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Abstract

This paper describes Rudder, a decentralized agent-based infrastruc-
ture for supporting the autonomic composition of Grid applications. Rud-
der provides agents and protocols for discovering, selecting, and com-
posing elements. It also implements agent interaction and negotiation
protocols to enable appropriate application behaviors to be dynamically
negotiated and enacted. The defined protocols and agent activities are
supported by Comet, a scalable decentralized shared-space based coordi-
nation substrate. The implementation, operation and experimental eval-
uation of the system are presented.
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1 Introduction

The goal of the Grid infrastructure is to enable a new generation of applications
that combine intellectual and physical resources spanning multiple organiza-
tions and disciplines, and provide vastly more effective solutions to scientific,
engineering, business and government problems [20]. As Grid computing has
evolved, the collaborative problem solving enabled by the Grid has also evolved
from primarily file exchange to direct access to hardware, software and informa-
tion components. The resulting Grid applications, which are based on seamless
discovery, access to, and interactions among resources and services, have com-
plex and highly dynamic computational and interaction behaviors, and when
combined with the uncertainty of the underlying infrastructure, result in sig-
nificant development and management challenges. The defining characteristics
of these emerging systems and applications include: (1) heterogeneity, Grid
environments and applications aggregate large numbers of computational and
information resources; (2) dynamism, the computation, communication and in-
formation environment is continuously changing during the lifetime of an ap-
plication, including the availability and state of resources and services; and (3)
uncertainty caused by multiple factors, including dynamism, which introduces
unpredictable and changing behaviors that can only be detected and resolved
at runtime, failures, which have an increasing probability of occurrence as the
system scales increase, and incomplete knowledge of global system state [20].
Autonomic development and management strategies, which are inspired by bi-
ological systems and the human autonomic nervous system, have recently been
proposed [10, 11, 21] to address these challenges.

A key issue in the development and management of these autonomic appli-
cations is the autonomic composition of the distributed autonomous elements.
A single available element might not address specific application requirements,
and composing several elements to form a unit with integrated functionalities is
necessary. Autonomic composition enables applications or parts of an applica-
tion to be dynamically composed from discrete elements to meet the changing
requirements and system behaviors, deal with element failures, optimize per-
formance, address QoS constraints, etc. However, enabling autonomic compo-
sition is difficult in Grid environments because the available elements are typi-
cally numerous, heterogeneous, and available in a dynamic on-demand manner.
Challenges include element descriptions, their discovery, and their dynamic and
adaptive composition, interaction and coordination. Recent initiatives, such as
the “Semantic Grid” [26], complement the Grid service-oriented architecture [9]
to enhance the scientific process with seamless interaction on a global scale.
Effectively, the composition of loosely coupled Grid services is emerging as the
desired paradigm for constructing Grid applications. In this context, solutions
being developed as part of the “Semantic Web” [1] can be leveraged to sup-
port accurate Grid service description, discovery, and composition. However,
an effective autonomic composition infrastructure is still absent in Grid envi-
ronments.

This paper presents Rudder, a decentralized agent-based infrastructure ad-



dressing autonomic composition for self-managing Grid applications. Rudder
consists of a distributed agent framework [13] and the Comet decentralized co-
ordination substrate [14]. The agent framework provides agents that enact a
workflow-based composition model in a dynamic and negotiated manner. Each
element in Rudder is modeled as an atomic service with a semantic descrip-
tion using the OWL-S [19] language. Discovery and interaction protocols are
provided for registering and unregistering elements, dynamically searching and
selecting elements, and negotiating the properties of composed elements. Comet,
a fully decentralized shared-space coordination substrate, provides the core ser-
vices for connecting agent networks and scalably supporting various agent in-
teractions, such as mutual exclusion, consensus, and negotiation.

The rest of this paper is organized as follows. Section 2 outlines the re-
quirements, challenges, and current approaches to the autonomic composition
of Grid applications. Section 3 introduces the Rudder agent-based composition
infrastructure. Section 4 describes the workflow-based autonomic composition
mechanism supported by Rudder. Section 5 describes the implementation and
operation of Rudder and presents an experimental evaluation. In section 6,
some related work are introduced. Section 7 presents a conclusion.

2 Autonomic Composition of Grid Applications:
Requirements and Current Approaches

As outlined above, the inherent scale, complexity, heterogeneity, and dynamism
of emerging Grid environments and applications result in significant program-
ming and runtime management challenges. As a result, developing Grid appli-
cations requires redefining Grid programming frameworks and middleware ser-
vices. Specifically, it requires that static (defined at the time of instantiation)
application requirements, their structures and system and application behaviors
be relaxed, and that the behaviors and structures of elements and applications
be sensitive to the dynamic state of the system and the changing requirements
of the application and be able to adapt to these changes at runtime. Clearly,
enabling autonomic composition of elements and applications is a key issue in
effectively addressing these requirements.

Enabling autonomic composition requires conceptual frameworks and an im-
plementation infrastructure. Conceptual frameworks consist of models, lan-
guages, standards, methods and constraints that govern the composition of
elements. Implementation infrastructures provide the mechanisms, including
programming and run time systems, to enforce the compositions specified using
the conceptual framework.

2.1 Conceptual Frameworks

Conceptual frameworks address the following issues: (1) Element specifica-
tion: The conceptual framework should unambiguously identify an element,



and should be sufficiently rich to capture the capabilities of an element, includ-
ing its functional attributes (e.g., input, output, precondition, effects, etc.) and
non-functional attributes (e.g., cost, service quality, security, etc.). Further, the
specification should be formally defined and capable of being processed, inter-
preted and reasoned using agents/machines, e.g., to check if two descriptions
are equivalent, partially match, or are inconsistent. (2) Application process
specification: The conceptual framework should provide information about the
elements involved in the application process, their roles, and their interactions.
This specification is similar to a workflow, and includes a set of activities and
their execution dependencies. (3) Composition policy specification: The concep-
tual framework should define composition methods and constraints and enable
users to specify requirements such as cost, performance, QoS, etc.

Related work in conceptual frameworks for autonomic composition includes
efforts within the Semantic Web community addressing the description, dis-
covery and composition of services. Projects such as myGRID [36] represent
recent efforts aimed at uniting the Semantic Web and Grid computing commu-
nities. In particular, the Web Ontology Language (OWL) [19] is emerging as a
standard in industry as well as in the scientific and engineering research com-
munities, for Web service discovery, composition, and invocation. The OWL-S
Profile specifies a service using three information components: service capability
specified in terms of its inputs, outputs, preconditions, effects, and component
sub-processes; service attributes such as QoS, cost, and classification in the tax-
onomy; and description of service providers. Note that in addition to describing
advertised services, profiles can also be used to describe requested services. The
OWL-S Process Model allows the requesters to decide whether and how to inter-
act with a service. It defines the basic functions performed by service providers
as atomic processes, which can be composed into more complex processes us-
ing control structures such as sequence, if-then-else, or split. Finally, OWL-S
Grounding specifies the implementation details of a service such as messaging
protocols and message formats.

In the Grid computing community, workflow models are popular approaches
for describing and composing complex scientific applications. A Grid workflow
is a set of tasks that are processed on distributed resources in a defined order
to accomplish a specific goal. Workflow management techniques can be ap-
plied to generate Grid workflow and dynamically assemble applications using
services and resources distributed across the Grid. In general, workflow-based
systems enact abstract workflow descriptions as composition plans to discover
and compose elements. The workflow description can be user-defined or auto-
nomically generated. Workflow descriptions may use markup languages such as
XML, WSFL [34], XLANG [35], BPEL4WS [4],and GSFL [12], or use a graphic
representation such as Petri Nets [25] and UML (Unified Modeling Language).
However, these languages do not provide well-defined semantics, which in turn
limits their ability to support seamless service interoperability. On the other
hand, while the OWL-S profiles allow descriptions to be more precise, its process
model lacks flexibility. For example, OWL-S does not describe the relationships
between the elements, their synchronization, or the termination of a process. A



possible solution is to extend workflow descriptions to use the OWL-S profile
ontology for element and composition specification.

Finally, composition polices and constraints allow users to express specific
requirements and expectations such as performance and availability. Grid envi-
ronments provide a large number of similar or equivalent services and resources.
These services may provide the same functionality but may optimize differ-
ent non-functional aspects such as performance, cost, reliability, security, etc.
Further, different users or applications may have different expectations and re-
quirements. Therefore, only considering functional characteristics during the
composition may be insufficient.

2.2 Implementation Infrastructures

Critical components of an implementation infrastructure for autonomic com-
position include an efficient, scalable and flexible discovery mechanism, and a
high-level integration mechanism. The discovery mechanism enables the selec-
tion of appropriate elements while the integration mechanism enables selected
elements to be composed coherently, without conflicts in element dependencies
and interactions. Most of existing approaches compare the syntactic and se-
mantic components [15] of element descriptions during the generation of the
composition plan. However, this approach may not ensure runtime compatibil-
ity during application execution due to the dynamic availability and state of
elements and resources on the Grid. As a result, runtime composability and
compatibility checking is important for autonomic composition, specially since
interactions can ad hoc, ephemeral and opportunistic.

Realizing an autonomic composition infrastructure for Grid applications
presents several challenges. Such an infrastructure has to implement services
and protocols to address element representation, discovery, and cooperation,
while addressing the scale, heterogeneity and dynamism of Grid environments
and applications. Key design issues include the overall system architecture as
well as discovery, communication, and coordination subsystems. In a centralized
architecture, every element publishes its existence, capabilities and functionali-
ties in a globally known and possibly centralized registry, and every agent queries
this central registry to discover elements and compose applications. However,
such architecture suffers from performance and scalability bottlenecks, single
point failures, and may be more vulnerable to denial of service attacks. On
the other hand, decentralized architectures are more scalable, resilient and have
higher availability, but require mechanisms for maintaining information consis-
tency and tend to be more complex. High-level communication and coordination
subsystems that are based on semantics rather than names/identifiers and ad-
dresses and provide abstractions for process cooperations, communication and
synchronization, can help reduce this complexity.

The software agent paradigm provides decentralization, dynamic and coordi-
nated decision-making and autonomous behaviors, and supports representation
translation, dynamic discovery and negotiated coordination, making it an effec-
tive approach for realizing autonomic composition infrastructures.



3 An Agent-based Infrastructure for Autonomic
Composition of Grid Applications

The Rudder autonomic composition infrastructure presented in this paper is
composed of (1) an agent framework [13] that provides agent abstraction and co-
ordination protocols for supporting dynamic composition, coordination, interac-
tions and application self-managing behaviors, and (2) Comet [14], a decentral-
ized coordination substrate that provides a shared-space abstraction and sup-
ports the implementation of the coordination protocols. A conceptual overview
of the infrastructure is presented in Figure 1.

Programming systems : Dynamic Composition ,
Coordination , Interactions , Self-managing Behaviors

Agent Framework ‘

Comet Substrate
( Coordination and Communication Abstractions)

oppnyg

K3o101uQO

JXTA Peer-to-Peer Substrate ‘

Figure 1: A conceptual overview of the Rudder infrastructure for autonomic
composition of Grid applications.

The motivations for employing agents to address autonomic composition for
self-managing Grid applications include two aspects. First, agents with knowl-
edge capabilities provide a natural abstraction for bridging external and inter-
nal data structures in the system. Typically, discovery systems provide external
representations that enhance element accessibility and allow users to relatively
easily express what they can offer or what they want, e.g., using the OWL-
S profile ontology. Internally, discovery substrates use specific representation,
such as keywords, for data indexing and query resolution to achieve efficient
and scalable data lookup. Agents provide an effective mechanism for translat-
ing between and gluing these representations. Second, the adaptive behaviors
of agents enable the composition plans and policies to be enacted through a
dynamic negotiation process. Agent negotiation mechanisms can be used to the
selection of the most appropriate elements from those that are currently avail-
able. This includes evaluating non-functional attributes of the elements, which
can be difficult to estimate or predict in dynamic Grid environments and may
result in sub-optimal selections.

3.1 Classification of Rudder Agents

The Rudder agent framework [13] defines two types of agents: Component Agent
(CA) and Composition Agent (CSA). CAs represent discrete elements and use
OWL-S profile to identify and control the elements. An element may be an ap-
plication, service or resource unit (e.g., computer, instrument, and data store).



Such an element along with its CA represents a managed element in Rudder.
The responsibilities of a CA include advertising the capabilities of the element,
providing uniform access to the element, configuring the element based on its
execution context, and managing its execution. Transiently generated CSAs
dynamically discover and compose managed elements to realize applications.
CSAs employ predefined composition plans to discover relevant elements and to
negotiate with the CAs to select, configure, and compose the elements.

In Rudder, composition plans are generated from the application process
and are available to the CSA !. Further, the semantics of terms and concepts
used in the composition plans as well as the application specific ontology are
common knowledge among agents. A composition plan has three components:
(1) a set of atomic tasks, each of which has a semantic description, using the
application ontology, that can be used to discover and select elements to fulfill
the task; (2) a process description describing the dependencies and interactions
between tasks; (3) constraints, which reflect user requirements and may be
defined at the task level (e.g., minimize the execution time of a task) as well
as the plan level (e.g., minimize total cost). A composition plan is enacted
by a CSA by using the task descriptions to semantically discover elements,
selecting and configuring appropriate elements, composing these elements using
the process description and coordinating with other agents to satisfy constraints
and application requirements.

3.2 Coordination Protocols in Rudder

Coordination protocols provided by Rudder include discovery protocols and
interaction/negotiation protocols.

Discovery Protocol: enables agents to register, unregister, and discover
elements. In Rudder, element profiles are categorized based on an application
defined taxonomy, and mapped onto a corresponding semantic space. The dis-
covery process consists of navigating this semantic space to narrow an element
query to a small set of potential matching profiles and then performing semantic
matching on these profiles.

OWL -S Profile Registry DiscoveryRequest

Taxonomy ServiceName <DiscoveryRequest >

serviceName AgentlD <Type> ...</Type> Profile
textDescription SematicSpace <Max> ... </Max> Repository
contactinformation Attribute 1 <Field 1> ... </Field 1>

hasProcess Attribute 2 <Field 2> ... </Field 2>

serviceCategory - — 8
serviceParameter Profile

qualityRating </DiscoveryRequest >

input

output

precondition

effects

Figure 2: Discovery message for registering/unregistering an element.

1Plans may be automatically generated through Al planning and deductive theorem prov-
ing. However, this is not currently addressed in Rudder.



When an element is added to the system, its associated CA parses the el-
ement’s OWL-S profile description, and creates a registry entry that uniquely
identifies the element in Rudder. The attributes form the coordinates of a se-
mantic space. For example, a computational storage resource may belong to
the 3D storage space with coordinates “space”, “band width”, and “cost”. The
process is shown in Figure 2. The registry itself is decentralized and is imple-
mented using the Comet substrate described below. The CA is also responsible
for maintaining the consistency of this information in the registry and updates
the registry when one or more of the element’s attributes change. A periodic
heart-beat message is used to ensure the liveliness of elements. When the el-
ement permanently leaves the system, the agent unregisters the service and
deletes the corresponding registry entry.

The discovery protocols allow agents to search for elements. Searching con-
sists of two steps. First, the agent generates the request description identify-
ing the semantic space and consisting of relevant keywords, partial keywords,
and/or wildcards. It then searches for candidate elements within the decen-
tralized repository in a distributed manner. The matching process consists of
an initial lexical matching of the keywords in the query followed by a seman-
tic matching [33] to evaluate the similarity between the request and matched
element profiles. The matching elements are returned to the requesting agent.

Interaction Protocols: allow distributed agents to interact, coordinate
and negotiate during composition in order to reach a mutually acceptable agree-
ment. Implemented protocols are based on existing agent interaction proto-
cols [5], such as those for consensus, mutual exclusion, bargaining, auctions,
distributed constraint satisfaction, coalition formation, distributed planning,
etc.

The appropriate protocols are selected based on the composition context.
During element selection, the CSA can make a decision based on a fixed crite-
ria (e.g., minimum execution time), and consequently the simple and efficient
Contract-Net Protocol (CNP) [29] (see Section 4.1) is employed. Similarly, a
Marketplace like service-oriented negotiation protocol [28] (see Section 4.2) is
employed when the agents need to achieve a mutually acceptable agreement
within a dynamic context, for example, the negotiation of non-functional ele-
ment properties.

Applications
Repository, Matching Engine Coordination
Message dispatcher Layer
Content-based Routing
Associative messaging Communication
Layer

Self-organizing Overlay

JXTA Substrate

Figure 3: A schematic overview of the Comet system architecture.



3.3 The Comet Decentralized Coordination Substrate

Comet [14] is a scalable peer-to-peer content-based coordination middleware
for wide-area distributed environments. It provides an abstraction of a Linda-
like [7] shared semantic space that can be associatively accessed by all peer
agents without knowledge of the physical location of the tuples in the space or
the identifiers of hosts over which the space is distributed.

A schematic overview of the Comet architecture is shown in Figure 3. Comet
is composed of layered abstractions prompted by a fundamental separation of
communication and coordination concerns. The communication layer provides
scalable content-based routing and data delivery operations, including a content-
based routing engine and a structured self-organizing overlay. The routing en-
gine provides a decentralized information discovery and associative messaging
service, which guarantees queries specified using flexible content descriptors will
be routed to all nodes with matching tuples with bounded costs. The current
prototype employs Chord [31], which has a ring topology, primarily due to its
guaranteed performance, efficient adaptation as nodes join and leave the sys-
tem, and the simplicity of its implementation. The coordination abstraction
supports the shared-space based coordination model and provides Linda-like [7]
coordination primitives. The main components of this layer include a data
repository for storing tuples and templates, a flexible matching engine, and a
message dispatcher that interfaces with the communication layer to convert the
coordination primitives to messaging operations and vice versa.

In Comet, tuples are defined using simple XML strings. This lightweight
format is flexible enough to represent information required by a range of ap-
plications and leads to efficient implementations. A tuple can be retrieved if
it exactly or approximately matches a template. Exact matching requires the
field names of the template to be specified without any wildcards (i.e., “*”),
as in Linda. However, this strict matching must be relaxed in highly dynamic
environments, since applications may not know the exact structure of a tuple.
Comet supports tuple retrievals with incompletely specified tuples using approx-
imate matching, where only the tag of the template needs to be specified as a
keyword or a partial keyword.

-~ 4

TLgIe

»

-
mn

51

9
[IFESyLEN

[*= )

I m

40

e imlYh
[ — = —
»

TS F

Fl—hldh

29

v

v

SFC index
(a) (b) ()

Figure 4: Example of tuple insertion in Comet: (a) a tuple is represented in a
2D keyword space, as the point (2, 1); (b) the point (2, 1) is mapped to index
7 using the Hilbert SFC; (c) the tuple is inserted at node 13 (the successor of
SFC index 7).



Template

-
L &4 Sy -=0
N
mlfhldlh / M
[ IR==li I ILY2E| ! bHis
SR F ! — P
4 [(HTt 1 p ~—
’ !..lr_} T /' %
13 3 7
mI WL @
DR =g == R Matching data
4 77 r
Template
(@) (b) (c)

Figure 5: Example of tuple retrieval in Comet: (a) the template defines a
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nodes that store the clusters are queried; (c¢) results of the query are sent to the
requesting node.

Comet is designed as a distributed hash table (DHT) constructed on a 1-
dimensional structured overlay. The recursive and locality-preserving Hilbert
Space-Filling Curve (SFC) [16] is used as a hashing function to deterministi-
cally map tuples from a semantic information space (defined by the application
ontology) to indices in the DHT index space, and to a dynamic set of nodes in
the peer overlay. The Comet coordination layer provides primitives to support
shared-space based coordination model including Out, In, Rd, InAll, and RdAIl.
Each tuple is associated with k keywords selected from its tag and attribute
names. This set of k keywords can be viewed as a point in a k-dimensional
information space and can be mapped to an index in the DHT index space and
a node in the overlay. Similarly, a template can be mapped to a point (if it is
fully specified) or a region (if it is partially specified) in the information space
and correspondingly segments of the DHT index space and nodes in the overlay.
This is illustrated in Figures 4 and 5. Note that Comet additionally supports
dynamic transient shared spaces that can be used to exploit context locality
during coordination.

3.4 System Implementation

The Comet coordination substrate has been implemented on top of JXTA [24]
and has been deployed on distributed clusters and the PlanetLab [23] wide area
distributed test bed. JXTA is a platform independent peer-to-peer framework,
where peers can self-organize into peergroups, discover peer resources, and com-
municate with each other. Comet is implemented as a JXTA peergroup service
that can be concurrently exploited by multiple applications. The peergroup
provides a secure environment where only member peers can access the service
instances running on peers of the group. If any one peer fails, the collective
peergroup service is not affected and the service is still available from other
group members.

The current prototype of Rudder has been implemented using Comet. Each
peer node in Comet provides an agent environment responsible for generating,
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configuring, and destroying agents. Agents are implemented in JAVA as single
thread processing units. The agents communicate with each other by associa-
tively reading, writing, and extracting tuples, and interact using the Rudder
interaction protocols. These protocols are implemented using the abstractions
and services provided by Comet.

The Rudder discovery protocol is implemented as follows. When an element
is added to the system, its CA registers the element by writing its profile into
the global tuple space using the Comet Out (tsname, t) operation, where tsname
identifies the semantic space and tuple ¢t encapsulates the registration request.
The registration request is routed by Comet to the appropriate peer node in the
overlay and the profile is stored in a local repository at that node. Similarly, an
element can be unregistered using the In operator.

Agents can query a single matching element using the Rd operator or all
matching elements using the RdAll operator. As in the registration case, the
query is routed by Comet to the appropriate peer node(s) in the overlay, where
semantic matching is used to check the similarity between the request and avail-
able profiles. The semantic matching process compares the syntactic and se-
mantic composability of the elements. It is similar to semantic web service
matching [33] and ensures that the interacting elements are compatible in as-
pects of operation modes (request-response), messages, number of parameters,
data types, binding protocols, etc. This matching can be implemented using
OWL-S matching tools such as OWL-S Matcher [18].

Interaction protocols are implemented using the communication abstractions
provided by Comet as follows. For each negotiation, the first step involves ses-
sion setup where the initiating agent creates a session identifier. This agent then
sends the setup message to the selected agents and waits for their acceptance.
Once the negotiation has been setup, the initiator informs the participants of
the interaction protocol and related information, such as negotiation item, bar-
gaining strategies, roles, etc. After the setup is complete, the agents engaged in
the negotiation can directly interact in a peer-to-peer manner.

4 Autonomic Composition of Grid Workflows
using Rudder

Autonomic composition supported by Rudder uses the workflow model as its
basis. A Grid workflow can be viewed as a set of tasks organized as a well-defined
flow of executions, and can be thought of as a composition of Grid services
with interaction dependencies. Workflows are effective integration strategies for
developing dynamic Grid applications. Further, recent advances in workflow-
based techniques allow a workflow to be decomposed as sub-flows and enacted
in a decentralized manner, enhancing both performance and scalability [3].
Unlike traditional workflow management system, the infrastructure pre-
sented in this paper also addresses dynamic service selection and negotiation.
In business workflow management, services are selected during the plan gener-
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ation phase based on user defined constraints or parameters. This approach is
effective for business workflows as these applications generally consist of shorter
transaction processing tasks with small amounts of data. However, Grid appli-
cations are generally more dynamic and involve more long running tasks, larger
data flows, and utilize heterogeneous and dynamic resources. This requires dy-
namic workflows involving dynamic selection, configurations and composition of
services. Further, negotiations are required to resolve conflicts and competition
between candidate services at runtime to meet user objectives.

In autonomic workflow composition, the first step is to generate composi-
tion plans. A composition plan includes a predefined workflow process and user
specified constraints. Composition plans are generated as follows. First, the
application process is represented using a standard workflow language. This
representation is then structurally decomposed into a set of component work-
flows. A composition plan is created by syntactic processing each component
workflow. Specifically, the process description is directly extracted from the
workflow description. Each task description is defined as an OWL-S profile.
Users may additionally specify non-functional properties for tasks, such as QoS,
cost, etc.

Once the composition plans have been generated, the system instantiates
CSAs to enact the plans in a distributed manner. The CSAs employ discov-
ery protocols to search for candidate elements for each task in the plan, and
ensure that the selected elements have compatible syntactic and semantic at-
tributes. As several existing elements may provide “similar” functionalities, the
agent may use the non-functional properties of the element (e.g., cost, security,
privacy, time, availability, etc.) to select the most appropriate one. Further, dy-
namic runtime selection between these elements may require negotiation. Key
steps in the autonomic composition process are illustrated below using sample
negotiation protocols.

4.1 Dynamic Element Selection

Dynamic element selection is based on negotiations among CSAs and CAs and is
illustrated using the Contract Net Protocol (CNP) [29], assuming that the CSA
has a composition plan to enact and there are several elements and correspond-
ing CSs capable of executing tasks in this plan. The CNP based negotiation
process is illustrated in Figure 6. During negotiation, the CSA acts as the man-
ager and the CAs act as contractors. The process consists of the following steps:
(1) The CSA searches for candidate CAs using the discovery protocol and ad-
vertises the specified task to all candidate CAs. (2) CAs analyze the received
task information and respond with a bid; (3) The CSA evaluates received bids,
assigns the task to the CA with the best bid, and refuses the other CAs; (4) The
CA delegates the task to its associated element and returns the result(s) from
task execution to the CSA within a bounded time. If result(s) are not received
by the CSA within this time, the CSA explicitly terminates the process. The
protocol is implemented using the communication and coordination abstractions
provided by Comet. For example, the discovery phase is implemented using the
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RdAIll operation, where “tsname” is the name of semantic space used in the
task description and “template ” consists of keywords from this space. Subse-
quent agent interactions use peer-to-peer communication abstractions provided
by Comet .

CSA CSA%\
" T
l \ A g e
CA1 CA2 CA3 CA1 CA2 CA3
(discovery) (plan)
CSA CmSA
&,‘,90\/ é \"’/};,,e’ CA1 _cgoﬁed \@4»80
v oo CA2
CA1 CA2 CA3 CA3
(analyze) (execute)

Figure 6: Dynamic element selection using CNP-based negotiation.

The primary reasons for using the CNP-based negotiation protocol are its
efficiency and flexibility. The cost of the Contract-Net Protocol is O(N), where
N is the number of participating agents. The CNP negotiation process can be
customized to specific application requirements. For example, the criteria used
by the CSA for choosing CAs can be dynamically specified. Further, the CSA
may cache information about discovered elements, and can (re)-negotiate with
these cached elements if the selected element can no longer perform the task
for some unexpected reason. The overall process can be further optimized by
having the CSA evaluate bids after receiving a percentage of the bids instead of
waiting for all responses.

4.2 Multi-Stage Property Negotiation

The marketplace model can be used to negotiate non-functional properties of a
composition plan. In this negotiation model, instead of a one time determina-
tion, values are decided through multiple stage adjustment. This is achieved by
iteratively exchanging a finite set of issues between the buyer and seller agents.
A buyer agent receives a “plan” from a seller agent, evaluates it and decides
either to accept it and stop the negotiation with an agreement, or reject it and
propose a counter plan. In case of unsuccessful negotiations, the participating
agents can choose to be further coordinated by a mediator, which can be an
agent or a system administrator. This mechanism enables agents to resolve
locally decided strategies and select a mutually acceptable strategy.

In the implementation of the marketplace model, each negotiation session is
setup by an initiator agent. The initiator agent may use the discovery protocol
to discovery other participants, which is similar to that used in the CNP protocol
described above. Once setup is complete, the agents engaged in the negotiation
directly communicate using Comet peer-to-peer communication abstractions.
Each negotiating agent uses the remaining amount of a local resource [28] (e.g.,
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remaining number of iterations) to determine its plan in successive negotiation
iterations as follows:

mazy—cury )0

fleur,) = kUmazr=miny

(1)
where the possible values of the allocated resource is between [min,., maz,], the
current value is cur,., the preference factor k (0 < k < 1) determines the initial
value of the issue under negotiation, and the conceding rate 3(3 > 0) determines
the agent behaviors. If 3 > 1 the function concedes faster and results in a greedy
agent. If 5 <=1, the agent is selfless.
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Figure 7: Example of two agent negotiation using the marketplace model.

The mechanism described above enables applications to dynamically tune
their configurations to ensure that they continue to meet the composition con-
straints despite system dynamism and uncertainty. For example, a self-managed
distributed Video-On-Demand application must select the appropriate level of
network service that can best meet the user requirement while minimizing cost.
The desired value of service level must thus be negotiated between the video
file server element and the end-user client. For instance, the server has an ac-
ceptable range [10, 25] and the client can accept the value in the range of [15,
60]. The appropriate value can decided in Rudder using negotiation between the
two component agents. Let the initiator agent have 8 = 10 and the other agent
have 8 = 5. The resource-driven function with & = 0.1 used by the both agents
are plotted in Figure 7(b). As shown in Figure 7(a), an agreement is reached
after 6 iterations and the negotiated value of the issue is 21. The effectiveness
and efficiency of this negotiation process can be tailored using different agent
configurations.

5 System Operation and Evaluation

This section describes overall system operation and presents an experimental
evaluation of Rudder. The experiments were conducted using a deployment of
Rudder over a distributed network of computers at Rutgers University. Each
computer served as a peer node in the Comet overlay. The overall operation of
the system consists of two phases: bootstrap and running. During the bootstrap

14



phase, peer node join the system and exchange messages with the rest of the
group. The running phase consists of stabilization and user modes. In the
stabilization mode, peer nodes respond to queries issued by other peers in the
system to ensure that the routing tables at each peer node are up to date, and
to verify that the other peer nodes in the system have not failed or left the
system. In the user mode, peer nodes interact as part of the system to provide
the coordination services and support autonomic composition.

The experimental evaluation focuses on element discovery and element se-
lection for dynamic composition. The execution time is measured for systems
with different number of peer nodes, and for different numbers of elements and
agents. In case of two agent negotiation, the overall communication cost is
based on the number of negotiation iterations and the latency of peer-to-peer
messaging, which is independent of the system size.

Element discovery: This experiment measures the time required to se-
mantically discover registered elements, which is the interval between when a
CSA issues a discovery request and when results containing all element profiles
matching the query are returned. This time includes the time for routing the
templates at the peers, locally matching the template profile with registries in
the local repository at the node, and returning matching results. Note that this
measurement does not include the cost of semantic matching. The template
used in this experiment is specified using element attributes, including service
type, location, and performance/QoS guarantees, etc., and has a size of at least
440 bytes. The average execution time shown in Figure 8 illustrates that the
discovery time increase (from 0.1s to 65s) is much slower than the increase in
the number of elements (from 3 to 2700), and is independent of the system size.
This demonstrates the scalability of the system and its suitability to distributed
decentralized systems.
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Average Discovery Time (sec)

Number of Element

Figure 8: Scalability of element discovery.

Element selection: This experiment evaluates the Contract-Net Protocol
based element selection, in which CAs represent elements randomly distributed
at the peer nodes and a CSA attempts to find the best CA to execute a task.
The task length is fixed and independent of the element selection time. The
tasks are generated using a Poisson process with inter-arrival mean time of 1s
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and 5s to simulate different application behaviors. The CSA begins the bid
evaluation process when (1) it receives all the bids or (2) it receives a certain
percentage of bids. The measured execution time is from the time when the
CSA announces a task to the time when it gets the results from the selected
CA to which the task is assigned, and does not include the task execution time.
The time thus includes task announcement, element selection, and result return
communication time.
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Figure 9: Average CNP-based element selection and execution time.

Figure 9(a) plots the average execution time for the two cases, i.e., when
the CSA begins to evaluate the bids after receiving all the bids and only 50% of
the bids (i.e., Evar=0.5). In Figure 9(a) , the execution time increases linearly
with the number of CAs, and the performance of this process is improved in
case (2). Element discovery time is also measured in this experiment, and is
separately plotted in Figure 9(b) . Once again, the scalability of discovery is
demonstrated, and the discovery time is fairly independent of the system size
- the discovery time increases only about 20% when the number of matched
profiles increases 400%.

6 Related Work

Reseach efforts related to this paper can be divided into related works in software
agent and coordination substrate based system management architectures, and
agent-based service discovery and negotiation. These efforts are briefly discussed
below.

The TuCSoN [17] and MARS [6] systems adopt programmable tuple spaces
to support interaction among co-located mobile agents.These systems have been
exploited to support the applications in the areas of Internet information re-
trieval, workflow management and E-Commence. The tuple space implemented
by these systems is centralized has a client-server architecture, making scalabil-
ity a seriously limitation of these systems. Project MARE [32] exploits mobile
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agents and the L?imbo tuple space [8] to address resource discovery and config-
uration in mobile ad hoc environments.

Software agents have been demonstrated to be an effective mechanism for
service discovery and negotiation in various computing environments. An agent
marketplace architecture [2] for wireless networks has been proposed and imple-
mented on FIPA-OS [22] for automating service detection, selection, price and
service feature negotiation. The negotiating based approach presented in [30]
is used in sensor networks to allocate sensor and computational resources so as
to optimize the accuracy of multi-sensor target tracking. Adaptive agent nego-
tiations based on multiple models and strategies has also been proposed in [27]
to support system adaptations to changing computing needs and resources in
Grid environments. However, the proposed approach is not implemented or
evaluated.

7 Conclusion

This research addressed the development of autonomic Grid applications, and
specifically the dynamic selection and composition of discrete autonomic ele-
ments and their negotiation based adaption. The paper presented a decen-
tralized scalable agent-based composition infrastructure for self-managing Grid
applications. Agents dynamically discover, select, and compose autonomic ele-
ments, and negotiate to execute appropriate self-managing behaviors. A proto-
type implementation, its operation, and its experimental evaluation were pre-
sented.
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