements at the 

server in the worst-case, and can actually result in the deterioration of the users� experience. In 

the case of server side prefetching, misses only result in wasted cache space at the server, and 

there is a good chance that another user may eventually request that page anyway. The algorithm 

presented in this paper makes decisions about which pages to prefetch based on the access 

popularity of the pages. This access popularity can be best determined on the server side. Server 

side access time is becoming a significant part of the overall web access time and time saved on 

the server side can be important. This is evident while accessing a very busy server or when 

using a fast connection. Finally, our algorithm does not preclude caching on a proxy or on the 

client side and can be used to complement it. 

2.2 Related Work 
Existing prefetching approaches can be classified as client-side, proxy-based or server-side. 

Table 1 summarizes the main features, advantages and disadvantages of each of these 

approaches. 
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 Architecture Advantages Disadvantages 

Client-side • Effectively is 
part of the 
browser. 

• Devoted entirely 
to one user.  

 
• Can be very fast 
 
• Can cache 

requests from 
multiple servers. 

• Requires 
browser code 
modification or 
plug-in. 

 
• Can increase 

server load and 
demand 
bandwidth 
without user 
benefit. 

Proxy • Sits in the 
middle between 
the server and 
the browser. 

• Usually devoted 
to a group of 
users with 
similar interests. 

 
• Can cache 

requests from 
multiple servers. 

 
• Can be built into 

a hierarchy. 

• Can increase 
server load and 
demand 
bandwidth 
without user 
benefit. 

 
• Cache 

coherency 
protocol may 
become very 
complicated. 
Additional 
messaging is 
required. 

Server-side • Part of the 
server. 

• No increase in 
bandwidth 
demand. 

 
• Simple cache 

coherency 
protocol. 

 
• Known and 

limited number 
of potential 
pages to cache. 

• Increase in 
server 
complexity. 

 
• No easy way to 

track user 
patterns/docume
nt popularity 
across multiple 
servers. 

Table 1.  Summary of prefetching approaches 
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2.2.1 Client-side prefetching 

In the client-side prefetching approach, the client determines pages to be prefetched and 

request them from the server. Client-side prefetching is presented by Jiang et al in [4]. A key 

drawback of this approach is that it typically requires modifications to the client browser code or 

use of a plug-in, which may be impractical. Furthermore, it may double the required bandwidth, 

actually resulting in deteriorated performance. For example, in the worst-case, the prefetcher will 

repeatedly request files that the user never wants to see. Therefore, the number of requests to the 

server will double without any benefit to the user. Finally, maintaining cache coherency in the 

client-side prefetching approaches is expensive. Cache coherency deals with the following issue. 

If a file in cache has changed on the server the new version of the file needs to be presented to 

the user instead of the stale cached version. This requires checking with the server on the state of 

the file(s) in the cache (possibly through a special protocol). As a result there is an increased 

complexity on the client and the server side, as well as increased traffic between the two.  

2.2.2 Proxy prefetching 

The proxy-based prefetching approach uses an intermediate cache between the server and a 

client [6]. This proxy can request files to be prefetched from the server, or the server can push 

some files to the proxy. Both of these schemes increase the required bandwidth. Furthermore, 

like client-side schemes, maintaining cache coherency in proxy-based schemes is expensive. 

This overhead gets even more significant when multiple levels of proxy caches are employed. 

One advantage of client and proxy side prefetching is that they separate the HTTP server part 

from the caching part thus allowing greater geographic and IP proximity to the client. For 

example, placing a proxy cache next to or inside of an organization�s subnet means that the data 

a user requests will have far fewer IP hops. These schemes are also better suited for user-pattern 
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tracking algorithms.  In particular, the client-side mechanism is dedicated to a particular user and 

spends all its time trying to follow what the user might want. By the same token a proxy cache 

dedicated to a particular organization will do a good job following that organization�s 

preferences. Another advantage is that requests from multiple servers can be cached. 

2.2.3 Server-side prefetching 

In server-side approaches, the entire prefetching mechanism resides on the Web server itself. 

These approaches avoid the problems mentioned above. There is no increase in the bandwidth, as 

no files that haven�t been requested will be sent to the client. Furthermore, maintaining cache 

coherency in this case is straightforward. Proxy-based caches and client-side prefetching 

mechanisms require additional messaging and protocols between the cache and the HTTP server 

for cache coherency. This overhead can become significant in terms of wasted bandwidth. In the 

case of server side schemes there is no complicated protocol and no extra messaging outside the 

server. As the file system is either local or mounted, in this case, all the messaging is within the 

server and does not require external bandwidth. Furthermore, the OS file system guarantees 

access to the latest copy of a file, and provides efficient and easy to use mechanisms to check file 

attributes such as creation and modification times and dates. This assists in maintaining cache 

coherency. Another advantage of the server side schemes is that, while client side schemes make 

decisions on which files to prefetch based on the particular user�s preferences, the server side 

prefetching makes decisions based on the document popularity, and more than one client can 

benefit from it.  

A server-side prefetching approach based on analyzing server logs and predicting user 

actions on the server side is presented by Su et al in [8]. Tracking users on a server, however, is 

quickly becoming impractical due to the widespread use of web proxies. The proxy either 
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presents one IP address to the server for a large group of users, or it cycles through some set of 

IP addresses according to its load-balancing scheme. Both cases render a single user identity 

moot. 

The work presented by Zukerman et al in [9] uses Artificial Intelligence-related techniques to 

predict user requests. They implement a learning algorithm, such as a variation of Markov 

chains, and use a previous access log in order to train it. This approach also relies on tracking 

user patterns. Furthermore, it does not handle newly introduced pages or old pages that have 

changed substantially. Finally, this approach requires a rather long sequence of clicks from a user 

to learn his/her access patterns. 

The Page Rank based prefetching technique presented in this paper is a server-side approach 

and uses the information about the link structure of the pages and the current and past user 

accesses to drive prefetching. The approach is effective for access to web page clusters, is 

computationally efficient and scalable, and can immediately sense and react to changes in the 

link structure of web pages. Furthermore, the underlying algorithm uses relatively simple matrix 

operations and is easily parallelizable, making it suitable for clustered server environments. 

3. Page Rank-Based Web Prefetching 

 3.1 Background 
Serving files to a requesting client had been implemented long before the advent of the 

Web. Applications such as file servers and networked file systems are well known. However, it 

has been recognized that serving Web requests presents a unique set of challenges. General Web 

files (or pages) are text files containing HTML [11] syntax, and tend to be relatively small in 

size. A key feature of HTML is the ability to embed links to other web pages. As a result, there is 

a good chance that each web page that a user views contains links to other web pages. Unless the 

user is not interested in the subject or does not want to surf further he or she is likely to click on 
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one of the links and request another file from a server. From this point of view each page can be 

represented by a node in a directed graph and each URL link in that page is an arc to another 

node. Attempts have been made to try to utilize this special structure of HTML files for various 

purposes, particularly searching. One application based entirely on the link structure is the Page 

Rank technique utilized by the GOOGLE [10] search engine.  

3.2 Page Rank Algorithm 
The Page Rank technique [1][2] provides a ranking of web pages based on the premise that 

pages pointed to the most must be the most important ones. In this technique, the importance of a 

page is defined recursively, that is, a page is important if important pages link to it. To calculate 

the actual rank of the page a stochastic matrix is constructed as follows: 

1. Each page i corresponds to row i and column i of the matrix. 

2. If page j has n successors (links), then the ijth entry is 1/n if page i is one of those n 

successors of page j, 0 otherwise 

The prefetching scheme presented in the paper addresses server side prefetching and so is 

applied to pages on the server of interest.  Note that in this context the server is any collection of 

entities serving related Web pages and may actually be a stand-alone machine or cluster of 

machines. While, with the proper protocols and communication infrastructure we can put any 

number of the traditionally defined Web servers under the �single server� umbrella for our 

purposes, we do need to limit our universe. If we considered every link we could end up 

processing the entire Web graph. This is not necessary for our prefetching application where we 

need to make a decision which pages on the local server to prefetch.  

Once the matrix has been populated, Page Rank calculation is performed. This essentially 

consists of a principal Eigenvector calculation [3]. Some additional modifications are required in 

order to avoid a few Web graph quirks. Web pages that have no outward links or those that only 
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link to themselves have to be specially dealt with. One solution to these problems is to �tax� each 

page some fraction of its current importance instead of applying the matrix directly. The taxed 

importance is distributed equally among all pages. The overall algorithm is presented below. 

To illustrate the Page Rank algorithm used for prefetching, consider the web page graph 

shown in Figure 1.  This graph shows a cluster of three pages, A, M and N; A is linked to N and 

M, N is linked to A and to itself, M is linked only to itself. 

 

Figure 1. Example Graph of a Cluster 

In this case, the equation to be solved to compute the Page Rank is as follows: 

 

As can be seen from the graph N links to A and to itself. Hence the first column (column of 

node N) has ½�s in rows corresponding to N and A. M links only to itself. Therefore second 
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column has 1 in M�s row. By the same token A has links to M and A producing corresponding 

arrangement in its column. 

The solution of this equation is computed iteratively until it converges. Convergence here 

means the difference between the norm of the current resulting vector and that from the previous 

iteration is less than a small threshold (∆). Notation
1

R   shows the first norm of vector R. The 

first norm (1-norm) is defined as follows. ∑
=

=
n

i
ir

1
1

R  . It is used to describe the size of the 

vector. 

Therefore, if M is the matrix and R is the [n, m, a] vector, the following algorithm is 

executed. 

 

The number of iterations for the solution to converge in our experiments was typically less 

than 20. For the above example, the solution of the equation is n = 7/11; m = 21/11; a = 5/11 - 

i.e. M is the most important page. 

3.3 Page Rank-Based Prefetching 
The Page Rank-based prefetching approach uses the link structure of requested pages to 

determine the �most important� linked pages and to identify the page(s) to be prefetched. The 

underlying premise of the approach is that the next pages requested by users of the web server 

are typically based on the current and previous pages requested. Furthermore, if the requested 

pages have a lot of links to some �important� page, that page has a higher probability of being 

requests; 
ofnumber  by therank  spage'each Multiply 

;  R  - Rprevious WHILE
];1[2.0RMR

R;Rprevious
DO

11
∆>

×+×=
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the next one requested.  The relative importance of pages is calculated using the Page Rank 

method as described above. The important pages identified are then prefetched into the cache to 

speed up users� access to them. For each page requested, the Page Rank algorithm performs the 

following operations.  

1. The URL is scanned to see if it belongs to a cluster. If it does, as soon as the contents of 

that page are retrieved, they are used to populate or update that cluster�s matrix.  

2. As soon as the matrix update operation is complete, the Page Rank calculations are 

performed to determine the most important pages among those requested or pointed to in 

the cluster.  

3. A configurable number of these pages are then prefetched into the cache. It is also 

important to note that if the matrix and/or cache cannot hold all the pages, Page Rank is 

used as a replacement mechanism, i.e. those pages with the lowest rank get replaced with 

new ones. 

 3.3.1 Web Page Clusters 

Since any random page on the server does not necessarily link to other pages on the same 

server we define the concept of web page clusters. Clusters are groups of pages that are tightly 

interlinked. The Page rank scheme excels in prefetching pages in these clusters. A separate Page 

Rank calculation is performed for each cluster. As soon as the server determines that a requested 

page belongs to a cluster, it is scheduled for the Page Rank calculation. In our implementation 

we heuristically define any Web directory with 200 or more files under it as a candidate cluster. 

We find the node closest to the root having this property but exclude the root itself. The 

justification is that there is a greater chance that these files are related and are interlinked, and 

their hierarchies are sufficiently wide and deep. A more sophisticated approach would be to run a 
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spider that crawls all the pages on the server and discovers the clusters based on some optimal 

criteria of the width and depth of the page linkage graph. 

While GOOGLE uses the Page Rank technique for Web searching, we use it for prefetching 

i.e., it is not used as a �spider� scouting the whole of the Web. We apply the ranking calculations 

described above only to pages on a single server. Furthermore, we only apply it for pages that are 

part of a defined cluster. Finally, prefetching calculations are real time by nature. As soon as new 

cluster access is processed the ranking calculations are performed to determine how the graph of 

requested pages has changed and which new pages need to be prefetched as a result of those 

changes.  In other words, instead of building a static graph of the Web as in the original 

application, we build a dynamic graph of user accessed pages in a particular cluster on the server 

and use Page Rank to determine which pages will be asked for next. 

3.4 Computational Complexity of the Page Rank Prefetching Algorithm 

The prefetching mechanism has to be invoked for each access at the server. Consequently, it 

is imperative that the underlying algorithm be efficient. A complexity analysis of the algorithm is 

presented in this section. The main part of the Page Rank algorithm consists of populating the 

matrix and then calculating its principal eigenvector. These are two consecutive operations: 

 
1. Matrix population (simplified) 

• For each newly requested page, find all the pages it links to and all the pages that link 

to it. A length n array is used to help keep track of pages in memory. Let n be the 

number of links on a page. Our observations show that it is rare for a page to have 

more than 20 links to pages on the same server. 

• Find all pages that the new page links to. This requires a full array scan. For each 

array element, all the links on the new page need to be checked. Our observations 
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show that it is rare for a page to have more than 20 links to pages on the same server. 

We can safely make an assumption that n is the maximum number of links on a page. 

Then the worst case performance is O(n2). 

• Find all the pages that link to the new page. This again requires a full array scan 

consisting of a scanning of the links on the current page and comparing them to the 

link to the new page. Making the same assumption, that n is the maximum number of 

links on a page, we have a worst case performance of O(n2). 

• The 2 operations above are consecutive and can be combined into one with the same 

O(n2) complexity. Furthermore, ordering the array wouldn�t change the worst-case 

performance. 

• Recalculate the matrix values. This as an O(n2) complexity as well. 

2. Matrix multiplication. 

• Iterative matrix-vector multiplication and addition. This typically converges in less 

than 20 iterations. 

• The cost of multiplying a n x m matrix by a m x p matrix is O(nmp). We have n x n 

by n x 1 therefore our multiplication algorithm�s cost is O(n2). 

As a result we have the overall complexity of the Page Rank prefetching algorithm as O(n2).  

Note that for n=200 a single-threaded implementation processed 90 requests per minute on 

an 850 MHz PIII with 256 MB RAM running Windows 2000. This is equivalent to serving a 

month worth of requests in less than 5 hours. 

Hardware costs, and memory costs in particular, have been decreasing rapidly. It is not 

uncommon for a large company with substantial Web presence (such as Schwabb) to have a 

dedicated Web server farm of multiprocessor machines with more than 1GB or RAM each. Even 
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desktop PCs come with 256 RAM standard at this point. If the computer resources are really an 

issue it should be possible, in theory, to optimize the algorithm using various sparse matrix 

techniques.   

3.5 Design and Implementation  of a Cluster Based Prefetching Server. 
 
 
 
 

 

Figure 2. Server Architecture. 
3.5.1 Design Issues 

3.5.1.1 Parallelism 

A key motivation for implementing the server on a cluster of machines was to exploit the 

inherent parallelism in the Page Rank prefetching algorithm and maintain server scalability. Page 

Rank computations for different page clusters can be performed in parallel each on its own 

dedicated machine. Furthermore, the associated matrix computations can also be parallelized. 

This introduces a new level of parallelization that is not bounded by the number of page clusters. 
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Both levels of parallelization can be employed simultaneously to achieve maximum performance 

gain. 

The distributed server achieves almost perfect scalability as processing for each cluster is 

performed independently. The overall runtime in this case is the maximum of the computation 

times for the cluster plus some communication overheads. A single server would have processed 

the requests sequentially resulting in an overall runtime equal to the sum of the computation 

times for each cluster.  

3.5.1.2 Matrix size 

Our experiment showed that a matrix size n = 200 resulted in the most appropriate balance 

between speed and effectiveness of prefetching. Matrices of size less than 10 produce results that 

were fast but were not useful for prefetching. On the other hand, running with a matrix size of 

1000 took an unacceptably long time on an 850MHz PIII with 256 MB RAM running Windows 

2000. A matrix size of 200 gave good prefetching predictions and had a reasonable 

computational cost.  

3.5.1.3 Cache organization 

Similarly, we empirically found that the most appropriate fraction of pages in the cache that 

should be prefetched is 0.25. Values that were too high wasted cache space while values that are 

too low wasted computational effort. For example, we found that prefetching a fraction of the 

pages 0.5 and higher did little to increase the hit rate but caused a lot of files that were never 

used to reside in the cache only to be replaced later. On the other hand, values less than 0.1 

produced a marked decrease in the hit rate. 

3.5.2 Implementation overview 
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We have implemented a prototype server with Page Rank prefetching. The server was built 

on a cluster and performed all the basic functions required, but didn�t include any extra 

optimizations such as any optimizations for the matrix multiplication algorithm. It additionally 

maintained runtime statistics (i.e. hit rate). The architecture of the server is shown in Figure 2. 

The main components of the server are the Router (R), and the HTTP handler (C) and Prefetcher 

(P) pairs.  Each component was implemented as a separate process. The P-C pairs were identical 

and were implemented on separate nodes of the cluster. The Router ran on a dedicated machine. 

The Router was simple and efficient. It accepted an incoming HTTP request, determined which 

cluster it belonged to, and handed it off to a P-C pair for Page Rank computations. The message 

trace diagram is illustrated in Figure 3. Both the Router and the Prefetcher are multithreaded for 

further efficiency. The internal structure and a few details of operations for each component are 

given below.  

3.5.2.1 HTTP handler (Basic Server) 

This component performs the functions of a regular HTTP server with caching and custom 

prefetching. It could be used as stand-alone simple Web server. The HTTP handler operates as 

follows. When it receives an HTTP request it parses it to get the file name and checks if the file 

is in the cache. If so it verifies it�s the file�s freshness using a simple timestamp check. If the file 

is not in the cache or is stale it�s fetched from the disk. The handler then formats a proper HTTP 

reply and sends it to the requesting object (prefetcher in our case). Also, when the HTTP handler 

receives a prefetch request from the Prefetcher it will get the files from the disk and puts them 

into its cache. The cache is implemented as a user-level memory cache indexed by the filenames. 

3.5.2.2 Prefetcher 
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Prefetcher is the component in charge of making a decision about which files need to be 

prefetched. As it passes the response to the client back to the Router it parses it and creates a list 

of �href� links to local pages in the page. It should be noted that the HTML parser has to be very 

forgiving. Special provisions have to be made to accept anchors with or without quotes and other 

attributes. Very few pages were found to follow strict HTML syntax since browsers tend to 

overlook many HTML syntax errors. The parser also converts relative paths into absolute ones 

for ease and uniformity of processing. The resulting list of links, including the link to the current 

page, is fed into the Page Ranker component. Page Ranker returns a list of new highest-ranking 

pages. This list is then sent to the HTTP handler to be prefetched into its cache. 

The Page Rank prefetcher calculates the pages to be prefetched on the fly allowing the server 

to respond very quickly to any change in access pattern popularity. The server prefetches pages 

that are not yet accessed and registers changes in the page�s contents as soon as the page is 

accessed again. In other words, the Prefetcher maintains a running rank of pages on the server 

based on the pages accessed so far. 



 

19 

  

  
 
  

 

 

 

 

 

 

 

 

 

 

 

Figure 3.  Internal Message Trace Diagram 

 

4. Experimental Evaluation 

We used server logs from the University of California, Berkeley Computer Science 

Division (for year 2000) (www.cs.berkeley.edu) and Rutgers University Center for Advanced 

Information Processing (for year 2000) (www.caip.rutgers.edu) to experimentally evaluate the 

Page Rank-based perfecting mechanism. In particular, we chose September 2000 log as a 

representative one for our experiment. The experiment consisted of identifying the access 

clusters in the logs and extracting requests to these clusters. The accesses were then used to drive 

the evaluation, which consisted of measuring the hit rate for accesses at server with the Page 

Rank-based prefetching scheme versus a random prefetching scheme.  
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page request forward
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To simulate client requests we implemented a simple driver. The driver read server access log, 

sent an HTTP request corresponding to the original access and waited for the response. This 

operation is easily parallelizable. We only needed to break the log file into multiple pieces and 

start the drivers simultaneously for each piece. This simulated multiple clients with repeatable 

behavior. While the primary objective of our experiment was not to find out how many clients 

the server could handle multiple clients did speed up the experiment as well as demonstrated our 

server�s scalability. 

The objective of this paper is to introduce a new prefetching scheme. We consider server 

caching to be a subset of prefetching and so do not separate the two. Instead we make a 

comparison to a random prefetching scheme (also with server caching). In this way we compare 

two prefetching schemes rather than comparing prefetching and caching. It has also been shown 

in previous research that on the Web the maximum hit rate achievable by any caching algorithm 

is just 40% to 50% [7] [4]. Our prefetching scheme exceeds this result by a good margin. 

4.1 Hit Rate 
We defined hit rate as follows. Let H be the number of user requests that were found in cache 

at the time of the request. Let M be the number of user requests that were not found in the 

prefetch cache. Then the total number of requests is H + M and the hit rate is defined as   

 

 

Using our heuristic, we found 28 clusters on the Berkeley server, constituting about 70% 

of all the files on the server. So these clusters are quite common. We extracted requests for 

each cluster and used them to evaluate our prefetching scheme. The results are as follows. 

Hit rates per cluster range from 0 to 95%. In all, 61% of all the clusters gave hit rates greater 
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than 30% (i.e. greater than random). Requests to those clusters constitute about 15% of all 

the requests in the log. Figure 4 shows the cluster access for the Berkeley log. Only the 

clusters with hit rate greater than 10% and with more than a 100 accesses are plotted.  

In Figures 4 and 5 each point on the X-axis represents a cluster in the order of initial 

access. Left Y-axis represents the % hit rate (for the bars) while right Y-axis represents a % 

of all files on the server that files in a given cluster constitute (for the line). I.e. in Figure 5 

cluster 8 achieves 90% hit rate while files in the 8th cluster are about 8% of all the files on the 

server. 

 

 

0
10
20
30
40
50
60
70
80
90

100

1 2 3 4 5 6 7 8 9 1011121314151617
0

2

4

6

8

10

12

% hit rate
% all files

 

Figure 4. Berkeley Clusters and Accesses 
 

In case of the CAIP server log for November 2000 we found the following. There are 12 

clusters as defined by our heuristic. Files in those clusters constitute 49% of all the files on the 

server. Requests to those files constitute 39% of all the server requests. 
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Figure 5 shows the cluster accesses for the CAIP log. As can be seen from the chart the hit 

rate varies from 20% all the way to 95% with only one cluster having the hit rate less than 30%. 

One half of all the clusters have hit rate greater than 70% and one quarter reach or exceed 90%. 

This again shows that cluster pages are common, that they account for a substantial number of 

requests, and that the Page Rank scheme does very well prefetching these type accesses. 
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Figure 5. CAIP Clusters and Accesses 

 

It should be noted that the heuristic we employed is a temporary solution to finding the 

clusters. It should be relatively straightforward to develop a spider that will crawl all the pages 

on the server and discover clusters. Threshold of connectivity for the cluster definition is a 

subject of future research. We predict that having defined the clusters in a more systematic way 

will increase hit rate even further. It may also discover more clusters and files belonging to 

clusters.  
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We also note that the Page Rank prefetcher did not do well for non-clustered request. In this 

case the hit rate was about 17%. The random prefetcher resulted in a hit rate of about 30%. This 

is expected as the Page Rank prefetcher is based on the premise that page link information 

determines accesses, which is true for clustered accessed but typically not true for random 

accesses.  

4.2 Server scalability 
We ran the scalability part of the experiment on a cluster of identical SUN workstations with 

120MB RAM each. Running with 12 machines in a cluster reduced the overall running time by a 

factor of 8. Figure 8 demonstrates the scalability results for the CAIP server logs. It demonstrates 

an almost perfect scalability up to the number of file clusters on the server. This experiment 

shows that the distributed architecture implemented works very well with the prefetching 

scheme. 
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Figure 6. Scalability 
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5. Conclusions and Future Work 

In this paper we presented the Page Rank-based prefetching mechanism for clustered web 

page accesses. In this approach, we rank the pages linked to a requested page and use the rank to 

determine the pages to be prefetched. We also presented an experimental evaluation of the 

presented prefetching mechanism using server logs from the University of California, Berkeley 

Computer Science Division (for year 2000) and Rutgers University Center for Advanced 

Information Processing (for year 2000). The results show that the Page Rank prefetching does 

better than random prefetching for clustered accesses, with hit rates 90% hit rate in some cases. 

We have also shown that these clusters are quite common on both servers we explored. They 

constitute about 50% and 70% of all the files on the server. Accesses to pages in the clusters are 

about 15% and 40% of all the accesses. 

We are currently building a spider for discovering page clusters. This work is also investigating 

the appropriate depth and breadth thresholds for cluster identification. We are investigating the 

type of web sites that can benefit from the Page Rank prefetching approach. Finally, we are 

implementing a distributed version of the prefetcher. This version will have its matrix calculation 

parallelized. It can be efficiently deployed in a cluster environment.  
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