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Abstract. While large-scale parallel /distributed simulations are rapidly
becoming critical research modalities in academia and industry, their ef-
ficient and scalable parallel implementations present many challenges. A
key challenge is the dynamic and complex communication/coordination
patterns required by these applications, which depend on states of the
phenomenon being modeled and are determined by the specific numer-
ical formulation, the domain decomposition and/or sub-domain refine-
ment algorithms used, and are known only at runtime. In this paper,
we present a dynamic geometry-based shared-space interaction frame-
work for scientific applications. The framework provides the flexibility
of shared-space coordination models while enabling scalable implemen-
tations. The design, prototype implementation and experimental evalu-
ation using an adaptive multi-block oil reservoir simulation are presented.

Keywords: parallel scientific applications, dynamic geometry-based
shared space, communication locality, scalability, tuple space, Hilbert
space filling curve.

1 Introduction

Large-scale parallel/distributed simulations are playing an increasingly impor-
tant role in science and engineering and are rapidly becoming critical research
modalities in academia and industry. With the increasing scale of parallel sys-
tems and sophistication of application formulations and numerical techniques,
emerging applications offer the potential for accurately simulating physically re-
alistic models of complex phenomena and providing dramatic insights into com-
plex applications such as interacting black holes and neutron stars, formations
of galaxies, subsurface flows in oil reservoirs and aquifers, and dynamic response
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of materials to detonation. However, the phenomena being modeled by these
applications and their implementations are inherently multi-phased, dynamic,
and heterogeneous in time, space, and state. Combined with the complexity and
scale of the underlying parallel/distributed system, efficient and scalable imple-
mentations of these applications present many challenges.

A key challenge is the dynamic and complex communication/coordination
patterns required by these applications. These communication/coordination pat-
terns depend on states of the phenomenon being modeled and are determined
by the specific numerical formulation, domain decomposition and/or sub-domain
refinement algorithms used, and are known only at runtime. Implementing these
communication/coordination patterns using commonly used parallel program-
ming frameworks is non-trivial. Message passing frameworks such as MPI
require matching sends and receives to be explicitly programmed for each inter-
action. Frameworks based on shared address spaces provide higher-level abstrac-
tions that can support dynamic interactions. However scalable implementation
of global shared address spaces remains a challenge.

Tuple spaces provide a very flexible and powerful mechanism for extremely
dynamic communication and coordination patterns [I]. In the model, processes
interact using an associative shared tuple space. A tuple is a sequence of fields,
each of which has a type and contains a value. The producer of a message
formulates the message as a tuple and places it into the tuple space. The con-
sumer(s) can associatively look up relevant tuples using pattern matching on
the tuple fields. The tuple space model provides two fundamental advantages:
simplicity and flexibility. The communicating nodes need not care about who pro-
duced or will consume a tuple. Furthermore, the communicating processes do not
have to be temporally or spatially synchronized. This decoupling feature auto-
matically supports for dynamic communication/coordination. However, scalable
implementation of tuple spaces remains a challenge. In a pure tuple space envi-
ronment, all the communication passes through a central tuple space with rel-
atively slow associative lookup mechanisms [2], which is an inherent bottleneck
impeding scalability and efficiency.

In this paper, we present the design, implementation and evaluation of an
interaction framework for scientific applications that address the challenges out-
lined above. The proposed framework supports the flexibility and dynamism of
a tuple-based environment while enabling scalable implementations. It builds on
two key observations: (a) formulations of most scientific and engineering appli-
cations are based on geometric multi-dimensional domains (e.g., grid or mesh)
and (b) interactions in these applications are typically between entities that are
geometrically close in this domain (e.g., neighboring cells, nodes or elements).
Rather than implementing a general and global associative space, we enable the
dynamic creation of transient geometry-based interaction spaces, each of which
is localized to a sub-region of the overall geometric domain. The interaction
space is defined to cover a closed region of the application domain described
by an interval of coordinates in each dimension, and can be identified by any
set of coordinates contained in the region. It can then be used to share objects
between nodes corresponding to that region. Nodes do not have to know of or
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synchronize with each other. The semantics of sharing is similar to traditional
tuple space models.

The prototype implementation of the proposed model complements existing
interaction frameworks (e.g., MPI, OpenMP) and provides a scalable geometry-
based shared-space for dynamic runtime coordination and localized communica-
tion. It uses the Hilbert Space Filling Curve (SFC), a locality preserving recursive
mapping from a multi-dimensional coordinate space to a 1-dimensional index
space, to construct a distributed directory structure that enables efficient reg-
istration and lookup of objects in the shared-space. The prototype is evaluated
using a parallel adaptive multi-block oil reservoir simulation [3]. Experimental
results demonstrate system scalability, low space operation overheads, and that
the performance is comparable to a pure message passing system.

The rest of the paper is organized as following. Section 2 presents a driving
application and its interaction requirements. Section 3 presents the dynamic
geometry-based shared space model. Section 4 presents design of the interaction
framework. Section 5 presents the prototype implementation and experimental
evaluation. Section 6 discusses related work and Section 7 draws a conclusion
for our work.

2 A Driving Application: Parallel Adaptive Multi-block
Oil Reservoir Simulation

In this section we use the parallel multi-block oil reservoir simulation as the
driving application to motivate the interaction framework presented in this pa-
per. In these simulations, the oil reservoir is discretized as a series of blocks
and interfaces between blocks. The target domain consists of a coupled sys-
tem of highly nonlinear transient partial differential equations. Its geometrical
and geological features induce a multi-block decomposition so that each block is
discretized by cell-centered finite differences on logically rectangular grids. Flux
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Fig. 1. 2-D view of decomposed domains with interface sharing [3]
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matching conditions are imposed on the interfaces and a non-overlapping domain
decomposition algorithm is exploited so that solving the interface problem only
requires in-block solves and an exchange of interface values between neighbor-
ing blocks [3]. We refer to the face sharing described above as neighbor-neighbor
relationship. Fig. 1 presents a 2-D view of decomposed domains in a 2-dimensional
coordinate system. From the figure we can observe that communication between
blocks in this particular environment is highly localized and is on the interfaces
of neighboring blocks. The challenge presented in this application is that when
the decomposed sub-blocks are distributed across nodes in the system, locat-
ing the processor assigned to a neighboring block is non trivial especially when
dynamic load-balancing is used.

3 Dynamic Geometry-Based Shared Space(DGSS)
Model

DGSS builds on the tuple spaces model. Communication entities interact with
each other by sharing objects using a virtual shared space. However there is
conceptual difference between the DGSS model and the general tuple space
model. A general tuple space spans the entire problem domain, is accessible
to all nodes in computing environments, and is associated with a generic tu-
ple matching scheme. DGSS defines a dynamic shared space that is based on
geometric regions within the application domain. It enables interactions that
are localized to a geometric region by sharing objects in the DGSS based on
geometry-associative semantics. DGSS supports for dynamic and flexible inter-
action/coordination while enabling scalable realizations based on the geometric
nature of the computational domain and the local nature of communications,
which are typical of most scientific applications. The geometric nature is due
to the observation that formulations of scientific applications are based on a
geometric descretization of the physical domain. Communication locality is due
to the observation that interaction and coordination are defined by problem
domains, and are typically local to sub-regions of the domain. Consequently, op-
erations on an object shared in a DGSS only require communication within the
DGSS. Coordinates from the geometric domain define the geometry-associative
semantics for retrieving/storing objects from/to the spaces. DGSS is dynamic
in the sense that it is created/destroyed at runtime and is constructed on top
of a dynamic set of nodes that may change as the communication-integrated
sub-domain changes. Through the model we automate the communication setup
procedure among partitioned tasks, thus releasing programmers from the com-
plicated and tiresome work of manually arranging all coordination patterns for
every node during application development, facilitate localized communication,
thus ensuring scalability of the model and benefit most scientific applications
through its support for geometry-associative semantics.
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4 Design of the DGSS Framework

4.1 DGSS Architecture

The DGSS architecture consists of two components: a distributed directory struc-
ture that enables locating shared spaces based on geometric relationships, and
the dynamic shared-spaces that are associated with geometric regions. The dis-
tributed directory is constructed as a distributed table. The index of the table is
generated by mapping the multi-dimensional problem domain to a 1-dimensional
index space using Hilbert space-filling curves, which is then partitioned and
distributed across the nodes in the system. A space-filling curve (SFC) is a
continuous mapping from a d-dimensional space to a 1-dimensional space. The
d-dimensional space is viewed as a d-dimensional cube, which is mapped onto
a line such that the line passes once through each point in the volume of the
cube, entering and exiting the cube only once [4]. Using this mapping, a point
in the cube can be described by its spatial or d-dimensional coordinates, or
by the length along the 1-dimensional index measured from one of its ends.
The construction of SFCs is recursive. An important property of SFCs is lo-
cality preserving. Points that are close together in the 1-dimensional space are
mapped from points that are close together in the d-dimensional space. As the
index space is partitioned across the nodes in the system, each node is respon-
sible for an interval of the index space and the region of the computational
domain corresponding to this interval. The node manages information regarding
the creation, deletion and memberships of any DGSS in this region. Note that
the hash table will be typically sparsely populated and that the shared spaces
are not uniformly distributed across the index space. As a result, load-balancing
is used while partitioning the index space across the nodes. The mapping of a
2-dimensional domain using the Hilbert SFC and the creation of a distributed
directory are illustrated in Fig. 2.

To create or access a shared space corresponding to a region in the computa-
tional domain, the region is first translated to interval(s) in the 1-d index space
and these intervals are used to locate the processor where information about
the space is maintained. The process of locating corresponding directory node is
efficient, requiring only local computation. An interval tree is used to store index
intervals corresponding to already created and registered shared spaces at each
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Fig. 2. Directory structure using Hilbert SFC [3]
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node, and to detect geometric relationships between new and already registered
spaces.

4.2 DGSS-Based Shared Storage

The DGSS-based shared storage is created to span a dynamic set of nodes based
on the geometric relationship of their regions of interaction. Multiple DGSS-
based shared spaces can co-exist in the system and each node can be part of
more than one space. Physically, the shared space is replicated on each of the
participating nodes and consistency is maintained using a combination of up-
date propagation and multiple-versioned objects. Update propagation refers to
propagating changes to a shared object to every node caching the object within
the space. Since each DGSS-based shared space only spans a geometrically local-
ized communication zone, it typically spans a small number of nodes and update
propagation does not result in significant overheads. Multiple-versioned objects
allows shared objects to have multiple co-existing versions, which can improve
parallelism by enabling nodes to access and update different versions of the same
object without synchronization.

4.3 DGSS Interface

The DGSS framework interface defines operators to allow nodes to join/leave
a space and to access the space. The creation/destruction of a space is a non-
collective operation and nodes can join and leave a space at runtime. A node
joins a space by registering its interaction region described using geometric coor-
dinates. If the region overlaps with an existing region, the querying node joins the
existing space and the region covered by the space is redefined to be a union of
the two regions, and the membership of the space is updated. If it does not over-
lap with any of the existing regions, a new shared space is dynamically created.
A node leaves a space by de-registering itself. When the last node associated
with a space de-registers, the space is destroyed.

The space access operators are similar to those provided by tuple space sys-
tems such as Linda [I], with the exception of the “eval” function, which is not
supported. The space access operators are listed in Table 1. Given the geometry-
based access semantic defined by DGSS, the search process for a finite region
should uniquely return zero or one object from the shared space. This is unlike
a generalized tuple space, which may have multiple matches.

Table 1. DGSS Interface

Interface . . Linda Corr-
Function Description
Operators espondence
get A “get” operation moves an object from a DGSS to requesting node. Further in

“get” requests on the object are blocked until it is “put” back to DGSS
put A “put” operation moves an object from requesting node to a DGSS. out
A “read” operation copies an object to requesting node without removing it d
from DGSS. Multiple “read” operations can occur simultaneously.

“register” is provided to register an object with DGSS. Based on registered
register | geometric information, a pointer pointed at an existing DGSS or a new DGSS n/a
will be returned.

read
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5 Implementation and Performance Evaluation of a
Prototype System

5.1 Prototype Implementation

We have developed a prototype DGSS interaction framework. The implemen-
tation uses multi-threading. At application startup, a DGSS-daemon thread is
created within the user application process on each node. This daemon handles
registration requests by retrieving and updating local directory entries, and ob-
ject access requests if the node is part of a DGSS. Besides the DGSS-daemon, the
other key component is DGSS-storage, which is created to store shared objects.
To create a DGSS at runtime, nodes in a sub-domain will register a geometric
interaction region of interest with the underlying distributed directory layer. On
receiving the registration request, the DGSS-daemon retrieves its local directory
to determine whether the region of interest intersects with an existing DGSS or
if a new DGSS should be created. The DGSS-daemon returns a pointer to the
existing/new DGSS, which is then used for further space interactions. Current
implementation needs to statically define a startup server, which is known a
priori to all nodes in the computing environment. Table 2 lists a code sample
showing how a node starts up a space daemon, joins a DGSS by registering
an object and shares the object with other nodes through the DGSS within a
computation loop.

Table 2. Pseudo Code Series Calling DGSS Interface

/*In the pseudo code series we first create a runtime DGSS by calling space-initiation function,
register an object with the DGSS and insert an object into it. Then a loop that takes the object from
the DGSS, performs local computation and updates the object, and puts the object back to the DGSS
is executed until loop condition becomes invalid. After that the object is de-registered from DGSS*/
/*Create DGSS by calling space-initiation function*/

SPACE* space=system_init(node id, shared space bootstrap server ip);

Initiate a local object;

/*Register an object with the DGSS*/

space->register(object geometric description);

/*Insert the object into the DGSS*/

space->put(object geometric description, object, object version number);

while(number of iterations<maximum number of iterations){

/*Get the object which has been updated by other nodes sharing it from the DGSS*/
space->get(object geometric description, object, object version number);

perform local computation, update object and its version number;

/*After performing local computation and updating the object, put it back to the DGSS*/
space->put(object geometric description, object, object version number);

}

/*De-register the object from the DGSS*/

space->deregister(object geometric description );

5.2 Experimental Evaluation

We have constructed a simulated oil reservoir environment to evaluate perfor-
mance and scalability of the prototype system. In the simulation, we assumed
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Fig. 3. 3-D/2-D view of the simulated oil reservoir experiment environment

the whole problem domain is mapped to a geometry model of a series of 6 blocks
and 5 interfaces in a 3-dimensional coordinate system as shown in Fig. 3.

Four of shared interfaces have a size of 200%400 grid points and the fifth has
400*400 grid points. The data attached to each point is of type double. Blocks
are decomposed at runtime into smaller blocks and assigned to nodes across a
cluster of workstations. Thus possibly a node owns only a small partition of one
block and its associated interface or possibly no associated interfaces, e.g., it is
a central part of a block. The simulation is run on a 64-node Beowulf cluster
connected by a high speed 100 MB LAN.

a) Performance Fvaluation

SO NNAY

The execution times for “register” “get” and “put” operations are measured for
a range of system sizes, upto 64 nodes. Two observations result: First, as the sys-
tem size increases, application grid blocks were partitioned into a larger number
of partitions of smaller sizes. Consequently, the corresponding shared interfaces
were also smaller in size. Second, not all nodes were assigned shared interfaces
and so, not all nodes were part of a DGSS. Fig. 4 shows the execution time
of each primitive. Lines with different colors represent experiments on different
system sizes. The figure shows that the time for the “register” operation varies
from 0.06428 second to 3.10842 seconds. This is because in the experiment all
nodes that share an interface register that interface almost at the same time.
Thus these registration requests nearly simultaneously reach the directory nodes
that should handle them and are processed sequentially to guarantee consistency
of the registration process. As a result, the execution time for “register” oper-
ation includes the time that a request blocks waiting for response, which can
increase as system size increases. This potential bottleneck can be removed us-
ing dynamic load balancing. The times required for “get” and “put” operations
are much smaller and comparatively stable, as seen from the figure. Further,
the times required for these operations decrease as system size grows due to the
two observations mentioned above. Of the three operations, “register” has the
highest cost. However, note that each shared interface is registered only once in
the application.
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b) Scalability Evaluation

To evaluate system scalability, we averaged the execution time for each oper-
ation on different nodes for different system sizes. These results are plotted in
Fig. 5. The figure shows that only system startup time increases as system size
increases. Execution times for “register”, “get” and “put” operations decrease as
system size increases. The reason for increasing startup time is that the startup
phase uses server-client communication to collect necessary network information
from all nodes. As system size increases, the server becomes a communication
bottleneck causing the startup time to increase. The other three operations scale
well, which is because (a) they operate with DGSS which includes only a small
number of processors, and (b) as the system size increases, the size of shared
interface corresponding to a DGSS reduces and thus the “register”, “get” and
“put” operations operate on objects of smaller sizes.

6 Related Work

Several other projects also base their frameworks on tuple space concept such
as Sun’s JavaSpaces and IBM’s Tspace. Sun’s JavaSpaces combines Java with
tuple spaces while IBM’s Tspace emphasizes the integration of tuple space with
database systems. These systems are quite complex and over-weighted for High
Performance Computing. A lightweight Java Taskspaces framework for scientific
computing on computational Grids [2] is a work similar to ours. The framework
constructs lightweight shared taskspaces for node pairs that are assigned with
tasks in problem sub-domains with neighbor-neighbor relationship. Because of
the particular type of applications targeted, space sharing mechanism is sup-
ported by building direct communication channels between two nodes in a node
pair. However the framework is limited to only one specific type of communica-
tion locality while our model addresses communication locality in general.

7 Conclusion

This paper presented a DGSS interaction framework to facilitate dynamic inter-
action/coordination in large-scale parallel scientific applications. The framework
exploits geometric structure of the application domain and its communication
locality to provide the flexibility and dynamic of shared space interaction mod-
els while enabling their scalable implementations. A DGSS is virtually shared
among a group of nodes in a problem sub-domain and provides a powerful mech-
anism for dynamic complex interaction/coordination. The framework comple-
ments (and can co-exist with) existing interaction infrastructures (e.g. MPI). A
prototype implementation and experimental evaluations were presented. Exper-
imental results using a multi-block adaptive oil reservoir simulation show system
scalability and small overheads of interface operations.
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