
Autonomic Proactive Runtime Partitioning Strategies for SAMR Applications
�

Yeliang Zhang, Jingmei Yang, Salim Hariri
HPDC Laboratory

University of Arizona�
zhang, jm yang, hariri � @ece.arizona.edu

Sumir Chandra, Manish Parashar
The Applied Software Systems Laboratory

ECE/CAIP, Rutgers University�
sumir, parashar � @caip.rutgers.edu

Abstract

Dynamic structured adaptive mesh refinement (SAMR)
techniques along with the emergence of the computational
Grid offer the potential for realistic scientific and engineer-
ing simulations of complex physical phenomena. However,
the inherent dynamic nature of SAMR applications cou-
pled with the heterogeneity and dynamism of the underlying
Grid environment present significant research challenges.
This paper presents proactive runtime partitioning strate-
gies based on performance prediction functions that are ex-
perimentally formulated in terms of system parameters such
as CPU load and available memory. These proactive par-
titioning strategies form a part of the GridARM autonomic
framework which enables self-managing, self-adapting, and
self-optimizing SAMR applications on the Grid. Experi-
mental evaluation of the proactive schemes using the 3-D
Richtmyer-Meshkov compressible fluid dynamics kernel for
different system configurations and workloads demonstrates
the improvement in overall runtime performance.

1 Introduction

The emergence of the computational Grid and the poten-
tial for seamless aggregation, integration, and interactions
has made it possible to conceive a new generation of realis-
tic, scientific and engineering simulations of complex phys-
ical phenomena. These next-generation Grid applications
will provide new and important insights into complex sys-
tems such as interacting black holes and neutron stars, for-
mations of galaxies, subsurface flows in oil reservoirs and
aquifers, and dynamic response of materials to detonation.

Dynamically adaptive simulations based on structured
adaptive mesh refinement (SAMR) techniques can yield
highly advantageous ratios for cost/accuracy when com-
pared to methods based on static uniform approximations,
and can be effectively used to enable large-scale, physically

�
This research was supported in part by NSF via grants ACI 9984357

(CAREERS), EIA-0103674 (NGS), and EIA-0120934 (ITR).

realistic scientific and engineering simulations. SAMR
techniques start with a coarse base grid with minimum ac-
ceptable resolution that covers the entire computational do-
main. As the simulation progresses, regions in the domain
requiring additional resolution are identified and are dy-
namically refined. Parallel/distributed implementations of
SAMR applications lead to interesting research problems in
dynamic resource allocation, data-distribution and load bal-
ancing, and communication and coordination. Furthermore,
the underlying Grid infrastructure is dynamic and heteroge-
neous in nature. As a result, configuring, managing, and
optimizing the execution of dynamic SAMR applications to
exploit the underlying computational power of the hetero-
geneous Grid environment remains a significant challenge.

This paper presents proactive runtime partitioning strate-
gies based on performance prediction functions to optimize
the performance of SAMR applications in distributed and
dynamic Grid execution environments. In these environ-
ments, application performance may be severely degraded
due to changes in the available CPU, network load, and
memory resources. The performance prediction functions
presented in this paper are experimentally formulated [6] in
terms of the current system state parameters and estimate
the expected performance of a particular application distri-
bution, given the current system state. Though CPU load,
available memory, and bandwidth are the primary system
parameters considered here, the same strategies can apply
to other parameters such as cache size etc., once the perfor-
mance function is obtained. The partitioning strategies then
use the performance functions to identify a redistribution
of the application domain that addresses changes in system
state and available resources, and maximizes performance.

These proactive partitioning strategies form a part of
the GridARM autonomic runtime framework which enables
self-managing, self-adapting, and self-optimizing SAMR
applications on the Grid. Experimental evaluation of
the proactive schemes using the 3-D adaptive Richtmyer-
Meshkov compressible fluid dynamics kernel (RM3D1)

1RM3D has been developed by Ravi Samtaney as part of the virtual test
facility at the Caltech ASCI/ASAP Center.

for different system configurations and workloads demon-
strates the improvement in overall runtime performance.

The rest of this paper is organized as follows. Section 2
presents an overview of the GridARM framework and its
components. Section 3 details the proactive runtime parti-
tioning strategies for distributed SAMR applications. Sec-
tion 4 describes the experimental evaluation of the proactive
schemes for different system configurations and workloads.
Section 5 presents concluding remarks and future work.

2 GridARM Autonomic Framework

The overall goal of the GridARM autonomic runtime
framework is to reactively and proactively manage and op-
timize SAMR application execution using current system
and application state, online predictive models for system
behavior and application performance, and an agent based
control network. The framework manages physical Grid
resources, allocates them “on-demand”, and spatially and
temporally maps virtual resources to physical nodes. The
conceptual GridARM framework, shown in Figure 1, has
three components: (1) services for monitoring Grid re-
source capabilities and application dynamics and charac-
terizing the monitored state into application units; (2) per-
formance analysis module and deduction engine that define
the appropriate optimization strategy based on runtime state
and policies; and (3) autonomic runtime manager which is
responsible for hierarchically partitioning, scheduling, and
mapping application units onto available resources, and tun-
ing execution within the Grid environment.

The monitoring component within the GridARM frame-
work is responsible for detecting conditions under which
the parameters affecting the application execution deviate
from their acceptable behavior or operation. For example,
application performance may degrade severely due to in-
creased computational and/or network load, low available
memory, or due to software or hardware failures. The char-
acterization of current state is then used to drive the predic-
tive performance functions and models that can estimate its
performance in the near future. The performance analysis
module is responsible for describing the behavior of a sys-
tem component, subsystem or compound system through
Performance Functions, developed in previous research [6].
The deduction engine determines the appropriate applica-
tion reconfiguration strategy and the resources required to
repartition work and optimize SAMR performance.

The work presented in this paper builds on earlier Gri-
dARM efforts on application-senstive partitioning [1, 3],
system-sensitive partitioning [5], Pragma infrastructure [4],
and adaptive runtime management [2, 6]. The focus of this
paper are the proactive runtime partitioning strategies based
on performance prediction functions, formulated from mon-
itored system state parameters, to optimize the performance

of SAMR applications in Grid environments.

3 Proactive SAMR Partitioning Strategies

Distributed SAMR applications are CPU-intensive,
memory-intensive, and bandwidth-intensive programs. The
application performance may degrade severely due to in-
creased CPU and/or network loads, and with reduced avail-
able memory. To optimize application performance, the
runtime partitioner uses current system parameters obtained
using resource monitoring agents, current application state,
and performance functions to repartition the entire applica-
tion domain among processors during runtime. The overall
model is as follows. Suppose that the work is to be dis-
tributed among � processors.�� � �����
	

����

(1)

where �
	
�

represents the combined work partitioning ratio
of processor i defined as follows. The work W

�
assigned

to the ith processor can be computed as � � � �
	
��� �

where W is the total work. The combined work partitioning
ratio can now be computed using system information, i.e.
CPU load, available memory and network load.

�
	
� ��� � 	 �

��� � � 	 �
��� ���

	 �
�

(2)

where 	 �
�

, 	 �
�

and 	 �
�

are work partitioning ratio based on
CPU load, available memory, and link bandwidth respec-
tively.

� � , � � and

���
describe the weights reflecting how

important CPU, memory, and bandwidth are and

� � +

� �
+

���
= 1. Note that�� � ��� 	 �

� � �� � ��� 	 �
� � �� � ��� 	 �

� ��

(3)

The application and system states on each processor are
monitored at runtime. In the case of SAMR applications,
application state is defined in terms of the current levels of
refinement, the number, shape, and aspect ratio of the re-
fined patches and the dynamism of the application [1, 3].
System state includes CPU availability, available memory,
and link bandwidth. The runtime partitioner uses applica-
tion configuration, state information, and the appropriate
performance function to calculate the combined work par-
titioning ratio �
	

�
for each processor at runtime. These

ratios are then used to redistribute the application domain
among processors in subsequent time-steps.

The frequency for monitoring application and system
state, recomputing system capacity, and repartitioning the
application depends on the rate of system/application dy-
namics and SAMR adaptation. There are three extreme
cases in equation (2), which lead to three different strate-
gies for work partitioning.

2

Figure 1. Conceptual model of the GridARM framework

� CPU-based runtime partitioning: When

� � is 1 and
� � ,

� � are 0, �
	
�

becomes 	 �
�
� This strategy parti-

tions the work among processors based on their CPU
load status.

� Memory-based runtime partitioning: When

� � is 1
and

� � ,

� � are 0, �
	
�

becomes 	 �
�
� This strategy

partitions the work among processors based on their
available memory.

� Bandwidth-based runtime partitioning: When

� � is 1
and

� � ,

� � are 0, �
	
�

becomes 	 �
�

. This strat-
egy partitions the work among processor based on their
link bandwidth.

3.1 CPU-based Runtime Partitioning

The performance of parallel SAMR applications in time-
shared systems may degrade due to multi-programming. It
has been observed that the execution time of a computation-
intensive program linearly increases with the number of
jobs sharing the same processor. To optimize the SAMR ap-
plication performance, our CPU-based partitioning strategy
uses the CPU current load and application state to reparti-
tion the work among processors.

3.1.1 CPU Performance Function Model

Performance Functions (PF) describes the behavior of sys-
tem or application in terms of changes in one or more
of its attributes. We can characterize the relationship be-
tween the execution time of a SAMR application and its

attributes-application work and refinement level as a time
performance function

�
�
��� ��� �	��

��� . By using the per-

formance function, we can estimate the time to finish work
W at refinement level LV for an AMR application on one
processor if this processor is dedicated to it. If this proces-
sor is shared with other applications, the AMR application
would experience longer delay. Let L

�
be the load index for

processor i, which is represented by the length of the CPU
waiting queue. In such a multiprogramming case, the exe-
cution time of the AMR application can be estimated as a
function of the CPU load, application work and refinement
level as follows:�

� �
�
�

� �

��� ��� � � ��

� � � �
 � (4)

The time performance function for RM3D is empirically de-
fined as follows:�

�
��� � � ����
�����
� � � ��� � �

���
��
�
��� � �

��
��� � � � ���
�� � � ��� � � �
���
��� � �

�� �
�
��� � � �

� � (5)

where �
�

is heuristic coefficient derived from our previ-
ous research [2].

3.1.2 Work Partitioning Algorithm

The average execution times of an AMR application on all
processors can be estimated as follows.

�! #"%$
� �&� � � �

�
� (6)

3

where
�
� �

��� � � � � ��

� � � �
 � .
To improve the application performance, the execution

time should be as equal as possible on all processors. In do-
ing so, the work partitioning ratio of each processor is ad-
justed at runtime such that their execution time during the
next time steps will be identical within an acceptable toler-
ance. The adjustment factor associated with each processor
is defined as, � �

��� �
� � #"%$ ��� ��

�
��� � (7)

where T

�
(t) is the estimated execution time for processor i

at time step t; T
 #"%$

(t) is the average estimated execution
time for all processors at time step t.

Once the adjustment factor is determined, we can com-
pute CPU-based work partitioning ratio of processor i for
the next time step as follows:

	 �
�
���
�

�
�
	 �
�
��� �
� � �

��� � (8)

To make sure that the sum of partitioning ratios on all pro-
cessors is equal to 1, the new ratio is normalized as follows:

	 �
�
���
�

���
�

	 �
�
���
�

��&� ��� 	 �
�
���
�

�
(9)

3.2 Memory-based Runtime Partitioning

The performance of distributed SAMR applications may
degrade on heavily loaded processors that have little avail-
able memory because page faults occur frequently. Thus,
the memory-based partitioning strategy optimizes perfor-
mance by minimizing the number of page faults and bal-
ancing work among processors.

3.2.1 Memory Function Model

Using a memory function model, the memory usage of a
SAMR application can be characterized as:

���
�
��� � � � � (10)

where AM is the amount of memory used by a given work
W of the AMR application.

The memory function for the RM3D application is em-
pirically defined as follows.

�	�
�
��� � � � �

�
� � � � � � (11)

where: � � = 8187.5036; � � = 0.1348959 memory needed
for each processor at runtime based on the current workload
assigned to each processor. In what follows, we describe the
algorithm used to proactively partition the work among the
processors according to memory availability.

3.2.2 Processor Grouping

In order to efficiently repartition the work among the
processors, the memory-based strategy must first identify
which processors are heavily loaded, lightly loaded, or in
between. Consequently, we divide the processors on which
the application is running into different groups according to
their available physical memory space.

Let M

�
be the amount of available physical memory

space on processor i, i=1,. . . ,K. We use two-level threshold
MT � and MT � to describe the memory characteristic of pro-
cessors. If its available memory M

�
is less than MT � , pro-

cessor i is heavily loaded and page faults occur frequently.
If M

�
is greater than MT � , processor i is lightly loaded and

page faults rarely occur. If M

�
is between MT � and MT � ,

processor i is moderately loaded and page faults occur oc-
casionally. According to the amount of available memory
M

�
and two-level threshold MT � and MT � , processors can

be grouped into the following three groups.

� Low memory group (X
 � : If M

�
� MT � , processor i

is in group X
 which has little available memory. The
number of processors in group X
 is represented by
N
 .

� High memory group (X � � : If M

�

 MT � , processor

i is in group X � which has large amount of available
memory. The number of processors in group X � is
represented by N �

� Border memory group (X): If M

�
is between MT � and

MT � , processor i belongs to group X. The number of
processors in group X is represented by N.

To optimize the execution of the application, some work on
the processors in group X
 should be transferred to the pro-
cessors in group X � and the work of the processors in group
X should be kept unchanged. This will lead to better perfor-
mance due to reduction in number of page faults. There are
three important cases that have to be dealt with.

� Certain processors have too little available memory
and certain processors have excess available memory,
i.e. both N � and N
 are greater than zero.

� Some processors have excess available memory while
no processors have little available memory. N � is
greater than zero and N
 is equal to zero.

� Certain processors have little available memory while
no processors have excess available memory. N
 is
greater than zero and N � is equal to zero.

In the first case, the work assigned to processors in group
X
 should be partially transferred to the processors in group
X � . In the second case, there are processors with ex-
cess available memory but no processor is heavily loaded.

4

Therefore the work assignment of all processors would not
change. In the third case, there is an absolute shortage
of memory but no processor has excess available memory.
Thus, we keep the current assignment of work unchanged.

3.2.3 Work Partitioning Algorithm

After identifying the amount of available memory in each
processor and dividing them into groups, one must calculate
how much work should ideally be transferred from group
X
 to group X � . Let W
 be the whole work assigned to
processors in group X
 .

�

������ � ��� �

�
(12)

To avoid overload the processors in group X � , we initially
transfer part of the whole work W
 . We use P � to represent
the transferring percentage and the work to be transferred
is �

�
� � . The remaining work on processors in group

X
 is �

�
�

� � � � . To balance the work transfer, the

work should be moved to processors in group
� � as evenly

as possible. So we define U
 as the unit of work being
transferred to one processor.

�

� �

�
� �

� � (13)

In order to achieve the desired optimization, a processor in
group X � must guarantee that its available memory space is
greater than MT � after it accepts the work transfer. In doing
so, it must estimate the memory usage of its current work
W

�
and the memory usage of its work after the transfer. Let

the work of processor i after the transfer be W
�
�

and � �
� �

� � � �
 . For RM3D application, these two memory usages
can be estimated by using the memory function shown in
Equation (10). In order to guarantee its available memory
greater than MT � after the transfer, the following condition
must be met for each processor in group X � .�

�
� � ��� � � � �

�
� � ��� � � � � � �
 � � � (14)

We sort the processors in group X � in the ascending order
of available memory M

�
.Thus we check with the proces-

sor having least available memory first. Then the processor
with the second least available memory is checked and so
forth. In what follows, we will analyze the behavior of the
algorithm in terms of four cases:

Upon substituting � �
� � � � � �
 into (13), we check

for processor i in group X � if condition in (13) can be met.

1. Case 1: If the condition in (13) cannot be met, we
reduce the size of the work to be transferred. Let P � be
the reduction percentage and the work to be transferred
then becomes

�

�
�

� � � � . Then we check the

condition in (13) again by substituting � �
� � � � ��

�
�

� � � � �

(a) Case 1-1: If the condition can be met, the new
work of processor i after the transfer would be� �
� � � � � �
 .

(b) Case 1-2: If the condition still cannot be met,
more reduction would be made. If after the whole
unit of work U
 is reduced and the condition still
cannot be made, which means processor i cannot
accept any additional work, the current work of
processor i would be kept unchanged � �

� � � � .
2. Case 2: If the condition in (13) can be met after trans-

ferring unit of work U
 to processor i, we will check
if there is remaining work left from the previous pro-
cessor i-1. Let W 	 � (i-1) be the remaining work from
the previous processor i-1. If there exists W 	 � (i-1),
we will try to transfer it to processor i as well. Then
the work of processor i after the transfer becomes� �
� � � � � �
 � � 	 � ��
 �
 � . The condition in

(13) is checked again with the new W
�
�
.

(a) Case 2-1: If the condition can be met, � �
� �

� � � �
 � ��	 � �

 �
 � would be the new work
of processor i after the transfer.

(b) Case 2-2: If the condition cannot be met, the
same reduction method would be applied to
W 	 � (i-1) �After all the checking and reduction on
processor i, the remaining work from processor i
to next processor W 	 � (i) would be updated. If
there is still some work left after checking all
the processors in group X � � ��	 � � � � �
�� � ,
it would be assigned back to the processors in
group X
 according to their contributions to W
 .

After the work transfer, each processor has a new work W
�
�
.

Then the new memory-based work partitioning ratios can
be computed as follows:

� � �� � � �
�

�&� ��� � �
� (15)

4 Experimental Results

The autonomic proactive runtime partitioning system has
been integrated into the GrACE (Grid Adaptive Compu-
tational Engine) data management framework for paral-
lel/distributed SAMR applications. The autonomic runtime
partitioning strategies are evaluated using the RM3D CFD
kernel on Beowulf clusters at Rutgers University and Uni-
versity of Arizona. We establish three scenarios to evaluate
our proactive partitioning approaches.

� Lightly loaded scenario: Among the processors ex-
ecuting the RM3D application, 75% processors are
lightly loaded and the other 25% are heavily loaded.

5

� Moderately loaded scenario: Among the processors
executing the RM3D application, 50% processors are
lightly loaded and the other 50% are heavily loaded.

� Heavily loaded scenario: Among the processors ex-
ecuting the RM3D application, 25% processors are
lightly loaded and the other 75% are heavily loaded.

4.1 CPU-based Proactive Partitioning

In this subsection, we quantify the performance gain that
can be achieved by using the CPU-based proactive partition-
ing approach to adapt to CPU load dynamics. A synthetic
program is used to control the CPU load dynamics among
the processors and establish the three different load sce-
narios discussed previously. we compare the performance
of the RM3D application with and without the CPU-based
proactive partitioning approach.

Figure 2 presents CPU load situation on 16 processors
and the corresponding work assignment of the RM3D ap-
plication with and without CPU load adaptation under the
moderately loaded scenario. The CPU load is measured as
the length of the CPU waiting queue and is monitored by
system monitoring tool at runtime. The work is the size of
computation point set of the RM3D application. Without
CPU load adaptation, the work is assigned almost evenly
among the processors. However, by using proactive CPU
partitioning algorithm, work is assigned to processors based
on its CPU load status. Tables 1, 2, 3, and 4 present the per-
formance gain of RM3D with CPU-based proactive parti-
tioning strategy for different base size and different number
of processors under different load scenarios.

Table 1. CPU-based proactive partitioning performance
gain on 8 processors. (Base grid size: 64*16*16)

Scenarios Execution

time w/o CPU

adaptation

(seconds)

Execution time

with CPU

adaptation

(seconds)

Percentage Im-

provement

Lightly loaded 2618.2 1560.87 40.38%

Moderately

loaded

2706.84 1964.87 27.41%

Heavily loaded 2727.51 2127.32 22%

The above results show that RM3D experiences longer
delays when some processors are heavily loaded. With-
out the CPU-based proactive partitioning algorithm, the ap-
plication work is partitioned equally among the processors
regardless of their CPU load status that leads to a longer
application execution time. However with our CPU-based
proactive runtime partitioning strategy the application work
is partitioned according to the processors’ CPU load status

Table 2. CPU-based proactive partitioning performance
gain on 16 processors. (Base grid size: 64*16*16)

Scenarios Execution

time w/o CPU

adaptation

(seconds)

Execution time

with CPU

adaptation

(seconds)

Percentage Im-

provement

Lightly loaded 2126.06 727.17 65.8%

Moderately

loaded

2301.15 1641.73 28.66%

Heavily loaded 2378.25 1624.15 31.71%

Table 3. CPU-based proactive partitioning performance
gain on 32 processors (Base grid size: 128*32*32)

Scenarios Execution

time w/o CPU

adaptation

(seconds)

Execution time

with CPU

adaptation

(seconds)

Percentage Im-

provement

Lightly loaded 4908.79 2901.1 40.9%

Moderately

loaded

4976.78 3378.65 31.35%

Heavily loaded 5170.52 4140.56 20.45%

and the performance of RM3D could be significantly im-
proved. For example, in Table 1, for lightly loaded scenario
we can obtain 40% percentage improvement. The results
also demonstrate that better performance can be achieved
under lightly and moderately loaded scenarios. The rea-
son is that under heavily loaded scenario most processors
are heavily loaded and there are not enough lightly loaded
processors to accept more work. Furthermore, better perfor-
mance can be obtained with large number of processors. For
example, in Table 2, 65.8% percentage improvement is ob-
tained on 16 processors under lightly loaded scenario with
the same base grid size of 64*16*16 as shown in Table 1.
With more processors, the work assigned to each processor
would be reduced.

4.2 Memory-based Proactive Partitioning

In this subsection, we quantify the performance gain that
can be achieved if the work assignment takes into consid-
eration the amount of available memory at each processor.
In our experiment, the memory availability of processors is
controlled by a synthetic memory consuming program.

Figures 3, 4, and 5 demonstrate the memory availabil-
ity on 8 processors and the corresponding work assignment
by using the memory-based proactive partitioning approach
for three different scenarios. During the execution of the
RM3D application, the memory-based proactive partitioner

6

Figure 2. Moderately loaded scenario on 16 processors: CPU load distribution (left) and work assignment for 16 processors (right)

Figure 3. Lightly loaded scenario on 8 processors: Memory availability (left) and work assignment for memory-based proactive
partitioning algorithm (right)

Table 4. CPU-based proactive partitioning performance
gain on 64 processors. (Base grid size: 128*32*32)

Scenarios Execution

time w/o CPU

adaptation

(seconds)

Execution time

with CPU

adaptation

(seconds)

Percentage Im-

provement

Lightly loaded 4904.78 2827.29 42.36%

Moderately

loaded

5049.72 5049.72 35.02%

Heavily loaded 5119.89 3587.89 29.92%

assigns larger work to processors with high available mem-
ory. On the other hand, processors with little available
memory are assigned relatively smaller workload.

Table 5 compares the performance of RM3D with and
without the memory-based proactive partitioning strategy
and shows the substantial improvement due to memory-
based partitioning. Without the memory-based partition-
ing algorithm, the application work is partitioned evenly
among the processors. Due to large number of page faults
on heavily loaded processors, the RM3D application expe-
riences long delays. However, with the memory-based al-
gorithm, the application work is reassigned to processors
according to memory availability, resulting in reduced over-
all execution times. The above results also show that better

Table 5. Memory-based proactive partitioning perfor-
mance gain on 8 processors (Base grid size: 128*32*32)

Scenarios Execution time

w/o memory

adaptation

(seconds)

Execution time

with memory

adaptation

(seconds)

Percentage Im-

provement

Lightly loaded 6922.14 5210.87 24.72%

Moderately

loaded

15890.47 7401.61 53.42%

Heavily loaded 16962.1 8284.84 51.16%

performance can be achieved under moderately and heav-
ily loaded scenarios since most processors have very lit-
tle available memory and the page faults occur frequently,
resulting in extremely long application delays. Using
memory-based partitioning strategy to assign work based on
processors’ memory availability, the heavily loaded proces-
sors will be assigned less computation and, consequently,
the performance can be significantly improved.

5 Conclusions and Future Work

This paper presented proactive runtime partitioning
strategies based on performance prediction functions to op-
timize the performance of SAMR applications in distributed

7

Figure 4. Moderately loaded scenario on 8 processors: Memory availability (left) and work assignment for memory-based proac-
tive partitioning algorithm (right)

Figure 5. Heavily loaded scenario on 8 processors: Memory availability (left) and work assignment for memory-based proactive
partitioning algorithm (right)

and dynamic Grid execution environments. The perfor-
mance prediction functions are experimentally formulated
in terms of the current monitored state of the system (CPU
load, available memory, and bandwidth). These proactive
partitioning strategies form a part of the GridARM auto-
nomic runtime framework which enables self-managing,
self-adapting, and self-optimizing SAMR applications on
the Grid. The experimental evaluation for the proactive
strategies using the 3-D adaptive Richtmyer-Meshkov com-
pressible fluid dynamics application kernel for different
system configuration and workloads demonstrated the im-
provement in overall runtime performance of SAMR appli-
cations. The CPU-based scheme achieves performance im-
provement of up to 65.8% and the memory-based strategy
can achieve performance improvement of up to 53%. Note
that further improvements in performance can be achieved
for larger numbers of processors and under heavy load. Fu-
ture work in this research aims to define a hybrid strat-
egy that combines several system parameters such as CPU,
memory, and bandwidth, and addresses the issues about se-
lection consideration and sensitivity of system weights and
their effect on overall performance of the hybrid strategy.

References

[1] S. Chandra and M. Parashar. “ARMaDA: An Adaptive
Application-Sensitive Partitioning Framework for Struc-
tured Adaptive Mesh Refinement Applications”, Proc. of

Parallel and Distributed Computing Systems (PDCS 02),
Cambridge, MA, pp. 446–451, November 2002.

[2] S. Chandra, S. Sinha, M. Parashar, Y. Zhang, J. Yang, and S.
Hariri. “Adaptive Runtime Management of SAMR Applica-
tions”, Proc. of High Performance Computing (HiPC 02),
LNCS, India, Vol. 2552, pp. 564–574, December 2002.

[3] S. Chandra, J. Steensland, M. Parashar, and J. Cummings.
“An Experimental Study of Adaptive Application Sensitive
Partitioning Strategies for SAMR Applications”, Proc. of
2nd LACSI Symposium (best poster SC’01), October 2001.

[4] M. Parashar and S. Hariri. “PRAGMA: An Infrastructure for
Runtime Management of Grid Applications”, Proc. of NSF
NGS Program Workshop, IEEE/ACM IPDPS, Fort Laud-
erdale, FL, CDROM, 8 pages, April 2002.

[5] S. Sinha and M. Parashar. “Adaptive Runtime Partitioning
of AMR Applications on Heterogeneous Clusters”, Proc. of
Cluster Computing, Newport Beach, CA, IEEE Computer
Society Press, pp. 435–442, October 2001.

[6] H. Zhu, M. Parashar, J. Yang, Y. Zhang, S. Rao, and S.
Hariri. “Self Adapting, Self Optimizing Runtime Manage-
ment of Grid Applications using PRAGMA”, Proc. of NSF
NGS Program Workshop, IEEE/ACM 17th IPDPS, Nice,
France, CDROM, 7 pages, April 2003.

8

