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Abstract. Emerging scientific and engineering simulations often require the cou-
pling of multiple physics models and associated parallel codes that execute inde-
pendently and in a distributed manner. Realizing these simulations in distributed
environments presents several challenges. This paper describes experiences with
wide-area coupling for a coupled fusion simulation using the Seine coupling
framework. Seine provides a dynamic geometry-based virtual shared space ab-
straction and supports flexible, efficient and scalable coupling, data redistribu-
tion and data streaming. The design and implementation of the coupled fusion
simulation using Seine, and an evaluation of its performance and overheads in a
wide-area environment are presented.

1 Introduction

Scientific and engineering simulations are becoming increasingly sophisticated as they
strive to achieve more accurate solutions to realistic models of complex phenomena. A
key aspect of these emerging simulations is the modeling of multiple interacting phys-
ical processes that comprise the phenomena being modeled. This leads to challenging
requirements for coupling between multiple physical models and associated parallel
codes that execute independently and in a distributed manner. Coupled systems provide
the individual models with a more realistic simulation environment, allowing them to
be interdependent on and interact with other physics models in the coupled system and
to react to dynamically changing boundary conditions. For example, in plasma science,
an integrated predictive plasma edge simulation couples an edge turbulence code with
a core turbulence code through common grids at the spatial interface [11].

However, achieving efficient, flexible and scalable coupling of physics models and
parallel application codes presents significant algorithmic, numerical and computational
challenges. From the computational point of view, the coupled simulations, each typi-
cally running on a distinct parallel system or set of processors with independent (and
possibly dynamic) distributions, need to periodically exchange information. This re-
quires that: (1) communication schedules between individual processors executing each
of the coupled simulations are computed efficiently, locally, and on-the-fly, without
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requiring synchronization or gathering global information, and without incurring sig-
nificant overheads on the simulations; and (2) data transfers are efficient and happen
directly between the individual processors of each simulation. Furthermore, specifying
these coupling behaviors between the simulation codes using popular message-passing
abstractions can be cumbersome and often inefficient, as they require matching sends
and receives to be explicitly defined for each interaction. As the individual simulations
become larger, more dynamic and heterogeneous and their couplings more complex,
implementations using message passing abstractions can quickly become unmanage-
able. Clearly, realizing coupled simulations requires an efficient, flexible and scalable
coupling framework and simple high-level programming abstractions.

This paper presents experiences with wide-area coupling for a coupled fusion simu-
lation using the Seine [6] coupling framework. The objective of this paper is to evaluate
the ability of Seine to support the coupling requirements of the recent CPES 1 DoE
SciDAC Fusion Simulation Project. Seine provides a semantically specialized virtual
shared space coupling abstraction and efficient, flexible and scalable mechanisms for
data coupling, redistribution and transfer [6]. The Seine shared space abstraction is de-
rived from the tuple space model. It presents an abstraction of a transient interaction
space that is semantically specialized to the application domain. The specialization is
based on the observation that interactions in the target applications can be specified on
an abstract spatial domain that is shared by the interacting entities, such as a multi-
dimensional geometric discretizations of the problem domain (e.g., grid or mesh). Fur-
ther, the interactions are local in this domain (e.g., intersecting or adjacent regions).
The shared spaces provided by Seine are localized to these regions of interaction, which
are sub-regions of the overall abstract domain. This allows the Seine abstraction to be
efficiently and scalably implemented and allows interactions to be decoupled at the ap-
plication level [6].

The Seine coupling framework differs from existing approaches in several ways.
First, it provides a simple but powerful abstraction for interaction and coupling in the
form of a virtual semantically-specialized shared space. This may be the geometric dis-
cretization of the application domain or an abstract multi-dimensional domain defined
exclusively for coupling purposes. Processes register regions of interest, and associa-
tively read and write data associated with the registered region from/to the space in
a decoupled manner. Registering processes do not need to know of, or explicitly syn-
chronize with, other processes during registration and computation of communication
schedules. Second, it supports efficient local computation of communication schedules
using lookups into a directory, which is implemented as a distributed hash table. Fi-
nally, it supports efficient and low-overhead processor-to-processor socket-based data
streaming and adaptive buffer management. The Seine model and the Seine-based cou-
pling framework complement existing parallel programming models and can work in
tandem with systems such as MPI, PVM and OpenMP.

This paper presents the coupling, data redistribution and data transfer requirements
of the coupled fusion simulations, and describes a prototype implementation of these
simulations using Seine. The paper then describes experiments with wide-area cou-
pling and demonstrates that the Seine-based implementation can potentially meet the
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data coupling requirements of the project. The experiments investigate the behavior
and performance of Seine-based coupling between simulations running at Oak Ridge
National Laboratory (ORNL) in TN, and Rutgers University (RU) in NJ, and measure
the time required for data redistribution and streaming as well as throughputs achieved
for different distribution patterns and data sizes. These experiments are intended to be a
proof-of-concept to demonstrate the feasibility of using the Seine coupling framework
to support data coupling in real Fusion simulations.

The rest of the paper is organized as follows. Section 2 presents related work. Sec-
tion 3 presents an overview of the Seine coupling framework. Section 4 describes the
coupled fusion simulations. Section 5 presents the Seine-based prototype implementa-
tion and experimental evaluation of the simulations. Section 6 presents conclusions and
outlines future directions.

2 Background and Related Work

Parallel data redistribution (also termed as the MxN problem) is a key aspect of the
coupling problem. It addresses the problem of transferring data from a parallel program
running on M processors to another parallel program running on N processors. Differ-
ent aspects of this problem have been addressed by recent projects such as MCT [4],
InterComm [3], PAWS [2], CUMULVS [1], DCA [5], DDB [9] etc., with different foci
and approaches. These systems differ in the approaches they use to compute communi-
cation schedules, the data redistribution patterns that they support, and the abstractions
they provide to the application developer. Most of these existing systems gather dis-
tribution information from all the coupled models at each processor and then locally
compute data redistribution schedules. This implies a collective communication and
possible global synchronization across the coupled systems, which can be expensive
and limit scalability. Further, abstractions provided by these systems are based on mes-
sage passing, which requires explicit definition of matching of sends and receives and
synchronized data transfers. Moreover, expressing very general redistribution patterns
using message passing type abstractions can be quite cumbersome.

The Seine geometry-based coupling framework provides a simple but powerful high-
level abstraction, based on a virtual associative shared space, to the application devel-
oper. Communication schedules are computed locally and in a decentralized manner
using a distributed directory layer. All interactions are completely decoupled and data
transfer is socket-based and processor-to-processor, and can be synchronous or asyn-
chronous. The Seine framework is introduced below.

3 The Seine Geometry-Based Coupling Framework

Seine is a dynamic geometry-based interaction/coupling framework for parallel scien-
tific and engineering applications. Note that the geometry may be based on the geomet-
ric discretization of the application domain or an abstract multi-dimensional domain
defined exclusively for coupling purposes. Seine spaces can be dynamically created
and destroyed. They complement existing parallel programming models and can co-
exist with them during program execution.
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3.1 The Seine Geometry-Based Coupling Model

Conceptually, the Seine coupling/interaction model is based on the tuple space model
where entities interact with each other by sharing objects in a logically shared space.
However there are key differences between the Seine model and the general tuple space
model. In the general tuple space model, the tuple space is global, spans the entire ap-
plication domain, can be accessed by all the nodes in computing environments, and
supports a very generic tuple-matching scheme. These characteristics of the general tu-
ple model have presented several implementation challenges. In contrast, Seine defines
a virtual dynamic shared space that spans a specific geometric region, which is a sub-
set of the entire application domain, and is only accessible by the dynamic subset of
nodes to which the geometric region is mapped. Further, objects in the Seine space are
geometry-based, i.e. each object has a geometric descriptor that specifies the region in
the application domain that the object is associated with. Applications use these ge-
ometric descriptors to associatively put and get objects to/from a Seine space. These
interactions are naturally decoupled.

The Seine API consists of a small set of simple primitives as listed in Table 1. The
register operation allows a process to dynamically register a region of interest, which
causes it to join an appropriate existing space or create a new space if one does not
exist. The put operator is used to write an object into the space, while the get operator

Table 1. Primitives provided by the Seine framework

Primitives Description

init(bootstrap-server-IP) Uses a bootstrap mechanism to initialize the Seine
runtime system.

register(object-geometric-descriptor) Registers a region with Seine.
put(object-geometric-descriptor, object) Inserts a geometric object into Seine.
get(object-geometric-descriptor, object) Retrieves and removes a geometric object from Seine.

This call will block until a matching object is put.
deregister(object-geometric-descriptor) De-registers a region from Seine.

Applications

Seine Interaction Space Access Interface

Load Balance Protocol
Space Management

Protocol

Consistency Protocol

Storage Layer
Directory Layer

Space Mapping Unit (SFC)

Communication Layer (TCP Socket)

Operating System

Supporting
Environment

for Other
Parallel

Programming
Models
(MPI/

OpenMP)

Fig. 1. Architectural overview of the Seine framework
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retrieves a matching object from the space, if one exists. If no matching object exists, it
will block until a matching object is put into the space. The deregister operation allows
a processor to de-register a previously registered region.

3.2 Design of the Seine Geometry-Based Coupling Framework

A schematic overview of the Seine architecture is presented in Figure 1. The frame-
work consists of three key components: a directory layer, a storage layer, and a com-
munication layer. The distributed directory layer enables the registration of spaces
and the efficient lookup of objects using their geometric descriptors. It detects geo-
metric relationships between shared geometry-based objects and manages the creation
of shared spaces based on the geometric relationship detected, the lifetime of shared
spaces including merging or splitting, and the destruction of shared spaces. The storage
layer consists of the local storage associated with registered shared spaces. The storage
for a shared space is distributed across the processors that have registered the space.
The communication layer provides efficient data transfer between processors. Since
coupling and parallel data redistribution for scientific application typically involves
communicating relatively large amounts of data, efficient communication and buffer
management are critical. Further, this communication has to be directly between the
individual processors. Currently Seine maintains the communication buffers at each
processors as a queue, and multiple sends are overlapped to better utilize available
bandwidth. Adaptive buffer management strategies are being integrated.

To share an object in the space, the geometric region of the object first needs to be reg-
istered with Seine. During registration, the Seine runtime system first maps the region
defined in the n-dimensional application space to a set of intervals in a 1-dimensional in-
dex space using the Hilbert Space Filling Curve (SFC) [8]. The index intervals are then
used to index into the Seine directory to locate the processor(s) to which the region is
mapped. Note that the mapping is efficient and only requires local computation.

A new registration request is compared with existing spaces. If overlapping regions
exist, a union of these regions is computed and the existing shared spaces are updated
to cover the union. Note that this might cause previously separate spaces to be merged.
If no overlapping regions exist, a new space is created. After registration, objects can
be put/get to/from the shared space. When an object is put into the space, the update
has to be reflected to all processors with objects whose geometric regions overlap with
that of the object being inserted. This is achieved by propagating the object or possibly
corresponding parts of the object (if the data associated with the region is decomposable
based on sub-regions, such as multi-dimensional arrays) to the processors that have reg-
istered overlapping geometric regions. As each shared space only spans a local commu-
nication region, it typically maps to a small number of processors and as a result update
propagation does not result in significant overheads. Further, unique tags are used to en-
able multiple distinct objects to be associated with the same geometric region. Note that
Seine does not impose any restrictions on the type of application data structures used.
However, the current implementation is optimized for multi-dimensional arrays. The
get operation is simply a local memory copy from Seine’s buffer to the application’s
buffer. Further details of Seine can be found in [6,7].
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3.3 Coupling Parallel Scientific Applications Using Seine

Developing coupled simulations using the Seine abstraction consists of the following
steps. First, the coupled simulations register their regions of interests, either in the geo-
metric discretization of the application domain or in an abstract n-dimensional domain
defined exclusively for coupling purposes. The registration phase detects geometric re-
lationships between registered regions and results in the dynamic creation of a virtual
shared space localized to the region and the derivation of associated communication
schedules. Coupling between the simulations consists of one simulation writing data
into the space and the other simulation independently reading data from the space. The
actual data transfer is point-to-point between the corresponding source and destination
processors of the respective applications.

4 Coupling Requirements in the CPES SciDAC Fusion Simulation
Project

4.1 An Overview of the CPES Fusion Simulation Project

The CPES DoE SciDAC Fusion project is developing a new integrated predictive plasma
edge simulation code package that is applicable to the plasma edge region relevant
to both existing magnetic fusion facilities and next-generation burning plasma experi-
ments, such as the International Thermonuclear Experimental Reactor (ITER) [10]. The
plasma edge includes the region from the top of the pedestal to the scape-off layer and
the divertor region bounded by a material wall. A multitude of non-equilibrium physical
processes on different spatio-temporal scales present in the edge region demand a large
scale integrated simulation. The low collisionality of the pedestal plasma, magnetic X-
point geometry, spatially sensitive velocity-hole boundary, non-Maxwellian nature of
the particle distribution function, and particle source from neutrals, combine to require
the development of a special, massively parallel kinetic transport code for kinetic trans-
port physics using a particle-in-cell (PIC) [12] approach. However, a fluid code is more
efficient in terms of computing time, for studying the large scale MHD phenomena,
such as Edge Localized Modes (ELMs) [12]. Furthermore, such an event is separable
since its time scale is much shorter than that of the transport. The kinetic and MHD
codes must however be integrated together for a self-consistent simulation as a whole.
Consequently, the edge turbulence PIC code (i.e., XGC [13]) will be connected with
the microscopic MHD code (i.e., M3D) using common grids at the spatial interface to
study the dynamical pedestal-ELM cycle.

4.2 Data Coupling in the CPES Fusion Simulation Project

The coupled parallel simulation codes, XGC and M3D, will be run on different num-
bers of processors on different platforms. The overall workflow illustrating the cou-
pling between XGC and M3D code is shown in Figure 2. The coupling begins with
the generation of a common spatial grid. XGC then calculates two dimensional density,
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Fig. 2. Workflow illustrating the coupling between XGC and M3D

temperature, bootstrap current, and viscosity profiles in accordance with neoclassical
and turbulent transport, and sends these to M3D. The input pressure tensor and current
information are used by M3D to evolve the equilibrium magnetic field configuration,
which it then sends back to XGC to enable it to update its magnetic equilibrium and
to check for stability. During and after the ELM crash, the pressure, density, magnetic
field and current will be toroidally averaged and sent to XGC. During the ELM calcu-
lation, XGC will evaluate the kinetic closure information and kinetic Er evolution and
send them to M3D for a more consistent simulation of ELM dynamics. The XGC and
MHD codes [12] use different formulations and domain configurations and decomposi-
tions. As a result, a mesh interpolation module (referred to as MI) is needed to translate
between the mesh/data used in the two codes.

Challenges and Requirements. In the CPES project, XGC will be running on a large
number of processors while M3D will typically run on 128 or fewer processors. As a
result, coupling these codes will require data redistribution. Note that in this case, the
redistribution is actually MxPxN, where the XGC code runs on M processors, the inter-
polation module (MI) runs on P processors, and the M3D code runs on N processors.

The fusion simulation application imposes strict constraints on the performance and
overheads of data redistribution and transfer between the codes. Since the integrated
system is constructed so as to overlap the execution of XGC with stability check by
M3D, it is essential that the result of the stability check is available by the time it is
needed by XGC, otherwise the large number (1000s) of processors running XGC will
remain idle offsetting any benefit of a coupled simulation. Another constraint is the
overhead that the coupling and data transfer imposes on the simulations.
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4.3 A Prototype Coupled Fusion Simulation Using Seine

Since the CPES project is at a very early stage, the scientists involved in the project are
still investigating the underlying physics and numerics, and the XGC and M3D codes
are still under development. However, the overall coupling behaviors of the codes are
reasonably understood. As a result, this paper uses synthetic codes, which emulate the
coupling behaviors of the actual codes but perform dummy computations, to develop
and evaluate the coupling framework. The goal is to have the coupling framework ready
when the project moves to production runs. The configuration of the mock simulation
using the synthetic codes is shown in Figure 3. In the figure, the coupling consists of
two parts, the coupling between XGC and MI and the coupling between MI and M3D.

put (data 2)
XGC

(data 1 with domain
decomposition 1)

M3D
(data 2 with domain

decomposition 2)

Mesh
Interpolation

(data 1, 2)

M Processors N ProcessorsP Processors

put(data 1)

get (data 2)get (data 2)

register (data descriptor 1);
while(loop_continue){
     put(data 1) to Mesh Interpolation;
     computation;
     get(data 1) from Mesh Interpolation;
     computation;
}

register (data descriptor 1);
register (data descriptor 2);
while(loop_continue){
     get(data 1) from XGC;
     Mesh Interpolation to convert data 1 to data 2;

 put(data 2) to M3D;

get(data 2) from M3D;
     Mesh Interpolation to convert data 2 to data 1;

 put(data 2) to M3D;
}

register (data descriptor 2);
while(loop_continue){
     get(data 2) from Mesh Interpolation;
     computation;
     put(data 2) to Mesh Interpolation;
     computation;
}

Fig. 3. Configuration of the mock coupled fusion simulation

Domain decompositions: The entire problem domain in the coupled fusion simulation
is a 3D toroidal ring. The 3D toroidal ring is then sliced to get a number of 2D poloidal
planes as the computation domains. Each plane contains a large number of particles,
each of which is described by its physical location using coordinates and a set of physics
variables. Each 2D poloidal plane is assigned to and replicated on a group of processors.
Since XGC and M3D use different domain decompositions, the numbers of planes in
the two codes are different, and MI is used to map the XGC domain decomposition to
the M3D domain decomposition.

Coupled fusion simulations using Seine Shared Spaces: Recall that coupling in Seine
is based on a spatial domain that is shared between the entities that are coupled. This
may be the geometric discretization of the application domain or may be an abstract
multi-dimensional domain defined exclusively for coupling purposes. The prototype
described here uses the latter.

Given that the first phase of coupling between XGC and M3D is essentially based
on the 2D poloidal plane, a 3D abstract domain can be constructed as follows: The X-
axis represents particles on a plane and is the dimension that is distributed across the
processors. The Y-axis represents the plane id. Each processor has exactly one plane
and may have some or all the particles in that plane. The Z-axis represents application
variables associated with each particle. Each processor has all the variables associated
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with each particle that is mapped to it. Using this abstract domain, Seine-based cou-
pling is achieved as follows. Each XGC processor registers a region in the 3D abstract
domain based on the 2D poloidal plane and the particles assigned to it, and the variables
associated with each particle. The registered region is specified as a 6-field tuple and
represents a 2D plane in the 3D abstract domain, since each processor is assigned par-
ticles on only one poloidal plane. Each processor running MI similarly registers its cor-
responding region in the 3D abstract domain. Note that since MI acts as the “coupler”
between XGC and M3D, these processors register regions twice - once corresponding
to the XGC domain decomposition and the second time corresponding to M3D domain
decomposition. Once the registration is complete, the simulations can use the operators
provided by Seine, i.e., put and get, to achieve coupling.

5 Prototype Implementation and Performance Evaluation

The schematic in Figure 4 illustrates a prototype implementation of a Seine-based cou-
pled simulation. Note that, while the figure illustrates a MxN coupled simulation, the
configuration for a coupled MxPxN simulation is similar. The Seine implementation re-
quires a Seine-proxy, which is a local daemon process that resides on each processor
using Seine. The Seine distributed directory layer deterministically maps the shared ab-
stract domain onto the Seine infrastructure processors. The Seine distributed directory
runs on X processors, which may or may not overlap with the M, P and N processors run-
ning XGC, MI and M3D respectively. The Seine-proxy at each processor is initialized
by the init call within the application code. Once the Seine-proxy is initialized, it handles
all the processor interaction with Seine including register, put and get operations.

Fig. 4. A prototype schematic of coupling and data redistribution using the Seine framework

5.1 Experiments with Wide-Area Coupling Using the Prototype Seine-Based
Fusion Simulation

The experiments presented in this section were conducted between two sites: a 80 nodes
cluster with 2 processors per node at Oak Ridge National Laboratory (ORNL) in TN,
and 64 node cluster at the CAIP Center at Rutgers University in NJ. The synthetic XGC
code ran on the ORNL cluster and the MI module and the synthetic M3D code ran on
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the CAIP cluster. That is, in the MxPxN coupling, site M was at ORNL and sites P and
N were at CAIP. The two clusters had different processors, memory and interconnects.
Due to security restrictions at ORNL, these experiments were only able to evaluate the
performance of data transfers from ORNL to CAIP, i.e., XGC pushing data to the MI
module, which then pushes the data to M3D.

In the experiments below, the XGC domain was decomposed into 8 2D poloidal
planes, while the M3D problem domain was decomposed into 6 2D poloidal planes.
The number of particles in each plane was varied in the different experiments. Each
particle is associated with 9 variables. Since the get operation in Seine is local and
does not involve data communication, the evaluations presented below focus on the put
operation, which pushes data over the network. The experiments evaluate the operation
cost and throughput achieved by the put operation.

Cost of the put operation: In this experiment, 7,200 particles were used in each poloidal
plane resulting in an abstract domain of size 7,200x8x9 between XGC and MI and
7,200x6x9 between MI and M3D. The number of processors at site M, which ran the
XGC code, was varied. As the number of processors at site M increased, the absolute
time for the register and put operations decreased since operation costs are directly
affected by the size of the region. The decrease in absolute time cost is because the
size of the entire abstract domain is fixed and as the number of processor increases,
each processor registers/puts a smaller portion of this domain, resulting in a decrease
in the absolute operation cost. Since the size of the region varies in the above metric,
a normalized cost for the operations is calculated by dividing the absolute cost of an
operation by the size of region involved. The normalized cost increases as the system
size increases. Several factors contribute to this increase, including blocked-waiting
time within a register operation, and message and data transfer costs associated with a
register or put operation. A detailed analysis of this behavior can be found in [7].

Throughput achieved: The goal of this experiment is to measure the per processor
throughput that can be achieved during wide-area data coupling for different system
and abstract domain sizes. In the experiment, the number of particles per poloidal plane
was varied to be 7,200, 14,400, and 28,800, and the number of processors running
XGC at site M were varied to be 8, 16, 32, 64 and 128. Throughput per processor in this
experiment was calculated as the ratio of the average data size used by a put operation
to the average cost of a put operation. Note that data transfers from the processors at
site M occur in parallel and the effective application level throughput is much higher.
The per processor throughput at site M is plotted in Figure 5(a), and the estimated
effective system throughputs computed assuming different levels of concurrency for
the data transfer are plotted in Figure 5(b) and (c). Two observations can be made from
Figure 5(a). First, the per processor throughput at site M decreases with the number of
processors used at site M for all the abstract domain sizes tested. This is because the
wide-area link is shared and when the number of processors increases the bandwidth
available to each processor decreases, resulting in a lower throughput on each processor.
Second, for the same number of processors at site M, in most cases, the per processor
throughput for smaller abstract domain sizes is higher than the throughput for larger
abstract domain sizes. This is because, for larger abstract domain sizes, the size of data
to be redistributed is correspondingly larger, resulting in a more congested network.
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Fig. 5. (a) Per-processor throughput for XGC at site M; (b) Estimated effective system throughput
assuming a data transfer overlap of 35%; (c) Estimated effective system throughput assuming a
data transfer overlap of 50%

Further, the processors at site P are connected to the processors at both site M and site
N. Consequently, site M processors have to compete with site N for connections with
site P, which further causes the throughput to decrease for larger abstract domain sizes.

In the CPES Fusion project, site M (running XGC) throughput is a key requirement
that must be met by the coupling framework. An initial estimate for the transfer rate
from XGC to MI is 120Mbps. The estimated effective system throughput, based on the
per processor bandwidth measured above and assuming 35% and 50% overlap in the
per processor data transfer respectively, are plotted in Figure 5(b) and (c). Assuming
that the system running XGC has 32 IO nodes, as seen from these plots, the estimated
effective system throughputs are 34 - 42Mbps assuming a 35% overlap and 50 - 60Mbps
assuming a 50% overlap. While these figures are still not close to the Fusion throughput
requirement, we believe that these are conservative numbers and that Seine can support
the required throughput when used in a real production scenario. This is because (1)
these experiments assumed an extreme case where data was continuously generated by
XGC, which is not realistic, and (2) these experiments use the Internet for the wide-
area data-transfers while a real production run would use a dedicated and customized
high-speed interconnect.
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Fig. 6. (a) put operation cost at site M and P for different data generation rates; (b) Per processor
throughput at site M for different data generation rates

Effect of data generation rates: This experiment evaluated the effect of varying the
rate at which data was generated by XGC at site M. In this experiment, XGC generated
data at regular intervals, between which, it performed computations. It is estimated by
the physicists that on average, XGC requires 3 times the computation as compared to
MI and M3D. As a result, the experiment used three sets of computes times for XGC,
MI and M3D of (1) 0, 0 and 0 seconds (corresponding to the previous experiments),
(2) 30, 10 and 10 seconds, and (3) 60, 20 and 20 seconds respectively. The results are
plotted in Figure 6. The plots show that, as expected, the cost of the put operation and
the throughput per processor improves as the data generation rate reduces.

6 Conclusion

The paper presented experiments and experiences with wide area coupling for a fusion
simulation using the Seine coupling framework. The goal of these experiments is to
evaluate the ability of Seine to support the coupling requirements of the ongoing CPES
DoE SciDAC Fusion Simulation Project. Seine presents a high-level semantically spe-
cialized shared space abstraction to application and provides efficient and scalable data
coupling, data redistribution and data transfer services. The experimental results using a
prototype coupled fusion simulation scenario demonstrate the performance, throughput
and low simulation overheads achieved by Seine.

Note that the experiments presented here are a proof-of-concept and demonstrate
feasibility. As the project progresses and real codes and more detailed requirements
become available, the Seine framework and abstractions will have to be tuned to ensure
that it can support true production runs.
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