
Enabling Autonomic, Self-managing Grid Applications ∗

Z. Li, H. Liu, and M. Parashar
The Applied Software Systems Laboratory

Dept of Electrical and Computer Engineering, Rutgers University, Piscataway, NJ, 08854, USA
Email:{zhljenny,marialiu,parashar}@caip.rutgers.edu

1 Introduction

The emergence of pervasive wide-area distributed com-
puting environments, such as pervasive information systems
and computational Grid, has enabled a new generation of
applications that are based on seamless access, aggrega-
tion and interaction. For example, it is possible to conceive
a new generation of scientific and engineering simulations
of complex physical phenomena that symbiotically and op-
portunistically combine computations, experiments, obser-
vations, and real-time data, and can provide important in-
sights into complex systems such as interacting black holes
and neutron stars, formations of galaxies, and subsurface
flows in oil reservoirs and aquifers etc. Other examples
include pervasive applications that leverage the pervasive
information Grid to continuously manage, adapt, and op-
timize our living context , crisis management applications
that use pervasive conventional and unconventional infor-
mation for crisis prevention and response, medical appli-
cations that use in-vivo and in-vitro sensors and actuators
for patient management, and business applications that use
anytime-anywhere information access to optimize profits.

However, the underlying Grid computing environment
is inherently large, complex, heterogeneous and dynamic,
globally aggregating large numbers of independent com-
puting and communication resources, data stores and sen-
sor networks. Furthermore, these emerging applications
are similarly complex and highly dynamic in their behav-
iors and interactions. Together, these characteristics result
in application development, configuration and management
complexities that break current paradigms based on pas-
sive components and static compositions. Clearly, there is a
need for a fundamental change in how these applications are
developed and managed. This has led researchers to con-
sider alternative programming paradigms and management

∗The research presented in this paper is supported in part by the Na-
tional Science Foundation via grants numbers ACI 9984357 (CAREERS),
EIA 0103674 (NGS), EIA-0120934 (ITR), ANI-0335244 (NRT), CNS-
0305495 (NGS) and by DOE ASCI/ASAP (Caltech) via grant number 82-
1052856.

techniques that are based on strategies used by biological
systems to deal with complexity, dynamism, heterogeneity
and uncertainty. The approach, referred to as autonomic
computing, aims at realizing computing systems and appli-
cations capable of managing themselves with minimum hu-
man intervention.

An autonomic self-managing application can be viewed
as a collection of autonomic components that can manage
their internal behaviors and their relationships and inter-
actions with other components and the system using high-
level policies. Achieving autonomic self-managing behav-
iors requires programming and middleware support for con-
text and self awareness, knowledge and context based anal-
ysis and planning, and plan selection and execution.

Figure 1. A conceptual overview of system
architecture.

In this paper, we present an environment that supports
the development of self-managed autonomic components,
dynamic and opportunistic composition of these compo-
nents using high-level policies to realize autonomic appli-
cations, and provides runtime services for policy defini-
tion, deployment and execution. A conceptual overview
of the environment is illustrated in Figure 1. It builds on
the following basic concepts: (1) a separation of computa-
tions from coordination and interactions; (2) a separation of



non-functional aspects (e.g. resource requirements, perfor-
mance) from functional behaviors, and (3) a separation of
policy and mechanism where policies are used to orches-
trate a repertoire of mechanisms to achieve context-aware
adaptive runtime computational behaviors and interaction
and coordination relationships based on functional, perfor-
mance, and QoS requirements.

The environment consists of the Accord programming
framework and the Rudder agent-based middleware infras-
tructure. These systems are key parts of Project Auto-
Mate [1] aimed at investigating fundamental issues in en-
abling autonomic applications. The rest of this paper is or-
ganized as follows. Section 2 describes the Accord frame-
work. Section 3 presents an overview of the design and
architecture of Rudder. Section 4 illustrates the operation
of the system using an autonomic oil reservoir optimization
application. Section 5 presents some concluding remarks.

2 Accord, A Programming Framework for
Autonomic Applications

Accord programming framework [4] consists of 4 con-
cepts. The first is an application context that defines a com-
mon semantic basis for components and the application.
The second is the definition of autonomic components as the
basic building blocks for autonomic application. The next
is the definition of rules and mechanisms for the manage-
ment and dynamic composition of autonomic components.
And the final is rule enforcement to enable autonomic ap-
plication behaviors.

Application context: Autonomic components should
agree on common semantics for defining and describing
application namespaces, and component interfaces, sensors
and actuators. Using such a common context allows defini-
tion of rules for autonomic management of components and
dynamic composition and interactions between the compo-
nents. In Accord, functional and non-functional aspects of
components are described using an XML-based language.

Autonomic Component: An autonomic component is
the fundamental building block for autonomic application.
It extends the traditional definition of components to de-
fine a self-contained modular software unit of composition
with specified interfaces and explicit context dependencies.
Additionally, an autonomic component encapsulates rules,
constraints and mechanisms for self-management and dy-
namically interacts with other components and the system.
An autonomic component shown in Figure 2 is defined by
3 ports:

• A functional portthat defines the functional behaviors
provided and used by the component;

• A control port that defines a set of sensors and actua-
tors exported by the component for external monitor-

Figure 2. An autonomic component.

ing and control, and a constraint set that defines the
access to and operation of the sensors/actuators based
on state, context and/or high-level access policies;

• An operational portthat defines the interfaces to for-
mulate, inject and manage the rules which are used to
manage the component runtime behaviors.

These aspects enhance component interfaces to export in-
formation and policies about their behaviors, resource re-
quirements, performance, interactivity and adaptability to
system and application dynamics. An embedded rule agent
monitors the component’s state and controls the execution
of rules. Rule agents cooperate across application composi-
tions to fulfill overall application objectives.

Rule Definition: Rules incorporate high-level guidance
and practical human knowledge in the form of an IF-
THEN expression. The condition part of a rule is a log-
ical combination of component/environment sensors and
events. The action part of a rule consists of a sequence
of component/system sensor/actuator invocations. A rule
fires when its condition expression evaluates to be true and
the corresponding actions are executed. Two class of rules
are defined: (1)Behavioral rulesthat control the runtime
functional behaviors of an autonomic component (e.g., the
dynamic selection of algorithms, data representation, in-
put/output format used by the component). (2)Interaction
rules that control the interactions between components, be-
tween components and their environment, and the coordina-
tion within an autonomic application (e.g., communication
mechanism, composition and coordination of the compo-
nents).

Rule Enforcement: Rules are injected into components
at run time and enable autonomic application self-managing
behavior. Behavioral rules are executed by a rule agent em-
bedded within a single component without affecting other
components. Interaction rules define interactions among
components. For each interaction pattern, a set of interac-
tion rules are defined and dynamically injected into the in-
teracting components. The coordinated execution of these
rules result in the realization of interaction and coordination
behaviors between the components.



3 Rudder, An Agent-based Middleware In-
frastructure

Rudder [3] is an agent-based middleware infrastructure
for autonomic Grid applications. The goal of Rudder is
to provide the core capabilities for supporting autonomic
compositions, adaptations, and optimizations. Specifically,
Rudder employs context-aware software agents and a de-
centralized tuple space coordination model to enable con-
text and self awareness, application monitoring and analy-
sis, and policy definition and its distributed execution. Rud-
der effectively supports the Accord programming frame-
work and enables self-managing autonomic applications.
The overall architecture of Rudder is shown in Figure 1.
It builds on two concepts:

• Context-aware agents can control, compose and man-
age autonomic components, monitor and analyze sys-
tem runtime state, sense changes in environment and
application requirements, dynamically define and en-
force rules to locally enable component self-managing
behaviors.

• A robust decentralized reactive tuple space can scal-
ably and reliably support distributed agent coordina-
tion. It provides mechanisms for deploying and rout-
ing rules, decomposing and distributing them to rele-
vant agents, and enabling self-managing applications
by coordinating rule execution.

Agent framework: The Rudder agent framework con-
sists of three types of peer agent: Component Agent (CA),
System Agent(SA), and Composition Agent(CSA). Com-
ponent agents and system agents exist as system services,
while composition agents are transient and are generated
to satisfy specific application requirements. Component
agents define interaction rules to specify component in-
teraction/communication behaviors and mechanisms (e.g.,
synchronous/asynchronous, broadcast, or multi-cast). They
are integrated with component rule agents to provide com-
ponents with uniform access to middleware services, con-
trol their functional and interaction behaviors and manage
their life cycles (e.g., dynamically configure and control the
data exchange between components using interaction rules).
System agents monitor, schedule and adaptively optimize
physical resource utilization, such as CPU and disk. They
are embedded within Grid resource units (e.g., computer,
cluster, data archive). Agents exist at different levels of the
system and represent their collective behaviors.

Compositions agents enable dynamic composition of
Accord autonomic components by defining and execut-
ing workflow-selection and component-selection rules.
Workflow-selection rules are used to select appropriate
composition plans to enact, which are then inserted as re-
active tuples into the tuple space. Component-selection

rules are used to semantically discover, and select regis-
tered components, allowing tasks to optimize the execu-
tion and tolerate some failure in components, connections,
and hosts. Composition agents negotiate to decide interac-
tion patterns for a specific application workflow and coor-
dinate with the associated component agents to execute the
interaction-rules at runtime. This enables autonomic appli-
cations to dynamically change flows, components and com-
ponent interactions to address application and system dy-
namics and uncertainty.

Reactive tuple space:The Rudder decentralized reac-
tive tuple space provides the coordination service for dis-
tributed agents, and mechanisms for rule definition, deploy-
ment and enforcement. Rudder extends the traditional tuple
space with a distributed, guaranteed and flexible content-
based matching engine and reactive semantics to enable
global coordination in dynamic and ad hoc agent commu-
nities. Runtime adaptive polices defined by the context-
aware agents (e.g., composition rules from a dynamically
selected workflow plan or rules for dynamic resource real-
location) can be inserted and executed using reactive tuples,
to achieve coordinated application execution and optimized
computational resource allocation and utilization.

The Rudder tuple space builds on a resilient self-
organizing peer-to-peer content-based overlay, and sup-
ports the definition and execution of coordination policies
through programmable reactive behaviors. These behav-
iors are dynamically defined using stateful reactive tuples.
A reactive tuple consists of three parts:Condition asso-
ciates reactions to triggering events.Reactionspecifies the
computation associated with the tuple’s reactive behavior.
Guard defines the execution semantics of the reactive be-
havior (e.g., immediately and once). Polices and constraints
dynamically defined by administrators or agents can be trig-
gered and executed to satisfy specific application require-
ments (e.g., prevent undesired malicious operations to de-
fend system integrity).

The Rudder middleware infrastructure employs au-
tonomous agent based management and the reactive tu-
ple space coordination model to enable self-managing
autonomic applications. This architecture can effec-
tively support the autonomic behaviors as follows:Self-
configuration is enabled through dynamic discovery and
composition of new components and component reconfigu-
ration at run time;Self-optimization is enabled through dy-
namic switching of workflows and components using com-
position rules, balancing of workload and resource utiliza-
tion, and definition of component interaction patterns;Self-
healing is enabled by restarting or replacing failed compo-
nents;Self-protection is enabled through reactions defined
to defend the system integrity from undesired operations of
malicious agents, thus preventing the loss of data, tasks or
services.



4 Autonomic Oil Reservoir Optimization:
An Illustrative Application

The operation of the environment supporting autonomic
self-managing applications presented in this paper is illus-
trated using an Autonomic Oil Reservoir Optimization ap-
plication (AORO) [5] (see Figure 3). The goal of AORO
is to maximize revenue from an oil field by optimizing the
placement and configurations of oil wells.

Figure 3. Autonomic composition and execu-
tion of AORO.

In this application, an autonomic composition engine
(ACE) [2] generates application workflows to satisfy ap-
plication objectives. The dynamically defined workflows
include: (1) the optimization service provides the IPARS
reservoir simulator with an initial guess of well parame-
ters based on the configuration of the oil field; (2) IPARS
uses the well parameters along with current market param-
eters to periodically compute the current revenue using an
Economic Model (EM) service; and (3) IPARS iteratively
interacts with the optimization service to optimize well pa-
rameters for maximum profit.

Based on these workflows, three composition agents
are instantiated for the EM, Optimizer, and IPARS re-
spectively. The CSAs dynamically discover the appropri-
ate autonomic components with desired functionality and
cost/performance property using the AutoMate discovery
service [1], and configures these components using inter-
action rules. The CSAs then coordinate with the CAs
associated with these components using the decentralized
tuple-space to accomplish the oil reservoir optimization
process. According to the interaction rules, component
agents will dynamically establish interaction relationships
among these components and establish communication re-
lationships with different semantics. During execution, au-
tonomic component are supported by system agents, which
monitor and manage system operation.

Autonomic optimization in the application is achieved
via the autonomous behaviors of the agents. The agents

adaptively configure and compose components, tune system
parameters to achieve application goals. Each CA moni-
tors and manages the execution of its component, while the
CSAs proactively search for available components and re-
sources to satisfy current application objectives. The use
of redundant or replicated components also allows tasks to
tolerate some failure in components, connections, and hosts.
For example, the Optimizer CSA selects the different opti-
mization components, currently VSFA and SPFA, and con-
figures them to optimize the application according to the
current objectives of the application. Similarly, the SAs
monitor the runtime utilization of the resource and dynami-
cally balance workload.

5 Conclusion

The autonomic Grid application environment presented
in this paper is based on fundamental innovations in the for-
mulation, deployment, execution and optimization of Grid
autonomic applications. Contributions include (1) the Ac-
cord programming framework that enables the definition of
autonomic components capable of managing their runtime
behaviors based on the current application states and re-
quirements as well as environment context, and (2) Rud-
der, a middleware infrastructure that provides coordination
service to support autonomic composition, interaction, and
management of the components. A key component of Rud-
der is a decentralized reactive tuple space that enables scal-
able and reliable global coordination in Grid environments.
Prototype implementations of Accord and Rudder are un-
derway as parts of Project AutoMate.

References

[1] M. Agarwal and et all. Automate: Enabling autonomic appli-
cations on the grid. InProceedings of the 5th Annual Inter-
national Active Middleware Services Workshop, Seattle, WA,
2003.

[2] M. Agarwal and M. Parashar. Enabling autonomic composi-
tions in grid environments. InProceedings of the 4th Interna-
tional Workshop on Grid Computing, Phoenix, AZ, 2003.

[3] Z. Li and M. Parashar. Rudder: A rule-based multi-agent
infrastructure for supporting autonomic grid applications. In
Proceedings of the International Conference on Autonomic
Computing, New York, NY, 2004.

[4] H. Liu and M. Parashar. A component based programming
framework for autonomic applications. InProceedings of
the International Conference on Autonomic Computing, New
York, NY, 2004.

[5] V. Matossian and M. Parashar. Autonomic optimization of an
oil reservoir using decentralized services. InProceedings of
the 1st International Workshop on Heterogeneous and Adap-
tive Computing, Seattle, WA, 2003.


