Enabling Autonomic, Self-managing Grid Applications*

Z. Li, H. Liu, and M. Parashar
The Applied Software Systems Laboratory
Dept of Electrical and Computer Engineering, Rutgers University, Piscataway, NJ, 08854, USA
Email:{zhljenny,marialiu,parashp@caip.rutgers.edu

1 Introduction techniques that are based on strategies used by biological
systems to deal with complexity, dynamism, heterogeneity
and uncertainty. The approach, referred to as autonomic

The emergence of pervasive wide-area distributed com- i) t realizi " ¢ d i
puting environments, such as pervasive information systems,compu INg, aims at realizing computing systems and appil-

and computational Grid, has enabled a new generation Ofcatiops capablle of managing themselves with minimum hu-
applications that are based on seamless access, aggreg%p—"’ln mterventhn. . L .

tion and interaction. For example, it is possible to conceive AN autonomic self-managing application can be viewed
a new generation of scientific and engineering simulations as a (_:ollectlon of au_tonomlc con_wponer_lts th?t can manage
of complex physical phenomena that symbiotically and op- their internal behaviors and their relationships and inter-
portunistically combine computations, experiments, obser- 2ctions with other components and the system using high-
vations, and real-time data, and can provide important in- '€v€! policies. Achieving autonomic self-managing behav-
sights into complex systems such as interacting black holed©"S réquires programming and middleware support for con-
and neutron stars, formations of galaxies, and subsurfacd€Xt and seif awareness, knowledge and context based anal-
flows in oil reservoirs and aquifers etc. Other examples ysis and planning, and plan selection and execution.
include pervasive applications that leverage the pervasive

: . . : _ Self-managing
information Grid to continuously manage, adapt, and op m‘ Autonomic Applications
timize our living context , crisis management applications R ——

that use pervasive conventional and unconventional infor- Component== Component :1—cOmponem .
ma_t|on for crisis _pre_/entlon gnd_response, medical appli- 4o) ~ L
cations that use in-vivo and in-vitro sensors and actuators Agents [

for patient management, and business applications that use I T

anytime-anywhere information access to optimize profits.
However, the underlying Grid computing environment

is inherently large, complex, heterogeneous and dynamic,

globally aggregating large numbers of independent com-

puting and communication resources, data stores and sen-

sor networks. Furthermore, these emerging applications

are Similarly Complex and h|gh|y dynamiC in their behav- Figure 1. A Conceptua| Overview Of System

iors and interactions. Together, these characteristics result gychitecture.

in application development, configuration and management

complexities that break current paradigms based on pas-

sive components and static compositions. Clearly, there isa In this paper, we present an environment that supports

need for a fundamental change in how these applications arghe development of self-managed autonomic components,

developed and managed. This has led researchers to cordynamic and opportunistic composition of these compo-

sider alternative programming paradigms and managementents using high-level policies to realize autonomic appli-

cations, and provides runtime services for policy defini-

*The research presented in this paper is supported in part by the Na-tion, deployment and execution. A conceptual overview

tional Science Foundation via grants numbers ACI 9984357 (CAREERS), : e : ; ;
EIA 0103674 (NGS), EIA-0120934 (ITR), ANI-0335244 (NRT), CNS- of the em./lronme.m IS IlIUStra_ted in Figure 1 It builds on
0305495 (NGS) and by DOE ASCI/ASAP (Caltech) via grant number 82- the following basic concepts: (1) a separation of computa-

1052856. tions from coordination and interactions; (2) a separation of

Reactions for autonomic

- system management
Environment 4 9

Context

%

Reactive Coordination Middleware

non-functional aspects (e.g. resource requirements, perfor Fute Ao Sensor Astuator
mance) from functional behaviors, and (3) a separation of Oporational Por 1T 17
policy and mechanism where policies are used to orchesy | Comeuatenal =2 =
trate a repertoire of mechanisms to achieve context-awarg [Functional Port | I I I
adaptive runtime computational behaviors and interaction Autonomic Component Internal - rules Contextual

and coordination relationships based on functional, perfor-
mance, and QoS requirements.

The environment consists of the Accord programming
framework and the Rudder agent-based middleware infras-
tructure. These systems are key parts of Project Auto-
Mate [1] aimed at investigating fundamental issues in en-
abling autonomic applications. The rest of this paper is or-
ganized as follows. Section 2 describes the Accord frame-
work. Section 3 presents an overview of the design and
architecture of Rudder. Section 4 illustrates the operation 4, ap operational portthat defines the interfaces to for-

of the system using an autonomic oil reservoir optimization mulate, inject and manage the rules which are used to
application. Section 5 presents some concluding remarks. manage the component runtime behaviors.

Figure 2. An autonomic component.

ing and control, and a constraint set that defines the
access to and operation of the sensors/actuators based
on state, context and/or high-level access policies;

2 Accord, A Programming Framework for
Autonomic Applications These aspects enhance component interfaces to export in-

formation and policies about their behaviors, resource re-
quirements, performance, interactivity and adaptability to

cepts. The first is an application context that defines a com-SyStem and application dynamics. An embedded rule agent
mon semantic basis for components and the application.mon'tors the component’s state and controls the execution
The second is the definition of autonomic components as thePf rules. Rule agents cooperate across application composi-

basic building blocks for autonomic application. The next tions to fulfill overall application objectives.
is the definition of rules and mechanisms for the manage- Rule Definition: Rules incorporate high-level guidance
ment and dynamic composition of autonomic components.and practical human knowledge in the form of an IF-
And the final is rule enforcement to enable autonomic ap- THEN expression. The condition part of a rule is a log-
plication behaviors. ical combination of component/environment sensors and
Application context: Autonomic components should events. The action part of a rule consists of a sequence
agree on common semantics for defining and describingof component/system sensor/actuator invocations. A rule
application namespaces, and component interfaces, sensofges when its condition expression evaluates to be true and
and actuators. Using such a common context allows defini-the corresponding actions are executed. Two class of rules
tion of rules for autonomic management of components andare defined: (1Behavioral rulesthat control the runtime
dynamic composition and interactions between the compo-functional behaviors of an autonomic component (e.g., the
nents. In Accord, functional and non-functional aspects of dynamic selection of algorithms, data representation, in-
components are described using an XML-based language. put/output format used by the component). i@graction
Autonomic Component An autonomic component is rulesthat control the interactions between components, be-
the fundamental building block for autonomic application. tween components and their environment, and the coordina-
It extends the traditional definition of components to de- tion within an autonomic application (e.g., communication
fine a self-contained modular software unit of composition mechanism, composition and coordination of the compo-
with specified interfaces and explicit context dependencies.nents).
Additionally, an autonomic component encapsulates rules, Rule Enforcement Rules are injected into components
constraints and mechanisms for self-management and dyat run time and enable autonomic application self-managing
namically interacts with other components and the system.pehavior. Behavioral rules are executed by a rule agent em-
An autonomic component shown in Figure 2 is defined by pedded within a single component without affecting other
3 ports: components. Interaction rules define interactions among
components. For each interaction pattern, a set of interac-
tion rules are defined and dynamically injected into the in-
teracting components. The coordinated execution of these
e A control portthat defines a set of sensors and actua- rules result in the realization of interaction and coordination
tors exported by the component for external monitor- behaviors between the components.

Accord programming framework [4] consists of 4 con-

¢ A functional portthat defines the functional behaviors
provided and used by the component;

3 Rudder, An Agent-based Middleware In- rules are used to semantically discover, and select regis-
frastructure tered components, allowing tasks to optimize the execu-
tion and tolerate some failure in components, connections,
Rudder [3] is an agent-based middleware infrastructure @nd hosts. Composition agents negotiate to decide interac-
for autonomic Grid applications. The goal of Rudder is tion patterns for a specific application workflow and coor-
to provide the core capabilities for supporting autonomic dinate with the associated component agents to execute the
compositions, adaptations, and optimizations. Specifically, interaction-rules at runtime. This enables autonomic appli-
Rudder employs context-aware software agents and a decations to dynamically change flows, components and com-
centralized tuple space coordination model to enable con-Ponent interactions to address application and system dy-
text and self awareness, application monitoring and analy-nNamics and uncertainty.
sis, and policy definition and its distributed execution. Rud- Reactive tuple space:The Rudder decentralized reac-
der effectively supports the Accord programming frame- tive tuple space provides the coordination service for dis-
work and enables self-managing autonomic applications.tributed agents, and mechanisms for rule definition, deploy-
The overall architecture of Rudder is shown in Figure 1. ment and enforcement. Rudder extends the traditional tuple
It builds on two concepts: space with a distributed, guaranteed and flexible content-

« Context-aware agents can control, compose and manX@ased matching engine and reactive semantics to enable

age autonomic components, monitor and analyze sys-g!c.)bal coordination in <_jynami_c and a(.j hoc agent commu-
tem runtime state, sense changes in environment an ities. Runtime adaptive pqll'ces defined by the coqtext-
application requirements, dynamically define and en- aware agents (e.g., composition rules from a dynamically

force rules to locally enable component self-managing selec_ted workfloyv plan or rules for dy”a”?'c resource real-
behaviors location) can be inserted and executed using reactive tuples,

to achieve coordinated application execution and optimized
e A robust decentralized reactive tuple space can scal-computational resource allocation and utilization.
ably and reliably support distributed agent coordina- The Rudder tuple space builds on a resilient self-
tion. It provides mechanisms for deploying and rout- organizing peer-to-peer content-based overlay, and sup-
ing rules, decomposing and distributing them to rele- ports the definition and execution of coordination policies
vant agents, and enabling self-managing applicationsthrough programmable reactive behaviors. These behav-
by coordinating rule execution. iors are dynamically defined using stateful reactive tuples.
Agent framework: The Rudder agent framework con- A reactive tuple consists of three part€ondition asso-
sists of three types of peer agent: Component Agent (CA), ciates reactions to triggering eventeactionspecifies the
System Agent(SA), and Composition Agent(CSA). Com- computation associated with the tuple’s reactive behavior.
ponent agents and System agents exist as system Serviceguard deﬁnes the eXeCUtion SemantiCS Of the reaCtiVe be'
while composition agents are transient and are generatedavior (e.g., immediately and once). Polices and constraints
to satisfy specific application requirements. Component dynamically defined by administrators or agents can be trig-
agents define interaction rules to specify component in-gered and executed to satisfy specific application require-
teraction/communication behaviors and mechanisms (e.g.Mments (e.g., prevent undesired malicious operations to de-
synchronous/asynchronous, broadcast, or multi-cast). Theyend system integrity).
are integrated with component rule agents to provide com- The Rudder middleware infrastructure employs au-
ponents with uniform access to middleware services, con-tonomous agent based management and the reactive tu-
trol their functional and interaction behaviors and manage ple space coordination model to enable self-managing
their life cycles (e.g., dynamically configure and control the autonomic applications. This architecture can effec-
data exchange between components using interaction rules}ively support the autonomic behaviors as followSelf-
System agents monitor, schedule and adaptively optimizeconfiguration is enabled through dynamic discovery and
physical resource utilization, such as CPU and disk. They composition of new components and component reconfigu-
are embedded within Grid resource units (e.g., computer,ration at run timeSelf-optimization is enabled through dy-
cluster, data archive). Agents exist at different levels of the namic switching of workflows and components using com-
system and represent their collective behaviors. position rules, balancing of workload and resource utiliza-
Compositions agents enable dynamic composition of tion, and definition of component interaction patterastf-
Accord autonomic components by defining and execut- healing is enabled by restarting or replacing failed compo-
ing workflow-selection and component-selection rules. nents;Self-protectionis enabled through reactions defined
Workflow-selection rules are used to select appropriateto defend the system integrity from undesired operations of
composition plans to enact, which are then inserted as resmalicious agents, thus preventing the loss of data, tasks or
active tuples into the tuple space. Component-selectionservices.

4 Autonomic Oil Reservoir Optimization:
An lllustrative Application

The operation of the environment supporting autonomic
self-managing applications presented in this paper is illus-
trated using an Autonomic Oil Reservoir Optimization ap-
plication (AORO) [5] (see Figure 3). The goal of AORO
is to maximize revenue from an oil field by optimizing the
placement and configurations of oil wells.

e et el
Constrains| &= Fides
X Optimize E@

ACE dynaric workflow

Reaction
{ e
\ —

I ﬂ SA
B JEEEEEE S Runtime
N LT 2 “*—\\\®\ Status
Workflow ™ >~~~ Task @

Decentralized reactive tuple-spac:

Repository

Figure 3. Autonomic composition and execu-
tion of AORO.

In this application, an autonomic composition engine
(ACE) [2] generates application workflows to satisfy ap-
plication objectives. The dynamically defined workflows
include: (1) the optimization service provides the IPARS
reservoir simulator with an initial guess of well parame-
ters based on the configuration of the oil field; (2) IPARS
uses the well parameters along with current market param-
eters to periodically compute the current revenue using an
Economic Model (EM) service; and (3) IPARS iteratively
interacts with the optimization service to optimize well pa-
rameters for maximum profit.

Based on these workflows, three composition agents
are instantiated for the EM, Optimizer, and IPARS re-
spectively. The CSAs dynamically discover the appropri-
ate autonomic components with desired functionality and
cost/performance property using the AutoMate discovery

service [1], and configures these components using inter-!

action rules. The CSAs then coordinate with the CAs

associated with these components using the decentralized

tuple-space to accomplish the oil reservoir optimization
process. According to the interaction rules, component
agents will dynamically establish interaction relationships
among these components and establish communication re
lationships with different semantics. During execution, au-

tonomic component are supported by system agents, which

monitor and manage system operation.
Autonomic optimization in the application is achieved

adaptively configure and compose components, tune system
parameters to achieve application goals. Each CA moni-
tors and manages the execution of its component, while the
CSAs proactively search for available components and re-
sources to satisfy current application objectives. The use
of redundant or replicated components also allows tasks to
tolerate some failure in components, connections, and hosts.
For example, the Optimizer CSA selects the different opti-
mization components, currently VSFA and SPFA, and con-
figures them to optimize the application according to the
current objectives of the application. Similarly, the SAs
monitor the runtime utilization of the resource and dynami-
cally balance workload.

5 Conclusion

The autonomic Grid application environment presented
in this paper is based on fundamental innovations in the for-
mulation, deployment, execution and optimization of Grid
autonomic applications. Contributions include (1) the Ac-
cord programming framework that enables the definition of
autonomic components capable of managing their runtime
behaviors based on the current application states and re-
qguirements as well as environment context, and (2) Rud-
der, a middleware infrastructure that provides coordination
service to support autonomic composition, interaction, and
management of the components. A key component of Rud-
der is a decentralized reactive tuple space that enables scal-
able and reliable global coordination in Grid environments.
Prototype implementations of Accord and Rudder are un-
derway as parts of Project AutoMate.

References

[1] M. Agarwal and et all. Automate: Enabling autonomic appli-
cations on the grid. IfProceedings of the 5th Annual Inter-
national Active Middleware Services Worksh&eattle, WA,
2003.

M. Agarwal and M. Parashar. Enabling autonomic composi-
tions in grid environments. IRroceedings of the 4th Interna-
tional Workshop on Grid Computinghoenix, AZ, 2003.

3] Z. Li and M. Parashar. Rudder: A rule-based multi-agent
infrastructure for supporting autonomic grid applications. In
Proceedings of the International Conference on Autonomic
Computing New York, NY, 2004.

H. Liu and M. Parashar. A component based programming
framework for autonomic applications. [Rroceedings of
the International Conference on Autonomic Computikgw
York, NY, 2004.

V. Matossian and M. Parashar. Autonomic optimization of an
oil reservoir using decentralized services. Hroceedings of
the 1st International Workshop on Heterogeneous and Adap-
tive ComputingSeattle, WA, 2003.

(2]

(4]

(5]

via the autonomous behaviors of the agents. The agents

