A Decentralized Agent Framework for Dynamic Composition and Coordination
for Autonomic Applications *

Zhen Li and Manish Parashar
The Applied Software Systems Laboratory
Dept. of Electrical and Computer Engineering, Rutgers University, Piscataway NJ, 08854, USA
Email: {zhljenny, parashar} @caip.rutgers.edu

Abstract

This paper introduces a peer-to-peer agent framework
for supporting autonomic applications in decentralized dis-
tributed environments. The framework provides agents to
discover, compose, and control elements. It defines agent
interaction and negotiation protocols to enable appropri-
ate application behaviors to be dynamically negotiated and
enacted. The defined protocols and agent activities are sup-
ported by a scalable decentralized shared-space based sub-
strate. The implementation and experimental evaluation of
the system are also presented.

1 Introduction

Autonomic systems capable of managing themselves are
appearing as a new generation of applications in emerging
distributed decentralized environments, such as pervasive
information systems and the global computational Grid in-
frastructure. However, these applications are complex with
highly dynamic computational and interaction behaviors,
and when combined with the uncertainty of the underlying
infrastructure, result in significant development and man-
agement challenges. Formulations of autonomic applica-
tions and systems have viewed them as compositions of dis-
crete composable elements. Enabling these element-based
self-managing systems/applications presents many concep-
tual and implementation challenges that span all levels, in-
cluding the programming models, runtime, middlewares,
and operating systems.

Key challenges include the decentralized and dynamic
composition and coordination of distributed elements. Dy-
namic composition enables applications or parts of an appli-
cation to be dynamically composed from discrete elements

*The research presented in this paper is supported in part by the Na-
tional Science Foundation via grants numbers ACI 9984357, EIA 0103674,
EIA 0120934, ANI 0335244, CNS 0305495, CNS 0426354 and IIS
0430826.

to meet the changing requirements, deal with element fail-
ures, optimize performance, etc. Enabling dynamic com-
position is difficult in distritbuted environments because the
available elements are heterogenous, dynamic, and may be
numerous. It is infeasible to maintain common knowledge
about the names/identifiers and addresses of the entities as
well as the syntax and semantics of the interfaces. Coor-
dination is the management of runtime dependencies and
interactions among the elements in the system/application.
In case of autonomic systems/applications, these dependen-
cies and interactions can be various and complex, such as
producer-consumer, peer-to-peer, collaborative, and so on.
Further, the relationships and interactions can be ad hoc,
ephemeral and opportunistic, may be defined by policies
and context, and may be negotiated. Clearly, realizing these
behaviors using low-level protocols to cope with the issues
of data communication and synchronization as well as pro-
cess cooperation and competition is extremely difficult.

This paper presents Rudder, a peer-to-peer agent frame-
work for addressing the above challenges. Software agents
provide effective high-level mechanisms for dealing with
system adaptations as well as information discovery. For
example, project MARE [12] exploits mobile agents to ad-
dress resource discovery and configuration for mobile ad
hoc environments. An agent-based marketplace model [2]
is proposed to automate the service detection, selection and
negotiation in wireless networks. MARS [5] adopts pro-
grammable tuple spaces to support coordination of mobile
agents and has been exploited to support applications of In-
ternet information retrieval, workflow management and E-
Commence. However these systems are not appropriate for
the logically decentralized, physically distributed environ-
ments, where the discovery and interactions must be ad-
dressed in a scalable and flexible manner.

The objective of Rudder is to enable the runtime element
composition and coordination in peer-to-peer environments.
This framework consists of software agents and agent in-
teraction and negotiation protocols. The peer agents iden-
tify elements and locally control element behaviors. The



defined protocols enable the behaviors of individual agents
to progress towards a consensus. In Rudder, new elements
are dynamically identified and inserted into systems. The
most appropriate adaptation plan is negotiated, decided, and
enacted by multiple distributed cooperating agents. This
framework is implemented and supported by a fully decen-
tralized shared-space substrate COMET [7], which provides
the core messaging services for connecting agent networks
and scalably supporting various agent interactions, such as
mutual exclusion, consensus, and negotiation.

The rest of this paper is organized as follows. Section
2 presents the agent classification, coordination protocols,
and implementation. Section 3 introduces application self-
management behaviors enabled by Rudder. Experimen-
tal evaluations are demonstrated in section 4. Section 5
presents the conclusion and future work.

2 The Agent Framework

Rudder addresses the element compositions and coordi-
nations using agent cooperations, interactions, and negoti-
ations. It provides protocols to enable peer agents to indi-
vidually and collectively achieve adaptation behaviors. This
framework is implemented and supported by a shared-space
substrate COMET. A conceptual overview of this system is
illustrated in Figure 1.

Programming systems: dynamic Composition,

Coordination, Interactions, Self-managing Behaviors

Rudder Agent Framework

COMET Substrate
(Coordination and Communication Abstractions)

JXTA Peer-to-peer substrate ‘

Ontology

Figure 1. A conceptual overview of the sys-
tem.

2.1 Agent Classification

The framework defines two types of peer agents: Com-
ponent Agent (CA) and Composition Agent (CSA). CAs
represent discrete elements and use profiles to identify
and control elements, which can be computational com-
ponents or resource units (e.g., compute resources, instru-
ment, data store). A profile consists of a set of functional
and non-functional attributes (e.g. type, version, operations,
etc.), which are semantically defined using an application-
specific ontology described using an XML-based language.

CAs manage the computations performed locally within
elements and their interactions and operations. Transiently
generated CSAs dynamically discover and compose the el-
ements as applications. The agents individually enable

the autonomic behaviors by executing predefined rules.
Rules incorporate high-level guidance and practical human
knowledge in the form of an IF-THEN expression. A rule
fires when its condition expression evaluates to be true and
the corresponding actions are executed. For example, CAs
use behavioral-rules [8] to control the runtime functional
behaviors of an element (e.g., the dynamic selection of algo-
rithms, data representation, input/output format used by the
element). CSAs enable applications to dynamically change
flows and elements using workflow-selection and element-
selection rules. Workflow-selection rules are used to select
appropriate composition plans (e.g., with lowest cost) to en-
act. Element-selection rules are used to select suitable ele-
ments. However, the individual decision may be dependent
on others, conflict to others, or not optimal for the global
performance. Whenever such situation exists, these agents
need to negotiate to determine an alternative satisfying both
local and global preferences.

2.2 Coordination Protocols

A set of protocols are defined in Rudder for agents to
control elements and coordinate with each other.

The Discovery Protocol allows the agents to register, un-
register, and semantically discover elements using domain
specific ontologies. When an element is added to the sys-
tem, its associated agent uses this protocol to register the
element’s profile. The agent maintains the profile to be con-
sistent with the element and deletes the profile when the el-
ement terminates. An element can be discovered by agents
semantically using attributes in the element’s profile.

The Control Protocol allows agents to query the states
of elements and control their behaviors. A control message
sent to an element includes a list of attributes and/or an oper-
ation which are predefined in the element’s profile, and then
executed by the element. A “heart-beat” message is period-
ically sent to all the registered elements. The elements must
respond to this message to identify its liveness. If it does
not respond within a predefined interval, its profile will be
removed from the system.

The Interaction Protocol allows a group of agents to in-
teract, cooperate and negotiate. Existing agent interaction
protocols [3], e.g., the Contract-Net Protocol(CNP) [11],
can be supported and customized for specific application or
system context.

2.3 The COMET Substrate

COMET is a scalable peer-to-peer content-based coordi-
nation space. This space can be associatively accessed by
all peer agents without requiring the physical location of the
tuples or identifiers of the host.

In COMET, tuples are defined as simple XML strings.
This lightweight format is flexible enough to represent in-



formation required by all kinds of applications. COMET
provides coordination and communication abstractions.
The communication abstraction provides scalable content-
based messaging and manages system heterogeneity and
dynamism. It guarantees that information queries, specified
using flexible content descriptors, are served with bounded
cost. The coordination abstraction supports the shared-
space based coordination model providing Linda-like [6]
coordination primitives.

2.4 Implementation

The current prototype of Rudder has been implemented
on Project JXTA [9], a platform-independent peer-to-peer
framework. Each peer node in Rudder provides an agent
environment responsible for generating, configuring, and
destroying agents. Agents are implemented in JAVA as sin-
gle thread processing units with predefined rule sets. The
agents communicate with each other by associatively read-
ing, writing, and extracting tuples, and interact through co-
ordination protocols which are implemented using the ab-
stractions and services provided by COMET substrate. The
discovery protocols are implemented using COMET Rd and
RdAII operations, in which the element profile is encapsu-
lated as a template in the format of XML string and one or
all of the matched profiles will be returned. The control pro-
tocols are supported by direct peer-to-peer messaging, and
the interaction protocols are implemented using appropriate
messaging for specified communication patterns.

3 Enabling Self-Management Behaviors

A critical issue in enabling self-management is decid-
ing on the most appropriate behavior to enact. In Rud-
der, individual agents select local plans based on local in-
formation, and then negotiate with peer agents to reach
global agreement on the overall plan to enact. Rudder pro-
vides mechanisms for supporting existing negotiation mod-
els [10], such as Game Theory Based Model, Contract-Net
Protocol(CNP), Auction Model, etc. For example, in the
illustrations presented below, the CNP is used to enable dy-
namic composition and Marketplace based negotiation is
adopted for supporting multi-stage self-adaptation.

3.1 Enabling Dynamic Composition

Rudder enables dynamic composition using CNP based
negotiations among CSAs and CAs, assuming that the CSA
has an application workflow-plan to enact and that there are
several CAs capable of executing it. The CSA dynami-
cally discover and select the most suitable CA to execute
the workflow-plan through negotiation.

In the negotiation process illustrated in Figure 2 , the
CSA acts as the manager and the CAs act as contractors.
It consists of the following steps: (1) The CSA searches
for potential CAs using the discovery protocol and adver-
tises the specified task information to all candidate CAs;
(2) CAs analyze the received task information and respond
with a bid; (3) The CSA evaluates received bids, assigns
the task to the CA with the best bid, and refuses the others;
(4)The CA delegates the task to its associated element and
informs the CSA of the execution result(s) within a bounded
time, otherwise the CSA terminates the process explicitly.
This protocol is implemented using COMET. The associa-
tive communication abstraction and the semantic discovery
protocol are used by the CSA to obtain the identifiers of all
the potential CAs, and subsequent interactions between the
CSA and these CAs use direct peer-to-peer communication.

CSA CS&\
1
/ l \ /QJ T‘ o,c,\
CA1 CA2 CA3 CA1 CA2 CA3
(discovery) (plan)
CSA CSA
an\/ g \»»,%\) CAT _cgehed erg,
v CA2
CA1 CA2 CA3 CA3

(analyze) (execute)

Figure 2. Dynamic composition using CNP-
based negotiation.

The reasons of using this protocol are its efficiency and
flexibility. The cost of the Contract-Net Protocol is O(N),
where N denotes the number of participating agents. Fur-
ther, the process can be customized to meet specific appli-
cation requirements. For example, the criteria used by the
CSA for choosing CAs can be dynamically specified. Fur-
ther, the CSA may cache information about discovered el-
ements, and can negotiate with these cached elements if a
selected element can not perform the task due to unexpected
reasons. The overall process can be further tailored by al-
lowing the CSA to evaluate bids after receiving a percentage
of the bids instead of waiting for all responses to reduce the
composition overhead.

3.2 [Enabling Multi-stage Self-Adaptation

The runtime self-adaptation behaviors of applications
must be decided based on current states and context, and
may have a global scope. Agents, in this case, will have
to reach consensus on the plan to enact and the new sys-
tem/application configurations to enforce. In Rudder, Mar-
ketplace negotiation model is used, where a finite set of
issues are exchanged iteratively between buyer and seller
agents. When an agent receives a “plan” from another
agent, the agent evaluates the received plan and decides ei-
ther to accept it and stop the negotiation with an agreement,
or reject it and propose a counter plan. This mechanism



enables the agents to resolve locally decided strategies and
achieve a mutually acceptable strategy considering all fac-
tors.

In Rudder, each negotiation is allocated a limited re-
source (e.g., iteration times). The negotiating agents use the
remaining amount of this resource to determine its plan in
successive negotiation iteration [4] based on the following
function:

mazp—cury |6

Fleur,) = k' maw;=miny )

in which the value of the allocated resource is between
[min,., max,|, the current value is cur,., the preference fac-
tor k (0 < k < 1) determines the initial value of the issue
under negotiation, and the conceding rate 5(8 > 0) deter-
mines the agent behaviors. If 3 > 1, the function concedes
faster and results in a greedy agent. If 3 <= 1, the agent
is selfless. In case of unsuccessful negotiations in which no
agreement is reached when the resource is exhausted, the
participating agents can choose to be further coordinated by
a mediator, which can be an agent or a system administrator.

o
S

O Participant agent
=+ Initiator agent

w
S

N
S

w
S

Value of Negotiation Issue

N
S
*

*

ow

1 2 3 4 5 6

N 0 10 20 30 40 50 60 70 80 90 100
Iterations ar,

(@ (b)

Figure 3. Example of two agent negotiation.

Using the mechanisms described above, Rudder enables
applications to dynamically tune their configurations and
operations to ensure that they continue to meet the perfor-
mance objective despite system dynamism and uncertainty.
For example, a desired adaptive behavior of a distributed
Video-On-Demand application is to choose an appropriate
level of network service that can best meet the user require-
ment and pricing constrains. In such a scenario, the desired
value must be negotiated between the video file server el-
ement and the end-user client element. For instance, the
server has an acceptable range [10, 25] and the client can
accept the value in the range of [15, 60]. In Rudder, the ap-
propriate value is decided by the two component agent ne-
gotiation. The initiator agent has = 10 and the other agent
has § = 5. The resource-driven function with £ = 0.1 used
by both agents are plotted in Figure 3(b). As shown in Fig-
ure 3(a), an agreement is reached after 6 iterations and the
negotiated value is 21. The effectiveness and efficiency of
the negotiation process can be tailored using different agent
configurations.

4 System Operation and Evaluation

This section presents the overall system operation and
experimental evaluations. The experiments were conducted
by deploying Rudder over a distributed network of Linux-
based computers in Rutgers University. Each machine
serves as a peer node in the COMET overlay. The over-
all operation of the system consists of two phases: boot-
strap and running. During the bootstrap phase, a peer node
joins the system and exchanges messages with the rest of
the group. The running phase consists of stabilization and
user modes. In the stabilization mode, a peer node responds
to queries issued by other peers in the system to ensure that
routing tables of peer nodes are up to date, and to verify that
other peer nodes in the system have not failed or left the sys-
tem. In the user mode, each peer node interacts as part of
the system to provide the agent generation and coordination
services.

The experimental evaluation of the system performance
focuses on the element discovery and selection for dynamic
composition. The execution time is measured for systems
with different number of peer nodes, and for different num-
bers of elements and agents. In case of two agent negotia-
tion, the overall communication cost is based on the num-
ber of negotiation iterations and the latency of peer-to-peer
messaging, which is independent of the system size.

70
- - -48 Nodes
60 | —»— 64 Nodes

Average Discovery Time (sec)

o 500 1000 1500 2000 2500 3000
Number of Element

Figure 4. Scalability of element discovery.

Element discovery: This experiment measures the
time required to semantically discover registered elements,
which is the interval between when a CSA issues a discov-
ery request and when results containing all element pro-
files matching the query are returned. This time includes
the time for routing the templates to peers, matching the
profile repository within the node memory, and returning
matched results. The template used in this experiment is
specified using element attributes, including service type,
location, and performance/QoS guarantees, etc. with size at
least 440 bytes. The average execution time shown in Fig-
ure 4 illustrates that the discovery time increase (from 0.1s
to 65s) is much slower than the increase in the number of
elements (from 3 to 2700), and is independent of the system
size. This demonstrates the scalability of the system and its



suitability to distributed decentralized systems.

Element selection: This experiment evaluates the
Contract-Net Protocol based element selection, in which
CAs represent elements randomly distributed on the peer
nodes and a CSA attempts to find the best CA to execute a
task. The task length is fixed and independent of element
selection time. The tasks are generated through a Possion
process with inter-arrival mean time of 1s and 5s to sim-
ulate different application behaviors. The CSA begins the
bid evaluation process when (1) it receives all the bids or
(2) it receives a certain percentage of bids. The measured
execution time is from the time when the CSA announces
a task to the time when it gets the results from the selected
CA which the task is assigned, excluding task length. This
time includes task announcement, element selection, and
result returning time. Figure 5(b) plots the average exe-
cution time for the two cases, i.e., when the CSA begins to
evaluate the bids after receiving all the bids and only 50%
of the bids (i.e., Eva_r=0.5). In Figure 5(b) , the execution
time increases linearly with the number of CAs, and the per-
formance of this process is improved in case (2). Element
discovery time is also measured in this experiment, and is
separately plotted in Figure 5(a) . Once again, the discov-
ery scales and is fairly independent of the system size - the
discovery time increases only about 20% when the number
of matched profiles increases 400%.

01311716 nodes H —=—a4nodes
—=e— 4 nodes 0.70 | ---®---4 nodes,Eva_r=0.5
L H —#—16nodes

)
N

060 [| --¥--16 nodesEva_r=0.5

o
@
3

0.09 i/

3 6 9 12 3 6 9 12
Number of CA

Average Discovery Time (sec)
°
B
3

o
W
S

Average Execution Time (sec)

o

o

®
o
o
S

Number of CA

(@ (b)

Figure 5. Average CNP-based element selec-
tion and execution time.

5 Conclusion and Future Work

In this paper, we presented Rudder, a peer-to-peer agent
framework enabling decentralized distributed autonomic
applications. Agents dynamically discover, compose, con-
trol autonomic elements, and negotiate to execute appropri-
ate self-managing behaviors. This research investigated key
issues in the developing and executing of autonomic sys-
tems and applications, which include dynamic composition
of discrete elements and negotiation based system adaption.
The prototype implementation, operation, and evaluation

were also discussed. Experimental results showed that this
framework is scalable and flexible for supporting autonomic
applications.

The future work is to extend this framework to support
more autonomic behaviors, and adopt it to support an oil
reservoir optimization application [1], which aims to auto-
nomically determine the optimal locations and configura-
tions of oil production and injection wells.

References

[1] V. Bhat, V. Matossian, M. Parashar, M. Peszynska, M. Sen,
P.Stoffa, and M. F. Wheeler. Autonomic oil reservoir op-
timization on the grid. In Concurrency and Computation:
Practice and Experience, 2003.

[2] E.Bircher and T. Braun. An agent-based architecture for ser-
vice discovery and negotiations in wireless networks. In Pro-
ceedings of 2nd International Conference on Wired/Wireless
Internet Communications (WWIC 2004), Frankfurt an der
Oder, Germany, February 04 - 06, 2004.

[3] S.Bussmann, N. R. Jennings, and M. Wooldridge. Re-use of
interaction protocols for agent-based control applications. In
AOSE, pages 73-87, 2002.

[4] P. E. C. Sierra and N. Jennings. A service-oriented negotia-
tion model between autonomous agents. In Proc. 8th Euro-
pean Workshop on Modeling Autonomous Agents in a Multi-
Agent World, pages 17-35, Ronneby, Sweden, 1997.

[5] G. Cabri, L. Leonardi, and F. Zambonelli. Reactive tuple
spaces for mobile agent coordination. Lecture Notes in Com-
puter Science, 1477, 1998.

[6] N. Carriero and D. Gelernter. Linda in context. Communi-
cations of the ACM, 32(4):444-459, Apr. 1989.

[7] Z.Liand M. Parashar. Comet: A scalable coordination space
for decentralized distributed environments. In Proceedings
of Second International Workshop on Hot Topics in Peer-to-
Peer Systems, San Diego, CA, USA, 2005.

[8] H.Liu, M. Parashar, and S. Hariri. A component-based pro-
gramming framework for autonomic applications. In Pro-
ceedings of 1st IEEE International Conference on Autonomic
Computing. IEEE Computer Society Press, 2004.

[9] Project JXTA. Internet: http://www.jxta.org.

[10] W. Shen, Y. Li, H. Ghenniwa, and C. Wang. Adaptive ne-
gotiation for agent-based grid computing. In Proceedings of
WorkShop Challenges02 in 1st International Conference on

Autonomous Agents & Multiagent Systems, Bologna, Italy,
July 2002.

[11] R. G. Smith. The contract net protocol: high-level com-
munication and control in a distributed problem solver. In
Distributed Artificial Intelligence, pages 357-366. Morgan
Kaufmann Publishers Inc., 1988.

[12] M. Storey, G. Blair, and A. Friday. Mare: resource discovery
and configuration in ad hoc networks. Mob. Netw. Appl.,
7(5):377-387, 2002.



