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Dynamic structured adaptive mesh refinement (SAMR) techniques along with the emer-
gence of the computational Grid offer the potential for realistic scientific and engi-
neering simulations of complex physical phenomena. However, the inherent dynamic
nature of SAMR applications coupled with the heterogeneity and dynamism of the un-
derlying Grid environment present significant research challenges. This paper presents
application/system sensitive reactive and proactive partitioning strategies that form a
part of the GridARM autonomic runtime management framework. An evaluation using
different SAMR kernels and system workloads is presented to demonstrate the improve-

ment in overall application performance.
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1. INTRODUCTION

Dynamically adaptive simulations based on structured adaptive mesh refinement (SAMR) tech-

niques can yield highly advantageous ratios for cost/accuracy when compared to methods based
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on static uniform approximations. Parallel/distributed SAMR implementations lead to interesting
research problems in dynamic resource allocation, data-distribution, load balancing, communica-
tion, and coordination. Furthermore, the underlying Grid infrastructure is dynamic and hetero-
geneous in nature. As a result, configuring, managing, and optimizing the execution of dynamic
SAMR applications to exploit the computational power of the heterogeneous Grid environment
remains a significant challenge.

GridARM @ is an autonomic runtime management framework that monitors application and
system state and provides adaptation strategies to optimize the performance of SAMR applications
in distributed and dynamic Grid execution environments. Key GridARM components presented
in this paper include reactive and proactive partitioning strategies based on application/system
runtime state and performance estimation. The experimental evaluation of these runtime manage-
ment schemes for different SAMR kernels and system workloads demonstrates an improvement

in overall application performance.

[Fig. 1 about here.]

The conceptual model of the GridARM framework is illustrated in Fig. 1. Application sensors
monitor the state of the SAMR grid hierarchy and the nature of its refined regions, and character-
ize the application in terms of metrics such as computation/communication requirements, storage
requirements, activity dynamics, and the nature of adaptations. System sensors characterize the
current state of the underlying computational resources in terms of CPU, memory, bandwidth,
availability, and access capabilities. The characterization of current application/system state drives

predictive performance functions and models that can estimate application performance. The Gri-
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dARM deduction engine uses current state and adaptation policies to formulate prescriptions for
algorithms, configurations, and parameters, and defines normalized work and resource metrics that
characterize the runtime state. Using these metrics as inputs, the autonomic runtime manager then
defines a hierarchical distribution mechanism, configures and deploys appropriate partitioners at
each level of the hierarchy, schedules and maps application working-sets onto virtual resources,
and tunes the SAMR application within the Grid environment.

The rest of this paper is organized as follows. Section 2 describes the design and evaluation
of the application-sensitive partitioning framework. Section 3 discusses the system-sensitive par-
titioning strategy. Section 4 details the implementation and evaluation of the SAMR proactive

partitioning schemes. Section 5 presents concluding remarks.

2. AUTONOMIC APPLICATION-SENSITIVE PARTITIONING

The choice of an appropriate partitioner depends on the application configuration and state, since
partitioners typically optimize a subset of the application requirements at the expense of others.
SAMR applications are dynamic in nature (i.e., their requirements change with time as the appli-
cation proceeds) and hence the current SAMR application state can only be determined at runtime.
ARMaDA @ dynamically selects and configures partitioning algorithms at runtime to optimize
the overall performance of SAMR applications. The partitioners used include a selection from

software tools such as GrACE (Grid Adaptive Computational Engine) ( and Vampire (4.

2.1. Application State Characterization and Partitioner Selection

ARMaDA builds on our previous work ® that experimentally studied the behavior of structured

domain-based partitioners and defined an approach for characterizing the state of SAMR applica-
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tions. In ARMaDA, the current application state is monitored using simple geometric operations
from the structure of the SAMR grid hierarchy, expressed as sets of bounding boxes at vari-
ous levels of refinement. Three primary metrics are used: (i) computation-to-communication ratio
(“CCratio”) determines whether the application state is computationally-intensive or communication-
dominated; (ii) application dynamics (“Dynamics”) estimate the rate of change of application
refinement patterns; and (iii) nature of adaptations (“Adapt”) captures the adaptation pattern, i.e.,

whether refinements are scattered or localized. These are computed as follows.

S (Volume of bounding boxes)

CCratio = . 1

ratio Y (Surface area of bounding boxes) ()

Dynamics = Size of (Current state boxes N Previous state boxes) (2)
Vol f refi [ .

Adapt = olume of refinement regions +x Number of refinement patches 3

Domain volume

The ARMaDA framework maintains a history of application state by storing the structure of
the SAMR grid hierarchy for two preceding regrid steps. This avoids possible thrashing due to
very frequent state changes. If M, is a metric computed at regrid step r, its normalized metric ratio

is computed using this 3-step sliding window as

currM; xcurrM, _,,
2
(currM, ;)

Mratio =

(4)

Three normalized ratios are computed corresponding to the three metrics, viz., computation/-
communication ratio “Cratio”, application dynamics ratio “Dratio”, and adaptation ratio “Aratio”.

Using low and high thresholds and application-dependent weights, these ratios are combined to
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characterize the state of the SAMR application. The characterized application state is then mapped
to appropriate partitioners using policies derived heuristically from previous research ©.

The ARMaDA framework configures the selected partitioner with appropriate partitioning pa-
rameters (such as partitioning granularity) and invokes it to partition and load balance the SAMR
grid hierarchy. The granularity is based on the requirements of the current application state, though
it may be overidden by a user defined value. ARMaDA uses efficient and inexpensive mechanisms
and provides optimizations to ensure that the runtime overheads of state characterization and par-
titioner selection do not offset the benefits of adaptation.

2.2. Evaluation of Application-Sensitive Partitioning

The experimental evaluation of ARMaDA consists of measuring the overall execution times for
the different partitioners used individually, including SFC, G-MISP+SP, pBD-ISP, and their adap-
tive combinations. Only the partitioning strategy and associated granularity are varied. All other
parameters are kept constant.

The first experiment is conducted on 32 processors of “Frea”, a 64-node Linux Beowulf clus-
ter at Rutgers University, using the VectorWave2D? application. The application uses a base grid
of size 128*128 with 3 levels of factor 2 space-time refinements. Regriding is performed every 4
time-steps at each level and the application runs for 60 coarse level time steps. The VectorWave2D
application is primarily computation-dominated, requiring good load balance and reduced com-
munication and data migration costs. SFC and pBD-ISP partitioners optimize communication and

data migration, while G-MISP+SP gives good load balance. As shown in Table I, the ARMaDA

3 The VectorWave2D application forms a part of the Cactus 2-D numerical relativity toolkit solving Ein-
stein’s and gravitational equations.
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partitioner with SFC start improves performance by 26.19% over the slowest partitioner, and the

overhead is 0.0616% of the total time, which is negligible.
[Table I about here.]

The second experiment is conducted on 64 processors of “Blue Horizon”, the NPACI IBM
SP2 system at the San Diego Supercomputing Center, using the RM2D# application. RM2D uses
a 128*32 base grid and executes for 60 iterations with 3 levels of factor 2 refinements and regriding
every 4 time-steps at each level. The execution speedup provided by ARMaDA (Table 1) is 4.66%,
11.32%, and 27.88% over pBD-ISP, G-MISP+SP, and SFC partitioners respectively. The overhead

is 0.415 seconds and is minimal compared to overall execution times.

3. REACTIVE SYSTEM-SENSITIVE PARTITIONING
3.1. Characterizing System State

The GridARM runtime management framework reacts to system capabilities and current system
state to select and tune distribution parameters while dynamically partitioning and load balancing
the SAMR grid hierarchy. Current system state is obtained at runtime using the NWS (© resource
monitoring tool. If the total work W is to be distributed among K processors, the work W, assigned
to the ith processor can be computed as W, = CR, x W, where CR; represents the combined work

partitioning ratio for processor i computed using current system information such that

CR = WcRE +winRM +w,RP  and _ica =1 (5)

RE, RM, and RB are work partitioning ratios based on CPU load, available memory, and link band-
width, respectively. we, Wm, and w, are the application-specific weights associated with relative

4 RM2D is the 2-D compressible turbulence kernel solving the Richtmyer-Meshkov instability.



CPU, memory, and bandwidth availabilities such that we + wm + w,, = 1. Note that

iiﬁiiW=i¢:1 (6)

[Fig. 2 about here.]

3.2. Evaluation of Reactive System-Sensitive Partitioning

The system-sensitive partitioner () is evaluated on a 32-node Linux-based workstation cluster
using the RM3D® application. The application uses 3 levels of factor 2 space-time refinements
on a base mesh of size 128*32*32. The experimental setup consists of a synthetic load generator
(for simulating heterogeneous loads on the cluster nodes) and an external resource monitoring
system (i.e., NWS). The evaluation compares the execution time and load balance generated for
the system sensitive partitioner with those for the GrACE @ infrastructure which distributes the
workload equally among processors. As illustrated in Fig. 2, system-sensitive partitioning reduces
the execution time by about 18% for 32 nodes. Figure 3 shows the system-sensitive workload
assignment on a cluster consisting of 4 nodes with relative capacities 16%, 19%, 31%, and 34%.
The system-sensitive partitioner reduces imbalances by about 45%.

4. PROACTIVE SAMR PARTITIONING STRATEGIES

Parallel/distributed SAMR applications are sensitive to CPU, memory, and bandwidth require-
ments, and their performance may degrade severely due to increased CPU and/or network loads
and reduced available memory. There are three extreme cases in Eq. (5) which lead to three differ-

ent proactive partitioning strategies, developed for the RM3D application: (i) CPU-based runtime

5 RM3D is the 3-D Richtmyer-Meshkov instability solver encountered in compressible fluid dynamics and
has been developed by Ravi Samtaney as a part of virtual test facility at Caltech ASCI/ASAP Center.
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partitioning: We = 1,Wm =w, =0,CR = RC and work is partitioned based on CPU load status;
(i) Memory-based runtime partitioning: Wym =1, W =W, =0, CR, = Ri'V' and work is partitioned
based on available memory; and (iii) Bandwidth-based runtime partitioning: w, = 1, We = Wm =0,

CR = RB and work is partitioned based on link bandwidth.

4.1. CPU-based Runtime Partitioning

Performance Functions (PF) ® describe the behavior of system or application in terms of changes
in one or more of its attributes. The execution time of a computation-intensive program increases
linearly with the number of jobs sharing the same processor. The SAMR application execution
time can be estimated as a function of CPU load, application work W, and refinement level LV,
given by T, = T x L; = PR(W,LV,) x L;, where L; represents the length of the CPU queue for
processor i. The RM3D time performance function is empirically defined in Eq. (7), where a; is a

heuristic coefficient derived from previous research (.

T = PR(W,LV)
= ay+ W+ a,LV +agW x LV +a,W? + a,LV? ©)

+agW? x LV +a,W x LVZ + agW? x LV?

To minimize disparity in execution times, the work partitioning ratio is adjusted at runtime
such that the execution time at the next time step is identical within an acceptable tolerance. The

adjustment factor for each processor is defined by

where  Tayg(t) = =2 8
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where T,(t) and Tayg(t) are the estimated execution time for processor i and the average estimated
execution time, respectively, at time step t. Once the adjustment factor is determined, the work

partitioning ratio for processor i at the next time step is computed and normalized as

RE(t+1) =RE(t) x fi(t) and R—°(t+1)’:|ﬁc(ti+l)

iZ()R.C(tjtl)

(9)

4.2. Memory-based Runtime Partitioning

The performance of SAMR applications may degrade on heavily loaded processors that have lit-
tle available memory because of frequent page faults. The memory-based partitioning strategy
optimizes performance by minimizing the number of page faults and balancing work among pro-
cessors. The memory function for RM3D is empirically defined as AM = PF,,(W) = a;+ a,W,
where a, = 8187.5036, a; = 0.1348959, and AM is the memory usage corresponding to work W.
The processors are divided into different groups according to their available physical memory
space. Let M; be the available physical memory on processor i and MT,; and MT, denote a two-
level threshold that describes the memory characteristics. If M, < MT,, processor i belongs to the
low memory group (X~) with frequent page faults. If M, > MT,, processor i belongs to the high
memory group (XT) with rare or normal page faults. If M; is between MT, and MT,, processor i
is in moderately loaded group (X) with occasional page faults. The number of processors in group
X~, X*,and X are represented by N—, N*, and N, respectively. When both N* and N~ are greater
than zero, work assigned to processors in group X~ is partially transferred to processors in group
X, with no change in work for processors in group X. In other cases, the current work assignment

is kept unchanged. Let W™ be the entire work assigned to the processors in group X~ and let P,
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be the transferring percentage. Then, W~ x P, denotes the work to be transferred while avoiding
overloading the processors in group X . To ensure an even transfer of work, let U~ denote the

unit of work being transferred to one processor in group X such that

_W_><P1

N-
u- NT where W™ = iZ)Wi (10)

In order to achieve the desired optimization, a processor in group X+ must guarantee that its
available memory space is greater than MT, after it accepts the work transfer. In doing so, it must
estimate the memory usage of its current work W, and additional work after the transfer. Let the
work for processor i after the transfer be W/’ such that W' =W, +U ~. In order to avoid overloading

after the transfer, each processor in group X+ must satisfy the following condition.
[M; — {PFy (W) — PRy (W) }] > MT, (11)

The processors in group X are sorted in the ascending order of available memory M. Upon sub-
stituting W' =W +U ~ into Eq. (11), the checks are performed for processor i (with least available
memory onwards) in group X to test if the condition in Eq. (11) can be met. If the condition can-
not be met, further reduction to the work transfer (U ™) is performed and the remaining work is left
for the next processor. If the condition can be met, the algorithm attempts to transfer the remaining
work from the previous processor as well. A similar check as in Eq. (11) is performed for the re-
maining work and further reduction may be possible to avoid overloading processors in group X .

After estimating the work transfer, each processor obtains new work W and the memory-based
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work partitioning ratios for the next time step are computed as

w/
RM =+ (12)
> W
i=0

4.3. Evaluation of CPU-based Proactive Partitioning

The proactive runtime partitioning strategies are integrated within the GridARM framework and
are evaluated using the RM3D application on Beowulf clusters at Rutgers University and Univer-
sity of Arizona. Three scenarios are established for this evaluation: (i) Lightly loaded scenario:
75% of the processors are lightly loaded and the other 25% are heavily loaded; (ii) Moderately
loaded scenario: 50% are lightly loaded and the other 50% are heavily loaded; and (iii) Heavily

loaded scenario: 25% are lightly loaded and the other 75% are heavily loaded.

[Table 11 about here.]

In this evaluation, a synthetic program adapts the CPU load dynamics among processors in
order to establish the three different load scenarios. Table 11 presents the performance gain for the
RM3D application on 32 and 64 processors using the CPU-based strategy under different load
scenarios. Without CPU load adaptation, the work is assigned almost evenly among processors
regardless of their CPU load status that leads to longer application execution time when some
processors are heavily loaded. However, when the CPU-based proactive partitioning algorithm
is used, work is assigned to processors based on their CPU load status and the performance of
RM3D improves significantly. Moreover, better performance can be achieved under lightly and

moderately loaded scenarios while there are not enough lightly loaded processors to accept more
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work for the heavily loaded scenario. Furthermore, better performance can be obtained with large

number of processors since the work assigned to each processor is reduced.

4.4. Evaluation of Memory-based Proactive Partitioning

In this evaluation, the memory availability of processors is controlled by a synthetic memory
consuming program in order to establish the three different memory usage scenarios. Figure 4
illustrates the memory availability on 8 processors for the moderately loaded scenario and the
corresponding work assignment using the memory-based proactive partitioning approach. Table
I11 presents the performance gain on 8 processors using the memory-based proactive partitioning
strategy. Without this scheme, the work is partitioned evenly among processors regardless of their
memory availability and thus the RM3D application experiences long delays. However, with the
memory-based algorithm, the application work is reassigned to processors according to memory
availability, resulting in a significant reduction in execution time. The results also demonstrate that
better performance is achieved under moderately and heavily loaded scenarios since page faults

occur frequently due to lesser available memory.

[Fig. 3 about here.]

[Table 111 about here.]

5. CONCLUSION

This paper presented application and system sensitive reactive and proactive partitioning strategies
to optimize the performance of SAMR applications in distributed and dynamic Grid execution en-
vironments. These strategies form a part of the GridARM autonomic runtime management frame-

work. The current application state is characterized in terms of application-level metrics such as
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computation/communication requirements, storage requirements, activity dynamics, and the na-
ture of adaptations. The performance prediction functions are experimentally formulated in terms
of the current system state such as CPU load, available memory, and bandwidth. The GridARM
framework uses the runtime state information to redistribute and load-balance the application in
order to address changing application/system requirements and maximize performance. The ex-
perimental evaluation of these runtime management strategies for different SAMR kernels and

system workloads demonstrates an improvement in overall application performance.
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Table |

VectorWave2D on Frea

RM2D on Blue Horizon

32 processors

64 processors

Partitioner Execution Partitioner Execution
evaluated time (sec) evaluated time (sec)
SFC 637.478 SFC 264.041
G-MISP+SP 611.749 G-MISP+SP 214.745
pBD-ISP 592.05 pBD-ISP 199.738
ARMaDA with  470.531 ARMaDA with 190.431

SFC start

G-MISP+SP start




Table 11

Scenarios  |No. of |Execution time |Execution time | Percentage
procs. | without CPU with CPU Improvement
adaptation (sec) |adaptation (sec)
Lightly 32 4908.79 2901.1 40.9%
loaded 64 4904.78 2827.29 42.36%
Moderately | 32 4976.78 3378.65 31.35%
loaded 64 5049.72 3281.31 35.02%
Heavily 32 5170.52 4140.56 20.45%
loaded 64 5119.89 3587.89 29.92%




Table I11

Scenarios Execution time |Executiontime | Percentage
without memory | with memory |Improvement
adaptation (sec) |adaptation (sec)

Lightly loaded 6922.14 5210.87 24.72%

Moderately loaded 15890.47 7401.61 53.42%

Heavily loaded 16962.1 8284.84 51.16%
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